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Abstract 

We have determined simultaneously the Kapitza resistance, Rk, and the thermal conductivity, �, of 
Kapton HN sheets at superfluid helium temperature in the range of 1.4 – 2.0 K. Five sheets of Kapton 
with varying thickness from 14 µm to 130 µm, have been tested. Steady-state measurement of the 
temperature difference across each sheet as a function of heat flux is achieved. For small temperature 
difference (10 to 30 mK) and heat flux density smaller than 30 Wm-2, the total thermal resistance of the 
sheet is determined as a function of sheet thickness and bath temperature. Our method determines with 
good accuracy the Kapitza resistance, RK=(10540±444) T-3 ×10-6 Km2W-1, and the thermal 
conductivity, �=[(2.28±0.54)+(2.40±0.32)×T ]× 10-3 Wm-1K-1. Result obtained for the thermal 
conductivity is in good agreement with data found in literature and the Kapitza resistance’s evolution 
with temperature follows the theoretical cubic law. 
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Nomenclature 

A  Total cross section (m2) 
�  Thickness (m) 
n  Exponent 
Q  Heat flux (W) 
R  Thermal resistance (Km2W-1) 
����i-Tb Total temperature difference (K) 
T1, T2  Boundary temperatures due to Kapitza resistance (K) 

Greek Letters 

�  Kapitza coefficient (Wm-2K-n) 
�  Average thermal conductivity (Wm-1K-1) 
�  1 standard deviation from the mean value 

Subscripts 

b  Cryostat bath 
cap  Capillary 
�  Conduction 
i  Inner bath 
K  Kapitza 
s  Sample 
sup  Support 

1 Introduction 

In recent years, significant interest has been shown in the thermal properties of amorphous polymers at 
low temperatures. Such polymers, like Kapton, exhibit good mechanical, chemical, and electrical 
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properties. Therefore, they are used in many cryogenic applications such as thermal and electrical 
insulation for superconducting magnet winding, as key components for cryogenic target or space 
applications, and for low temperature heat exchanger. Kapton, a registered trademark of the Dupont 
Company, is one of the most frequently used of such kind. For all these cryogenics applications an 
accurate design is required and thus the knowledge of the thermal properties of such material, such as 
the thermal conductivity and the thermal resistance, dominated by the Kapitza resistance, at the solid-
He II interface is essential. Because the thermal conductivity and the Kapitza resistance of Kapton at 
superfluid temperature have not been studied extensively whereas its wide use, we have determined the 
thermal conductivity and the Kapitza resistance of Kapton HN sheets in the temperature range of 1.4 K 
to 2.0 K. 
The thermal conductivity of Kapton, κ, at low temperatures has been recently measured by several 
groups [1-3]. Essentially, two methods are used based on steady-state heat transfer, namely the stack 
method and the direct method. The most popular method is to stack-up layers of Kapton tapes bonded 
together either with epoxy resin or with contact grease. Here, to evaluate �, the thermal conductivity of 
the epoxy resin and thus the thermal resistance between the Kapton tapes and the resin has to be 
known. Barucci et al. use the direct method, where � is determined from a measurement on a single 
layer of material (125 µm) [4]. The Kapton sheet is glued onto two copper disks forming a cylindrical 
configuration. They applied a heat flux to the sheet and measured a subsequent temperature gradient 
across the sample on the copper disks. This approach reduces the uncertainty arising from the contact 
resistance. Their findings will be compared to our results in the discussion section. 
To the best of our knowledge, there is only one group, Nacher et al., that published data on Kapitza 
resistance at sub-Kelvin temperatures on unspecified type of Kapton [5]. The principle of their 
experiment is similar to that used in this study: Kapton sheets separate two helium baths, one is heated 
and the other is temperature controlled. They measured temperature difference across the sheets as a 
function of heat flux neglecting conduction through the Kapton. They have determined the Kapitza 
resistance in the temperature range of 30–150 mK on 8 and 12 µm thick Kapton sheets. Our method is 
similar except that we measure temperature difference across sheets having different thickness to 
determine simultaneously Kapitza resistance term and the conduction term. 

2 Experimental set-up 

Two 100-mm diameter sample sheets are fixed over 20 mm of their diameter by Scotch-WeldTM DP190 
epoxy resin and clamped with two stainless steel flanges, one on each side, to a central cylindrical 
support to prevent helium leak as shown in Figure 1. In this way, it creates an inner bath, which is 
considered isothermal in superfluid helium. Inside the central cylindrical support, a heater and an Allen 
Bradley (AB) temperature sensor are located and allow to apply heat and to measure the temperature of 
the inner bath. The description of the set-up is detailed in [6]. A capillary tube of 0.4-m length, carrying 
instrumentation wires is wrapped around the central support and insulated by Stycast® 2851 FT epoxy 
resin. Another AB temperature sensor is located in the cryostat bath, which is the temperature 
regulated. To achieve the temperature regulation of the cryostat bath, the pressure above the liquid 
surface is measured and held constant by a MKS Baratron® pressure sensor in combination with a 
pressure controller and a valve. The pressure sensor has an accuracy of ±0.25% of the reading and the 
pressure is controlled within ±0.02 Torr from 2.0 K to 1.4 K. Tests have been performed in saturated 
superfluid helium between 1.4 K and 2.0 K and thermometers are calibrated in situ before each 
experiment against the vapor pressure. 
Five different thicknesses of Kapton HN have been tested that correspond to the DuPont gauges: 50 
(12.7 µm), 100 (25.4 µm), 200 (50.8 µm), 300 (76.2 µm) and 500 (127 µm). The manufacturer gives 
thickness of the sheets with 20% accuracy, therefore the exact thickness has to be measured and these 
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values are presented in Table 1. The samples did not undergo any specific treatment except standard 
cleaning with alcohol. 
The steady-state temperature measurement of the inner bath is obtained using a lock-in amplifier 
(SR850 Stanford Research Systems). The AB thermometer of the inner bath is placed in a series with a 
large resistance and the input feeding current is verified for each temperature. The temperature of the 
cryostat bath, Tb, is obtained with a four-wires technique and a DC battery current source. Tb is 
regulated within 1 mK and held constant for the entire range of power dissipation. The resulting 
temperature difference between the inner bath and the cryostat bath represents the overall thermal 
resistance of the Kapton sheets including the Kapitza resistance at the boundaries, the thermal 
resistance of the insulation due to conduction and heat leaks through the capillary as well as the 
stainless steel support. 

3 Analysis principle 

Although the Kapitza resistance depends strongly on the surface condition of the solid boundary with 
liquid helium, the acoustic mismatch theory can be used to predict the heat transfer mechanism to a 
great extent [7]. The heat transfer at the interface is seen as an energy exchange of phonons and their 
transmission through the He II-solid interface is governed by acoustics of continuous media. The 
thermal resistance results from the fact that not all the energy carried by the phonons can be transferred 
due to an acoustic mismatch between helium and solids. The heat flux, Q, going through the solid 
boundary is proportional to the difference in phonon energy density between the helium and solid 
material, which is proportional to Q∝Ts

4-Tb
4. 

The Kapitza resistance at the surface of the sample in the inner bath, the resistance due to conduction, 
or the Kapitza resistance at the surface of the sample and the cryostat bath can all be used to define heat 
flux going through the sample Qs. That is, 
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where A is the total cross section, i.e. the entire cross section of the two sheets, �� the thickness of the 
Kapton sheets, �� the average thermal conductivity of Kapton, n, the exponent of the power law and α 
the Kapitza coefficient. Tb and Ti are respectively the temperature of the cryostat bath and the inner 
bath, and T1 and T2 are the unknown boundary temperatures at the interface given by the Kapitza 
boundary conditions. The order of the Kapitza power law n, given by the mismatch theory is 4 but 
experimentally, the value is found to vary between 3 and 5 [8, 9]. In our data analysis we will keep n as 
a free parameter to compare our data with the theory. For temperature difference much smaller than the 
temperature of Tb or Ti, the Kapitza resistance on both side of the sample can be simplified to the first 
order as 
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Taking 	�
����
 as the definition for thermal resistance, where ∆T stands for any temperature 
difference in a given medium, the thermal resistance of the sample, Rs, which is the sum of the two 
Kapitza resistances at the helium boundary and the resistance due to thermal conduction in the sheet, 
becomes 
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Note that Rs is a function of the inner and cryostat bath temperatures and the thickness of the Kapton 
sheet. Equation (3) can be simplified by linearization to give 
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where �� is the total temperature difference across the sheets, ����i-Tb. Note that the second term of 
left end side of Equation (4) corresponds to 0.5% to 0.7% of the total resistance value in our experiment 
and will be neglected hereafter for simplicity. The first term of the right end side of Equation (4) is the 
Kapitza resistance whereas the second term is due to conduction. 

4 Error Analysis 

4.1 Heat Losses 

The total heat flux dissipated by the heater is Q=Qs+Qcap+Qsup where Qs is the heat flux through the 
Kapton sheets while Qcap and Qsup are respectively heat losses via the capillary and the stainless steel 
support. Qcap and Qsup constitute systematic errors in the evaluation of Qs. To estimate Qsup, the 
experimental set-up has been modeled with a finite element analysis [6]. Results show that the heat flux 
through the sample and the stainless steel support can be considered as parallel conductors and this loss 
represents 2% of the total heat flux through a Kapton 100 HN sheet at 1.9 K, for example, over the 
entire range of Q (maximum value of 150 mW reached for 500 HN sample). The second type of heat 
loss is through the helium contained in the capillary. The capillary contains 6×120µm-diameter copper 
wires and 4×100µm-diameter superconducting wires. Its cross-sectional area is 0.157 mm2. The 
equivalent cross-section of the capillary is estimated to be 5.83 10-2 mm2. This heat loss can reach up to 
20% of the total heat flux for ∆T<1 mK. To avoid such high heat loss and to be in the ��� T condition, 
we limit the data reduction of ∆T in the temperature range of [10-30 mK] where the loss is comprised 
between 2.5% and 1.5% of the total heat flux for the same example. The heat flux density is always 
smaller than 30 W/m2. Calculations of heat losses are considered as estimation with an uncertainty of 
20%, and the uncertainty on these calculations are included in the error analysis accordingly. 

4.2 Experimental errors 

The lock-in amplifier, used for temperature measurement, is connected to the power network through 
an insulation transformer in order to minimize electrical disturbances. The AB thermometer is placed in 
����������	�
����
���
����������
����
�������������
�������	������-in amplifier provides an AC voltage 
of 5 V rms at 5 Hz across the two resistances to obtain a feeding current through the AB thermometer 
����������	����������	����� ��!��������������
���� ������
�	�������	��������������	
������"� ���

temperature measurement sensitivity between ±����#�
����$�#�
� �±�����#�
������#��The Temperature 
difference error is at most 0.2 mK in the range of our investigation. This error analysis includes the 
resistance error measurement and the propagation error through the calibration curve. Total heat flux, is 
generated and monitored by a Keithley 2400 source meter and uncertainty is at most 0.5% of the value. 



 5 

4.3 Fitting procedure 

In order to extract simultaneously the thermal conductivity and the Kapitza resistance values as a 
function of temperature, different thicknesses of the same material at different bath temperature must be 
tested. The first step is to extract the total resistance of the sample Rs. Figure 2 presents a typical curve 
of the total temperature difference, ��� across a Kapton 100 HN sheet versus the heat flux through the 
sample Qs. These results show the expected trend; that is the overall thermal resistance rises with 
decreasing temperature because the Kapitza resistance is proportional to T -n (with n>0) and the thermal 
conductivity of Kapton increases with temperature. The thermal resistance of the sample, Rs, is 
determined by a linear least square method. The Figure 2 exhibits the uncertainties in ��, which 
����� ����	����	������������
���%�����	����
��������&����� , and the uncertainty due to variations in Qs 
��������� ��!�����	��������
���%�����	����
��������&��Qs���	����� ������������������&����� (Qs), is taken 
into account because it is of the same �� �������
!���� ����������������
�!����	
������ . It can be 
approximated to the first order by, 
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The total uncertainty of ���������������� �
��
�'�
 �
��������������� �
� ����� (Qs) [10]. Figure 3 
represents the thermal resistance of the samples as a function of thickness for 1.9 K. For each bath 
temperature, such curve is created and the data are fitted with the second part of Equation (4) with a 
non-linear least square method where the independent variable is the thickness, � and the dependent 
variable is the thermal resistance, Rs. The uncertainty of thermal resistance presented in this plot 
includes the uncertainties due to the fitting of the raw data and the ones from the determination of the 
cross-section of the sample. 

5 Results and discussion 

5.1 Thermal resistance 

Figure 4 presents the thermal resistance, Rs, for all the Kapton sheets tested as a function of the 
temperature. Typically for the 50 HN Kapton sheet the uncertainty represents roughly 10% of the value 
whereas for the 500 HN Kapton it is comprised from 1% to 3%. The influence of the thermal resistance 
due to conduction is clearly seen in Figure 4 where the total thermal resistance of the sample increases 
with the thickness for a constant bath temperature. One can show also by fitting the data with a+b/Tn 
that its evolution with temperature becomes progressively non-linear as the thickness decreases due to 
the growing influence of the non-linear Kapitza resistance. 
To extract the thermal conductivity and the Kapitza resistance, Rs is plotted as a function of the 
thickness of the sheet for each temperature, as shown in Figure 3 for 1.9 K. The uncertainty of the 
thermal conductivity is around 3% for all samples and for the thermal resistance it varies between 13% 
at 2.0 K and 9% at 1.4 K. This difference is due to the fact that the thermal conductivity corresponds to 
the inverse of the slope, which is not sensitive to error bars associated to the total thermal resistance, 
whereas the Kapitza resistance, which corresponds to the value at null thickness, is extremely sensitive. 

5.2 Thermal conductivity 

At low temperatures, the thermal conductivity of amorphous polymer is known to exhibit a quadratic 
dependency with temperature (�∝T2) below 1 K and for higher temperature range (5 K to 15 K) a 
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plateau is reached [11]. Between these two regions, one expects that the temperature dependency of the 
thermal conductivity to follow a power law T n with n between 0 and 2. In our measurement, we found 
κ to be linearly dependent on temperature. It is thus consistent with the above prediction and the 
magnitude is in good agreement with recent results reported by other authors [3, 4]. As our temperature 
range of investigation is small and to comply with theoretically temperature dependency, we propose a 
linear evolution as, 

�=[(2.28±0.54)+(2.40±0.32)×T ]× 10-3   Wm-1K-1 (6) 

In Figure 5, κ is presented and compared to other data in literature. Our results are in the same order of 
magnitude to the results presented by other groups employing very different approach to determine κ. 
Our value is even comparable to the value found by Lawrence et al., by �=4.638 10-3×T0.5678 Wm-1K-1, 
which is the most recent data determined through the stack method. In their experiment, the thermal 
conductivity of Kapton HN was determined, in the range of 0.5–5 K, with two different stacks. This 
two-stack method, as it is called, allows extracting the Kapton thermal conductivity without evaluating 
the thermal conductivity of the epoxy resin and the thermal contact resistance. The stacks they used 
were composed with two different numbers of sheet, 100 and 200, with two different Kapton sheet 
thicknesses, 25 µm and 125 µm, respectively. κ found here is smaller by a factor of two to the data 
presented by Barucci et al, which follow �=(6.5 ± 0.2) 10-3×T1±0.02 Wm-1K-1 in the range of 0.2–5 K. 

5.3 Kapitza Resistance 

The best fit to the Kapitza resistance data is shown in Figure 6 and can be described as, 

RK=[(8538±1594) T -(2.57±0.35) ]×10-6   Km2W-1 (7) 

The observed non-linear law (RK∝T -2.57) in our results is consistent with the theory discussed above. 
Here, the Kapitza coefficient, �, defined in Equation (4), is given as �=65.51±19.0 Wm-2K-3.57. The 
dependency of the two fitting parameters in Equation (7) is very high suggesting that the fitting law is 
over parameterized. Therefore, the uncertainty of these two parameters should not be viewed simply as 
errors but more correctly as variations due to the other fitting parameter. Thus we choose to fit the data 
by the law imposed by the theory. The result gives 

RK=(10540±444) T-3 ×10-6   Km2W-1 (8) 

This is also depicted in Figure 6 as a dotted line. From this expression, one can deduce the Kapitza 
coefficient as �=47.43±2.00 Wm-2K-4. Our RK values are an order of magnitude higher than Nacher’s 
result, which follows a power law RK=0.7 T-3×10-3 Km2W-1 in the range of their investigation. Granted 
that their analysis was done with an infinite thermal conductivity for the Kapton sheet, we remark that 
their finding is still perplexing considering that the small value of the thermal conductivity will force 
the second term in Equation (4) to be negligible within their range of investigation. It should also be 
noted that they do not offer any viable explanation why their value is an order of magnitude lower than 
the value of Kapitza resistance between liquid helium and solids, except by a possible thermal leak. The 
facts that our thermal conductivity value is in the same order of magnitude with other results, that our 
Kapitza resistance is typical for solid-He II interface and that it is in close agreement with the 
theoretical model make us confident of our results. 
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6 Conclusion 

The thermal conductivity reported here is comparable to those found in the literature with good 
accuracy. For small ��, the determined Kapitza resistance is within 10% of the theoretical cubic 
temperature dependency and is in the order of Kapitza resistance of solid-He II interface. The method, 
that determines simultaneously the Kapitza resistance and the thermal conductivity, gives results with 
good accuracy for Kapton foils and could be used for other polymers used in cryogenic environment. 
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Table 1. Description of Kapton tapes 
 

 �, Thickness (µm) A, Cross section (mm2) 
50 HN 14±1 8938 ± 136 

100 HN 25±2 8581 ± 132 
200 HN 53±1 9026 ± 149 
300 HN 76.8±1.3 8671 ± 137 
500 HN 128.4±1.7 8940 ± 103 
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Figure 3. Thermal resistance of Kapton as a function of thickness at 1.9 K 
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