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Abstract 

Charge distributions measured in central 129Xe+natSn collisions from 25 to 50 AMeV bombarding 
energy are analyzed in the framework of a random break-up model. Many aspects of the data stem 
from finite size effects. This simple approach based on integer number decomposition gives a re-
markable description of the data for bombarding energies equal or greater than 39 AMeV. The im-
plications of these results will be discussed. 

 

1 INTRODUCTION 

In this presentation, we examine the evolution 
of various observables linked to the charge dis-
tributions of the fragments produced in central 
129Xe+natSn collisions measured with INDRA 
from 25 to 50 A MeV bombarding energies. 
Previous analyses [1, 2] of charge correlations 
on these data suggested that spinodal decompo-
sition may occur from 32 to 39 A MeV incident 
energy. However, a recent analysis [3] using a 
different technique did not confirm those re-
sults. Thus, we thought it was important to look 
at the evolution of the reaction mechanisms in 
the same energy range using a different ap-
proach. Here, we compare the experimental dis-
tributions to the ones computed from the parti-

tions of nuclei of charge ∑ =

=
= IMFMi

i ib ZZ
1

, where 

Zi is the charge of fragment i and M is the num-
ber of fragments in an event. To avoid structure 
effects linked to very light fragments only frag-
ments with Zi ≥ 5 are considered. Similar ap-
proaches have been undertaken in the past [4-6] 
in order to reproduce inclusive charge and mass 
distributions in high energy collisions. It was 
assumed there that all partitions had the same 
probability. In our case, we assume that each 
partition is weighted by the number of different 
possible realization of that partition. In the next 
section we will recall few relations on the parti-
tioning of integers. 

2 PARTITIONING OF INTEGERS 

In this section we remind few formulae on the 
partitioning of integers. Considering an integer 
Zb, the number of different ways this integer can 
be decomposed into M integers is given by 
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Note that NM(Zb) is not the number of partitions 
as computed in refs. [5, 6] but it takes into ac-
count all the different ways of realizing the 
same partition. Thus each partition, i, has a 
weight given by, 
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where 
izn is the number of times the number zi 

appears in the partition. Irrespectively of the 
multiplicity M, the total number of ways of de-
composing the integer Zb is given by, 
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For a given multiplicity M, the size distribution 
is given by the relation,  
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Now, if we decompose the number Zb into in-
tegers greater or equal to a minimum value Zm, 
the above relations can be generalized. Thus, 
relation (1) becomes: 
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whereas the size distribution for a multiplicity 
M is given by the following relation, 
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We note that this way of partitioning an integer 
into M parts is equivalent to break M-1 bounds 
at random in a chain containing Zb nodes and 
keeping only configurations in which all frag-
ments contain at least Zm nodes. 

In the experimental data, for each event, the 
multiplicity MIMF is defined as the number of 
fragments with Z ≥ Zm = 5. In an event, the 
charge bound into fragments is defined as 
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. For each value of the multiplicity 

MIMF, the corresponding Zb distribution is built. 
Then, for this multiplicity, the charge distribu-
tion is calculated according to the relation, 
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where )(ZP
mZ

M  is given by the relation (6) and 
w(Zb) is a weighting factor for a proper normali-
zation to the data,  
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 is given by relation (5).  
In order to make more detailed comparisons 

with experimental data, for a given multiplicity 
MIMF, starting from the Zb distribution, we com-
pute for each value of Zb all ordered partitions 
which are considered as events. For a proper 
normalization, each partition is given the weight 
w(Zb) defined by relation (8). These partitions, 
are then treated as experimental events. 

3 COMPARISONS TO DATA 

3.1 Data selection 

Only events for which the total detected charge 
was greater or equals to 80, as compared to 104,  

 
Figure 1: Evolution of the experimental Zb distributions 

as a function of bombarding energy, from 25 to 50 AMeV, 
for central Xe + Sn collisions. The error bars are statistical 
only. Bottom right, average <Zb> as a function of the 
bombarding energy. The straight line is a linear fit to the 
data.  

 
the total charge of the Xe + Sn system were re-
tained. In order to select the most central colli-
sions, as in previous analyses [1-3] a comple-
mentary selection was made taking only events 
with a flow angle greater than 60°. For this pur-
pose, the kinetic energy tensor was built using 
all fragments with Z ≥ 3. It has been shown [7, 
8)] that such events can be associated to the 
multifragmentation of a compact source.  

For this selection, the average multiplicity 
<MIMF> of fragments with Z ≥ 5 increases first 
with bombarding energy from 3.7±1.0 at 
25 AMeV to reach a maximum of 4.9±1.3 at 39 
AMeV then decreases to 4.4±1.2 at 50 AMeV 
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Figure 2: From top to bottom, charge distributions for central 129Xe + natSn collisions at 25, 39 and 50 AMeV 
bombarding energies for fragment multiplicities MIMF = 2, 4, 6 and 8, from left to right. The error bars on the ex-
perimental data are statistical only. The full drawn curves are calculated using relation (7). 

 
(the quoted errors are in fact the standard devia-
tions of the multiplicity distributions). The evo-
lution of the Zb distributions as a function of 
bombarding energies is shown in fig. 1. These 
distributions are Gaussians with a mean value 
which decreases linearly, at a rate of one charge 
unit per MeV/nucleon, with bombarding ener-
gies as shown by the bottom right panel of 
fig. 1. This behavior is expected from charge 
conservation as more and more light fragments 
and particle are produced when the bombarding 
energy increases. 

At each bombarding energy, the Zb distribu-
tions were built for each fragment multiplicity 
MIMF. These distributions are also of gaussian 
shape with mean values which increase almost 
linearly with MIMF. The rate of increase is 3.13 
charge units per IMF at 25 AMeV and reaches 
4.4 charge units per IMF at 50 AMeV. These 

distributions are then used to compute the or-
dered partitions of nuclei of charge Zb as de-
scribed above. In the next section, we compare 
the charge distributions thus calculated to the 
experimental ones. 

3.2 Charge distributions 

Experimental charge distributions are pre-
sented in figure 2 for three bombarding ener-
gies, 25, 39 and 50 AMeV (rows), for four val-
ues of the IMF multiplicity, MIMF = 2, 4, 6 and 8 
(columns). The charge distributions calculated 
using relation (7), are shown by the full drawn 
curves. From 39 AMeV to 50 AMeV bombard-
ing energies, the experimental data are quite 
well reproduced by relation (7), even for binary 
break-up. When the energy is lowered, discrep-
ancies start to appear for the lowest IMF multi-
plicities, MIMF ≤ 4 at 32 AMeV and MIMF ≤ 5 at 
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25 AMeV. In those cases, the calculated distri-
butions extend to larger charges than the ex-
perimental ones. By examining in details the Z 
distributions of the biggest, the second biggest 
and so on fragments for each IMF multiplicities, 
it was found out that these discrepancies came 
mainly from the calculated Z distributions of the 
biggest fragment. Indeed, it was found that the 
calculated distributions of these fragments ex-
tend to larger Z values than the experimental 
ones whereas the Z distributions of the lighter 
fragments are correctly reproduced.  

In the following section, we investigate the 
standard deviations of the charge distributions. 

3.3 Charge correlations 

Following Moretto et al. [9], the average IMF 
charge in an event is defined as 
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for that event is given by, 
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The experimental distributions P(∆Z) are 
shown for the three bombarding energy, 25, 39 
and 50 AMeV, in the three rows of figure 3 for 
four different values of the IMF multiplicity 
(columns). The strong oscillations observed for 
MIMF = 2 are numerical effects due to the integer 
nature of the charges. The distributions calcu-
lated from the ordered partitions are shown by 
the full drawn curves in figure 3. For the parti-
tioning of an infinite system, it can be shown 

that 
2
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ZZP . Thus, for such a system, 

P(∆Z) should be flat for MIMF = 2 and tends to 
infinity for larger values of MIMF. The fall-off of 
P(∆Z) is essentially a finite size effect. The po-
sition of the maximum depends upon the size of  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: From top to bottom, ∆Z distributions for central 129Xe + natSn collisions at 25, 39 and 50 AMeV bom-
barding energies for fragment multiplicities MIMF = 2, 4, 6 and 8, from left to right. The error bars on the experi-
mental data are statistical only. The full drawn curves are calculated from the ordered partitions (see text). 
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the fragmenting system, moving up as the size 
of the system increases. As Zb decreases with the 
bombarding energy (figure 1) the maximum of 
the P(∆Z) distribution moves to lower values of 
∆Z. We note that for low ∆Z values (below the 
maximum), the ∆Z distributions follows closely 

the power law 
2

)(
−
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IMFM

ZZP . There again, 
for bombarding energies equal to or greater than 
39 AMeV, the ordered partitions yield a good 
agreement with the experimental data. For lower 
energies and low IMF multiplicities, as already 
mentioned the calculated distributions are too 
broad.  

An excess production of nearly equal size 
fragments is predicted in different scenarios of 
nuclear multifragmentation [10-18] The ratio 
between the experimental and calculated ∆Z 
distributions can be considered as the charge 
correlation function defined by Moretto et al. 
[9]. As it was already observed in ref. [3], no 
particular enhancement in the first ∆Z bin is 
observed in the data over the calculation (see 
figure 3). Thus, the present analysis rather sug-
gests a random break-up of the nuclei, more in 
line with the predictions of ref. [19]. 

3.4 Scaling law. 

By inspecting relations (5) and (6), one notes 
that by replacing Zb by Zb’ = Zb – MIMF×(Zm-1), 
one recovers relations (1) and (4) in which there 
is no restriction on the minimum size of the 
fragments (Zm = 1). Thus, all previous could be 
obtained from relations (1) to (4) and the unre-
stricted ordered partitions of Z’b in which (Zm-1) 
= 4 is added to the charge of each fragments. In 
figure 4a is given the evolution of <Zb> as a 
function of bombarding energy for the various 
IMF multiplicities. From 25 to 50 AMeV bom-
barding energies, <Zb> spans 20 to 30 charge 
units when the IMF multiplicity increases from 
2 to 9. Figure 4b gives the same evolution for 
<Z’b>. All values of <Z’b> collapse in narrow 
band (less than 4 charge units wide) whatever 
the multiplicity is. This suggests that at each 
bombarding energy, a Z’b distribution may exist, 
which is independent of the IMF multiplicity. 
This is indeed the case as shown by figure 4c in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: a) Dependence of <Zb> upon the incident 
energy as a function of the IMF multiplicity. b) Same 
as a) by replacing <Zb> by <Zb>-4×MIMF. All the data 
points in a narrow band less than 4 charge units wide. 
The lines are just to guide the eye. c) After substituting 
Z’b IMFb MZ ×−= 4  to Zb, the Z’b distributions normal-
ized to unity superimpose. The error bars on the data 
points are statistical only. 
 

which all Z’b distributions are superimposed 
whatever the IMF multiplicity at 50 AMeV 
bombarding energy. For the sake of comparison 
all distributions have been normalized to unity. 
The superimposition is quite good for Z’b > 15 
whereas there is some dispersion for the lower 
values of Z’b. The same type of agreement is 
obtained down to 32 AMeV bombarding energy 
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whereas at 25 AMeV only the distributions for 
MIMF ≥5 superimpose correctly. 

4 DISCUSSION AND SUMMARY. 

Multifragmentation in central 129Xe +natSn colli-
sions have been analysed in the framework of a 
random break-up of the multifragmenting 
source. Neglecting secondary decay, it is as-
sumed that the fragmenting nuclei belong to the 
experimental Zb distributions where for each 
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 with Zi ≥ 5. At a given bom-

barding energy, the Zb distributions depend upon 
the IMF multiplicity as shown figure 4a. How-
ever, this observation does not necessary means 
that events with different IMF multiplicities are 
produced by sources of different size but more 
likely results from the competition with light 
fragment and particle emission. For the present 
analysis the events belonging to different IMF 
multiplicity are treated separately. One of the 
essential features of the present analysis is to 
take into account properly final size effects. 

For bombarding energies greater or equal to 39 
AMeV, whatever the IMF multiplicity, starting 
from the Zb distributions, the partitions of the 
system can be fully described assuming a ran-
dom break-up. As the incident energy is low-
ered, this description starts to fail for the lowest 
IMF multiplicities. At the lowest measured en-
ergy (25 AMeV), only events with MIMF ≥ 5 are 
properly described. In those cases, the size of 
the biggest fragment predicted by a random 
break-up is too large whereas the size of the 
other fragments is still estimated correctly.  

One plausible explanation of the evolution ob-
served with bombarding energy is that above 39 
AMeV incident energy, the excitation energy of 
the system is such that all partitions become 
likely. When the incident energy is lowered the 
partitions consuming the largest amount of en-
ergy become unfavourable. This will happen 
first for low IMF multiplicity events in which a 
large amount of light fragments and particles are 
produced, consuming a large amount of the 
available energy. 

An alternative interpretation is to assume that 
above 39 AMeV bombarding energy the system 
enters a completely disordered phase. Frankland 
et al. [20], using a model independent universal 
fluctuation theory, have also analysed central Xe 
+ Sn collisions. They observe a change of ∆-
scaling of the largest fragment in each event, 
from ∆ ∼  0.5 below 39 AMeV bombarding en-
ergy to ∆ ∼  1 above. This change may also sig-
nal the transition from an ordered to a disor-
dered phase. 

The scaling law observed between the Zb dis-
tributions suggests that it may be possible to 
find a unique distribution permitting a unified 
description of the data at a given bombarding 
energy.  
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