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Abstract
We derive from first principles, as the C-invariance of the electromagnetic interaction and the
crossing symmetry, the general properties of two-photon exchange in electron-proton elastic scat-
tering. We show that the presence of this mechanism destroys the linearity of the Rosenbluth

separation but does not affect the terms related to the electromagnetic form factors.
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I. INTRODUCTION

Recent developments in the field of hadron electromagnetic form factors (FFs) are due
to the very precise and surprising data obtained at the Jefferson Laboratory (JLab), in
¢+ p — e+ p elastic scattering, based on the polarization transfer method [1, 2], which show
that the electric and magnetic distributions in the proton are different.

The application of the polarization transfer method, proposed about 30 years ago [3] has
been possible only recently, as it needs high intensity polarized beams, large solid angle
spectrometers and advanced techniques of polarimetry in the GeV range. Experiments
have been performed at JLab up to Q? = 5.6 GeV? and an extension up to 9 GeV? is in
preparation [4].

The existing data show a discrepancy between the Q?-dependence of the ratio R =
wpGrp/Gurp of the electric to the magnetic proton form factors (Q? is the momentum trans-
fer squared, y,=2.79 is the proton magnetic moment), whether derived with the standard
Rosenbluth separation [5] or with the polarization method.

Therefore a careful experimental and theoretical analysis of this problem is necessary.
The important point here is the calculation of radiative corrections to the differential cross
section and to polarization observables in elastic ep-scattering. If these corrections are large
(in absolute value) for the differential cross section [6], in particular for high resolution
experiments, a simplified estimation of radiative corrections to polarization phenomena [7]
shows that radiative corrections are small for the ratio P, /Pr of longitudinal to transverse
polarization of the proton emitted in the elastic collision of polarized electrons with an
unpolarized proton target.

For this reaction, the one-photon exchange is considered to be the main mechanism. In
the standard calculations [6], the two-photon exchange mechanism is only partially taken
into account considering the special part of the integral, where one photon carries all the
momentum transfer and the second photon is almost real. This contribution allows to
overcome the problem of the ’infrared’ divergence. But it has been pointed out [8] that, at
large momentum transfer, the role of another mechanism, where the momentum transfer is
shared between the two photons, can be relatively increased, due to the steep decreasing of
the electromagnetic form factors with Q2. This effect can eventually become so large that

the traditional description of the electron-hadron interaction in terms of electromagnetic



currents (and electromagnetic form factors) can become incorrect.

Numerous tests of the validity of the one-photon mechanism have been done in the past,
using different methods: test of the linearity of the Rosenbluth formula for the differential
cross section, comparison of the etp and e p-cross sections, attempts to measure various
T-odd polarization observables.

Note that the two-photon exchange should appear at smaller Q% for heavier targets: d,
3He, ‘He, because the corresponding form factors decrease faster with Q% in comparison with
protons. In [9] the possible effects of 2y-exchange have been estimated from the precise data
on the structure function A(Q?), obtained at Jlab in electron deuteron elastic scattering,
up to Q* = 6 GeV? [10, 11]. The possibility of 2y-corrections has not been excluded by
this analysis, starting from Q% = 1 GeV?, and the necessity of dedicated experiments was
pointed out. From this kind of consideration, one would expect to observe the two-photon
contribution in e/N-scattering at larger momentum transfer, for Q? ~ 10 GeV?2.

The exact calculation of the 2y-contribution to the amplitude of the e*p — e®p-process
requires the knowledge of the matrix element for the double virtual Compton scattering,
v+ N — ~v*+ N, in a large kinematical region of colliding energy and virtuality of both
photons, and can not be done in a model independent form.

However general properties of the hadron electromagnetic interaction, as the C-invariance
and the crossing symmetry, give rigorous prescriptions for different observables for the elas-
tic scattering of electrons and positrons by nucleons, in particular for the differential cross
section and for the proton polarization, induced by polarized electrons. These concrete
prescriptions help in identifying a possible manifestation of the two-photon exchange mech-
anism. For example, an attempt [12] of resolving the discrepancy between the existing data
on the ratio R, conserving the linear e-dependence of the elastic cross section in presence of
27y-corrections is in contradiction with the C-invariance of the electromagnetic interaction
(€ is the degree of polarization for the virtual photon).

The purpose of this paper is to derive the correct e-dependence of the 2vy-contribution
to the differential cross section and to find a 'model independent’ parametrization of these
additional terms. The experimental test of the predicted e-dependence of the differential
cross section will be a signature of the presence of the 2+-contribution and allow to estimate
its role.

The standard expression of the matrix element for elastic ep-scattering, in framework of



one-photon exchange is:
o2
2

M = Q—W(/f?)wu(/ﬁ)ﬂ(m) Fin(Q%)v, — Fon(Q%) | u(pr), (1)

where k1 (p1) and ko (po) are the four-momenta of the initial and final electron (nucleon),

Oy
2m

m is the nucleon mass, ¢ = k; — kg, Q> = —¢*> > 0. Fiy and Fyy are the Dirac and
Pauli nucleon electromagnetic form factors, which are real functions of the variable Q? - in
the space-like region of momentum transfer. The same form factors describe also the one-
photon mechanism for the scattering of positrons. From Eq. (1) one can find the following

expression for the differential cross section (in the laboratory system (Lab)):
do €
qq, ~ oM Gun(@®) + ;GQEN(QQ) ) (2)
QQ
4

where o), is the Mott cross section, for the scattering of unpolarized electrons by a point

T Gun = Fiy + Fon, Gy = Fin — TFyN

charge particle (with spin 1/2), € is an independent kinematical variable, which, together
with @2, fully determines the kinematics of elastic ep-scattering and can be written, the

limit of m, = 0, as:
1

, (3)

€ = 9
1+2(1+T)tan2§e

where 6, is the electron scattering angle in Lab system. Therefore 0(f, = 7) < e < 1(f. = 0).

If one takes into account the two-photon mechanism, the expression of the differential
cross section, Eq. (2), is essentially modified.

It requires, first of all, a generalization of the spin structure of the matrix element,
which can be done, in analogy with elastic np-scattering [13], using the general properties
of the electron-hadron interaction such as the P-invariance and the relativistic invariance.
Taking into account the identity of the initial and final states and the T-invariance of the
electromagnetic interaction, the process e*p — e*p, in which four particles with spin 1/2
participate, is characterized by six independent products of four-spinors, describing the
initial and final fermions. The corresponding parametrization of the matrix element can be
done in many different but equivalent forms, in terms of six invariant complex amplitudes,
Ai(s,Q?), where s = (k + p1)? is the square of the total energy of the colliding particles. In
the physical region of the e*p — e*p-reaction the relations: Q% > 0and s > (m+m,)? ~ m?,

apply.



Previously another set of variables, ¢ and %, which is equivalent to s and Q* (in Lab
system) was considered. These variables are well adapted to the description of the properties
of one-photon exchange, because, in this case, only the Q?-dependence of the form factors
has a dynamical origin, whereas the linear e-dependence in Eq. (2) is a trivial consequence
of the one-photon mechanism. On the other hand, the variables s and Q% are better suited
to the analysis of crossing symmetry.

The conservation of the lepton helicity, which is a general property of the electromagnetic
interaction in electron-hadron scattering, reduces the number of invariant amplitudes, in
general complex, from six to three.

Therefore we can write the following parametrization of the spin structure of the matrix

element following the formalism of [13]:
2

M = %ﬂ(b)%u(kl)ﬂ(m) A (s, Q%) v, — As(s, QQ)O;;? + As(s,Q%)y - KPu| u(pr), (4)
_kitk o pitp
K = 2 9 P - 2 ?

where A; — Aj3 are the corresponding invariant amplitudes. In case of one-photon exchange

A1(87Q2) — FIN(Q2)7 AQ(S;QQ) — FNQ(Q2)7 Az — 0.

But in the general case (with multi-photon exchange) the situation is more complicated,

because:

e The amplitudes A;(s,Q?), 1 = 1 — 3, are complex functions of two independent vari-

ables, s, and Q2.

e The set of amplitudes AE_)(S, Q?) for the process e~ +p — e~ +p is different from the
set A§+)(S, Q?) of corresponding amplitudes for positron scattering, e +p — e* + p,
which means that the properties of the scattering of positrons can not be derived from

Al(*)(s, ()?), as in case of the one-photon mechanism.

e The relation of the amplitudes A;(s, @%) with the nucleon electromagnetic form factors
is non-trivial and includes many other quantities, as, for example, the form factors of

the A-excitation - through the amplitudes of the virtual Compton scattering.

In this framework, the standard phenomenology of electron-hadron physics does not hold
anymore, and in particular, it would not be anymore possible to express the internal structure

of a hadron in terms of form factors, which are real functions of one variable.



In the following text, we will show that the situation is not so involved, and that even
in case of two-photon exchange, one can still use the formalism of form factors, if one takes
into account the C-invariance of the electromagnetic interaction of hadrons.

A deeper analysis of Eq. (4) shows that the spin structure of A; and Ay corresponds to
exchange by vector particle (in ¢-channel), whereas the spin structure for the amplitude A3
corresponds to tensor exchange. This means that the amplitudes A; and A contain only
C-odd t-exchanges, whereas the A3 describes only C-even t—channel exchanges.

We can therefore conclude that the amplitudes 4; and A, are determined by exchanges of
odd numbers of photons and the amplitude A3 is determined by exchanges of even numbers

of photons, and corresponds to a different dynamics. Therefore the relation:

A 2(s,Q%) — Fian(Q?), (5)

holds up to 3y-corrections, and the amplitudes A, » can not contain any contribution from
2vy-exchange. This means also that, contrary to the assumption of [12], the phases of A, 5
are very small, 6,5 ~ o2, (o ~ 1/137). The possible s-dependence of A; 5 is of the same
order of magnitude.

In summary, the physics of the electromagnetic form factors in the electron-hadron inter-
action holds even beyond the one-photon mechanism. The complications, which arise from
two-photon exchange, enter only in the amplitude Aj3.

Another consequence is that the difference of the amplitudes Afz) and Aﬁ;) is of the
order of o and therefore the difference of cross sections do(e”p)/dQ, - do(e*p)/dQ. can
be parametrized as the product of a definite combination of form factors, G'gp, G, and
ReAs(s,Q?), i.e. can be predicted on the bases of the data on e~ p-scattering.

Due to the C-invariance of the electromagnetic hadron interaction, instead of three com-
plex functions, depending on two variables A;(s, Q?), i = 1 — 3, the matrix element for elas-
tic electron-nucleon scattering is determined by two real nucleon form factors, Gy (Q?),
which are functions of one variable only, and two real functions, ReAs and Im.As, which
are essentially smaller in absolute value, As(s, @*) ~ a. Moreover, the same set of functions
describes the elastic positron-nucleon scattering, too.

In addition to C-invariance, the crossing symmetry also bring important information
on the properties of two-photon exchange, by relating the matrix elements for the cross-

channels: e~ + N — e~ + N, in s-channel, and et + e~ — N + N, in t-channel. The



transformation from s- to ¢-channel can be realized by the following substitution:
ky = —ka, p1 = —p1.
and for the invariant variables:
s=(ki+p)° = (b —p)°, Q= (k1 —k2)® = — (k1 + k2)* = —t.

The crossing symmetry states that the same amplitudes A;(s, Q?) describe the two channels,
when the variables s and ()? scan the physical region of the corresponding channels. So,
if t > 4m? and —1 < cosf < 1 (6 is the angle of the proton production with respect to
the electron three-momentum, in the center of mass (CMS) for et + e~ — N + N), the
amplitudes A;(t, cos#), i = 1 — 3, describe the process et + e~ — p+p.

The C-invariance of the electromagnetic hadron interaction and the corresponding se-
lection rules can be also applied to the annihilation channel and allow to describe in a
transparent way the properties of the different observables for the eN-elastic scattering,
using the crossing symmetry.

To illustrate this, let us consider firstly the one-photon mechanism for et + e~ — p + .
The conservation of the total angular momentum J allows one value, 7 = 1 , and the
quantum numbers of the photon: J¥ = 17, C' = 1. The selection rules with respect to the

C and P-invariances allow two states for ete™ (and pp):
S=1,{=0and S=1, {=2with J' =1", (6)

where S is the total spin and /¢ is the orbital angular momentum. As a result the 6-
dependence of the cross section for e™ +e~ — p+ P, in the one-photon exchange mechanism
is:

do

@(eJr +e” = p+Dp) ~a(t) + b(t) cos® b, (7)

where a(t) and b(¢) are definite quadratic contributions of G, (t) and G, (t), a(t), b(t) > 0
at t > 4m?.
Using the kinematical relations:

e+1 cot?6,/2
e—1 147

(8)

between the variables in the CMS of et + e~ — p+ P and in the LAB system for e~ +p —

e~ + p, it appears clearly that the one-photon mechanism generates a linear e-dependence

7



(or a cot?f,/2) of the Rosenbluth differential cross section for elastic eN-scattering in Lab
system.

Let us consider now the cos #-dependence of the 1v @ 2v-interference contribution to the
differential cross section of et + e~ — p + p. The spin and parity of the 2v-states is not
fixed, but only a positive value of C-parity, C'(2y) = +1, is allowed. An infinite number of
states with different quantum numbers can contribute, and their relative role is determined
by the dynamics of the process 7v* + v* — p + p, with both virtual photons.

But the cosf-dependence of the contribution to the differential cross section for the

17 ® 2v-interference can be predicted on the basis of its C-odd nature:

d
%(GJ’ +e” — p+p) = cosOco(t) + c1(t) cos® @ + co(t) cos* 6 + ..] 9)

where ¢;(t), i = 0, 1.. are real coefficients, which are functions of ¢, only. This odd cos 6-
dependence is essentially different from the even cos #-dependence of the cross section for
the one-photon approximation, Eq. (7).

From C-invariance it follows also that:
As(t, — cos 0) = As(t, + cos ) (10)

It is therefore incorrect to approximate the interference contribution to the differential cross
section (9) by a linear function in cos? 6, because it is in contradiction with the C-invariance
of hadronic electromagnetic interaction. Such approximation can be done only when all
coefficients ¢;(t) vanish, i.e. in absence of 1y @ 2v-interference!

Using Eq. (9), the crossing symmetry allows to predict the non-trivial e-dependence of
the interference contribution to the differential cross section of ep-scattering, in the Lab
system, Ao

Ac(e p— e p) ~ af(2?, Q?), (11)

e+1
e—1

Again the C-invariance does not allow to approximate the function zf(z? Q*) by a linear

f(2%,Q%) = co(Q*) + c1(Q*)r* + 2 (QH)a* + ..., v =

e-dependence:
of (2%, Q%) # do(Q%) + di(Q%)e,

which would make (11) compatible with the Rosenbluth formula.



Note that the relation:
Ac(e"p— e p)=—Ac(etp — eTp) (12)

holds with relative accuracy «, (due to the 3y-contribution to the form factors Gg pn.

Let us now analyze the cos f-dependence of the interference terms for the lowest possible
values J¥ for the 2y-system, in order to get a hint of the relative values of the coefficients
¢;(t) in Eq. (9). Taking into account the conservation of the leptonic and the nucleonic
electromagnetic currents, ¢ - ¢ = ¢ - J = 0, the CMS spin structure of the one-photon

amplitude for the annihilation process e™ + e~ — p + P can be written as:

e? e? - -
M1:7g.j:_7€-j, (13)
with
(= th(3 — k& - k), (14)
— T N NN ~ 1 JANEFEE AN
T = Vixh |Gu(t) (G —p5 - p) + FGE(t)pO- “P| X1 (15)

where ¢; and ¢9 (x; and x2) are the two-component spinors of the electron and positron
(proton and antiproton), i (9) is the unit vector along the three momentum of the electron
(proton) in CMS.

Note that the term Gy, (t) — %GEp(t), describes the pp—production with ¢=2. There-
fore, at threshold, 7 — 1, where the finite radius of the strong interaction allows the pp-

production only in S-state, the following relation:

holds and it is the physical background of this so particular relation between the nucleon
electromagnetic form factors at threshold.
Summing over the polarizations of the pp-system and averaging over the polarizations of

the initial e™e -system, one can find with the help of Eqgs. (14,15):
5o t 1
|- T|? = 2 (14 cos? 0)|G (B + = sin® 0|G g, (t) |2 (17)
T

with the standard f-dependence of the differential cross section for et +e~ — p+ p [15].
After substituting ¢ — Q? and cos6? — (e +1)/(e — 1) in Eq. (17), one can find the
linear e-dependence for the Rosenbluth formula for the differential cross section of elastic

ep-scattering in terms of |Gpy|? and |Gy,|* in Lab system.

9



In the same way one can find the spin structure of the 2v-contributions to the matrix

element for e + e~ — p+ p, using Eq. 4:

~

U(—ka)Pu(kr)u(pe) Ku(—p1) = LN (18)
£ = 2\Jtr = 1)o4( - cos 07 Hor, (19)
N:—gxg(ﬁ-;—coseﬁ~ﬁ+ %COS@&-}%}XL (20)

The corresponding interference term can be written as:
— 1
7-FLN* ~ Re [GM(t) - —GE(t)] cos 0sin? 0 (21)
T

with a specific § dependence. Applying the crossing symmetry, the corresponding 6 depen-

dence of the interference contribution to the differential cross section of the e N-scattering

2 1
€ —|—€’ (22)
1—€eV1—¢

which is not linear, as it was assumed in order to justify the considerations in [12] and

in Lab system takes the form:

[14]. The assumption of a linear e-dependence of the interference term implies that the

e +1 . e+1 . . - . .
product Py f(z?), with 2% = p— is e-independent, again in contradiction with the
€— €—

C-invariance of hadronic electromagnetic interaction and with crossing symmetry.

Let us discuss now how unique is the cos #sin? §-dependence for et +e~ — p+p. One can
show, on the basis of Eqs. (19) and (20), that such term arises from a definite superposition
of states of the 2y-system with quantum numbers J¥ = 17 and 2¥, when the ete -system

has S = ¢ = 1. The individual states have different structures:
JV=171=1 — cosOReG (1),

1
JP=2%0=1 — cosO[ReG(t) + sin*0=ReGp(1)].
T

The simplest linear cos #-dependence corresponds to the exchange by the axial state with
JP = 1%, ¢ =S = 1. It is therefore possible to use, for the discussion of interference

phenomena instead of (4), another equivalent parametrization of 2y-exchange:

My 22 As(s, Q*)a(ka) vuvsu(k)a(ps) vuysu(pr)-

In conclusion, the general symmetry properties of electromagnetic interaction, such as

the C-invariance and the crossing symmetry, allow to obtain rigorous results concerning

10



two-photon exchange contributions for elastic ep-scattering and to analyze the effects of this

mechanism in e/ N-phenomenology.

e We showed that the nucleon form factors do not contain any contribution from the
27y-exchange. Therefore the possible phases of these form factors (in the space-like
region) are very small - of the order of a? (not as «, [12]). The dependence of these
form factors on another, independent kinematical variable, € or s, appears only after

including 3vy-exchange.

e The form factors Gy and Gy and the 2y-amplitude, As(s, Q%) are the same for
etp and e p elastic scattering. This allows to connect in a rigorous way, the difference
of the differential cross sections for e*p-interaction with the deviations from the e-

linearity of the Rosenbluth plot.

e The e-dependence of the interference contribution to the differential cross section of
e*p elastic scattering is very particular. Any approximation of this term by a linear
function is in contradiction with C-invariance and crossing symmetry of the electro-

magnetic interaction.

e The formal expression of the e-dependence of the interference contribution depends on

the quantum numbers of the 2y-system.

e To have a quantitative estimation of the relative role of two-photon physics in e/V-
interaction, it is necessary to measure the e-dependence of the differential cross section

of eN elastic scattering in several points, and study this behavior in terms of the

specific variable \/ (1+¢)/(1 —¢€). This will be the unambiguous signature of two-

photon contributions.

e The same behavior appears in the difference of the e™p- and e~ p-differential cross

sections.

A similar analysis can be done for polarization phenomena, and it is the object of a future

paper.
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