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Abstract
This note collects formulas relative to the energy dependence of the cross sections for open charm
and J/v production for N N-collisions at threshold. It is a basis for the best input to MonteCarlo
calculations, for associative charm particle production in nucleon-nucleon, nucleon-nucleus, ion-ion

and proton-antiproton collisions.
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FIG. 1: Feynman diagram for p +p — A} + D’ + p.
I. THE REACTION p+p— Af+D0+p

The threshold behavior of the total cross section for the reaction p +p — A} + DY +p

can be described by:
o(pp — AT D%) ~ 0.2(Q/0.1 GeV)? nb. (1)

with
Q=+s—(m+M+p), (2)

m is the nucleon mass, M (u) is the mass of A.(D). This estimation is based on D—exchange
mechanism, Fig. 1, and on the comparison with the processes p +p — A+ K™ +p
(K —exchange), assuming SU(4) symmetry[1]. The threshold Q*behavior ( @ is the en-
ergy excess over threshold) ,is the phase-space for a three-body reaction [2].

In Fig. 2 we report the threshold behavior of the cross section for the reaction p +p —
AF + DY + p as a function of @, (top) and of the proton kinetic energy (bottom).

No experimental data exist in the threshold region. The lowest energy where the open
charm cross section has been measured, E,=70 GeV, /s = 11.46 GeV, corresponds to ) = 6
GeV. From Eq. (1) we find, for this energy: o(pp — A7 D%) ~ 0.7 ub, to be compared to
the experimental value o(pp — charm) = 1.6751 (stat) £0.3 (syst) ub [3]. The calculation
rigorously hold only for Q) < p.
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FIG. 2: Cross section for the reaction p+p — A} + DO + p as a function of the energy excess over

threshold, @, (top) and of the proton kinetic energy (bottom)
II. TOTAL CROSS SECTION FOR OPEN CHARM PRODUCTION

The total cross section for pp-interaction near threshold can be approximated as:

oot (pp) >~ 40 mb at \/Es) > 10 GeV

and it flattens at larger energies.

The semi-inclusive cross section for charm particle production has been calculated in [5],




in analogy with strange particle production, and it has been found
o(pp — XA.) ~ 40 ub

depending on the choice of the cut off parameter for the form factor, which has to be

introduced in the vertex of the diagram. Let us note that this number is larger than the

direct experimental value [3]. Using these cross section, one can find:

o(pp = AX)
Ttot(PP)

Following [5], in analogy with strange particle production in yN-collisions, in principle

Rp = =(025+1)-107°

one should take into account another contribution, D*-exchange, which may increase the

cross section of a factor four. Therefore:
Rpip-~(1+4)-107°

which is in agreement with the experimental value of 40+ 200 pb at \/s=62 GeV [6].

A. Isotopic relations

The models [1, 5] allow to calculate the cross section for all channels of exclusive charm
particle production, not only for pp- but also for np-collisions. The starting point of such
calculations is the isotopic structure of the matrix element M for NN — Y, + D+ N, which
is model independent.

We give here the necessary relations based on the isotopic invariance of the strong inter-

action, with I(3,) =1, I(A.) =0, I(D) = 1/2:

1) M(pp— SHD7p) = Ay V24,
2) M(pp = S D) = Ay —V2A44,
3) M(pp = S D%) = —V2A,
4) M(np— XD n)= Ay +v2401,
5) M(np — S0D%) = — Ay +v240,
6) M(np— SDp)= Ay —Ag, (3)
7)) M(np — S D) = Ay —Ao,
8) M(pp — AFD%) = A,
9) M(np— AfD7p) = 1AH +1A00,
10) M(np — AFDn) = ;411 —;400,



where Ay, ;, are the isotopic amplitudes, corresponding to the total isospin I; for the initial
nucleons and the total isospin I, for the produced DN-system. In fact we have twice more
of these reactions, by changing isospin p <+ n (for example pp — St D™p < nn — Egﬁn).

One can see, from Eq. (3), that seven different matrix elements for different N + N —
Y.+ D + N-reactions, are characterized by three complex isotopic amplitudes: A;;, A;y and
Agi. Relations (3) hold for any model in any kinematical condition.

Model independent relations among the seven differential cross sections hold:

o1 +09= 2|An|? +4|Ap[%

03 = 2|A11|2, (4)
04 —|—0'5 = 2|A11|2 +4|A01|2,
Og + 07 = 2|A10|2 +2|A01|2.

The isotopic averaged cross section for the processes N + N — X, + D + N, typically

used in the transport codes, is defined as:
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Therefore:

o =3(|Aul” + |Aw|* + [An[*)

and does not contain any interference term between the different isotopic amplitudes. The

isotopic amplitudes can be expressed in terms of the cross sections as:

|A11|2 = 503,
|Ao1|2 = —(04 + 05 — 03) (5)

|Aw|?> = (06 +07) — = (04 + 05 — 03)

The situation essentially changes near the reaction threshold, where all final particles
are produced in S-state. The selection rules with respect to the Pauli principle, the P-
invariance and the conservation of isospin and of the total angular momentum, allow to
find a more simple spin structure for the matrix element for pp and np-collisions in [7]. A
direct consequence of the threshold spin structure is that the interferences A;; ® Ay, and
Ao ® A}y, which can be present in the general case, vanish in the threshold region, after

summing over the polarizations of the colliding nucleons. Therefore at threshold we can



derive the following relations, additional to (4), which hold for any model:

d d —
é(np — Yt D™n) = i(np — XID0p),
do do —
- T ) = +7)0
dw(np%ECD P) dw(np%EcD n).

B. Scheme for estimation of cross sections

Taking the following assumptions:

1. D-exchange model: the amplitudes are proportional to the amplitude for elastic DN-
scattering, which is a combination of amplitudes for the two possible states of isotopic

spin, A; and A,.

2. SU(4) symmetry: A; > Ay (as for KN scattering), so we neglect the amplitudes
corresponding to I(DN) = 0.

3. Threshold regime: all particles are in S final state; no interference between singlet and
triplet initial states.

1
We find: 01 = 02 = 50’3 = |A11|2, O4 = 05 = |A11|2 + 2|A01|2 = 30’1, and Og — O7 =

|A01|2 =01, 09g = 010 = ]_/40'8.
This derives from the fact that A;; and Ay are both proportional to A;, therefore the

spin structure of theses amplitudes may be different, but their moduli squared are thg same.
o1 can be calculated from the proportionality with og = o(pp — A} D%): o, = ‘Z’;E—CDU&
If one assume SU(4)-symmetry, in the considered D-exchange model, the ratiopA(;fpthe
g’?E—CD g’%m{. An estimation of this ratio from the

5 can be related to 5

9pA.D IpAK
2

literature ([2] and refs herein) gives ggz—cD ~ 0.1
9pA.D

The overall DO%-production, due to the discussed reactions, results in about 20s.

coupling constants

C. Results

The calculation [1] takes into account the general threshold symmetry properties of the
strong interaction, such as the the conservation of parity, total angular momentum, and the

Pauli principle.



Current models, which reproduce high energy data, can not always be safely extrapolated

to threshold. For example, in [4] the cross section is taken as:
opp — AD%) = ax(1 — 2)*Z " (6)

with ax = 0.496, Z = \/s%/\/5, \/s& = 5.069 GeV, a = 4.96 and § = 1.36 for DO
production, and slightly different paramaters for D~ -production: ax = 0.363, 1/s% = 5.073
GeV, a =4.94 and § = 1.44.

In Fig. 3 a comparison between the calculations [1] (thick lines) and [4] (thin lines) is
shown for DY production (solid lines) and for D™-production (dashed lines).

One can see that the values can differ by an order of magnitude. This comes from the
fact that the correct ()-behavior at threshold, from phase space considerations, should be
quadratic, whereas the best fit parameters of Ref. [4] give an exponent ~ 5. The difference
is also due to the fact that the isotopic relations among D® and D~ -cross sections are not
respected in the parametrization [4]. This induces very large effect in particular in the
threshold region.

Note that the calculation [5], which is based on the Quark-Gluon String model and the

Regge phenomenology, is in agreement with [1], for a specific choice of form factors.

D. Possible future studies

One can foresee an extended program for the study of fundamental processes of charm

hadroproduction, which will be useful for the experiments at the future international facility

at GSI:

1. Analysis of vector charm D*-associative production in N N-collisions N + N — Y, +
D* + N;

2. Study of associative production of hperonic and nucleonic resonances: N + N —

Y +D+Nand N+ N — Y.+ D+ N¥

3. Study of associative charm production in AN, AA and BB collisions, where BB is
any baryonic or hyperonic resonance, which are important for high energy ion-ion

collision;
4. Study of the transition regime for threshold to Regge description;
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FIG. 3: Comparison between the calculations [1] (thick lines) and [4] (thin lines) for DO production

(solid lines) and for D~ -production (dashed lines).

5. Consideration of diffractive production of charm

III.

A general formalism for the calculation of the cross

particles in pp and pp-collisions.

CROSS SECTION FOR p+p — p+p+ J/iy AT THRESHOLD

section and the polarization observ-

ables for the reaction p +p — p+ p + J/¢ at threshold has been developped in [9]. From

a model independent parametrization of the matrix e

lement, valid for all types of vector

meson production in NN collisions, it is possible to derive expressions for the polarization



phenomena and for the ratio of J/¢ production in np and pp collisions, in terms of the
threshold amplitudes. In framework of a model based on ¢-channel meson exchange and
comparing with the existing data on ¢ production, it is possible to predict the threshold
behavior of the cross section.

The ratio R of cross sections for ¢ and J/¢- production in framework of the same ap-
proach, namely for m-exchange in N+ N — N + N + V? and p-exchange for the subprocess
T+ N — N+V? with V%= ¢ or J/9, one can find:

olpp = ppJ/¢) _ g*(J/Y = 7p) ( ty —mz >2 ( ty —mj )2
R(J = ~
[/4:9) o(pp — ppo) 9* (@ = 7p) \typ —mz) \tyy —m,
Vas(J/Y) F(9) [F(tw)r
Vas(@) F(J/) | Flty) |’
where g(V — mp) is the coupling constant for the decay V' — mp, ty = —mmy is the

threshold value of the momentum transfer squared, F(¢) is a phenomenological form factor
for the vertex m*p*V?, with virtual 7 and p.

Taking the volume of three-particle phase space as [2], one can find:

Vos(J/¥0) _ My ( 2m + M, )3/2
Vos(9) My \2m+ My

and for the particle flux:

70 _ Mo (i)

FI/D) k() \2m+ My,

where £ is the momentum of the initial nucleon in the CM system: k =

ISV

(2m + my)?.
Using the existing experimental data about the decays J/i¢ — 7+ p and ¢ — 7+ p , one

can find ¢?(J/¢ — mp)/g*(¢ — 7p) = 1074,
2 2

2 2

ty — ty — M

Taking the terms: Lo T Me ) _ 0111 GeV?, e =0.196, and the ratio of
tpy —mz ;

I/ — M,
Vas(J/¥) F(9) i
Vas(®) F(J/¥)

phase space: = 0.216, one finds for the ratio of cross sections, at the same

Q:

o(pp — ppJ /1))

=4.7-107"
o(pp — ppo)




The relevant available experimental data are: o(pp — pp¢p) ~ 300 nb at p;, = 3.67 GeV
[10], and 0z (pp — ppJ/1) = 0.3 £0.09 nb for /s = 6.7 GeV (Q=1.725 GeV) [8].
One can find that

- Q )2
olop = ppd) =206 () b

and

o) [Pl /F )] . )

This value is too small, when compared with the existing experimental value for the

lowest /s = 6.7 GeV, namely e, (pp — ppJ/1P) = 0.3 £ 0.09 nb.

o(pp — ppJ /) ~9.7-107° (

Note that the p-exchange model for o(mN — J/1) gives a cross section one order of
magnitude smaller in comparison with other possible theoretical approaches [11-13]. Tt is
one possibility to explain the value of o..,(pp — ppJ/1). Another possibility is to take
[F(tj/w)/F(t(z,)]Z ~ 10, which can be plausible, because the .J/1) = cc-system must have a
smaller size in comparison with ¢ = s5. This can be realized by the following form factor:

1
-
A

Fy(t) =

with Ay ~ my.

The cross section, based on Eq. (7) normalized the the experimental point at /s =
6.7 GeV, i.e., taking the ratio [F(tj/¢)/F(t¢)]2 = 10, is plotted in Fig. 7, together with
the experimental data from the compilation [14], where different symbols differentiate J
production in pp or extrapolated from pA collisions. Note, in conclusions, that in the

framework of the considered model, one can find:

o(np = npJ/y)

o(pp — ppJ /1)

which would require a correction of the experimental data on pA reaction, where equal np

b

and pp cross sections are usually assumed for the extraction of the elementary cross section.
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FIG. 4: Cross section for J/1 production in pp collisions. Data are from [14]
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