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Abstract

To study the effect of the weak binding energy on the interaction potential between a light exotic
nucleus and a target, elastic scattering of °He at 38.3 MeV /nucleon on 2C target was measured at
GANIL. The He beam was produced by fragmentation. The detection of the scattered particles
was performed by the GANIL spectrometer. The energy resolution was good enough to separate
elastic from inelastic scattering contributions. The measured elastic data have been analyzed within
the optical model, with the real part of the optical potential calculated in the double-folding model
using a realistic density dependent nucleon-nucleon interaction and the imaginary part taken in the
conventional Woods-Saxon (WS) form. A failure of the ‘bare’ real folded potential to reproduce
the measured angular distribution over the whole angular range suggests quite a strong coupling of
the higher-order breakup channels to the elastic channel. To estimate the strength of the breakup
effects, a complex surface potential with a repulsive real part (designed to simulate the polarization
effects caused by the projectile breakup) was added to the real folded and imaginary WS potentials.
Realistic estimate of the polarization potential caused by the breakup of the weakly bound He
was made based on a parallel study of 5He+'2C and 5Li+'?C optical potentials at about the same

energies.
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I. INTRODUCTION

Radioactive beams have been developed worldwide for the last twenty years, offering the
possibility to explore new phenomena in the nuclear matter, at the limits of the nuclear
stability [1]. The study of the light neutron-rich nuclei has revealed a new class of exotic
nuclei which are abnormally extended [2]. Among these nuclei, those qualified as halo
nuclei [3] such as °He and Li, require special treatments of their structural and dynamic
properties which take into account their few-body correlations.

The neutron-halo nucleus ®He appears as one of the best examples of a nuclear three-
body system : it can be easily described as a tightly bound a-core plus two valence neutrons,
with the two-neutron separation energy (2n+a«) of 0.975 MeV [4, 5]. It is also qualified as a
borromean nucleus because none of its binary subsystems is bound. The wave functions of
the valence neutrons forming the “halo” have a large spatial extension, with respect to the
range of strong interaction. The halo itself is a direct consequence of the weak binding of
the valence nucleons that allows the wave functions to tunnel out of the core potential.

Experimentally, the structure of the He was investigated through the measurement of
interaction cross sections and cross sections for the inelastic scattering and neutron knock-
out by a carbon target at energy of 790 MeV /nucleon [2, 6]. Proton elastic scattering of *He
beams was measured at 717 MeV /nucleon at GSI [7], at 70 MeV/nucleon at Riken [8], at
38.3 MeV/nucleon at Ganil [9], and at 25 MeV /nucleon at Dubna [10]. The low-lying exci-
tations in ®*He have also been investigated [11, 12]. Theoretically, *He has been investigated
in the framework of numerous three-body calculations [5, 13-15], as well as in the varia-
tional quantum Monte Carlo shell model approach [16], using the two-body and three-body
nucleon-nucleon interactions. All these models describe rather well the structure of He, like
the binding energy and the nuclear density distribution [17], and confirm a consistent halo
picture for ®He nucleus. The features of the ground state density distribution, and a *He
root mean square (rms) matter radius of the order of 2.54 £ 0.04 fm were deduced from the
few-body analysis of the elastic scattering [17] or reaction cross sections [18].

The striking feature of the halo nuclei is the long tail of their matter density, due to
their weak binding energy. The weak binding also implies that they can easily decay to
cluster states. In fact, their particle threshold found to be close to their ground state should

imply a strong coupling to the continuum during the interaction of a halo nucleus with



a target. All this requires a special treatment of the interaction potential between a halo
projectile and a stable target. In general, one must take into account explicitly the couplings
to the transitions to the low-lying excited states as well as to the resonance and breakup
states (continuum) [19]. Such couplings give rise to the so-called dynamic polarization
potential (DPP) that should be added to the microscopic optical potential. However, an
accurate calculation of the DPP is rather complicated and requires a detailed knowledge of
the spectroscopic structure of the two colliding nuclei [20, 21]. Besides the breakup into the
2n+a channel, other complicated processes involving the core breakup can also contribute
to the DPP. For example, the core break-up in ®He has been described using an extended
microscopic a+n+n cluster model [22] and it has been found that the core breakup effect
can lead to the t+t channel. All such channels are important and should be included into a
coupled reaction channel model for a correct description of the elastic “He scattering.

Within the standard optical model (OM), the double-folding approach has been used ear-
lier [23] to generate the ‘bare’ nucleus-nucleus part of the real optical potential for M Li+!2C
system. Higher-order contributions of the DPP (due to the breakup) have been added in
a phenomenological way, to provide a qualitative understanding of the role of the breakup
effects in the elastic scattering of the halo "Li nucleus. At GANIL (Grand Accélérateur
NAtional d’Tons Lourds, Caen, France), we have measured angular distributions of elastic
scattering of the radioactive *He beam on '2C at the energy of 38.3 MeV /nucleon.

Our first aim, in measuring elastic scattering data for °He, was to determine whether
the optical potentials, obtained through folding model calculations and using the effective
NN interactions, already proven to be well adapted to the stable nuclei, with the notable
exception of the °Li and ?Be [24], were still valid in the case of light exotic nuclei. As
a second step of our study, we will estimate the effect caused by the projectile breakup
following a similar approach as described in Ref. [23], and check whether the weak binding
of the light exotic nucleus He should appreciably enhance the polarization potential, which
simulates all the break-up effects. In Ref. [9], a similar study was performed, but for the
analysis of elastic data for He on proton target at the same energy, 38.3 MeV /nucleon. A
microscopic nucleus-nucleon potential was used, and it was shown that the couplings to the
continuum play an important role in the proton elastic scattering of the ®He at energies
below 100 MeV /nucleon.

The good energy resolution of the energy-loss spectrometer SPEG render the present data



free of contamination by inelastic scattering on the excited states of the target. It is then
possible to study unambiguously the interaction potential between the light exotic nucleus
SHe and the carbon target and as well to investigate the effect of the weak binding energy
on the elastic scattering data.

In a previous experiment at GANIL, reported in Ref. [25], elastic data for the ®*He +
12C did not extend to large enough angles to draw conclusions about the He + 2C optical
potential. Previous results concerning exotic nuclei, for instance, *Li + 2C [26], were in
fact quasi-elastic measurements : the energy resolution of the detectors did not resolve the
elastic and inelastic scattering contributions. In the experiment presented here, the purely
elastic data were measured with a better angular resolution and over a larger angular range.

We show in this article that these new °He+'2C data can be well reproduced and inter-
preted within the framework of the double folding model, taking into account new effective
NN interactions [27] and a simple form for the polarization potential. The comparison
between the interaction potential for both systems ®*He-2C and a-'2C gives insights on the
role played by the halo in the elastic scattering.

In Section II the experimental set-up is described. In Section III, the folding model has
been applied to the analysis of data from elastic scattering of alpha-particles on a carbon
target at different energies, in order to obtain a coherent description of the a-'2C potential at
38.3 MeV /nucleon. Then, a first analysis of the *He-'2C data is performed in Section IV by
using a phenomenological polarization potential. In Section V we present the analysis of the
SLi on 2C with a new density-dependent interaction, CDM3Y6. %Li is also an A = 6 system
with a loosely bound structure. The total potential (including the polarization potential) for
SLi+'2C is deduced and helps in better defining the polarization potential of the *He +'2C
system. The optical potential for He on '2C is discussed and the effect of the break-up
process on the elastic scattering of the ®He-'2C system is investigated. Conclusions on the
role of the polarization potential in the elastic scattering of weakly bound projectiles are

drawn in Sec. VI.

II. EXPERIMENTAL SET-UP AT GANIL
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Elastic angular cross sections of ®He on a 10 mg/cm? thick polypropylene target

(CH,CHCHj),, (density of 0.896 g/cm?) were measured at GANIL with the high resolution



energy-loss spectrometer SPEG [28].

The ®He secondary beam was produced by fragmentation of a 75 MeV /nucleon primary

13C beam, delivered by the two GANIL cyclotrons, on a carbon production target located
between the two superconducting solenoids of the SISSI device (Superconducting Intense
Source for Secondary Ions) [29, 30]. This device is located at the exit of the second cy-
clotron and at the entrance of the beam analysing a-spectrometer, which allows for an
improved collection of secondary beams and transmission to the different experimental ar-
eas. A degrader was put in the a-spectrometer in order to purify the secondary beam. After
purification, the He beam represented around 75 % of the total secondary beam. The in-
tensity of the ®He secondary beam on the reaction target in the SPEG area was of the order
of 10° pps at an energy of 38.3 MeV /nucleon.
The scattered particles were identified in the focal plane of the SPEG spectrometer by the
energy loss measured in an ionization chamber and the residual energy measured in plastic
scintillators. The momentum and the scattering angle after the target were obtained by
track reconstruction of the trajectory as determined by two drift chambers located near the
focal plane of the spectrometer. As is usual with exotic beams produced by the fragmenta-
tion method, the beam emittance was large, and the angular spread was of the order of 1
deg. So the incident angle of the beam on the target is required for the calculation of the
scattering angle. The position and angle of the projectile on the target were determined
event by event using two beam detectors located upstream of the target. These detectors
are low pressure drift chambers mounted on profilers near the focal (object) point of the
analysing dipole. Each one is a double XY position-sensitive detector with a 70 mm drift
region corresponding to 1.4 ps maximum drift time. A full description of these detectors
and of their multi-hit readout can be found in Ref. [31].

A position sensitive microchannel plate was placed in front of the target and provided
the stop signal for the beam detectors. Fig. 1 shows two two-dimensional spectra measured
in the focal plane of SPEG for the scattering of ®He on the polypropylene target. The
scattering angle (in the laboratory frame) is presented as a function of the energy loss.
They are realized from the same sets of data, but using two different calculations for the
scattering angle : the information corresponding to the incident angle given by the beam
detectors is taken into account in the spectrum to the right, it is not the case in the other

one on the left, for which the beam was assumed to be perpendicular to the target. This



latter assumption is used for stable beams, whose angular emittance on the target is small.
The straight line to the right of each spectrum corresponds to the elastic scattering on '2C,
whereas the other line corresponds to inelastic scattering (He on '2C*, the first excited
state (27) of the >C is at 4.44 MeV). The broad curve corresponds to the elastic scattering
on protons. Strong inverse kinematics and the large angular opening of the incident beam
broaden the curve but, due to the measurement of the incident angle, this line is straightened
on the right-hand spectrum, and the angular resolution is improved.

The energy resolution A_;? = 1072 allows the measurement of elastic scattering angular
distributions of light nuclei, with complete separation of inelastic scattering from target
excitations. The angular resolution is 0.3° in the laboratory system. The ratio of angular
distributions of differential cross sections to the Rutherford cross sections a(liTUR is plotted in
Fig. 2 with the angle ©,,, in the center of mass (c.m.) frame. The binning of the data
corresponds to the angular resolution of the measurement, given in the center of mass frame :
from 0.45 for the smaller angles (around 2° c.m.) to 0.75 at 19.9° c.m.

The first maximum around 4° c¢.m. is dominated by the Coulomb interaction and the cal-
culated cross sections are almost insensitive to the nuclear potential used for the calculations
of the elastic scattering. So all calculated cross sections for the system give the same first
maximum and this provides the absolute normalization of the data. Systematic errors (on
the normalization of the cross sections, and on the angle of the beam, which is monitored
by the beam detectors) are negligible compared to the statistical errors, given by the error
bars on the plot. Including all the systematic uncertainties (on the target thickness, on the
monitoring of the incident beam by the beam detectors, on the acceptance of the detection
system) the absolute normalization of the experimental data has a total systematic error
of 14 %. We have checked that the experimental normalization of the data corresponds to
the one given by the theoretical calculations at forward angles. Since the systematical error
of the theoretical normalization gave a systematical error smaller than in the case of the
experimental normalization (and smaller than the statistical errors) we have adopted it in
the article. The systematic error on the scattering angle was evaluated to be 0.1° in the
lab. system (0.15° c.m.) by comparing the experimental kinematics for the reactions of *He
on ?C and protons to the calculated ones, at 38.3 MeV /nucleon. Three maxima can be
seen in Fig. 2. The dd_a cross sections increase with the angle, which is a behavior usually
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qualified as refractive. This trend is similar to the one observed in the elastic scattering



of alpha-particles on 2C, 5Ni, Zn targets for energies from 100 MeV to 200 MeV [27].
A decomposition of the scattering amplitude between near and far-side components shows
that the cross sections at larger angles are dominated by the far-side component, which is
indicative of a strong refractive pattern [27]. One of the most fascinating features of the
refractive scattering is that one can probe the interaction potential between the two nuclei at

different distances, provided the data were accurately measured over a large angular range.

III. FOLDING MODEL ANALYSIS

It is well established that elastic « scattering on light and medium mass targets is strongly
refractive at intermediate energies. In this case, the absorption is quite weak and the mea-
sured elastic cross sections were shown to be sensitive to the real optical potential not only
at the surface but also at shorter distances. The real part V' of the optical potential can
be obtained microscopically in the folding model [24, 32], using the realistic effective NN
interaction and matter (ground state) density distributions of the projectile and target. In
this case, the refractive a-nucleus elastic scattering data can be very helpful in testing dif-
ferent models for the target density [32]. Given the success of the folding model in the OM
analysis of the elastic « scattering, we choose to use this simple model in the present paper
to calculate the (real) *He+'2C optical potentials for the OM analysis of the newly measured
elastic “He+'2C data.

In the folding model, the projectile-target optical potential can be evaluated as a Hartree-

Fock-type potential of the dinuclear system
Ur= Y [<ijloplij >+ <ijlopx|ji >] = Vp(E, R) + Vux(E, R, R). (1)
iEPJET
where the nuclear interaction Up is a sum of the effective NN interactions v;; between

nucleon 7 in the projectile P and the target 7. The direct term is local (provided that the

NN interaction itself is local), and can be written in terms of the one-body spatial densities,
Vp(E,R) = /pp(rp)pT(rT)vD(p, E,s)d’rpd’ry, s=rr—rp+ R, (2)

where pp(rp) = pp(rp,rp) is the diagonal part of the nonlocal (one-body) density matrix

for the projectile, and similarly for py(ry) for the target nucleus.



The exchange term is, in general, nonlocal. However, an accurate local approximation

can be obtained by treating the relative motion locally as a plane wave [33] :

1K(E,R)s
Vex(E,R) = /pp(rp, rp+ 8)pr(re,rr — 8)vex(p, E, s) exp (#)d%pd?’w.
(3)
K(E, R) is the local momentum of relative motion determined as
2
K*(E, R) = 3B — Ur(E, R) ~ Vo(R)) (4)

72
p is the reduced mass, M = A,.A;/(A, + A;) with A, and A; the mass numbers of the
projectile and target, respectively. For further details of the new version of the folding
model we refer the readers to Ref. [32] and references therein.

Since the G-matrix interaction [34] is real, the real folded potential Up(R) must be
supplemented by an imaginary potential, usually seen as an absorptive volume potential
caused by the loss of incident flux into non-elastic channels. While a microscopic evaluation
of the imaginary potential is possible in principle (see for instance [35]) it is complicated
for the case of the scattering of two composite nuclei. Moreover, it was shown from the
analyses of refractive heavy ion scattering [21, 36] and from a-nucleus scattering [37] that
the imaginary potential cannot be taken with the same shape as the real folded potential,
due to the weak absorption of these systems. So the imaginary potential is phenomenological
in this kind of analysis, and is taken as a standard Wood-Saxon (WS) form :

_ WU
1+exp((R— Ry)/aw)

W(R) = (5)

The total local optical potential U(R) is written :
U(R) = Vo(R) + N;Up(R) +iW (R), (6)

with Up, the folding potential, IV, the normalization factor of the real potential, and W the
imaginary part. The depth W,,, the radius R, the diffuseness a,, and the normalization N,
can be adjusted in order to reproduce the data [38].

To compare results obtained for different scattering systems, it is also convenient to use
the reduced radius r,, which is defined as r, = R,/ (4> + 4;/*). The Coulomb potential
in our analysis is taken as the usual Coulomb form between a point charge and a uniform

charge distribution of the radius R, = 7"6(14;/3 + A,l,/g) with r, =1.2 fm.



The calculations of cross sections and all the OM analyses are performed using the ECIS
(Sequential Iteration of Coupled-Channel Equations) code written by Raynal [39]. The pro-
jectile matter distribution, in the case of unstable projectiles, is obtained from microscopic
calculations. The target density is deduced from the charge distribution obtained by electron
scattering measurements.

For the choice of the analytical density and energy-dependent form for the interaction
Vi included in Egs. 2 and 3, we examine here the recently parametrized density dependent
versions of the M3Y interaction [27, 40] based on the G-matrix elements of the Paris NN

interaction [34]. It is written as a combination of the direct (Vp) and exchange (Vgx) parts

= V() x F(p)ll - G (7

All the interactions BDM3Y1, CDM3Yn, n=1,6 described in Ref. [27] have the general
form of Eq. 7. E/A is the energy per nucleon and p the density of the two overlapping
nuclei, defined as being the sum of the densities of their ground states, evaluated at the
midpoint of the internucleon separation. The interaction is combined, as in the case of
DDMS3Y, to the VLJJV(%’)/() term which is here the Paris interaction, with its exchange term
(EX) treated explicitly, as explained in Ref [41] and as seen above (Eq. 3). The authors
of Ref. [40] required, to simplify, that the parameters of the density-dependent part F of
the interaction be independent of the energy. All the energy dependence is included in the
function g(E). A parametrization of the effective interaction was searched in [40], which
satisfies both the properties of saturation of the nuclear matter as well as the empirical
energy-dependence of the nucleon nucleon potential. In the case of the Paris-version of the
VM3Y term, G is equal to 0.003 MeV~!. A power-law density dependence was associated
with the original Paris-M3Y interaction V*3Y to create BDM3Y1(Paris), so its density
function is written F = CO(1 — ap?), where C = 1.2521, a=1.7452 fm?® and 8 = 1. The
density dependence F(p) of CDM3YG6 is a hybrid form between DDM3Y1 (see [40]) and
BDM3Y1 : F(p) = C[1 + ae™P? — vp).

Its parameters are : o = 3.8033 , 8 = 1.4099 fm?3, v = 4.0 fm® and C' = 0.2658. Note that the
values for the nuclear matter incompressibility are K = 252 MeV and 270 MeV for CDM3Y6
and BDM3Y1 interactions, respectively. These new energy and density-dependent effective

10



NN interactions, BDM3Y1 and CDM3Y6, were developed and applied successfully [27] to
nucleus-nucleus systems for which the elastic scattering presents strong refractive patterns,
as for instance, in the case of o + nucleus. The interaction of the exotic nucleus °He with

12C will be described here by using these two NN interactions.

A. First analysis of the °He 4 '2C elastic scattering

We calculate the real part of the interaction potential, Ug, with the folding model which
includes the effective interaction NN BDM3Y1 (Paris) or CDM3Y6 [27], folded with the
matter density of the He particle and with the carbon one. The ground state matter density
of 12C is taken as a two-parameter Fermi function, with p, = 0.207 fm?, C, = 2.1545 fm
and a, = 0.425 fm ; these parameters were adjusted in Ref. [42] to have a rms radius of
2.298 fm close to those obtained from (e, e) scattering measurements. This density has a
similar shape as the one obtained by shell model calculations [42].

To study the effect caused by the halo structure of ®*He, various versions of the ground
state density distribution have been used in the folding calculation. We have used a halo-
type density for the °He, obtained by three-body model calculations [43]. This density,
denoted as fc6, corresponds to the correct binding energy (with the two-neutron separation
energy Sy, of 0.97 MeV). The matter rms radius of the fe6 density is equal to 2.54 fm,
close to the value evaluated from the four-body analysis of the ®He+ 2C total reaction cross
sections [43], and by the analysis of elastic scattering of ®He on proton at high energies [17].
Implicitly, the fc6 density includes 3-body correlations. To characterize all the break-up
effects that should be included in the total interaction potential, a compact gaussian density
is also used instead of the fc6 density to generate the folding potential. In this way, we
hope to discriminate between breakup effects coming from the extended density and those
resulting from the couplings to the continuum. The ®He matter density is then given as a

gaussian shape :

p(r) = Cexp(—br?) fm™> (8)

Parameters in Eq. (8) were fixed to reproduce two versions of Gaussian density for *He which
have rms radii of 2.54 fm (referred as the ga density) and 2.2 fm (ro density).

From a ‘global’ systematics for the WS imaginary potentials by Broglia and Winther [44],
the values for the imaginary parameters can be calculated for the (A=6)+(A=12) system :

11



W,=33.6 MeV, R, = 4.394 fm (r,=1.07 fm) and a,= 0.63 fm. These values were used
further as starting values to find the realistic absorption strength in *He+'2C system.

Results given by the real folded potential (calculated with the CDM3Y6 interaction and
the fc6 density) and the global parameters for the imaginary potential are plotted in Fig. 3.
One can see that it is not possible to reproduce simultaneously the first deep minimum and
the third maximum, even by varying the WS depth (see results obtained with W = 20 and
30 MeV). The systematics from Ref. [44] for the WS imaginary potentials is, therefore, only
a rough approximation for the absorption in the SHe+'2C case.

Concerning the strength of the real folded potential, the normalization factor N, was
found to be around 1.1-1.2 for elastic a-nucleus scattering, depending on the NN interaction
used in the folding model [21, 27, 32]. The enhancement of the attractive real potential
is, in fact, needed to reproduce the increase of cross sections at the larger angles (which
represent the refractive part of the cross sections). On the other hand, it has been found
by numerous folding analyses that NV, < 1 for light weakly-bound projectiles [45, 46]. For
instance, in the case of °Li having the same number of nucleons as SHe, the potential is
reduced and the normalization factor was found to be around 0.5-0.6 [21]. It was shown
by a Coupled -Channel method with Discretized Continuum [20] that the reduction of the
interaction potential between °Li and various targets is mainly due to the break-up of the
loosely bound °Li projectile. Such a reduction might be expected also in the case of the
SHe +!2C system. The folding analysis shows, however, that such a strong reduction is not
observed in the *He+2C case.

When the imaginary part is fixed to be W,= 30.0 MeV, r,,= 1.07 fm (R, = 4.39 fm) and
a, = 0.63 fm, the optimal NNV, factor is about 1.18. For comparison, with a smaller depth,
W,= 20 MeV, the OM fit yields N, = 1.1. It is clear that we have here a complex system in
which the projectile combines two patterns : a tighly bound a-core and a low density part
at large radii due to the halo. And the obtained normalization factor of the folded potential
seems to reflect the competition between the break-up effects due to the weak binding of the
SHe nucleus and the refractive effects due to the a-core. When the parameters N,, W,, R,,
and a,, are optimized by the OM fit, we obtain smaller depths of the imaginary potential and
N, values close to 0.9, significantly larger than those found earlier for the *Li+!'2C system.
The results of the search for CDM3Y6, with gauss ga or fc6 densities, and BDM3Y1 (fc6)

are given in the table I. The corresponding cross sections are shown in Fig. 4. The first
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minimum is well reproduced in all cases, and is very deep, but the data at larger angles are
not correctly described. So the simple renormalization procedure is not appropriate in the
SHe+'2C case. The normalization globally affects the potential in the whole radial region
while the measured elastic cross sections reveal two different patterns : the break-up which
leads to the reduction of the cross sections and the enhanced cross sections at angles around
20° c.m due to the refractive a-core.

We compare, in Figs. 5 and 6, the real part of the potential calculated with BDM3Y1 or
CDM3Y6, and with the different densities for “He. Both BDM3Y1 and CDM3Y6 interactions
calculated with the same density for the °He nucleus (either the gaussian one, or the fc6 one)
lead to nearly the same potential (differences between the two are less than 1%). Therefore,
all further discussions are based on results obtained with the CDM3Y6 density dependent
interaction only. We show in Fig. 6 the folded CDM3Y6 potentials including either the fc6
density, or the compact density ga (they have the same rms radius). The main differences
between the two potentials are noticeable for radii greater than 4 fm, and are of the order
of 10 % in this region. To understand these features, and to obtain meaningful values of
the imaginary parameters, we need to compare the potential of the *He+'2C system to the
a+'2C and °Li+'2C ones. Before studying the °Li+'2C potential which presents break-up
effects, and to possibly better deduce the parameters of the total *He +'2C potential, we
will consider the a+'?C potential to characterize the effect of the two neutron halo. Since
we have a strong refractive pattern for a+'2C at larger angles, similar to the one observed
for the He+ 2C, it is useful to compare the real and imaginary potentials obtained for SHe
on '2C with those of a+'2C. We now examine a set of a+'2C data at different energies, in

order to extract the potential at the energy of the *He + 2C system, 38.3 MeV /nucleon.

B. *He 4 2C elastic scattering

The description of the elastic scattering by an interaction potential is ambiguous, due
to the imaginary part and to the renormalization factor. The parameters of the volume
imaginary part of the nucleus-nucleus potential must be determined phenomenologically. So
the parameters deduced by the analysis are strongly dependent on the uncertainties in the
normalization. A large data set, in terms of incident energy, is needed in order to reduce

the uncertainties of the adjustment of N, and of the imaginary part of the potential.
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The aim is to have a consistent description of the normalization factor IV, of the real part and
of the parameters (W,, a,, R,) of the imaginary part, with respect to the energy. It will then
be possible to predict the values at the energy of interest, for instance at 38.3 MeV /nucleon,
and to calculate the elastic scattering at that energy with the folding model.

We examine the a + '2C data measured at an energy of (in the laboratory frame) E, =
104 MeV at the Karlsruhe Institute [47], at 139 MeV (34.75 MeV /nucleon) at the University
of Maryland [48] and at 172.5 MeV (43.12 MeV /nucleon) at Julich [49].

The optical potential for the o + 2C system is calculated by folding the effective
interaction CDM3Y6 [27], with the matter density of the a particle and the two-
parameter Fermi carbon density. The « density is given in Ref. [24] as a gaussian shape
p(r) = 0.4229 * exp(—0.7024r%) fm~3, whose rms radius is 1.46 fm. This radius is deduced
from the charge density obtained by (e,e) scattering. The calculation is performed according
to the prescriptions given in Ref.[32], with a realistic density dependence of the effective
NN interaction together with the inclusion of the explicit treatment of the exchange

potential, using a realistic local approximation.

We adjust the depth W, the radius R, and the diffuseness a,, and the normalization N,
on the data. The values of N,, W,, R, obtained for the sets of data, with the CDM3Y6
interaction, are given in Table II. The angular distributions obtained with these parameters
are given in Fig. 7. The data are well reproduced. This analysis shows that for all the
data N, is of the order of 1.1 to 1.2. These variations may reflect the uncertainties on
the normalization of the data. In fact this normalization factor should be constant at the
different energies since the CDM3Y6 already contains an energy-dependent term.

A way to fix the normalization parameter is to use the volume integral of the potential,
which has been shown to be a well-determined quantity of the elastic scattering data [35, 50].
The volume integral of the real potential per pair of interacting nucleons is given by the

expression :

41 N,
ApA,
where the normalization factor N, of the data is taken into account. The value extracted

at 104 MeV by model-independent calculations [51] is : Jr/(4A) = —331 & 2 MeV. fm?.

Jp = Up(u)u?du 9)

Therefore our description by the folding potential should give the same value. The volume
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integral of the unrenormalized potential for CDM3Y6, is —284.3 MeV. fm?® at 104 MeV, so
we need N, = 1.165. We keep this value for the various energies. The diffuseness a,, and
the R, are not expected to vary so much from one energy to another, so we fix them for all
energies, in order to reach a global understanding of the az + 2C potential. Of course, the
best fit agreement is obtained by varying also R,, and a,, for each energy, but then we lose
the global features that exist for these data from 104 MeV to 172.5 MeV. Here, by fixing
the geometrical parameters, and letting only the depth W, vary freely in the search, the
variation of W, with the energy can be clearly determined, as shown by the table III. Data
at the three energies are well reproduced in the Fig. 8 with the same values for the radius
(R, = 3.76 fm, the reduced radius is : 0.97 fm) and the diffuseness (a,, = 0.6 fm). Then
the depth has a range of 19 to 22.5 MeV (table III).

At the energy of the SHe+'2C system, which is 38.3 MeV/nucleon (153.2 MeV for the
YHe+'2C system), the values expected for the potential are : N, = 1.165, R,, = 3.76 fm,
a, = 0.6 fm and, by interpolating the imaginary depth between the values obtained at
139 MeV and at 172.5 MeV, W is equal to 21.8 MeV.

In Fig. 9, the folded potential for *He +'2C with the CDM3Y6 interaction (normalized with
1.165) is compared to the one calculated with CDM3Y6 and the gaussian ro density for the
SHe +2C system.

The imaginary part of the potential obtained for *He +'2C will be tested for SHe +!2C,
taking the appropriate geometry (same reduced r,, radius, but now multiplied by 61/3—1—121/3).
The break-up effects will not be taken into account by means of the normalization factor,

but rather by simulating the polarization potential considered in Sec. I.

IV. SIMPLE ESTIMATE OF THE POLARIZATION POTENTIAL

We have seen in the previous Section that a simple renormalization procedure for the real
folded potential has failed to reproduce the new elastic “He+'2C data over the whole angular
range. It is clear that a more accurate fine-tuning of the strength of the real folded potential
is needed. For this purpose we recall that, according to the Feshbach theory of microscopic

optical potential [19], the nucleus-nucleus optical potential is expressed in general as
U = Uy + AUpq, (10)
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where AU, is the so-called dynamical polarization potential which is complex, non-local

and energy dependent :

. 1
Al =lim > Vi (W) Var. (1

a,a’ #0,0
The first term in (10) describes the projectile-target interaction with the two nuclei remaining

in their ground states ¢,o and ¢y :

Upo = (¢p0¢t0 | UNN | ¢p0¢t0), (12)

where vny is the effective in-medium NN interaction.
Ugo can be represented by the folding potential Up given by Eq. 1, i.e., Uyyg = Up.

The polarization potential AU,y represents higher-order contributions to the optical poten-
tial from all inelastic channels that are allowed energetically. It affects the potential Uy,
describing the elastic scattering, through virtual processes : the interacting system may be
excited from the ground state to the « state, and then makes a transition to the o state,
finally decaying from o' to ground state. The complex AU,y is the main source of the
imaginary part W of the optical potential. With AU,y = Vpo + tWpe as the polarization

potential (V,, and W,y real), the total optical potential can be written as :
U = Upg + AUy = Up(CDM3Y6) + Vyoy + iW

with W including W.

For well-bound nuclei, the probability of excitation during the elastic scattering is weak, and
the contribution of the AU,y to the real optical potential is about an order of magnitude
smaller than the real folded potential Up [21]. A slight renormalization of the real folded
potential by the factor N, is a convenient way to take into account effectively the DPP
contributions.

The weaker the binding energy of the nucleus, along with a high probability of a transition
to the excited or clustering states, the greater the influence of AU,y. In the cases of loosely
bound projectiles, such as !''Li, the simple renormalization procedure was shown to be less
accurate and one needs to explicitly add the DPP to the real folded potential [23, 46].

It is well established now that for the loosely bound projectiles, the breakup effects
contribute to the DPP strongest at the surface region [20, 23, 52]. Based on the results
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of microscopic studies within various coupled reaction channel models, a complex surface
potential AUy = Vo 4+ Wy, With a repulsive real part, can be used to simulate the
surface effects caused by the polarization potential [9, 23, 53]. In this work, we assume

that both the real (repulsive) and imaginary parts of AU, have the same radial shape, i.e.,

%ol(R) - _%olf(R) and Wpol(R) - - polf(R)7 where
f(R) = exp(%)/u " exp(%)ﬁ (13)

Here V,,; < 0. Such a parametric form of the complex DPP has been used recently [9] in
the OM analysis of the elastic °He scattering data on proton target. Note that the repulsive
surface term leads to the reduction of the real optical potential, which explains the best fit
normalization N7 < 1 found for the loosely bound projectiles [20, 23, 46, 52]. This is one of
the most important coupling effect found in the elastic channel due the breakup.

The parameters of the phenomenological polarization potential can be related to the
microscopic approach by considering the value of the potential at the surface, as has been
done by Khoa et al. in Ref. [23] for the "Li+C system. The DPP parameters (V,o, Wpo
and a,,) were fixed to give values of V,y(R) and Wy, (R), at R = 6.5 fm, close to those
obtained in the microscopic coupled discretized channel calculations performed in Ref [52].
Here, we have obtained elastic data without any inelastic contribution, therefore we can
consider the DPP parameters for °He+'2C system as free parameters which will be adjusted
to the best OM fit to the data. In our study, we provide the phenomenological form for the
He+'2C DPP.

Both interactions, BDM3Y1 and CDM3Y6 give similar potentials ‘He+'2C whether the
folding is done with the compact density (“gauss”) or with the halo (fc6) one, as was seen
in Sec. IITA. CDM3Y6 has given good results for a+'2C. So, we turn now to the analysis
of the elastic scattering for He retaining only the CDM3Y6 interaction.

At the first step, Uy, can be taken without a radius (Ry, = 0) as attempted earlier by
Hussein and Satchler [53]. To further explore the sensitivity of the data to the real optical
potential, we have put Wy, = 0 and tried to adjust the depth V), and diffuseness a,, of
the real part of the DPP and parameters of the WS imaginary potential to the best OM fit.
A very satisfactory agreement with the data (see Fig. 10) was reached with unrenormalized
real folded potential added to a real DPP with V,,, = —64 MeV, a,, = 1.33 fm, and a WS
imaginary potential given by W, = 19 MeV, r,, = 1.13 fm, and a,, = 0.63 fm. Thus, we
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have assumed in this case that effects coming from the imaginary DPP are implicitly taken
into account by the best-fit WS imaginary potential.

Figure 10 compares the data with the two calculated cross sections obtained with and
without the DPP (the dashed and the solid curves, respectively). Without renormalizing the
real part, and with no DPP, the best fit was obtained with an imaginary part corresponding
to W,=20 MeV, r, = 1.13 fm and a, =0.63 fm, very close to the one obtained in the
description of o + '2C elastic scattering at 38.3 MeV /nucleon. The same is taken for the
calculation with the gaussian 7o density. One can see that the (real) DPP added to the
original He+'2C folded potential leads to a good description of both the first minimum
and the third maximum in the measured data, which has not been achieved by a simple
renormalization procedure for the folded potential.

The total (real) potential including the DPP is plotted in Fig. 11 and compared to both
the unrenormalized and normalized folded potentials obtained with the Gaussian density
ga. At the surface (R ~ 4 — 5 fm) the total potential with the DPP is very close to
the normalized folded potential, while it is shallower than the folded potential at smaller
distances. To show the effects of the two-neutron halo in 5He+'2C system, we have also
plotted the real folded potential for a+'?C system at the same energy (normalized by a
factor N, = 1.165 as given by the systematics from Sec. IIIB). One can see that the total
a+'2C and *He+!2C potentials have about the same depths but differ strongly at the surface
region, where the contribution given by the two halo neutrons is significant. Results of the
same OM calculations using the fc6 density instead of the Gaussian density are presented
in Fig. 12, and one has about the same effect of the polarization potential.

Nevertheless, the adopted shape for the DPP is very simple. In order to have a more
physical description of the DPP, it is necessary to explore other possible choices for the DPP
with nonzero value of the radius R,,;, in order to better determine the effect of the couplings
on the interaction potential. To get a precise idea of the value of the radius Iz, it is helpful
to study a system which exhibits similarities with the ®He +!2C case and the same mass
numbers, like the 5Li +'2C system. °Li is more tighly bound than ®He but it also presents
interesting cluster features : it is known to be easily broken up to the a and deuteron
clusters. All its excited states are above the S, 4 separation energy of 1.475 MeV, they are
unbound and can decay into clusters. So their excitation by the nuclear and Coulomb field

of a target leads to the break-up of the °Li nucleus. The Coupled Discretized Continuum
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Channels (CDCC) methods have been successful in showing how the breakup of the °Li
projectile into v and d clusters affects the elastic scattering on different targets [20].

Data for the elastic scattering of Li on a carbon target exist at different energies, giving
the opportunity to consistently fix the parameters of the imaginary part and of the polar-
ization potential for the whole data set, as explained in the next Section. The features of

the DPP for He+'2C will then be deduced from those of 6Li+'2C.

V. CONSISTENT POLARIZATION POTENTIAL FOR °LI, *HE +!°C SYSTEMS

A. Analysis of the °Li +'2C elastic scattering data and extraction of the DPP at

38.3 MeV /nucleon

Previous folding analysis [46] performed for the SLi+'C system has clearly indicated
the need for an appropriate DPP to be added to the folded potential. In Ref. [46], the
folded potential was calculated with the BDM3Y1 NN interaction. The present analysis
is made with the folding model incorporating the CDM3Y6 interaction and we consider
again the elastic °Li+'2C data measured at 16.5 MeV /nucleon [54], 26 MeV /nucleon [55],
35 MeV /nucleon [56], and 53 MeV /nucleon [57]. The proton density of SLi used in the
folding calculation is constructed as described in [24] : the charge density of °Li is extracted
from (e,e) scattering [58], unfolded from the finite size of the proton, and the neutron density
is assumed to be the same as the proton one. The rms radius of the matter density obtained
in this way is 2.43 fm.

Without any polarization potential, these data require a strong renormalization of the
real folded potential to be correctly described, as shown in Fig. 13. The normalization factor
and the parameters of the imaginary potential can be found in Table IV. At the lower energy
of 99 MeV, the best-fit normalization factor N, = 0.56 is quite different from those obtained
at higher energies. The data set at 99 MeV is, therefore, treated separately from the energy
range of 156-318 MeV for which some kind of systematic behavior can be found, with the
same N, factor of about 0.85 and a diffuseness a,, around 0.6 fm.

As was the case for a+'2C, the normalization factor should not change with the energy,
at least for the higher energies. This corresponds to the fact that for energies E > 26 MeV,

break-up effects depend weakly on the energy but increase strongly at lower energies (E
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< 20 MeV).

By fixing N, = 0.85 and a,, = 0.6 at 156-318 MeV (see Table V) in the OM search,
the reduced radius r, of the WS imaginary potential seems to move around 0.90-0.97. At
99 MeV, the first search had given a small value for the radius of the imaginary part. In
a second step, a more realistic R,, value was searched. It gives a higher y, value but the
agreement with the data was still satisfactory. The table V summarizes the result of the
search for the parameters of the imaginary part W, and R, that give the best fit, together
with the fixed N, and a,, values. These parameters give a reasonable description of the data,
as shown in Fig. 14.

It can be seen that the renormalization procedure for the real folded potential is not
sufficient to describe the cross sections at large angles (above 30° c.m.) which correspond
to the refractive region. Even if all the parameters (N, Wy, a,, and R,,) are freely released
in the search, the large-angle data are not well reproduced at 99 and 156 MeV, as shown
in Fig. 13. So the renormalization procedure does not give the right refractive scattering
pattern, which is very sensitive to the real optical potential at small radii, as was shown
in Ref. [59]. This means that the renormalization procedure, which reduces the potential
on the whole radial range, does not give a correct potential at small internuclear distances.
Therefore it is here better to use the polarization potential, which reduces the folding poten-
tial mostly at radii around 4-5 fm, as shown in the earlier folding analysis by Khoa et al. [46]
of the same SLi+'?C data. In Ref. [46], a spline shape has been used to estimate the strength
and shape of the DPP. In our analysis, we adopt for the DPP the surface term defined in
section IV and add it to the folded potential calculated with CDM3Y6. We choose to fix the
value of the radius R,q, by taking Ry, ~ Ry with R/, corresponding approximately to
the radius at which the strength of the folded potential at small radii is divided by a factor
two. Hence, Ry, is obtained from the Up(R/2) = Up(0)/2 relation. So R, is taken equal
to 2.85 fm, and this value is then fixed in the calculations including the DPP for the four
sets of data. The reduced radius of the imaginary part r,, is also fixed at its value obtained
for 318 MeV in the previous adjustment (see table V). The value of the diffuseness a,,, of
the DPP turned out to be weakly dependent on the energy and can be fixed at a value of
0.95. The same was done with the depth of the WS imaginary potential for the energies
of 156, 210 and 318 MeV. We adjust the depths of V,, and W,y in order to get a good
agreement with the data in Fig. 15. All the obtained OM parameters and those of the DPP
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are given in Tab. VL.

It is interesting to compare the real potentials used to reproduce the data : the renormal-
ized SLi+'2C folded potential, the total potential including the DPP (solid curve), with the
unrenormalized one and the normalized o +'2C potential, at the same energy per nucleon.
Figs. 16 and 17 present this comparison for 99 MeV (16.5 MeV /nucleon) and 210 MeV
(35 MeV /nucleon), respectively. With our choice for R,,, the DPP for ®Li+'2C reduces
mostly the potential at radii around 4-5 fm, and slightly modifies the potential for radii
lower than than 2 fm. The contribution of the (real) DPP to the total real optical poten-
tial is of the order of 15% at 26, 35 and 53 MeV /nucleon (see Fig. 17) and reaches 40%
at the smaller energy of 16.5 MeV/nucleon (Fig. 16). The total potential (Up + ReAU,y)
and the normalized folded potential (/V,Ur) have nearly the same values at the surface, i.e.,
for R ~ 4-5 fm. These features of the DPP are in agreement with Sakuragi’s theoretical
conclusions [20], concerning the analysis of the elastic scattering of °Li on different targets,
within the framework of the microscopic CDCC calculations. We thus have obtained an
imaginary potential for the 5Li+'2C system, which is consistent with the data at 26, 35 and
53 MeV /nucleon. It is reasonable to use it as an imaginary volume part for the He+'2C

system.

B. Discussions of the DPP in the *He+'?C system

We have made further OM analysis of the elastic ‘He+'2C data based on the WS imag-
inary potential that has the same depth and radius as found in ®Li+'2C case. All other
parameters were searched for the best fit to the data. OM results obtained with the real op-
tical potentials folded with the Gaussian density ga and the density from the 3-body model
fc6 (which have the same rms radii of 2.54 fm) are compared with the data in Figs. 18 and
19, respectively. Values of the DPP U,, and of the imaginary part W are given in the
table VII.

The agreement with the data is reasonable in both cases, with a slightly better fit to
the data points around the first minimum given by the folded potential based on Gaussian
density. If we look at the shape of the real optical potentials plotted in Figs. 20 and 21
for these two cases, we find that the total potentials (Ur + ReAU,,) have about the same

strength at the surface, around 5 fm. From a comparison with the total °*Li+'2C and
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tHe+12C potential (see the thick-dash, dotted and solid lines in Figs. 20 and 21 ) one can
see that the ®He+'2C potential is more attractive at the surface (4 to 6 fm) which is clearly
due to the extended tail of the ®He density. For radii larger than 3 fm, the DPP Upo
reduces the folding Up potential by nearly 40 %, as can be seen in Fig. 20. The comparison
between the results obtained with the gaussian and the fc6 density underscores the role
played by the halo on the scattering. It mainly induces break-up effects incorporated in the
DPP, and the tightly bound Alpha core leads to refractive effects at larger angles. A better
treatment could be reached by working with a more sophisticated function to simulate the
DPP, than the simple surface shape used here. For instance, a transition potential could be
generated to take into account the soft dipole and quadrupole modes of the *He as described
in Ref. [60] and incorporated in our coupled-channel calculations. However, the simple
shape of the complex DPP found for the SHe+!2C system provides a realistic estimate for
the contribution from the DPP to the ‘bare’ °He-+'2C optical potential. It is a practical tool

to describe and understand the elastic scattering of a halo nucleus.

VI. CONCLUSIONS

In the present article, we have presented the new extended data for elastic scattering of
SHe on '2C target, without any contamination from target excitations. These data were
analyzed in the OM to find information about the optical potential between a halo nucleus
and a target.

The real part of the ®°He+'2C interaction potential was calculated in the framework of the
folding model, including new density-dependent NN interactions, BDM3Y1 and CDM3Y6,
whose density-dependence accounts for the saturation properties of the nuclear matter. Both
shapes for the NN interaction give similar folded potentials for *He on '2C. In Ref. [27],
these interactions were demonstrated to be well-adapted for the study of refractive elastic
scattering of light nuclei such as «, '2C and 0. With the analysis of the *He data we show
that they are also well-suited to the study of the elastic scattering of a light exotic nucleus,
provided “ some account is taken of the very important dynamic polarization potential
(DPP) due to break-up ”, as pointed out by Satchler and Brandan [21]. In our analysis, a
complex surface potential, with a repulsive real part, was indeed added to the ’bare’ optical

potential generated by the folding model in order to simulate the surface effects induced by
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the polarization potential.

Our data and the 5Li+?C data demonstrate that the break-up effects on elastic scattering
do not simply correspond to a global renormalization of the potential ; the DPP is needed to
correctly describe the whole angular range of the cross sections. With a consistent absorption
potential found for both %Li+!'2C and He+'2C systems at the same energy, the DPP was
shown to affect the total optical potential strongly at the surface, at radii around 4-5 fm.
This trend agrees with the theoretical results given by various Coupled Reaction Channel
models. In this way, our study also provides a handy shape of the DPP, which might be useful
in other investigations of breakup effects in elastic scattering of loosely-bound projectiles.

Predicted cross sections for angles larger than 23° c.m. (see Fig. 18 and 19) are different
if one uses different types of the °He density. New measurements are needed to improve the
statistical precision in the region between 15 and 22° c.m. and to measure cross sections at
larger angles, to provide more precise data for the future test of different nuclear structure
models. In this kind of analysis, it is crucial to have data at different energies ranging from
25 to 100 MeV /nucleon, and on different targets, in order to systematically study the optical
potential and find the general trends of the DPP, as was done for SLi.

Theoretical calculations of the DPP by Coupled Reaction Channel models, with a
microscopic description of the “He excitations to the cluster states and to the continuum,
are strongly encouraged. The weak binding of the exotic nuclei involves an increase of the
break-up probabilities, and this effect must be taken into account to deduce information
on the structure of halo nuclei through the study of reaction mechanisms at low energy.
Moreover, the comparison between data and the theories proposed to estimate the ef-

fects of the continuum will enhance our knowledge on the channels coupled to the continuum.
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FIG. 1: Spectra of the scattering angle of the SHe at 38.3 MeV /nucleon on a polypropylene target
in the focal plane of the SPEG spectrometer (at 3.5°) as a function of the energy loss. In the
spectrum on the left-hand side, the angle is calculated by assuming that the incident beam is
perpendicular to the target. In the second one, on the right-hand side, the incident angle given by

the beam detectors is taken into account.
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FIG. 3: Elastic scattering data for ®He on '2C at 38.3 MeV /nucleon in comparison with the results
given by the real folded potential(obtained with the CDM3Y6 interaction and the fe6 density). 7y,
and a,, values of the imaginary part are equal to 1.07 fm and 0.63 fm. The solid and dashed lines

are obtained with an imaginary depth W, equal to 30 MeV and W,= 20 MeV, respectively.

29



10

3 E,,,=38.3 MeV/nucleon |

do/doy

------- CDM3Y6 Nr gauss
—— CDMB3Y6 Nr fc6
.............. BDM3Y1 Nr fc6

10 o Lo F e e e b e e e 1
0 5 10 15 20 25 30

O . (deg)

FIG. 4: Elastic scattering data for 5He on '2C at 38.3 MeV /nucleon in comparison with the
OM results given by the real folded potential. The solid (dotted) curve is obtained with the
CDM3Y6 (BDM3Y1) interaction and the fc6 density. The dashed curve is obtained with the
CDM3Y6 interaction and the gaussian-shape density (ga) for *He. The normalization factor and

the parameters of the imaginary part are explained in the text and given in Tab. 1.
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FIG. 5: Real folded potentials calculated with the CDM3Y6 (solid line) and BDM3Y1 (dotted
curve) interactions, for the elastic scattering of ®He+'2C at 38.3 MeV/nucleon. The gaussian
density ga was used for ®He. The dashed curve is the folded potential for °He +'?C calculated

with CDM3Y6 and the gaussian ro density.
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FIG. 6: Real folded potentials calculated with CDM3Y6 for the SHe+'?C system at
38.3 MeV/nucleon. The solid line is for the interaction potential obtained with the fe6 density
and the dashed line is calculated with the gaussian density ga. The dotted curve is the folded

potential calculated with BDM3Y1 and the fc6 density.
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the adjustment of the imaginary part as indicated in the text.
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FIG. 8: Elastic scattering data for o + '2C, at 104 MeV, 139 MeV and 172.5 MeV, are reproduced
with the renormalization of the real folding potential calculated using the CDM3Y6 interaction and
with the adjustment of the depth of the imaginary part as indicated in the text. For the three sets
of data, the normalization factor of the real part is fixed at 1.165, and the values of the diffuseness

and radius of the imaginary part are 3.76 fm and 0.6 fm, respectively.
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FIG. 9: Real folded potentials calculated with CDM3Y6 (solid line) for the system *He+'2C at
38.3 MeV/nucleon. The *He+'2C potential is normalized with the factor N, (equal to 1.165)
obtained in the analysis of the elastic scattering of & on '?C. The density incorporated in the
folded potential is indicated in the text. The dashed curve represents the folded potential for SHe

+12C calculated with CDM3Y6 and the gaussian ro density at 38.3 MeV /nucleon.
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FIG. 10: Elastic scattering for *He + '2C at 38.3 MeV /nucleon in comparison with the OM results
given by the real folded potential (obtained with the CDM3Y6 interaction and the gaussian ga
density for He). The dashed curve is obtained with the unrenormalized folded potential only.
The solid curve is obtained by adding a complex surface polarization potential to the real folded
potential. Its parameters, and those of the imaginary part, are explained in the text. The dotted

line is obtained by folding the CDMJ3Y6 interaction with the compact gaussian density ro.
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FIG. 11: Real folded potentials calculated with CDM3Y6 and the gaussian density ga, for the
elastic scattering of ®He+'2C at 38.3 MeV /nucleon. The folded potential Uy is represented with
the dash-dotted line. The renormalized potential with the factor IV, given in Table I is represented
with the long-dashed curve. The total potential obtained by adding the polarization potential
to Ur is drawn with the solid curve. For comparison, the CDM3Y6 potential for the *He+'2C
system at 38.3 MeV /nucleon (normalized with the factor n, = 1.165 deduced in section III) is also

presented, with the dotted line.
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FIG. 12: The same as for Fig. 10 but using the fc6 density for ®He.
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FIG. 13: Elastic scattering data for °Li + 2C at 99, 156, 210 et 318 MeV in comparison with the
results given by the real folded potential. The best-fit renormalization factor N, of the real folded

potential and parameters of the imaginary potential are discussed in the text.
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FIG. 14: Elastic scattering data for °Li + 2C at 99, 156, 210 et 318 MeV in comparison with the
results given by the real folded potential. The normalization factor N, and the diffuseness of the
imaginary potential were fixed as N, = 0.85 and a,, = 0.6 at 156-318 MeV in the OM search. The

parameters are explained in the text and given in Table V.
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FIG. 15: Elastic scattering data for °Li + 2C at 99, 156, 210 et 318 MeV are compared with the
OM results given by the unrenormalized folded potential added to a polarization potential whose

parameters are explained in the text.
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FIG. 16: Real folded potentials calculated with CDM3Y®6, for the elastic scattering of *Li+!'2C at
Eiap = 99 MeV (16.5 MeV /nucleon). The unrenormalized folded potential Ur is shown with the
dash-dotted line. The renormalized potential with the factor NV, given in Table V is presented by the
long-dashed curve. The total potential obtained by adding the polarization potential (parameters
are in table VI) to Uy is drawn with the solid curve. For comparison, the CDM3Y6 potential of
the “He+'2C system at 16.5 MeV /nucleon (normalized with the factor deduced in section III) is

also presented, by the dotted line.
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FIG. 17: The same as Fig.

16 but at Ej,, = 210 MeV (35 MeV /nucleon).
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FIG. 18: Elastic scattering for *He + '2C at 38.3 MeV /nucleon in comparison with the OM results
given by the real folded potential and the Gaussian density ga for He. The dashed curve is realized
with the CDM3Y6 potential alone. The solid curve is obtained by adding a complex surface DPP,
with radius R, to the optical potential. The parameters for the potentials are explained in the

text.
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FIG. 19: The same as Fig. 18 but with the fc6 density and the DPP with parameters given in

Table VII.
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FIG. 20: Real folded potentials calculated with CDM3Y6, for the ®He+'2C system at
38.3 MeV /nucleon. The unrenormalized folded potential Up is shown with the dash-dotted line.
The potential corresponding to the 6Li+'2C scattering at 38.3 MeV /nucleon, with the parameters
given in Table VI is presented by the long-dashed curve. The total potential obtained by adding
Up to the polarization potential (parameters are in table VII) is drawn with the solid curve. For
comparison, the CDM3Y6 potential for the *He+'2C system at 38.3 MeV /nucleon (normalized

with the factor deduced in section III) is also presented by the dotted line.
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FIG. 21: The same as Fig. 20 but using the fc6 density.
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NN |density| N, | W, Ry (rw) ay | OR
MeV fm fm | (mb)

BDM3Y1| fe6 | 0.9 6.383]6.426 (1.565)(0.378|1172.
CDM3Y6| ga [0.95| 7.67 | 6.04 (1.471) |0.524|1179.
CDM3Y6| fc6 |0.9 |6.343|6.445(1.569) |0.358|1169.

TABLE I: Parameters of the optical potential for the ®He +!'2C system at 38.3 MeV /nucleon. The
real folded potential for is calculated with the BDM3Y1 or the CDM3Y6 interaction, and with fc6
or the gaussian one (both have an rms radius equal to 2.54 fm). The normalization factor N, and
the WS imaginary potential are discussed in the text. 7, is the reduced radius of the imaginary

part.

Energy E | g(E) | N, |Jv/(44) (7“2)%,/2 Wy | Ry | aw |X*/N| og
MeV /nucleon | MeV MeV.fm3| fm [MeV| fm | fm (mb)
26 104 10.9220(1.105| 314.2 | 3.383 |23.84| 3.39 |0.665| 6.1 |784.7

34.75 139 10.8957(1.213| 321.3 | 3.393 |19.98|3.979(0.495| 3.6 |745.3

43.125 172.5/0.8706|1.098| 243.8 | 3.411 |19.92|3.754|0.602| 1.9 |717.8

TABLE II: Parameters (N, W, R,,) of the optical potential for the three sets of a + '2C data

analyzed in the framework of the folding model, with CDM3Y6.
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Energy E |Jv/(44) <T2>%//2 W, |X?/N| or

MeV /nucleon| MeV |MeV.fm3| fm |MeV (mb)

26 104 | 331.2 | 3.383 (19.05| 7.53 |792.0

34.75 139 | 308.6 | 3.393 | 21.4| 5.86 |766.1

43.125 172.5| 258.7 | 3.411 | 22.4| 4.25 |746.9

TABLE III: Same as for table II but with NV,=1.165, R,,=3.76 fm and a,,=0.6 fixed, as described

in the text.
Energy E | gE)| N | Wy | Ry (rw) | aw |X?/N| or
MeV /nucleon|MeV MeV fm fm (mb)
16.5 99 10.9505|0.614(195.4| 0.29(0.07) | 1.31 | 9.9 | 1534
26. 156 | 0.922 | 0.85 | 212. | 3.37(0.82) [0.560| 7.6 |1080.
35. 210 | 0.895 |0.854| 68.7 |3.45(0.939)|0.687| 5.1 |1023.
93. 318 | 0.841 |0.832| 75.0 |1.76(0.429)| 1.23 | 1.5 [1184.

TABLE 1V: Parameters of the optical potential for the °Li +!?C system at 4 energies. The real

folded potential is obtained with the CDM3Y6 interaction. 7, is the reduced radius of the WS

imaginary potential.
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Energy E | gE)| N | Wy | Ry (re) | aw |X?/N| or
MeV /nucleon| MeV MeV fm fm (mb)
16.5 99 10.9505|0.565|42.6 {2.29(0.558) [1.37| 13.7 |1626.

26. 156 | 0.922 | 0.85 [ 94.1| 3.696(0.9) | 0.6 | 8.8 |1094.

35. 210 | 0.895 | 0.85 | 54.9 |3.86(0.939)| 0.6 | 5.7 | 998.

53. 318 | 0.841 | 0.85 | 37.4 | 3.99(0.97) | 0.6 | 12.3 | 904.

TABLE V: The same as in Table IV but with N,=0.85 and a,= 0.6 fm fixed in the OM search for

the three data sets at high energies.

Energy E | Wy | Ry (rw) | aw | Vo |@pol |Rpot| Whpo X2/N| or
MeV /nucleon |MeV | MeV fm fm | MeV | fm | fm |MeV (mb)
16.5 99 |21.86|2.24(0.546) |1.181|—63.9|0.95| 2.7 |57.44| 4.4 |1388.

26. 156 | 20.0 |3.983(0.97)|0.751|—48.4|0.95|2.85| 23.1 | 3.1 |1146.

35. 210 | 20.0 {3.983(0.97)|0.887|—63.1]0.95]|2.85| 3.71 | 6.8 |1079.

53. 318 | 20.0 {3.983(0.97) | 0.95 |—44.4]0.95]|2.85| 1.03 | 5.5 |1051.

TABLE VI: Parameters of the optical potential for the Li+'?C system at 4 different energies. The
total optical potential includes unrenormalized real folded potential, WS imaginary potential and
a parametrized polarization potential (13). W,, Ry, Ry, and a,y were fixed in the OM search

for the three data sets at high energies.
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TABLE VII: Parameters of the optical potential for the SHe+'2C system at 38.3 MeV /nucleon.
The real folded potential is obtained with either fc6 or Gaussian ga density for ®He (both have an
rms radius equal 2.54 fm). The total optical potential includes unrenormalized real folded potential,
WS imaginary potential and a parametrized polarization potential (13). The depth W, = 20 MeV

and radius R,, = 3.76 fm of the WS imaginary potential were fixed at values deduced from the

SLi+12C system.

ol

Interaction [density| Wy | Ru(rw) | @w | Vpol | pol | Rpot| Wpot| OR

MeV fm fm |[MeV| fm | fm |MeV|(mb)
CDM3Y6 ga [20.0(3.983(0.97)(0.89|-49.2| 1.2 |1.70| 3.2 |1092.
CDM3Y6 | fe6 |20.0(3.983(0.97)(0.7 |-12. |1.69|2.81| 3.2 |1058.




