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Abstract. An analytical model is developed to describe the longitudinal phase space of a hybrid
beam of pions and decay muons.

INTRODUCTION

The properties of the muon beam created by decay of pions are usually obtained by
simulation. Here, an analytical model is developed to get insight into the properties of
the beam and guidelines in the adjustment of the magnets of the decay channel and of the
RF system that collect the muon beam. It is assumed that there is no coupling between
transverse and longitudinal spaces. This treatment is thus more appropriate in the present
stage for a quadrupolar than for a solenoidal decay channel. All the pions are supposed
to travel along the axis of the channel. It is thus essentially the kinematic effects of the
pion motion, muon creation and muon motion that are investigated. These effects are
described in terms of energy or momentum density, of time density and of longitudinal
phase space portraits. Densities are manipulated using random variable methods.

MOMENTUM AND ENERGY SPECTRA

Calculations that follow are based on the kinematical relations of the decay process
π � µ � ν . The following notations are used : pion mass mπ , its lifetime at rest τ �π ,
energy Eπ , muon mass mµ , center of mass decay angle θ �µ with respect to pion velocity.
The basic kinematics ingredients needed are the pion

- laboratory frame lifetime τπ � γπτ �π ,
- decay law N � s � � N0e � ηs 	 pπ , wherein η � mπ 
 cτ �π ,

and the muon
- center of mass energy E �µ � � m2

π � m2
µ � 
 2mπ and momentum p �µ � � m2

π � m2
µ � 
 2mπ ,

- laboratory frame energy Eµ � γπ � E �µ � βπ p �µ cosθ �µ � ,
The technique used to calculate a density in some variable x as a function of a density

in another variable y relies on the relation gx � gy � dy 
 dx � .
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FIGURE 1. Density gpµ � pπ

�
pµ � for pπ � 100 � 300 and 500 MeV/c (left graph), and geometrical

understanding of its build-up from gθ � � θ �µ � in the change of variable θ �µ � pµ (right).

Muon spectra at fixed pion momentum

Muon momentum. Given fixed pion momentum pπ , the decay muon momentum
satisfies a pπ -conditional density that writes

gpµ � pπ
� pµ � � gθ

� � θ �µ �
		 dθ �µ 
 dpµ 		 (1)

� mπ
2pπ p

�
µ

pµ�
p2

µ � m2
µ

� mπ
2pπ p

�
µ

βµ 
 pµ ��� γπ � βπE �µ � p �µ � 
 γπ � βπE �µ � p �µ ���

wherein gθ � � θ �µ � � sinθ �µ 
 2 � θ �µ ��� 0 
 π � � is the decay angle density. gpµ � pπ
� pµ ��� 0 out-

side the specified pµ interval. FIG. 1 shows typical shapes of gpµ � pπ
� pµ � . Monte Carlo

histograms ∆Npµ � pπ 
 N0∆pµ are superimposed for comparison.

Muon energy. Similar calculations in the case of a change of variable θ �µ � Eµ , or
as well using d 
 dE � � 1 
 β � d 
 dp in Eq. 1, yield the energy density at fixed pπ

gEµ � pπ
� Eµ � � mπ

2pπ p �µ 
 Eµ ��� γπ � E �µ � βπ p �µ � 
 γπ � E �µ � βπ p �µ ��� (2)

Pion and muon spectra versus flight distance

Pions. Pion densities properties that intervene in the sequel are as follows. The
decay density as a function of flight distance s, given pπ , writes

gs � pπ
� s 
 pπ � � � η 
 pπ � exp � � ηs 
 pπ � (3)



Given parent pions with initial momentum density gpπ � pπ � (say, at s � 0), one gets the
2-D density at arbitrary s � 0

gs � pπ � s 
 pπ � � gs � pπ

� gpπ � and
� ∞

s � 0

�
gs � pπ � s 
 pπ � dsdpπ � 1 � (4)

In the following, for the sake of simplification, we will illustrate things using a
uniform initial pion momentum density

gpπ � pπ � � 1∆pπ
� pπ � � 1 
 � pπ2 � pπ1

� � pπ � � pπ1 
 pπ2
� � (5)

The ensuing form of gs � pπ � s 
 pπ � is shown in FIG. 2, given a pion bunch launched at s � 0
with zero size and pπ � � 100 
 500 � MeV/c. Integrating Eq. 4 with respect to s yields the
pπ -density of the decayed parent pions at distance s,

gpπ � pπ � 		 s �
� s

0
gs � pπ � s 
 pπ � ds � 1∆pπ

� pπ � � 1 � exp � � ηs 
 pπ � � (6)

The pπ -density of the non-decayed pion population ensues,

ḡpπ � pπ � 		 s � � gpπ � pπ � � gpπ � pπ � 		 s � � 1∆pπ
� pπ � exp � � ηs 
 pπ � (7)
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FIGURE 2. Pion momentum density along the decay channel (left graph) and s-sections (right).

Muons. A non-zero pion momentum byte is accounted for by multiplying the
pπ -conditional density gpµ � pπ

� pµ � (Eq. 1) by the muon density at s at given pπ ,

gs � pπ � s 
 pπ � (Eq. 4). (The muon decay is not taken into account in the following for sim-
plicity, doing so would mean accounting for an s-dependent muon survival additional
factor.) This yields the muon momentum spectrum at s under the integral form

gpµ � pµ � � s �
�

∆pπ
gpµ � pπ

dpπ

� s

0
gs � pπ � s 
 pπ � ds � and lim

s � ∞
gpµ � pµ � � s � 1 � (8)
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FIGURE 3. Left : muon momentum density along the decay channel. Right : s-sections.
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FIGURE 4. Left : Muon energy density at various distances s ; the crosses are at E µ and at Eµ � σEµ
.

Right : Average momentum of beams over 60 m flight distance (markers are from Monte Carlo simula-
tions).

The ∆pπ integration interval is a function of pµ following the dependence given in Eq. 1
(not all pions can produce a muon of momentum pµ ). A similar integral holds for the
energy spectrum gEµ

� Eµ � � s, given gEµ � pπ
(Eq. 2).

The summation in Eq. 8 can be viewed as a superposition of the fixed-pπ muon spec-
tra of FIG. 1, this is the way the muon spectra shown in FIG. 3 has been numerically
calculated (Monte Carlo histograms ∆Npµ � s 
 N0∆pµ have been superimposed for com-
parison). However the calculations can been completed analytically, as performed for
obtaining the energy spectra in FIG. 4-left, which we do not detail for shortness.



Mean value and standard deviation

Parent pion beam. The pion beam average momentum as a function of s is obtained
from Eq. 7 that yields

p̄π � s � �
�

p ḡpπ � p � � s dp 

�

ḡpπ � p � � s dp �
∑i � 1 � 2 � � � i

p2
πi � η s pπi � η2 s2 e

η s
pπi Ei � � η s

pπi

�
2e

η s � pπi

∑i � 1 � 2 � � � i
pπi � η se

η s
pπi Ei � � η s

pπi

�
e

η s � pπi

Muon beam. Similar calculations apply to the determination of the mean momentum
p̄µ � s � and energy Ēµ � s � of the muons and to the momentum of the center of gravity of

the hybrid beam.
Average momenta of both pion and muon beams are increasing functions of the dis-

tance, because the lower energy parent pions decay faster, whereas the average momen-
tum of the π � µ beam decreases monotonically here (FIG. 4-right), a behavior that can
be accounted for to maintain constant focusing strength in tuning the decay channel [1].

Another parameter, relevant to the voltage of the RF system, is the second moment of
the energy density:

σEµ
� l � �

� � Eµ2

Eµ1

� E � Eµ � 2
gEµ

dE � � Eµ2

Eµ1

gEµ
dE � 1 	 2

(9)

Both mean energy and ends of the standard energy interval are displayed in FIG. 4-right .
The capture efficiency can be defined as

yEµ
� s � �

� Eµ � σEµ

Eµ � σEµ

gEµ
dE � � Eµ2

Eµ1

gEµ
dE (10)

TIME SPECTRA

The approach followed for the energy distribution can be resumed for time distribution.
The pπ -conditional time density gtµ � pπ

� pµ � of the muons at arbitrary s can be derived

from gθ
� � θ �µ � through a change of variable

θ �µ � tµ � sd 
 cβπ � � s � sd � 
 cβµ

On the other hand gtµ � pπ
� pµ � can be derived from gpµ � pπ

� pµ � (Eq. 1) using a change of

variable pµ � tµ .
A non-zero pion momentum byte ∆pπ is accounted for in the muon density calcu-

lation, by introducing the decayed pion density at sd , under the form of a gs � pπ � s 
 pπ �
factor (Eq. 4). This yields the muon time density under the integral form

gtµ � tµ � � s �
� s

sd � 0
dsd

�
∆pπ

gtµ � pπ
� tµ � gs � pπ � sd 
 pπ � dpπ (11)



with still a pµ dependence, and in addition a sd dependence, of the integration domain
∆pπ . The calculation cannot be performed analytically because of the presence of βπ
together with pπ in the integrand. Moreover, integrating over s cannot be done separately.

The numerical method of histograms superimposition followed for calculating the
momentum and energy densities remains however valid. The boundary times correspond
to the fastest and slowest muon emitted by the fastest and slowest pion. The typical
shape of gtµ � tµ � � s is displayed as a projected density in FIG. 6. The first two moments of
gtµ � tµ � � s can be calculated so as to derive capture efficiencies as was done for the energy
spectra.

Proton bunch length. The time distribution is affected by the length τ of the proton
bunch which generates the pions by interaction with the target (which in turn affects
the muon yield [2,Tab. 5.2]). This is a matter of re-writing the density function under
the form of a convolution product gtµ � tµ � � s � 1

τ � τ
0 S � tµ � τ � gtµ � τ � � s dτ , wherein S

characterizes the density of pions inside the bunch at the time of production.

LONGITUDINAL PHASE-SPACE

The muon time density gtµ � tµ � � s (Eq. 11) has an explicit dependence on s. Note that,
given the pion energies in concern here, the flight distance s can be considered in good
approximation as the position along the channel length. gtµ � tµ � � s also has an implicit
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FIGURE 5. Muon density (in arbitrary units) at s � 30 m, in a time-Kinetic energy frame.

dependence on pµ or Eµ (from the pµ � tµ correlation). As a consequence gtµ � tµ � � s
can be considered as a 2-D density gtµ � Eµ

� tµ 
 Eµ � � s in the longitudinal phase-space with

parameter s. This is illustrated in FIG. 5 in the case pπ ��� 200 
 400 � MeV/c and s � 30 m.

The muon population at arbitrary s can also be reconstructed from Eq. 11 : the � tµ 
 Eµ �
space can be meshed, N0gtµ � Eµ

� tµ 
 Eµ � � s∆pµ ∆Eµ gives the local number of points on the

mesh. This is illustrated in FIG. 6-left, taking pπ � � 200 
 400 � MeV/c and s � 40 m.
Monte Carlo simulations of longitudinal phase-space at distance s along a drift axis are
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FIGURE 6. Muon longitudinal phase-space (time-Kinetic energy) at s � 40 m (the thin arc on the right
plot is the survived pion bunch).

displayed in Fig. 6-right for comparison, showing excellent agreement, in particular it is
seen that time and energy projected densities superimpose fairly well.

RF parameters

The first two moments of the marginal densities gtµ and gEµ
can be calculated as

described earlier, in the conditions illustrated in FIG. 5, which yields the following
results. The bunch distribution in time and in energy satisfy

ctµ � σctµ � 33 � 5 � 1 � 6 m 
 Eµ � σEµ � 258 � 55 MeV

The rms time extent determines the choice of 45 MHz RF frequency for a half-wave ex-
tent, whereas σEµ

determines a � 55 MV total RF voltage, for bunch rotation (consistent
with the CERN design parameters [2,Sec.5.2]).

The rms bunch emittance is ε 
 π � 1 � 23 eV.s, yielding a

capture efficiency of 64%

namely, the ratio of the number of muons contained in the rms bunch to the total number
of muons. The ctµ to Eµ correlation coefficient is � 0 � 87. The proton bunch length upper
limit in order to avoid excessive muon bunch lengthening is about 5 ns (in quadratic
mean).

CONCLUSION

The model described in this paper explains the shape of the density functions of a muon
beam and allows calculating the 2-D longitudinal phase-space density. The calculations
can be applied to a realistic pion spectrum once HARP will have provided its results [3],
yet the hypothesis of uniform spectrum is fairly well fulfilled for a π

�
momentum



interval of 150 � 500 MeV/c [4], allowing an estimate of various parameters entering
muon capture dynamics.

The energy and time densities can be given an simple integral form and thus calcu-
lated numerically almost instantaneously. Moreover several of the integral expressions
involved have an analytical primitive, this has not been detailed for the sake of shortness.

Various quantities relevant to beam dynamics can be derived : average beam momen-
tum applies to the adjustment of the focusing strength of the quadrupoles in the decay
channel. The mean energy and the energy spread affect the RF voltage. The mean ar-
rival time and the muon bunch length are relevant to the RF phase and the choice of
the RF frequency. The predictions of the model have been compared with results from
Monte Carlo simulations for validation.

Calculation and transport of the transverse densities and phase-space portraits have
been undertaken in a similar way [5], and will be subject to further publication.

Further developments and applications can be foreseen, including fast propagation of
densities by methods of second order transport, using techniques of random variables
and their combination.
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