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Abstract. The π−p → e+e−n and π+n → e+e−p reaction cross sections
are calculated below and in the vicinity of the vector meson (ρ0, ω) production
threshold. These processes are largely responsible for the emission of e+e− pairs
in pion-nucleus reactions and contribute to the dilepton spectra observed in
relativistic heavy ion collisions. They are dominated by the decay of low-lying
baryon resonances into vector meson-nucleon channels. The vector mesons
materialize subsequently into e+e− pairs. Using πN → ρ0N and πN → ωN

amplitudes calculated in the center of mass energy interval 1.4 <
√
s < 1.8

GeV, we compute the π−p→ e+e−n and π+n→ e+e−p reaction cross sections
in these kinematics. Below the vector meson production threshold, the ρ0 − ω

interference in the e+e− channel appears largely destructive for the π−p →
e+e−n cross section and constructive for the π+n→ e+e−p cross section. The
pion beam and the HADES detector at GSI offer a unique possibility to measure
these effects. Such data would provide strong constraints on the coupling of
vector meson-nucleon channels to low-lying baryon resonances.
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1. Introduction

The study of the π−p→ e+e−n and π+n→ e+e−p processes described in this work
[1] aims at gaining understanding of the πN → ρ0N and πN → ωN scattering
amplitudes for center of mass energies close and below the vector meson production
threshold (1.5 <

√
s < 1.8 GeV) [2]. There are well-known baryon resonances in this

energy range, which contribute to the π−p→ e+e−n and π+n→ e+e−p scattering

a. This talk is based on the work published in Ref. [1].
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amplitudes through their coupling to the πN , ρ0N and ωN channels. These ampli-
tudes involve in addition significant non-resonant processes. The phenomenological
ρNN∗ and ωNN∗ coupling strengths needed to understand the data related to the
πN → ρ0N and πN → ωN amplitudes are pivotal quantities for baryon structure
studies [2].

The exclusive observation of neutral vector mesons through their e+e− decay
presents definite advantages over their observation through final states involving
pions. Firstly, there are no competing processes, such as π∆ production which
leads to the same ππN final state and impairs consequently the identification of
the ρ-meson in that channel. Secondly, both the ρ0- and ω-mesons decay into the
e+e− channel. This leads to a quantum interference pattern which is expected to
reflect sensitively the structure and relative sign of the πN → ρ0N and πN → ωN

scattering amplitudes.
A proper understanding of the π−p → e+e−n and π+n → e+e−p reactions

appears also as a necessary step towards a detailed interpretation of the produc-
tion of lepton pairs off nuclei induced by charged pions. Such reactions would be
particularly sensitive to the propagation of ω-mesons in nuclei [3].

In Section 2, we present the relativistic coupled-channel model [2] used to des-
cribe the πN → ρ0N and πN → ωN amplitudes and outline the calculation of the
π−p → e+e−n and π+n → e+e−p cross sections in the Vector Meson Dominance
model. Our numerical results for these cross sections are displayed in Section 3. We
discuss the ρ0−ω quantum interference pattern in the e+e− spectrum for both the
π−p→ e+e−n and π+n→ e+e−p reactions. We conclude briefly in Section 4.

2. Calculation of the π−p → e+e−n and π+n → e+e−p cross sec-

tions close to the vector meson production threshold

We describe the πN → e+e−N reaction for e+e− pair invariant masses ranging from
∼0.4 to ∼0.8 GeV. Assuming Vector Meson Dominance for the electromagnetic
current [5], the πN → ρ0N and πN → ωN amplitudes are the basic quantities
entering the calculation of the πN → e+e−N cross section. This assumption is
illustrated in Fig. 1, where we show the diagrams contributing to the π−p→ e+e−n

process.
We use the πN → ρ0N and πN → ωN amplitudes obtained in the recent

relativistic and unitary coupled-channel approach to meson-nucleon scattering of
Ref. [2]. The available data on pion-nucleon elastic and inelastic scattering and on
meson photoproduction off nucleon targets are fitted in the energy window 1.4 <√
s < 1.8 GeV, using an effective Lagrangian with quasi-local two-body meson-

baryon interactions and a generalized form of Vector Meson Dominance to describe
the coupling of vector mesons to real photons. The scheme comprises the πN , π∆,
ρN , ωN , KΛ, KΣ and ηN hadronic channels. The coupling constants entering
the effective Lagrangian are parameters which are adjusted to reproduce the data.
In view of the kinematics, only s-wave scattering in the ρN and ωN channels is
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Fig. 1. Diagrams contributing to the π−p→ e+e−n amplitude with intermediate
ρ0- and ω-mesons.

included, restricting πN and π∆ scattering to s- and d-waves. The pion-nucleon
resonances in the S11, S31, D13 and D33 partial waves are generated dynamically by
solving Bethe-Salpeter equations [2]. In the ρ0N - and ωN -channels, the restriction
to s-wave scattering means that the model applies to situations where the vector
meson is basically at rest with respect to the scattered nucleon (

√
s 'MN +MV ).

This assumption implies that the range of validity of the present calculation is
limited to e+e− pairs with invariant masses me+e− close to (

√
s − MN ) and to

values of
√
s below and very close to threshold i.e. 1.5 <

√
s ≤ 1.75 GeV.

The πN → ρN amplitude has isospin 1/2 and isospin 3/2 components while
the πN → ωN amplitude selects the isospin 1/2 channel. Both amplitudes have
spin 1/2 and spin 3/2 parts.

The invariant transition matrix elements for the πN → ρN and πN → ωN

reactions are given by

〈ρj(q)N(p)| T |πi(q)N(p)〉
= (2π)4 δ4(q+ p− q − p)u(p) εµ(q)T ij

(πN→ρN)µ u(p), (1)

〈ω(q)N(p)| T |πi(q)N(p)〉
= (2π)4 δ4(q+ p− q − p)u(p) εµ(q)T i

(πN→ωN)µ u(p), (2)

where T
ij
(πN→ρN)µ and T i

(πN→ωN)µ are functions of the three kinematic variables

w = p + q = p + q (
√
w2 =

√
s), q and q. These scattering amplitudes can be
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decomposed into isospin invariant components as

T
ij
(πN→ρN)µ(q, q;w) =

∑

I

T
(I)
(πN→ρN)µ(q, q;w)P

(I) ij
(ρ) , (3)

T i
(πN→ωN)µ(q, q;w) =

∑

I

T
(I)
(πN→ωN)µ (q, q;w)P

(I) i
(ω) , (4)

in which P
(I) ij
(ρ) and P

(I) i
(ω) are isospin projectors [1]. The isospin invariant amplitudes

can be expanded further into components of total angular momentum,

T
(I)
(πN→V N)µ(q, q;w) = M

(I,J= 1
2
)

πN→V N (s) Y(J= 1
2
)µ(q, q;w)

+M
(I,J= 3

2
)

πN→V N (s) Y(J= 3
2
)µ(q, q;w). (5)

V stands for ρ or ω and Y(J= 1
2
)µ(q, q;w) and Y(J= 3

2
)µ(q, q;w) are relativistic angular

momentum projectors [1].
The πN → ρN and πN → ωN amplitudes in the S11, S31, D13 and D33 channels

obtained in Ref. [2] are displayed in Figs. 2 and 3. The quantities shown are the

amplitudes M
(I,J)
πN→ρN (s) and M

(I,J)
πN→ωN (s) defined by Eq. (5), which depend only

on the center of mass energy
√
s.

Fig. 2. Real and imaginary parts of the πN → ρ0N amplitudes in the pion-
nucleon S11, S31, D13 and D33 partial waves [1].
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The coupling to subthreshold resonances is clearly exhibited in these pictures.
In the S11 channel, the N(1535) and the N(1650) resonances lead to peak structures
in the imaginary parts of the amplitudes. The pion-induced ω production ampli-
tudes in the D13 channel reflect the strong coupling of the N(1520) resonance to
the ωN channel. The π−p→ ρ0n and π−p→ ωn amplitudes are obtained from the

Fig. 3. Real and imaginary parts of the πN → ωN amplitudes in the pion-
nucleon S11 and D13 partial waves [1].

isospin 1/2 and isospin 3/2 scattering amplitudes by the relations,

MJ
π−p→ρ0n = −

√
2

3
M

(1/2,J)
πN→ρN +

√
2

3
M

(3/2,J)
πN→ρN , (6)

MJ
π−p→ωn =

√

2

3
M

(1/2,J)
πN→ωN . (7)

Similarly the π+n→ ρ0p and π+n→ ωp amplitudes are given by

MJ
π+n→ρ0p =

√
2

3
M

(1/2,J)
πN→ρN −

√
2

3
M

(3/2,J)
πN→ρN , (8)

MJ
π+n→ωp =

√

2

3
M

(1/2,J)
πN→ωN . (9)
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The phases of the isospin coefficients appearing in Eqs. (6) and (8) play a crucial
role in determining the ρ0−ω interference in the π−p→ e+e−n and π+n→ e+e−p

reaction cross sections. The real and imaginary parts of the π−p → ωn and of
the π+n → ωp amplitudes are the same and mostly positive. In contrast, the
π−p → ρ0n and π+n → ρ0p amplitudes have opposite signs. The π−p → ρ0n

amplitudes are predominantly negative and will therefore interfere destructively
with the π−p → ωn amplitudes. The π+n → ρ0p and π+n → ωp amplitudes have
the same sign over a large

√
s interval, leading to a constructive interference.

The π−p → e+e−n and π+n → e+e−p cross sections are calculated from the
π−p → ρ0n, π−p → ωn, π+n → ρ0p and π+n → ωp amplitudes, assuming Vector
Meson Dominance of the electromagnetic current [4, 5]. This assumption can be
enforced in the effective Lagrangian by introducing vector meson-photon interaction
terms of the form,

L〉\tγV =
fρ

2M2
ρ

Fµν ρ0
µν +

fω

2M2
ω

Fµν ωµν , (10)

where the photon and vector meson field tensors are defined by

Fµν = ∂µAν − ∂νAµ, (11)

V µν = ∂µV ν − ∂νV µ. (12)

In equation (10), Mρ andMω are the ρ- and ω-masses and fρ and fω are dimensional
coupling constants. Their magnitude can be determined from the e+e− partial decay
widths of the ρ- and ω-mesons to be [6]

|fρ| = 0.036GeV 2, (13)

|fω| = 0.011GeV 2. (14)

The relative sign of fρ and fω is fixed by vector meson photoproduction amplitudes
[2]. We assume that the phase correlation between isoscalar and isovector currents
is identical for real and virtual photons as in Sakurai’s realization of the Vector
Meson Dominance assumption [4]. With the conventions used in this paper, both
fρ and fω are positive.

3. Numerical results

With the πN → ρN and πN → ωN amplitudes and the Vector Meson Dominance
assumption discussed in Section 2, we have calculated the differential cross section
dσ
dq2 πN→e+e−N

for the π−p→ e+e−n and π+n→ e+e−p reactions. The magnitude

of the 4-vector q is the invariant mass me+e− of the e+e− pair. We refer to [1] for
calculational details.
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The differential cross sections for the π−p → e+e−n and the π+n → e+e−p

reactions are computed for values of the total center of mass energy
√
s ranging

from 1.5 GeV up to 1.75 GeV. We explore the dependence of the ρ0−ω interference
pattern in the e+e− channel on

√
s in this energy range, in particular in the vicinity

of the ω-meson production threshold (
√
s=1.72 GeV). We illustrate our results

below threshold by displaying in Figs. 4 and 5 the differential cross sections for the
π−p→ e+e−n and the π+n→ e+e−p reactions at

√
s=1.5 GeV, where the N(1520)

and N(1535) baryon resonances play a dominant role. These figures show very
clearly the isospin effects discussed in Section 2. For the two reactions, the ω and ρ0

contributions to the cross section are the same. The ρ0-ω interference is destructive
for the π−p → e+e−n reaction and constructive for the π+n → e+e−p process.
Consequently, the π−p→ e+e−n differential cross section is extremely small in the
range of invariant masses considered in this calculation. In contrast, the constructive
ρ0-ω interference for the π+n→ e+e−p reaction leads to a sizeable differential cross
section. This is a very striking prediction, linked to the resonant structure of the

scattering amplitudes M
1/2
πN→V N and M

3/2
πN→V N . Data on differential cross sections

for the π−p → e+e−n and π+n → e+e−p reactions at
√
s=1.5 GeV would be very

useful for making progress in the understanding of the couplings of both the N(1520)
and N(1535) baryon resonances to the vector meson-nucleon channels.

Fig. 4. Differential cross section for the π−p→ e+e−n reaction at
√
s=1.5 GeV

as function of the invariant mass of the e+e− pair. The ρ0 and the ω contributions
are indicated by short-dashed and dotted lines respectively. The long-dashed line
shows the ρ0−ω interference. The solid line is the sum of the three contributions.
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Fig. 5. Differential cross section for the π+n→ e+e−p reaction at
√
s=1.5 GeV

as function of the invariant mass of the e+e− pair. The ρ0 and the ω contributions
are indicated by short-dashed and dotted lines respectively. The long-dashed line
shows the ρ0−ω interference. The solid line is the sum of the three contributions.

The differential cross sections for the π−p → e+e−n and π+n → e+e−p reac-
tions below threshold have been calculated also at

√
s=1.55, 1.60, 1.65 and 1.70

GeV [1]. The cross sections vary smoothly with the total center of mass energy.
They exhibit the features discussed for

√
s=1.5 GeV, reflecting however dynamics

associated with higher-lying resonances. Just below threshold (
√
s=1.70 GeV), the

ω-contribution begins to increase, while the general features of the e+e− production
in the two isospin channels remain the same.

The interference pattern changes drastically above the ω-meson threshold. Figs.
6 and 7 show the π−p → e+e−n and π+n → e+e−p differential cross sections at√
s=1.75 GeV. At this energy, the differential cross sections for the π−p→ e+e−n

and π+n→ e+e−p reactions are completely dominated by the ω-contribution. The
magnitudes of the cross sections for the two reactions are comparable. The ρ0 − ω

interference is still destructive in the π−p → e+e−n channel and constructive in
the π+n → e+e−p channel, albeit very small. In both reactions, crossing the ω-
production threshold leads to a sharp increase in the cross section, by two orders
of magnitude in the π−p → e+e−n channel and by one order of magnitude in the
π+n→ e+e−p channel.
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Fig. 6. Differential cross section for the π−p→ e+e−n reaction at
√
s=1.75 GeV

as function of the invariant mass of the e+e− pair.

4. Conclusion

We have computed the e+e− pair invariant mass distributions for the π−p→ e+e−n

and π+n→ e+e−p reactions below and close to the vector meson production thresh-
old. We took as input the πN → ρ0N and πN → ωN amplitudes obtained in a
recent relativistic and unitary coupled-channel approach to meson-nucleon scatter-
ing [2]. Using the Vector Meson Dominance assumption, we have shown that the
differential cross sections for the π−p→ e+e−n and π+n→ e+e−p reactions below
the ω-threshold are very sensitive to the coupling of low-lying baryon resonances to
vector meson-nucleon final states contributing to the ρ0- and ω-meson production
amplitudes. We find that the ρ0−ω interference is destructive in the π−p→ e+e−n

channel and constructive in the π+n → e+e−p channel (see also Ref. [7]). We
predict a very small cross section for the π−p → e+e−n reaction below threshold
and a sizeable cross section for the π+n → e+e−p reaction in this energy range.
Above the ω-meson production threshold, both cross sections are comparable and
much larger.

The magnitude of the π−p → e+e−n and π+n → e+e−p differential cross
sections below the ω-threshold depends strongly on the structure and dynamics
of baryon resonances. These reactions deserve experimental studies. Such a pro-
gramme could be carried at GSI (Darmstadt) using the available pion beam and
the HADES spectrometer [3]. These measurements would provide a necessary step
towards the understanding of e+e− pair production in pion-nucleus reactions and
in general significant constraints on the propagation of vector mesons in the nuclear
medium.
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Fig. 7. Differential cross section for the π+n→ e+e−p reaction at
√
s=1.75 GeV

as function of the invariant mass of the e+e− pair.
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