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Abstract. The linear stability of a shocked isothermal accretion flow onto a black hole is investigated in the inviscid limit. The
outer shock solution, which was previously found to be stable with respect to axisymmetric perturbations, is, however, gener-
ally unstable to non-axisymmetric ones. Eigenmodes and growth rates are obtained by numerical integration of the linearized
equations. The mechanism of this instability is based on the cycle of acoustic waves between their corotation radius and the
shock. It is a form of the Papaloizou-Pringle instability, modified by advection and the presence of the shock. As such it can
be generalized to non isothermal shocked accretion flows. Blobs and vortices are generated by the shock as a by-product of the
instability.
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1. Introduction (QPO). The mechanism of the instability was not explained by
. - . MTK, who briefly mentioned a possible link with the numer-
Hydrodynamic instabilities of shocked accretion flows may.5| simulations of Blaes & Hawley (1988). The Papaloizou-
explain some of the properties of X-ray binaries, such g$ingle instability (1984, hereafter PPI) simulated by Blaes &
their time variability. The structure of stationary accretlopiawmy is known to take place in discs or tori, in which the

flows involving shocks was described by Fukue (1987) apgyiq| velocity is initially zero, whereas the flow simulated by
Chakarabarti (1989a,b). Even with the simple inviscid hya1i jnvolves radial advection, an inner sonic point and an
pothesis, the structure of shocked accretion flows is complexiar shock. The fiect of advection on the PPI was investi-
and their stability is not yet fu!ly understood. As .noted bYated by Blaes (1987), who found that the PPI is strongly sta-
Nakayama (1992), the calculations of Chakrabarti (1989afj}i;e4 by advection at the inner boundary. The interpretation
are a study of the forced oscillations of the flow rather than @R the results of MTK in terms of the PPI is thus not obvious
analysis of its intrinsic stabil?ty. Na_k_ayama (1992, 1_993) introoi priori. What is more, the flow studied by MTK is also poten-
duced a new type of global instability between the inner sonigy ynstable by the advective-acoustic mechanism (Foglizzo
pomt_ and the _shock. He_found that, of the two possible Shc’&kTagger 2000; Foglizzo 2001, 2002), based on the cycle of
positions, the inner one is unstable due to post-shock accelgiionyorticity perturbations and acoustic waves in the sub-
ation, while the outer one is stable due to post-shock decghyc region between a stationary shock and a sonic surface.
eration. His conclusion was confirmed by Nobuta & Hanawa he aim of this study is thus to understand the instability

(1994), whose numerical simulations showed that the ingkchanism at work in shocked accretion flows. For the sake
shock is completely destroyed by perturbations, while the ougrsimpiicity, the present linear stability analysis is focused on
one is stable. All the above works, however, were based on @hermal accretion flows with constant angular momentum.
isymmetric calculations. Molteni et al. (1999, hereafter MTK},o paper is organised as follows. Linearized equations and
performed 2D simulations of an adiabatic flow with an out§fo,ndary conditions are described in Sect. 2 and solved nu-
shock and found a non-axisymmetric instability. They showgderically in Sect. 3. The instability mechanism is analysed in

that the instability saturates at a low level, and a new asy@act 4 and compared to the simulations by MTK in Sect. 5.
metric configuration develops, with a deformed shock rotating ’

steadily. MTK pointed out that thisfiect may have relevant .
) ! S . 2. Equations
observational consequences, such as quasi-periodic oscillations
An inviscid, isothermal flow around a black hole is considered,
Send gprint requests toWei-Min Gu, e-mail:guwm@xmu . edu. cn in _'fhe pseudo-Newtonian potential introduced by Pasky&
* All appendices are only available in electronic form at Wiita (1980),® = -GM/(r — rg). Equations are made dimen-
http://www.edpsciences.org sionless by using the Schwarzschild radius and the speed of
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3 T T T T T T T T the outer shock is stable to axisymmetric perturbations. Our nu-
r ] merical results in Sect. 3, however, indicate that it is unstable
r to non-axisymmetric perturbations.
- The mass conservation equation and the Euler equation are
- written as follows:
2
dp
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- wherew is the vorticity. In order to write the linearized equa-
3 tions in the simplest form, the two functiofisg are defined as
L - follows:
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Fig. 1. Radial profile of the Mach number in the unperturbed flow, for p U

which| = 1.87 andcs = 0.1. The two circles denote the inner and th‘%vheref is the perturbation of the Bernoulli constant an
outer sonic points, respectively. The dashed arrow shows the shoch.l%t perturbation of the mass accretion rate. The frequehof

fon = 6.8. the perturbation measured in the rotating frame is defined as:
light as reference units, i.eg = 1 andc = 1. In these units, W' =w-m, 7

. . 1
the Keplerian frequency is denot€k = 1/(r — 1)(Z)z. I wherem is the azimuthal wave number a®d = 1/r2 is

order to overcome the technicaffitulty of treating a realis- the angular velocity. With the standard method of linear sta-
tic vertical structure, three types of simplifying assumptionsjlity analysis, (perturbations proportional to&+m¢  see

can be used; constant thickness, constant angle (conical flovappendix B), the following diferential system is obtained:
or vertical equilibrium. Chakrabarti & Das (2001) proved that

there is no essential fierence among these three assumptioﬁ"_slc _ iwM? (_ﬂf + g)

from the point of view of the existence of stationary solutions?r  v/(1-M?)\ w

The thickness of the flow is approximated as a constant for the IBsh T g ®)
Tsh vr

sake of simplicity, as in Nakayama (1992), Nobuta & Hanawa +r2c§v,(1 —- M2 ’
(1994), Blaes (1987) or MTK, although the approximate thick-

. g o’ o’ 2 im2c2
nessH ~ c;/Qk deduced from the balance of the vertical pres—= = — (—f -M g) - —2f
sure force and the vertical gravity is not constant. or u(l-M)\w wr v
The stationary flow is described by the conservation of _ Bsn [m+ W'l ] efhidr )
mass and the Bernoulli equation: wr?y, c3(1- M?) ’
pruy = const, 1) whereB = rv,w,, w, is the vorticity along the rotation axis,
M = —u/cs is the radial Mach number, and the subscript
22 1 “sh” denotes the shock position. The boundary conditions cor-
=+ -5t cZlogp - =——— = const, (2) responding to a perturbed shock velocity, are obtained in
2 2(-1) Appendix C:
wherep is the densityy, is the radial velocitygs is the sound ,
speed, and is the specific angular momentum. An example, = (ﬁ Mo 1 )(1_ MZ)Zﬂ, (10)
solution of unperturbed flow is shown in Fig. 1, for which w wr 1- Mz Ur
| = 1.87 andcs = 0.1. As a consequence of the inviscid hypoth- o= ﬁ/(l— Mz)ﬂ (11)
esis, stationary accretion flows onto a black hole are very su%s- w v’
Keplerian in their outer parts. The question of the origin of this . W iMcen oo Auy
sub-Keplerian flow is still uncertain (Chakrabarti & Titarchul®sh = —|mc§(; Y )(1_ M) ) (12)

1995; Molteni et al. 2001). In Fig. 1, the unperturbed flow is

supersonic between the outer sonic poRb & 44.5) and the Wheren = (dlogM/dlogr)ish (Eq. (A.1)), M andu; are cal-
shock (sn = 6.8), becomes subsonic between the shock and fFidated at the post-shock side. _

inner sonic pointRs = 2.36) and goes into the central black 1 "€ vorticityéw, produced by the shock is:

hole supersonically. This example solution is precisely the one Bshef’ g

chosen by Nobuta & Hanawa (1994), in which they showed tH#tz = €= - (13)

Ur
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. . ) Fig. 3. The maximum growth rate of the non radial modes is reached
Fig. 2. Eigenspectrum of the flolv= 1.87 andcs = 0.1, showing the for m ~ 10 in the flowl = 1.87 andcs = 0.1. The pattern frequency

instability of the_modes JS m_s 5. The empty triangles CorreSpondu)r/m of these unstable modes is concentrated in a limited band.
to the stable axisymmetric eigenmodes found by Nobuta & Hanawa

(1994). 02

B - Mmin
Msh

There are two dferential equations fof, g and one unknown
parametetv in our system, thus three boundary conditions are

needed to solve the equations. In addition to the two bound- 0.15
ary conditions Egs. (10), (11) at the shock, a third equation is
obtained from the critical condition at the sonic point,

0.6
05

0.7

iIBsh hoen el o
r8orCs

These three boundary conditions are used to numerically solve
the diferential system Egs. (8), (9) and to determine the eigen-

frequenciesv. A single equation corresponding to this bound- 0.05
ary value problem is formulated in Appendix D.

=0. (14) & o1

/
wgson— w’ fson—

3. Numerical results 0 P SRR AR

The standard Runge-Kutta method is used to integr#ierdn- 1.7 18 1.9 2

tial equations from the sonic point to the shock. Figure 2 shows |

the eigenspectrum of the flom= 1.87 andcs = 0.1 studied by Fin. 4.Th hick solid fi he threshold for shockdincluded
Nobuta & Hanawa (1994), for perturbationsOm < 5. The Ig.4. The two thick solid lines are the threshold for shock-include
lutions. The dotted lines measure the shock strength by the value

. . . . . S
stability of axisymmetric perturbations conflrm_s the resylts %f/\/(sh indicated on the left. The thin solid lines correspond to the
NObUt.a & Hanawa (1994). In C_ontraSt’ non-aX|symmetr|c P&alue of the minimum Mach numbeM, indicated on the right.
turbations are unstable. The highest growth rate is reached+gg 19 filled circles correspond to unstable outer shock solutions, and
m= 10 perturbations, as seen in Flg 3. Determining numeﬂi're 5 empty squares Correspond to stable ones.
cally how the most unstable depends on the value df ¢s)
is beyond the scope of this paper. In what follows, numerical
calculations are restricted ta = 1 perturbations for the sakesolid line on the right corresponds to extremely weak shocks,
of simplicity. Msn ~ 1. A total of 24 shocked solutions were considered
Figure 4 shows the domaih ¢;) of angular momentum andfor numerical calculation, in order to get a broad view of
sound speed for which an isothermal inviscid flow, subsorticeir stability properties. Since the inner shock solution was
far from the accretor, may accrete onto a black-hole througheady found unstable to axisymmetric perturbations, we con-
a stationary shock. This domain is limited by two solid linegentrated on the stability of the outer shock solution. Solutions
The solid line on the left corresponds to the solutions in whiat the bottom right corner in Fig. 4, for which the advection
the inner shock and the outer shock are identical, whereastiheescale is much longer than the acoustic obf,(; < 0.01),
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Fig. 5. Growth rates compared to three timescales: advectign Fig.6.T_he position of the corotation radius is indicated for 19 unstable
(squares), acoustig, (circles), and rotatiof)(rs,y) (crosses). flows (circles) and 5 stable ones (squares).

were avoided for computing time reasons. Among this samp-)ﬁge d|sper3|pn of the p0|r_1ts n Fig. S Is smalle_st \_Nhen the
rowth rate is measured in units of the acoustic time, sug-
of 24 shocked flows, 19 were found to be unstable and 510 . . o .
- esting a purely acoustic cycle. If this is the case, what is the
be stable. The results shown in Fig. 4 suggest that the shocK IS .
. . . mechanism?
generally unstable to non-axisymmetric perturbations, excep

for avery narrow region close to the upper right border. In other

words, the shock might be stable only #bfs, ~ 1. 4.2. The corotation region in the PPl mechanism
The corotation radiug,, of the perturbation is defined hy =
4. Instability mechanism mQg, whereQq = Q(rco):
4.1. Comparison with the advective timescale Im\?
I’co = w— . (17)
r

In an isothermal flow, two types of cycles may exist between

the sonic pointand the shock, i.e., the purely acoustic cycle aR¢tording to Fig. 6, the corotation radius of the most unsta-
the vortical-acoustic cycle. From the results of Foglizzo (2003)le modes is always located between the sonic point and the
we would expect the vortical-acoustic cycle to be particularbhock. Figures 5 and 6 are hints in favour of the PPI. The mech-
unstable for very strong shockd{sh < 1, with a growth time  3nism of the PPI was formulated most simply by Goldreich &

comparable to the advection timescalg.: Narayan 1985 (hereafter GN85) in thin discs. The more sub-
s gr tle effect of a corotation resonnance (Narayan et al. 1987; Kato
Tady = f — (15) 1987) can be neglected in the present study, since the epicyclic
raon V1] frequency is zera® = 1/r?). The PPl is based on the exchange

The numerical results seem to exclude an explanation base®b@nergy and angular momentum between acoustic waves

a vortical-acoustic cycle: propagating inside and those propagating outside the corotation
(i) the flow is generally unstable to non-axisymmetric pefadius_ (Mar_k 1976). T_he thin disc hypo@hesis in these studies is

turbations, even for mild shocks: the range of shock strengff§hnically importantin order to treat high frequency perturba-

among the 19 unstable flows considered is very wideg@ tons in the WKB approximatiow = mo > ¢s/r. According

Mah < 0.94). to Fig. 7, the high frequency approximation is applicable only

(ii) the growth time can be much shorter than the advectidh the limit ¢s — 0, which coincides with strong shocks ac-
time. The growth time of the instability is plotted in Fig. 5, iff°rding to Fig. 4. Following GN85 and Kato (1987), we be-
units of the rotation frequency at the sonic radid@sy), the Ilt_ave that the physical _mec_hamsm_ captured analytlcally_ in thin
advection timer,g, and also in units of the acoustic timg, JISCS IS also relevant in thicker disc@r/cs ~ 1), even if a

approximated by the following lower bound: guantitative estimate of the growth rate is precluded.
The PPI occurs with either an inner or an outer re-

flecting boundary, or even morefieiently with both. Let
(16) ; o . .
Cs us recall this mechanism in the case of a single reflecting

2 Fsh— rson.
1- M?

min

Tac =
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02 T

k? is positive near the sonic poinp ~ 1), negative near the
corotation radiusdy ~ 0), and positive again at large radius.
A calculation withk = 0 and M > 0 in Appendix F shows
that 7, is independent of the Mach number in the high fre-
guency approximation, if the gradient of the Mach number is
neglected:

Cs / QK I'son
Cs / QK Msh

0.15

T MG } (22)

Tco~ €Xp|—=—=
°° p[ 2 Qolrco?
where Qo is the derivative of the rotation frequency at the
corotation radius. This estimate at high frequency thus favours
modes with a low azimuthal numbar. Beyond the high fre-
guency approximation, this calculation shows that the ampli-
fication mechanism at corotation can operate even with radial
advection.
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4.4. Crucial role of the boundaries

) ) ) . . In order to estimate thefliect of radial advection at the in-
Fig. 7. The value of the rati@s/<xr at the sonic point (dotted lines) e o ndary, Blaes (1987) considered an inviscid flow with
and at the shock (fulllines) is indicated on the lines. constant thickness in a pseudo-Newtonian potential, and a uni-

form angular momentum. It efiered from the present study by
boundary, noting ¢, the fractional amplitude of the transmittedan adiabatic hypothesis and, most importantly, a leaking outer
wave through the corotation zone, aRdhe fractional ampli- boundary. As stressed by GN85, the PPI requires at least one
tude of the acoustic wave reflected by the boundary. An ingiflecting boundary. The stabilizingfect of advection found
dent wave with energy1 transmits an energy|7c.* on the by Blaes (1987) is thus directly related to the impossibility,
other side of corotation, thus amplifying the energy of the réor acoustic waves moving away from the corotation, to be re-
flected wave by a factor % [T¢ol°. If 7 is the duration of the flected towards it. By contrast, a stationary shock standing at

acoustic cycle, the growth rate of this instability is: the outer boundary of the flow is a good reflector of acous-
1 . tic waves, if the shock is not too weak. A continuity argument
wi == log [IRI(1+ ITcolz)ﬁ]. (18) would lead to expect the reflection dheientRsh to decrease

) ) ) to zero in the limitMs, — 1. This is confirmed by a calcula-
The following estimate of , was obtained by GN85 and CONtjon of Ryy in the high frequency limit (see Appendix E), which

firmed by Kato (1987): gives the same result as in isothermal flows without rotation
2 2 (Foglizzo 2002):
Teo~ exp[—z G (—2 + K—)} (29)
2miQo| \reo® 3 1- Msn.

~— 23
The instability is thus slow in thin discs if > 0, and the most 7T My @3)

unstable modes correspondno~ «r¢,/Cs. Let us now investi-

gate the Fects of radial advection on this mechanism. According to Egs. (18) and (23), a strong isothermal shock (i.e.

[Rsil ~ 1) is a suficient condition for the instability of the
acoustic cycle between the shock and corotation in thin discs.
4.3. Effect of advection on the corotation region Acoustic energy in shocked flows is thus trapped between the
'EBOCk and the corotation radius, and may leak inside through
e sonic radius without damping the instability. On the basis
of the results obtained by Blaes (1987), a strong decrease of
. . R the growth rate should be expected in the weak shock limit.
obtained in Appendix E: This trend is clear in Fig. 5, when measuring the growth rate,
52 3 o w as Blaes (1987), in units of the rotation frequency at a fixed
{m + kz} ) foe‘f @ W‘} =0, (20) radius. What is more, all the stable modes correspond to weak
shocks Mg > 0.8) according to Fig. 6.

In the high frequency limit, acoustic waves can propagate in Figure 8 shows that the dispersion of the points is further
the region where the functidkt(r) is positive, and are evanesdecreased by measuring the growth rate in units of the acoustic
cent in the region wher!(r) < 0. k? is approximated at high timescalero, between the corotation and the shock, approxi-
frequency as follows: mated by:

5 1 w? B ﬁ ) - 2 'sh—lco
1-MD) | (1-MD)Z 12 (21) Tout Y .

min

The dfect of advection on the corotation region can be hand
analytically in the high frequency limit. The second order di
ferential equation satisfied by the homogeneous solutas

1- M?
M

(24)
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Fig. 9.Incidence of advection on the PPI for weak shock& = 0.9).
Fig. 8. Growth rate measured in units of the total acoustic time The growth rate of the instability is measured in units of the acoustic
(circles) compared to the acoustic timg between the corotation time r,,, between the corotation and the shock.
and the shock (stars).

. , .. the most unstable perturbation has not been reached yet. The
The combination of Egs. (18), (22)—(24) gives an analytical €Shly isothermal example considered in Fig. 3 with > 1

timate of the growth rate which is justified only in the highye,hations favours & m < 12, which seems higher than
frequency limit, i.e. forcs — 0 and strong shocks. A direCty,q oy azimuthal wavenumbers present in the simulations of
application of this estimate outside its range of validity is ufztyk

able to explain the strong dispersion of the points in Fig. 8 for pegpite these uncertainties, the present isothermal calcula-
weak shocks. As noted in Sect. 4.2 with Fig. 7, solutions wifly,, is simple enough to illustrate the possibility of a PPI in a
a weak shock coincides with those with the largest paramelgf,.yeqd accretion flow, occuring on a shorter time scale than
(Cs/€r), i.e. the least adapted to a high frequency approxjy, nossible advective-acoustic cycle. This instability mech-
mation. It should be noted that part of the dispersion of thgyisr, should thus also apply to adiabatic flows, including
growth rate in Fig. 8 may come from the contribution of thg, s simulated by MTK, if the shock is able to reflect acous-
vorticity perturbations, when the advection time is comparalle \\aves. The calculation R in the adiabatic hypothesis
to the acoustic time: they trigger additionnal acoustic Wav?ﬁoglizzo & Tagger 2000, Eq. (C13)) would be unchanged by

which may add or substract to the acoustic power presentifaiion and non radial perturbations, in the high frequency
the acoustic cycle. Could thisfect be essentially stabilizing?}; it for 4 strong shock:

According to Fig. 9, for a given shock strength (idg, = 0.9),

the flow seems to be stabilized by a strong advection. 22 —yi(y - 1)
sh~ ——74 1, .1

(25)

27 + y% (y- 1)%
Comparing Eqg. (25) with Eq. (23), the reflection fosent
Although non-linear processes might redistribute the energyaffstrong adiabatic shocks is significantly smaller than strong
the unstable modes, it could be tempting to identify the frésothermal ones in the high frequency limit. The adiabatic hy-
quencyw:™, observed in the simulations, with the real part giothesis in the work of MTK may thus marginally influence the
the most unstable eigenmode. Based on five regular oscillatgirength of the instabilitylRsn ~ 0.36 fory = 4/3).
examples, MTK found that the oscillation periBds always in A refined comparison of the growth rate and oscillation fre-
the same range, 60 P < 280 despite the large variation in thequency with the results of MTK would require a linear stability
rotation rate at the shock distance, 10@xr/Qsn < 2000. We analysis in an adiabatic flow involving alsn > 2 perturba-
find that all the five regular oscillation examples listed in MTKions. This will be the subject of a forthcoming paper.
satisfy the conditionQsh < w¥™ = 27/P < Qson, Which is a
requirement of the PPl mechanism. .

A guantitative comparison with the results of MTK is ham-6' Conclusion
pered by our choice of an isothermal flow rather than an adiBhe main results can be summarized as follows:
batic one, and also by our restrictiontto = 1 perturbations 1. Despite post-shock deceleration, the outer shock solu-
which are not necessarily the most unstable ones. A gloltiah is generally unstable with respect to non-axisymmetric
understanding of which azimuthal wavenumber correspondgierturbations.

5. Comparison with adiabatic simulations
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Appendix A: Description of the unperturbed flow The perturbed velocitpv, of the shock and its angled with
. . . . he azimuthal direction are
We consider a simple one-dimensional steady flow under the P
assumption of a constant thickness. The derivative of the, = — = —iwA¢, (C.5)
Mach number is obtained by derivating the stationary flow
Eas (1), (2 Af = 1oas _ @Ag = —EAUr ) (C.6)
d|OgM 1+(|2_|ﬁ)/r20§ r dp r wl
nm= dlogr =T 1- M2 ’ (A1) Considering the velocity component perpendicular to the

shock, in the frame of the shock, the isothermal shock con-
wherel is the Keplerian angular momenturp,= r*/2(r—-1)%.  ditions become the following:

The continuity of the flow at the sonic point requires

Op- Ouy_ !
3 p-+ LAg Ur- + o AV ﬂAUr =|p++ %Af + 6p
2 C2 2 I'son _ or or w or

I'sonCs + 1= - N2 0. (A.2)

2(r30n_ 1) 8 ,

v, w
The (, c5) parameter space for the shocked accretion flows is X (vH + 8;+ Aé — — Ay + 6vr), (C.7)
shown in Fig. 4. w
o v o 2
_ re

Appendix B: Linearized equations for (p‘ + WM) (Ur‘ A ZAUT) G

perturbations

, 2
The mass conservation and Euler equations are Iinearized:i(b+ + %Ag +5p) (vr++3vr+ Af - ﬂAvr+6vr) +C§}
r w

order to obtain the following three equations: or
. C.8)
) (
vrg—f +?(5v¢—lw'lJ =0, (B.1) 5
p _

of | Uyp—+ %Ag + U AG = v+ %Ag + U A0 + v, (C.9)
Cﬁﬁ — lwéyr ~ F‘Swz =0, (B2) The boundary conditions Egs. (10), (12) are deduced from the
) above three equations.
ime2,
Tf —iwdv, + vréw, = 0. (B.3)

Appendix D: Boundary value problem

(Nith three boundary conditions Egs. (10), (11), (14), the dif-
ferential system could in principle be directly integrated us-
ow Fw(V-v)+ @ Vw—(w- V=0, (B.4) ing the Runge—Kutta method. The smgul_anty at the sonic point

requires to integrate from the sonic point towards the shock.

The evolution of vorticity is deduced from the curl of Eule
equation:

ot
The vorticity can be integrated when linearized, leading tthe boundary value problem is conveniently reduced to a sin-
Eqg. (13). The dierential system of Egs. (8), (9) is obtaine@le equation involving the solutiofs of the homogeneous sys-

from the above equations. The perturbaiop is related tof ~tem. The homogeneousfiiirential equations are expressed as

andBqgh (Egs. (B.3), (13)), follows:
. of iwM? o
1 4. T g g’ — | ==
ov, = fowr (Imcgf + Bshe‘erh ! r) ) (B.5) or ur(1 - M?) ( w fo+ go), (B
NG ’ 2
Equations (8), (9), (B.5) enable us to géty, év,, 5p) from 990 - lw 5 ﬁfo ~ Mg - 'mZC§ fo. (D.2)
(f,g). or u(l-MA)\w wr?y;
At the sonic point, the following boundary conditions are
Appendix C: Boundary conditions at the shock obtained:
a)l
The isothermal shock conditions are written as follows: golson = > folson - (D.3)
P_Ur_ = PiUrs (C.1) The derivation at the sonic point can be obtained from
L'Hospital method,
p-(WF +C) = p.(vF, + ). €2) .o ) Ly gm
——lson = 2 o'r f0|son, (D-4)
Uy = Vgt , (C.3) or fson  nson+ =2
im?2 io2 ’
where the subscripts* and “+” denote pre-shock and post—%|son - (% _ "”_) folson — ﬂa_ffﬂson, (D.5)
shock quantities, respectively. Let the shock be perturbed 18§ wr?  wes or

rson

A¢ in the radial direction: 213

1

. pean = —— |Dsofsont 1) (1 717 (D.6)
A€ oc € ‘. (C.4) Cs | 4(rson— 1)
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With the method in “Appendix C” of Foglizzo (2002), theThe dominant contribution of the advected vorticityftandg,
following single equation for the boundary value problem iat high frequency, is deduced from théfdiential system (8),

obtained: (9) where the derivative were replaced by a multiplication by
ot of o' for:
(f . W - E . fO) |Sh (D7) o rﬂl)rz —lo’ iBSh (E 10)
ren C i Leal B = 22 2 2 '
=By [ fodeha T ar, (D.8) Wi M o
1-p _ _ ImBs (E.11)
98 = 0212 4 2 .

where the parametdris: ) »
Using Egs. (E.10), (E.11) and the boundary conditions (10)—

R S | 1 2l dlog(rvr) (12), the linear system (E.1), (E.2) is solved in order to obtain
A= ——|—-im-——F-"1|, (D.9)
r2c2y, | v? ue dr f&
and the value obf/or at the shock is deduced from Egs. (8)., Au, M (1 - M)H(M F u)? incs 1 — M?
d (10)—(12 fo =25—— 1+ — |- (E12)
and (10)—(12). 20, u +1-uM wr MFpu
_ . The reflection cofficient Rq, is defined using Eq. (E.7), so
Appendix E: Reflection at the shock that|Rs2 is the fraction of the reflected acoustic flux reflected
Perturbationgsp, gsh at the shock are decomposed on acoustfivard:
+ =+ H . f+
wavesfg, g5 and advected perturbatiofig, gs: Rep = f_o_ ’ (E.13)
fsn = fg + Ty + fa, (E.1) 0 _
+ - 1 29 4 & 1-pe
gsh = gg + 9o + 98- (E.2) _ +uM (M —p wT Moy (E.14)
. . . ) 1-uM\M+pu) 14 0S1M '
The second order flerential equation deduced from théfdi- W't Mip
ential system (D.1), (D.2) is In the high frequency limit, required for the validity of
821, dlog (1 M2 i 2M | 8fo Equ (E.g;to (E.11)y ~ 1 and the reflection cdiécient is given
oz F\Tor M )T 1M ar yEq. (23).
me2 . dw’ f . L .
+Hw?-—=2+ wri 9 o (E.3) Appendix F: Approximation of the amplification
r2 or | (1- M2)cZ :
at corotation
This equation is written in Eq. (20) in a canonical form asin . . ) . .
Kato (1987), with Defining a new variabl& as in Foglizzo (2001),
dX M
12,,2 2 _ 2 - ="
2 = wu B }a—log 1-M o 1A (F.1)

(1- M?)2c;  20r2 M . : : : o
the diferential equation of acoustic perturbations is simply

16, 1- M2\
—|z—=log ) - (E4)  g2f 2 mef
or M 4 [(Q- Q)2 - =(1- M =0. F.2
2 e g% * @907 - 31-M)| s (F2)
pe=1- w’2r2(1 -M). (E.5) This equation can be approximated as a parabolic cylinder dif-

In the high frequency limit, the WKB approximations of thé‘erentlal equation in the vicinity of the corotation, by lineariz-

S y i . ) ing the rotation frequency and neglecting the variation of the
ingoing f an in i lutions are: e ;
going fy and outgoingly acoustic solutions are Mach number in this region:

1
. wM)\? T o M=Fudr Mo

The definition of the acoustic flux used in Foglizzo (2002) cam, ¢

Q2 (r = re)? 3
thus be extended to rotating flows as follows; 0 (r o) 1] _net

— | - =0, F.4

F.= 2 Mo A (E.7) where the subscript “0” denotes the corotation radius. The ef-
o ) o fect of advection is obtained formally from GN85 with= 0 by
The variations off; are dominated by the phase variations ifeplacing the sound speegby Cs(l—MS)%, and the azimuthal

the WKB limit wavenumbem by m/(1 - Mg)%. The fractional amplitude of
ﬁ i M= p £ (E.8) the transmitted wave, deduced from Egs. (5)—(8) of GN85 is
or C1-M2 O ' thus independent of the Mach number in this approximation:
LW, Toy = X (_E MG ) F5

ey vich (E.9) Teo = O o2 9
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An equivalent way to obtain the same result is the WKB ap-
proximation of the tunelling obtained by integrating the varia-
tion of the radial wavenumber, as in Kato (1987). Denoting by
r.,ro. the two zeros ok deduced from Eq. (21),

Tco = eXpl-du), (F.6)
foL
O = —|f kdr, (F?)
N
oL 72 %
N f [ﬁ_ w dr . (F8)
e r2 (1 - Mz)(:g (1 - M2)§
T MG

. . F.9
2 |QO|r<:02 ( )



