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The Hartree-Fock-Bogoliubov method implemented with the Gogny D1S force and used in a
systematic study of the even-even N = 16 isotones from stability to the neutron drip line strongly
suggests that a subshell gap, approximately 4 MeV wide, is opening at N = 16. First 2+ levels as well
as B(E2; 0+

gs → 2+) reduced E2 transition probabilities have also been predicted in configuration
mixing and standard Random Phase Approximation calculations using D1S. These results compare
favorably with experimental information available for the Z = 10 - 18 nuclei and with expectations
for 24O properties. They also fully support our mean-field predictions, namely that N = 16 is a
spherical magic number at the oxygen neutron drip line.

PACS numbers: 21.60.Ev, 21.60.Jz, 21.10.Re, 21.10.Ky

I. INTRODUCTION

One of the most striking evidence for quantum me-
chanics in physics is the existence of magic numbers.
From atomic physics to nuclear physics, they are asso-
ciated to a shell structure and a spherical configuration
for which all the available individual levels are filled. In
atomic physics, the rare gas are well known examples
of enhanced stability in their chemical properties. In
nuclear physics, the same situation indeed occurs but
for magic numbers different from those found in atomic
physics. The sequence of magic numbers for stable nu-
clei was explained theoretically for the first time fifty
years ago [1, 2], and is now well understood. The prop-
erties of magic nuclei like 40Ca or 208Pb were extensively
studied and are the first observables to validate the shell
model picture. However, the magnitude of shell gaps may
evolve from stability towards drip lines. It may decrease,
as already observed at the neutron number N = 20 for
which spherical magicity vanishes at the neutron drip line
[3]. This magnitude may increase as well, and give rise
to a new magic number at the drip line, not observed
for stable nuclei. Recent experimental investigations far
away from the valley of stability highlight modifications
in the shell model structure. Several observables show
that N = 16 neutron rich isotones present a higher sta-
bility compared to their neighbours in the N-Z chart,
namely
i) the N = 16 isotones 22C, 23N, and 24O are the last
bound nuclei of their respective isotopic chains [4, 5],
ii) the large energy gap around the Fermi surface for the
N = 16 28Mg and 26Ne nuclei causes a break in the neu-
tron separation energy Sn systematics, and
iii) the first 2+ level of 24O has been suggested in a re-
cent γ-spectroscopy experiment [6] to lie at higher exci-
tation energy than the one neutron separation threshold
Sn = 3.7 MeV [7]. Such an excitation energy is much
higher than the experimental E(2+)’s observed for the

other oxygen isotopes.
For these reasons, N = 16 is proposed to be a magic num-
ber for the most neutron rich isotones [8]. This means an
enhancement of the spherical gap between the s1/2 and
the d3/2 subshells of the neutron sd shell compared to its
value for stable nuclei [9–11].
In this paper, we study N = 16 as a possible new
spherical magic number for neutron rich nuclei. Our
approach mainly relies on the Hartree-Fock-Bogoliubov
(HFB) method. We show that the shell evolution may
be interpreted and quantitatively reproduced with the
Gogny-D1S effective interaction [12, 13]. Self-consistent
mean-field methods [14, 15] have already been used to
study light nuclei. In a previous work [16], the evolution
from the stability region to the neutron rich isotopes of
the N = 20 and N = 28 shells has been discussed. Here,
we study the N = 16 isotones from 22C, at the neutron
drip line, to 34Ar through a systematic description of
even-even nuclei. Axial and triaxial deformations are in-
vestigated.
In the following, we briefly recall the HFB formalism
and notations. The results from pure mean-field cal-
culations restricted to axial symmetry are presented as
a first step. Pairing energies are discussed. Extending
the HFB calculations to triaxial shapes, collective 2+

levels and reduced transition probabilities B(E2)’s are
derived from the Generator Coordinate Method (GCM)
implemented within the Gaussian Overlap Approxima-
tion (GOA). This configuration mixing approach com-
plements the mean-field description and also points to
N = 16 as a spherical neutron magic number far away
from the stability line. Finally, standard Random Phase
Approximation (RPA) calculations using the same effec-
tive force are performed for 24O.
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II. MEAN-FIELD DESCRIPTION

In the constrained HFB theory, the deformed states
|Φq > of a nucleus are described as quasiparticule (qp)
vacua. The |Φq > states are deduced from the minimiza-
tion of the energy functional

δ < Φq|Ĥ − λN N̂ − λZ Ẑ −
∑

i

λiQ̂i|Φq > = 0, (1)

where |Φq > is the HFB wave function of deformation q,

and Ĥ is the many-body nuclear Hamiltonian. In this
study, the finite range Gogny-D1S interaction is used,
and both mean and pairing fields are calculated in a con-
sistent way. The λ’s in Eq. 1 are the Lagrange multipli-
ers associated with the constraints on nucleon numbers
N and Z and average deformations Qi :

< Φq|N̂ |Φq > = N,

< Φq |Ẑ|Φq > = Z,

< Φq |Q̂i|Φq > = Qi .

(2)

The Q̂i’s are taken as the quadrupole operators Q̂20

and Q̂22, related to the axial and triaxial Bohr deforma-
tions β and γ :

β =

√

π

5

√

(Q2
20 + 3Q2

22)

AR2
, γ = arctan

√
3Q22

Q20
, (3)

where A and R =
√

3
5

(

1.2A1/3
)

(fm) are the mass num-

ber and radius of the nucleus under consideration, re-
spectively.

We first investigate within constrained axial calcula-
tions the N = 16 isotones to test their magicity. At this
stage, we consider that neutron (proton) magicity occurs
when two criteria are fulfilled : i) the nucleus is spheri-
cal: the potential energy is minimum at zero deformation,
and ii) a large energy gap separates the levels above and
below the Fermi surface. The second condition is sat-
isfied when the neutron (proton) pairing energy cancels
at zero deformation in this pure mean-field description.
In the HFB formalism, the neutron (proton) pairing en-
ergy is given by En(p) = 1

2Tr∆κ, where ∆ and κ are
the pairing field and the pairing tensor, respectively [17].
Such a correlation energy is not the net gain between
the HFB and HF treatments. However, when the pairing
field vanishes, HF and HFB descriptions give rise to the
same total potential energy and no correlation energy is
found at the mean field level. Consequently, the study of
pairing energies En(p) provides direct information about
pairing correlations.

In the present work, the mean-field equations are
solved using basis sets of deformed harmonic oscillators
including N0 = 9 major shells. Such a large basis ensures
stability of level energies at all deformations up to β ' 1.
As an example, Fig. 1 illustrates the convergence of
the neutron pairing energy En and the potential energy
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FIG. 1: Neutron pairing energies En (upper panel) and po-
tential energy surfaces V (lower panel) of 26Ne for different
basis sizes as functions of the axial deformation parameter β.
The numbers of major shells considered are N0 = 7, 9, 11,
and 13.

V =< Φq |Ĥ|Φq > for 26Ne with the basis size increasing
from N0 = 7 to N0 = 13. Calculations with N0 = 7
clearly do not reach the convergence, whereas those
with N0 = 9, 11, and 13 give the same results within
400 keV for V and 200 keV for En. Then, a reasonable
convergence is achieved for N0 = 9. This result holds
true for all the other isotones under study.

All the axial potential energy surfaces (PESs) of the
N = 16 isotones, shown in Fig. 2, display a minimum at
β = 0. Thus, the first criterium (i) for magicity is fulfilled
for all isotones at the pure mean-field level. Nevertheless,
this minimum is shallow for the nuclei from 26Ne to 34Ar
and their neutron pairing energies, shown in Fig. 3, do
not vanish at zero deformation. According to criterium
(ii), these nuclei are not magic. The neutron pairing
energy vanishes at β = 0 only for 24O and 22C. Then,
criteria (i) and (ii) are simultaneously verified only for
these two nuclei, which are predicted to be magic. Fur-
thermore, proton pairing energy vanishes at β = 0 for
24O which is then found to be doubly magic.

A gradual evolution is observed in Fig. 3 for the neu-
tron pairing energy : neutron pairing energy goes to zero
around β ' 0.4 for 34Ar, 32S, and 30Si. 32S presents
a shoulder at β = 0. Moving toward the drip line, this
shoulder gets more pronounced and becomes a local min-
imum for 30Si, 28Mg and 26Ne. The neutron pairing en-
ergy vanishes at β = 0 for 24O and 22C. The evolution
of these two pairing energy minima is directly linked to
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FIG. 2: Potential energy surfaces of the N = 16 isotones from
Argon to Carbon, as functions of the axial deformation pa-
rameter β. The minimum potential energy for Argon is set to
zero. The minima of the curves are arbitrarily separated by
5 MeV. Stable nuclei are 32S and 30Si.

the existence of prolate and spherical gaps between the
Kπ = 1/2+ orbitals – where K is the projection of the an-
gular momentum on the intrinsic symmetry axis –, from
the s1/2 and d3/2 neutron subshells. This subshell struc-

ture is shown in the lower panel of Fig. 4 for 32S and
26Ne. While 32S has a 6 MeV wide prolate gap and a 3.3
MeV wide spherical gap, 26Ne presents an inverse trend :
these gaps are 3.5 MeV and 4.2 MeV wide, respectively.

On top of Fig. 4 is shown the opening of the spherical
gap δ between the s1/2 and d3/2 neutron subshells for nu-

clei from Z = 18 to Z = 6. For 24O, this gap is δ ' 4 MeV
wide. To check the stability of this prediction, δ has also
been calculated using the older D1 [12] parametrization
of the Gogny force. The results do not depend signifi-
cantly on the force parametrization (see table I). The
difference between the two calculations does not exceed
600 keV for δ. Both D1 and D1S parametrizations lead
to the prediction of N = 16 as magic number at the neu-
tron drip line.

TABLE I: Spherical energy gap δ between the s1/2 and d3/2

subshells at β = 0 predicted using the D1S and D1 interac-
tions in HFB calculations.

34Ar 32S 30Si 28Mg 26Ne 24O 22C

D1S δ (MeV) 2.58 3.32 4.00 4.11 4.25 4.30 4.75

D1 δ (MeV) 2.33 2.89 3.24 3.53 3.87 4.17 4.74

To summarize, N = 16 is predicted to be a spherical
magic number at the neutron drip line for 24O and 22C
in a pure mean-field approach. It preexists as a strong
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FIG. 3: Neutron (left) and proton (right) pairing energy
curves for N = 16 isotones from Argon to Carbon, as functions
of the axial deformation parameter β.

shell effect in nuclei of the stability region.

III. BEYOND THE MEAN-FIELD

To complement the description of these nuclei, an ap-
proach beyond the mean field is considered. A dynamical
description of the ground-state and low lying 2+ collec-
tive state is derived from GCM considering rotational
and vibrational degrees of freedom in the triaxial plane.
Collective states are taken as linear combinations of con-
strained HFB basis states |Φq >, namely

|Ψk >=

∫

dq fk(q) |Φq > . (4)

Here, q is a 5-dimensional generator coordinate : two
dimensions (β, γ) for vibrations and three Euler angles
for rotation, and fk(q) are weight functions, solutions
of the Hill-Wheeler equation [18]. The Gaussian Over-
lap Approximation transforms the integro-differential
Hill-Wheeler equation into a computationally tractable
Schrödinger-like equation [19] :

Ĥcoll gk(q) = Ek gk(q), (5)

where gk(q) is the Gauss transform of fk(q) and eigen-

state of the collective Hamiltonian Ĥcoll [20, 21].
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FIG. 4: Upper panel : Neutron single particle energies for
even-even N = 16 isotones at β = 0. Lower panel : Neutron
individual levels around the Fermi surface of 32S (left) and
26Ne (right) as functions of the axial deformation parameter
β. Triangles represent the chemical potential.

TABLE II: First 2+ level and B(E2; 0+
gs → 2+) properties of

even-even N = 16 isotones. JA inertia parameters are adopted
in the configuration mixing calculations for Z = 10 - 18 nuclei
(see text). Standard RPA predictions usind D1S are given for
24O. Experimental data are from [28].

< β > E(2+) B(E2; 0+
gs → 2+)

g.s. 2+ (MeV ) (e2fm4)

th. th. exp. th. exp.
34Ar 0.27 0.31 1.98 2.09 306 240(40)
32S 0.31 0.32 1.78 2.23 254 300(13)
30Si 0.32 0.37 2.11 2.23 220 215(10)

28Mg 0.39 0.43 1.50 1.47 202 350(5)
26Ne 0.31 0.37 2.19 2.02 86 228(41)
24O - - 3.81 - 15 -

It is a wide spread practice to perform calculations of
mass and inertia parameters using the Inglis and Beylaev
approximation [22, 23]. This sounds to be a reasonable
assumption at low spin and excitation energy only for
medium and heavy mass nuclei. As it has been shown
recently, improvements over the Belyaev formula for mo-
ments of inertia were necessary to provide a good descrip-
tion of 40,42,44S low energy spectra [24]. In the present
work focusing on still lighter mass nuclei, two sets of mo-
ments of inertia JA

x,y,z and JB
x,y,z have been calculated

over the (β,γ) plane as follows. In the first set, JA
x,y,z is

26
Ne

.0 0.5

0+

28Mg

0.5.0

0+

FIG. 5: Collective wave functions of the 26Ne and 28Mg
ground-states in the (β, γ) triaxial plane.

defined as

JA
x,y,z =

< Φq,ωx,y,z
|Îx,y,z|Φq,ωx,y,z

>

ωx,y,z
, (6)

where Îx,y,z are the angular momentum projections in the
intrinsic system of coordinates x, y, and z, and ωx,y,z the
associated rotational frequencies for a nucleus with rota-
tional energy E(I). First, JA

z is calculated from minimiza-

tion of the energy functional < Φq,ωz
|Ĥ −λN N̂ −λZẐ −

ωz Îz|Φq,ωz
> in the rotating frame [25], with the ad-

ditional constraint < Φq,ωz
|Îz |Φq,ωz

> = h̄2
√

I(I + 1).
Here we use I = 2. The moments JA

x and JA
y are then cal-

culated after permutation of the principal axes. Finally,
the second set JB

x,y,z results from using the Thouless-
Valatin approximation [26], namely

JB
x,y,z = lim

ωx,y,z→0

< Φq,ωx,y,z
|Îx,y,z|Φq,ωx,y,z

>

ωx,y,z
. (7)

Equations 6 and 7 form two prescriptions for calcu-
lating moments of inertia. Each prescription has been
tested separately while solving Ĥcoll, and their figure of
merit is discussed below. Using the configuration mix-
ing method outlined above, we find that 24O and 22C
are spherical in their ground states whereas all the oth-
ers from 34Ar to 26Ne are deformed. An illustration is
provided for 26Ne and 28Mg in Fig. 5 where are shown
their ground state wave functions over the (β, γ) coordi-
nates. The topology of these surfaces suggests γ-unstable
deformed shapes with mean quadrupole deformations
< β > = 0.31 and 0.39, and < γ > = 24◦ and 22◦ for
26Ne and 28Mg, respectively. This illustration provides a
posteriori justification for our method in which the five
collective quadrupole coordinates are explicitly treated.
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The first 2+ level energy and the B(E2; 0+
gs → 2+)

reduced transition probability values calculated with JA

and JB moments of inertia as collective model inputs are
shown in Fig. 6 as open circles and stars, respectively, for
the N = 16 isotones from Z = 10 to Z = 18. Standard
RPA calculations [27] have also been performed for the
doubly magic 24O nucleus using the Gogny-D1S force. In
Fig. 6, RPA results (squares) are shown for completeness.
Table II includes most of these predictions as well as ex-
perimental data [28] and mean deformations. As can be
seen in the upper part of Fig. 6, the two sets of predictions
for E(2+) (i.e. stars and open circles) significantly differ
from each other, the differences being at a maximum for
Z = 10 and Z = 12. On the other hand, as expected, the
improvement in our determination of moments of iner-
tia leads to bring the E(2+) predictions marked by open
circles in close agreement with each measured value (tri-
angles) and with the pattern they display as Z increases
from Z = 10 to Z = 18. The lowering observed for the
2+ level in 28Mg is here interpreted as stemming from a
stronger mean deformation (see Table II).

The experimental information available on the 24O
structure is rather scarce. In recent in-beam γ-ray
spectroscopy measurements [6], the 2+ → 0+

gs γ-decay

was not observed, feature suggesting that the first 2+

excited state lies above the neutron decay threshold
Sn = 3.7 MeV. An excitation energy E(2+) ≥ 3.7 MeV
would roughly be two times higher than those for the
Z = 10 - 18 members of the N = 16 isotonic chain,
and would be consistent with the present RPA prediction
E(2+) = 3.81 MeV. These results together with those de-
scribed above for the Z = 10 - 18 members of the N = 16
isotonic chain points to the existence of a subshell closure
at the oxygen neutron drip line.

IV. CONCLUSION

In this paper, a systematic structure study of the even-
even N = 16 isotones has been performed from stabil-
ity to the neutron drip line. This has been achieved
at both mean-field and configuration mixing levels us-
ing the Gogny-D1S effective interaction. Standard RPA
calculations have also been performed for 24O to comple-
ment our survey. These methods allow us to investigate
single-particle and pairing properties at spherical shape
and along axial and triaxial quadrupole deformations, as
well as collective properties.

The mean-field calculations show that a spherical sub-
shell gap is opening at N = 16 (see Fig. 4). Its size
(δ ' 4 MeV) does not significantly depend on whether
the D1 or D1S parametrization of the Gogny force is
used. Furthermore the neutron pairing energy at spheri-
cal shape vanishes only for 24O and 22C. Since the poten-

tial energy surfaces of these nuclei also show a minimum
at zero deformation, we conclude that N = 16 is a magic
number at the neutron drip line, that is for 24O and 22C.

Results from configuration mixing calculations bring

0

1

2

3

4

6 8 10 12 14 16 18

E
(2

+
) 

(M
eV

)

0

100

200

300

400

6 8 10 12 14 16 18
Z

B
(E

2)
 (

e2 .fm
4 )

exp.
JA

JB

RPA

FIG. 6: Upper panel : Energies of the first 2+ excited state
for even-even N = 16 isotones from Z = 18 to Z = 8. Lower
panel : Reduced transition probabilities B(E2; 0+

gs → 2+).
Experimental data (triangles) are available down to Z = 10.
Both calculations with JA (open circles) and JB (stars) are
represented from Z = 18 to Z = 10. Squares are standard RPA
predictions for 24O. Open circles and squares are connected
by dashed lines to guide the eye.

confirmation that both nuclei are spherical in their
ground states. In contrast similar calculations suggest
that all the Z = 10 - 18 isotones show strong mean de-
formations. A new prescription taylored to calculate mo-
ments of inertia in light nuclei leads to improved E(2+)
and B(E2; 0+

gs → 2+) predictions that are in good over-
all agreement with experimental data available for the
Z = 10 - 18 nuclei. Our predictions suggest that i) col-
lectivity of the 0+

gs → 2+ transitions gradually decreases
as Z gets away from Z = 18 and reaches a minimum at
Z = 8, where it is 20 times weaker than at Z = 18, and
ii) E(2+) energies raise sharply from 1.98 MeV (34Ar) to
3.81 MeV (24O). These collective properties are strongly
suggestive of N = 16 as magic number at the neutron
drip line.

Experimental determination of the 2+ excitation en-
ergy for 24O is needed to challenge the reliability of our
model predictions based on Gogny D1S force. It is now
a key issue to precisely understand the reasons why this
force is providing a subshell gap at the N = 16 neutron
drip line. Work along this line is in progress.
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