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Abstract

Galaxies are arranged in interconnected walls and filaments forming a cosmic web en-
compassing huge, nearly empty, regions between the structures. Many statistical methods
have been proposed in the past in order to describe the galaxy distribution and discriminate
the different cosmological models. We present in this paper multiscale geometric transforms
sensitive to clusters, sheets and walls: the 3D isotropic undecimated wavelet transform, the
3D ridgelet transform and the 3D beamlet transform. We show that statistical properties
of transform coefficients measure in a coherent and statistically reliable way, the degree of
clustering, filamentarity, sheetedness, and voidedness of a dataset.
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1 Introduction

Galaxies are not uniformly distributed throughout the universe. Voids, filaments, clusters, and
walls of galaxies can be observed, and their distribution constrains our cosmological theories.



Therefore we need reliable statistical methods to compare the observed galaxy distribution with
theoretical models and cosmological simulations.

The standard approach for testing models is to define a point process which can be char-
acterized by statistical descriptors. This could be the distribution of galaxies of a specific type
in deep redshift surveys of galaxies (or of clusters of galaxies) !. In order to compare models
of structure formation, the different distribution of dark matter particles in N-body simulations
could be analyzed as well, with the same statistics.

The two-point correlation function £(r) has been the primary tool for quantifying large-scale
cosmic structure [22]. Assuming that the galaxy distribution in the Universe is a realization
of a stationary and isotropic random process, the two-point correlation function can be defined
from the probability 6P of finding an object within a volume element 0V at distance r from
a randomly chosen object or position inside the volume: dP = n(1 + £(r))0V, where n is the
mean density of objects. The function £(r) measures the clustering properties of objects in a
given volume. It is zero for a uniform random distribution, positive (respectively, negative) for
a more (respectively, less) clustered distribution. For a hierarchical clustering or fractal process,
1+ £(r) follows a power-law behavior with exponent Dy — 3. Since &£(r) ~ r~7 for the observed
galaxy distribution, the correlation dimension for the range where £(r) > 1 is Dy ~ 3 —~. The
Fourier transform of the correlation function is the power spectrum. The direct measurement
of the power spectrum from redshift surveys is of major interest because model predictions are
made in terms of the power spectral density. It seems clear that the real space power spectrum
departs from a single power-law ruling out simple unbounded fractal models [30]. The two-
point correlation function can been generalized to the N-point correlation function [29, 23],
and all the hierarchy can be related with the physics responsible for the clustering of matter.
Nevertheless they are difficult to measure, and therefore other related statistical measures have
been introduced as a complement in the statistical description of the spatial distribution of
galaxies [18], such as the void probability function [19], the multifractal approach [16], the
minimal spanning tree [1, 13, 8], the Minkowski functionals [20, 11] or the J function [15, 12]

which is defined as the ratio J(r) = tgg:;

r of an arbitrary point in R? to the nearest object in the catalog, and G is the distribution
function of the distance r of an object to the nearest object. Wavelets have also been used for
analyzing the projected 2D or the 3D galaxy distribution [9, 24, 17, 21, 14].

New geometric multiscale methods have recently emerged, the beamlet transform [4, 6] and
the ridgelet transform [3]; these allow us to represent data containing respectively filaments and
sheets, while wavelets represent well isotropic features (i.e. clusters in 3D). As each of these
three transforms is tuned to on specific kind of feature, all of them are useful and should be
combined to describe a given catalog.

Sections 2, 3 and 4 describe respectively the 3D wavelet transform, the 3D ridgelet transform
and the 3D beamlet transform. It is shown in section 5 through a set of of experiments how
these three 3D transforms can be combined in order to describe statistically the distribution of
galaxies.

, where F' is the distribution function of the distance

'Making 3D maps of galaxies requires knowing how far away each galaxy is from Earth. One way to get this
distance is to use Hubble’s law for the expansion of the universe and to measure the shift, called redshift, to
redder colors of spectral features in the galaxy spectrum. The greater the redshift, the larger the velocity, and,
by Hubble’s law, the larger the distance.



2 The 3D Wavelet Transform

2.1 The Undecimated Isotropic Wavelet Transform

For each a > 0, by, by, b3 € R? | the wavelet is defined by
Vabrbops © RP— R
Q;[)a,bl,bz,bg (5317 o, .’L‘3) — (1_3/2 . Qp(m;h’ xz;bz’ x3a—b3)
Given a function f € L?(R?), we define its wavelet coefficients by:
Wr: R*—>R
Wi(a,b1,b2,b3) = [ Y4, by 05 (X) f(X)dx.
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Figure 1: Example of wavelet function.

Figure 1 shows an example of 3D wavelet function.

It is standard to digitize the transform for data c(z,y, z) with z,y,z € {1,..., N} as follows.
The wavelet transform of a signal produces, at each scale j, a set of zero-mean coefficient values
{w;}. Let ¢ be a lowpass filter and let define ¢;(z) = ¢(27z) and ¢; = ¢ * ¢;. Using an
undecimated isotropic wavelet decomposition [28], the set {w;} has the same number of pixels
as the signal and this wavelet transform is redundant. Furthermore, using a wavelet defined as
the difference between the scaling functions of two successive scales

59 5) = p(z,y,2) — —¢(§, 29

1
S 5 ) (1

the original cube ¢ = ¢y can be expressed as the sum of all the wavelet scales and the smoothed
array cj

Ty z 1 x>y =z

J
CO,%%Z = CJ717Z/,Z + : :wj7r7y7z' (2)
Jj=1

The set w = {wy, ws, ..., wys,cs} represents the wavelet transform of the data. If we let ¥V denote
the wavelet transform operator and N the pixels in ¢, the wavelet transform w (w = We) has



(J + 1)N pixels, for a redundancy factor of J 4+ 1. The scaling function ¢ is generally chosen
as a spline of degree 3, and the 3D implementation is based on three 1D sets of (separable)
convolutions. Like the scaling function ¢, the wavelet function 1 is isotropic. More details can
be found in [28, 27].

3 The 3D Ridgelet Transform

3.1 The 2D Ridgelet Transform

The two-dimensional continuous ridgelet transform of a function f € L?(R?) was defined in [3]
as follows.
Select a smooth function ¢ € L?(R), satisfying admissibility condition

/ D) 2/1¢] de < oo, 3)

which holds if ¢ has a sufficient decay and a vanishing mean [ ¢(t)d¢t = 0 (¢ can be normalized
so that it has unit energy 1/(27) [ [1(€)[2d¢ = 1). For each a > 0, b € R and 6; € [0,27[, we
define the ridgelet by

¢a,b,91 : RZ-R

Yapo, (T1,22) = a2 . 4p((x1 cos by + xasinby — b)/a);

Given a function f € L?(R?), we define its ridgelet coefficients by:

Ry R — R

Rf(a> b, 01) = f ¢a,b,91 (X)f(X)dX
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Figure 2: Definition of anglel #; and #, in R? and R?

It has been shown [3] that the ridgelet transform is precisely the application of a 1-dimensional
wavelet transform to the slices of the Radon transform (where the angular variable 6; is con-
stant). This method is in a sense optimal to detect lines of the size of the image (the integration
increase as the length of the line). More details on the implementation of the digital ridgelet
transform can be found in [26].

Figure 3 (left) shows an example ridgelet function. This function is constant along lines
x1cos + xosin @ = const. Transverse to these ridges it is a wavelet (see figure 3 (right).

3.2 From 2D to 3D

The three-dimensional continuous ridgelet transform of a function f € L2(R?) is given by:



Figure 3: Example of 2D ridgelet function.

R;: RI-R
Rf (a’ b, 01,62) = f z/}a,b,91,92 (X)f(x)dx'
where a >0, be R, 61 € [0,2n] and 02 € [0, 7[.
The ridgelet function is defined by:
Vapor, 0 R®—R
Ya 61,0, (T1,T2,23) = a=1/2. Y ((z1 cos By cos O + 4 sin 0 cos Oy + x3sinby — b)/a);

Figure 4: Example of ridgelet function.

Figure 4 shows an example of ridgelet function. It is a wavelet function in the direction
defined by the line (01, 62), and it is constant along the orthogonal plane to this line.

As in the 2D case, the 3D ridgelet transform can be built by extracting lines in the Fourier
domain. Let ¢(i1,42,13) be a cube of size (N, N, N); the algorithm consists in the following steps:

1. 3D-FFT. Compute ¢é(kq, ko, k3), the three-dimensional FFT of the cube ¢(i, iz, i3).
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Figure 5: 3D ridgelet transform flowgraph.

2. Cartesian-to-Spherical Conversion. Using an interpolation scheme, substitute the sampled
values of ¢ obtained on the Cartesian coordinate system (ki, ko, k3) with sampled values
in a spherical coordinate system (61,62, p).

3. Extract lines. Extract the 3N? lines (of size N) passing through the origin and the bound-
ary of ¢.

4. 1D-IFFT. Compute the one-dimensional inverse FFT on each line.
5. 1D-WT. Compute the one-dimensional wavelet transform on each line.

Figure 5 the 3D ridgelet transform flowgraph. The 3D ridgelet transform allows us to detect
sheets in a cube.

Local 3D Ridgelet Transform

The ridgelet transform is optimal to find sheets of the size of the cube. To detect smaller sheets,
a partitioning must be introduced [2]. The cube ¢ is decomposed into blocks of lower side-
length b so that for a N x N x N cube, we count N/b blocks in each direction. After the block
partitioning, the tranform is tuned for sheets of size b x b and of thickness a;, a; corresponding
to the different dyadic scales used in the transformation.

4 The 3D Beamlet Transform

4.1 Definition

The X-ray transform of a continuum function f(z,y, z) with (z,y,2) € R? is defined by

/ £ (4)

where L is a line in R?, and p is a variable indexing points in the line. The transformation
contains all line integrals of f. The Beamlet Transform (BT) can be seen as a multiscale digital
X-ray transform. It is multiscale transform because, in addition to the multiorientation and
multilocation line integral calculation, it integrated also over line segments at different length.
The 3D BT is an extension to the 2D BT, proposed by Donoho and Huo [4].



The system of 3D beams

The transform requires an expressive set of line segments, including line segments with various
lengths, locations and orientations lying inside a 3D volume.

A seemingly natural candidate for the set of line segments is the family of all line segments
between each voxel corner and every other voxel corner, the set of 8D beams. For a 3D data set
with n? voxels, there are O(n%) 3D beams. It is infeasible to use the collection of 3D beams as
a basic data structure since any algorithm based on this set will have a complexity with lower
bound of n% and hence be unworkable for typical 3D data size.

4.2 The Beamlet System
A dyadic cube C(ky, k2, k3, j) C [0,1]? is the collection of 3D points
{(x1, 29, 23) = [k1/27, (k1 +1)/27] x [k2/2, (ko + 1)/2] x [k3/2’, (ks +1)/27]}

where 0 < ki, ko, k3 < 27 for an integer j > 0, called the scale.

Such cubes can be viewed as descended from the unit cube C/(0,0,0,0) = [0, 1]® by recursive
partitioning. Hence, the result of splitting C(0,0,0,0) in half along each axis is the eight cubes
C(ky, ko, k3, 1) where k; € {0,1}, splitting those in half along each axis we get the 64 subcubes
C(ky, ko, k3,2) where k; € {0,1,2,3}, and if we decompose the unit cube into n? voxels using
a uniform n-by-n-by-n grid with n = 2/ dyadic, then the individual voxels are the n® cells
C(k‘l, ks, k3, J), 0 < ky, ko, ks <n.
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Figure 6: Dyadic cubes

Associated to each dyadic cube we can build a system of line segments that have both of their
end-points lying on the cube boundary. We call each such segment a beamlet. If we consider all
pairs of boundary voxel corners, we get O(n*) beamlets for a dyadic cube with a side length of
n voxels (we actually work with a slightly different system in which each line is parametrized
by a slope and an intercept instead of its end-points as explained below). However, we will still
have O(n*) cardinality. Assuming a voxel size of 1/n we get J + 1 scales of dyadic cubes where
n = 27, for any scale 0 < j < J there are 237 dyadic cubes of scale j and since each dyadic
cube at scale j has a side length of 2777 voxels we get 0(24(‘] —J )) beamlets associated with the
dyadic cube and a total of O(2%/77) = O(n*/27) beamlets at scale j. If we sum the number of
beamlets at all scales we get O(n*) beamlets.

This gives a multi-scale arrangement of line segments in 3D with controlled cardinality of
O(n*), the scale of a beamlet is defined as the scale of the dyadic cube it belongs to so lower
scales correspond to longer line segments and finer scales correspond to shorter line segments.
Figure 7 shows 2 beamlets at different scales.
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Figure 7: Examples of Beamlets at two different scales. (a) Scale 0 (coarsest scale) (b) Scale 1
(next finer scale).

To index the beamlets in a given dyadic cube we use slope-intercept coordinates. For a data
cube of n x n x n voxels consider a coordinate system with the cube center of mass at the origin
and a unit length for a voxel. Hence, for (z,y, z) in the data cube we have |z|,|y|,|z] < n/2.
We can consider three kinds of lines: x-driven, y-driven, and z-driven, depending on which axis
provides the shallowest slopes. An z-driven line takes the form

Z2=8x+t,, Y=S8,T+1

with slopes s;,s,, and intercepts t, and t,. Here the slopes |s.|,|s,| < 1. y- and z-driven lines
are defined with an interchange of roles between x and y or z, as the case may be. The slopes
and intercepts run through equispaced sets:

Sz, Sy, Sz €{2¢/n 0 =—n/2,...,n/2 -1}, to,ty,t. € {:—n/2,...,n/2 —1}.

Beamlets in a data cube of side n have lengths between n/2 and v/3n (the main diagonal).

Computational aspects

Beamlet coefficients are line integrals over the set of beamlets. A digital 3D image can be
regarded as a 3D piece-wise constant function and each line integral is just a weighted sum of
the voxel intensities along the corresponding line segment. Donoho and Levi [6] discuss in detail
different approaches for computing line integrals in a 3D digital image. Computing the beamlet
coefficients for real application data sets can be a challenging computational task since for a
data cube with n x n x n voxels we have to compute O(n*) coefficients. By developing efficient
cache aware algorithms we are able to handle 3D data sets of size up to n = 256 on a typical
desktop computer in less than a day running time. We will mention that in many cases there is
no interest in the coarsest scales coefficient that consumes most of the computation time and in
that case the over all running time can be significantly faster. The algorithms can also be easily
implemented on a parallel machine of a computer cluster using a system such as MPI in order
to solve bigger problems.

4.3 The FFT-based transformation

Let ¢ € L?*(R?) a smooth function satisfying a 2D variant of the admissibility condition, the
three-dimensional continuous beamlet transform of a function f € L?(R3)is given by:



By : R° - R
Bp(a,b1,b2,01,02) = [ g4, 0,(%)f(x)dx.
where a > 0, by,be € R ,0; € [0,27[ and 02 € [0, 7[.
The beamlet function is defined by:
Vabr b0 0 RP— R
Va1 ,bo01,02 (L1, T2, T3) = a~1/2. W( (—z1sinby + w9 cos by + by)/a,
(21 cos 6y cos Oy + x4 sin 6y cos Oy — x3sin by + be)/a);

1.0

Figure 8: Example of beamlet function.

Figure 4 shows an example of beamlet function. It is constant along lines of direction (61,
02), and a 2D wavelet function along plane orthogonal to this direction.

The 3D beamlet transform can be built using the “Generalized projection-slice theorem” [32].
Let f(x) be a function on R"; and let Rad,, f denote the m-dimensional partial Radon transform
along the first m directions, m < n. Rad,, f is a function of (p, fm; Tm+1, -, Tn), Ky, & unit
directional vector in R™ (note that for a given projection angle, the m dimensional partial Radon
transform of f(x) has (n —m) untransformated spatial dimensions and a (n-m+1) dimensional
projection profile). In addition, let {F f}(k) denote the n-dimensional Fourier transform with x
and k are conjugate variables.

The Fourier transform of the m dimensional partial radon transform Rad,, f is related to
the Fourier transform of f (Ff) by the projection-slice relation

{fn—m-i-lRadmf}(ka km+17 ey kn) = {ff}(kl‘l‘mm km—i—h ey kn) (5)

Let c(i1,142,13) be a cube of size (N, N, N), the Beamlet algorithm consists in the following
steps:

1. 3D-FFT. Compute ¢(k1, ko, k3), the three-dimensional FFT of the cube ¢(i1, 2, i3).

2. Cartesian to Spherical Conversion. Using an interpolation scheme, substitute the sampled
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Figure 9: 3D beamlet transform flowgraph.

values of ¢ obtained on the Cartesian coordinate system (ki, ko, k3) with sampled values
in a spherical coordinate system (61,62, p).

3. Extract planes. Extract the 3N? planes (of size N x N) passing through the origin (each
line used in the 3D ridgelet transform defines a set of orthogonal planes; we take the one
including the origin).

4. 2D-IFFT. Compute the two-dimensional inverse FFT on each plane.
5. 2D-WT. Compute the two-dimensional wavelet transform on each plane.

Figure 9 gives the 3D beamlet transform flowgraph. The 3D beamlet transform allows us to
detect filaments in a cube. The beamlet transform algorithm presented in this section differs
from the one presented in [7]; see the discussion in [6].

5 Experiments

5.1 Experiment 1

We have simulated three data sets containing respectively a cluster, a plane and a line. To
each data set, Poisson noise have been added with eight different background levels. We applied
the three transforms on the 24 simulated data sets. The coefficient distribution from each
transformation was normalized using twenty realizations of a Poisson noise having the same
number of counts as in the data.

Figure 10 shows, from top to bottom, the maximum value of the normalized distribution
versus the noise level for our three simulated data set. As expected, wavelets, ridgelets and
beamlets are respectively the best for detecting clusters, sheets and lines. A feature can typically
be detected with a very high signal-to-noise ratio in a matched transform, while remaining
indetectible in some other transforms. For example, the wall is detected at more than 600 by
the ridgelet transform, but less than 50 by the wavelet transform. The line is detected almost
at 100 by the beamlet transform, and with worse than 3o detection level by wavelets. These
results show the importance of using several transforms for an optimal detection of all features
contained in a data set.

10
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Figure 10: Simulation of cubes containing a cluster (top), a plane (middle) and a line (bottom).

5.2 Experiment 2

We use here two simulated data sets to illustrate the discriminative power of multiscale meth-
ods. The first one is a simulation from stochastic geometry. It is based on a Voronoi model.
The second one is a mock catalog of the galaxy distribution drawn from a A-CDM N-body cos-
mological model[10]. Both processes have very similar two-point correlation functions at small
scales, although they look quite different and have been generated following completely different
algorithms.

e The first comes from Voronoi simulation: We locate a point in each of the vertices of a
Voronoi tessellation of 1.500 cells defined by 1500 nuclei distributed following a binomial
process. There are 10085 vertices lying within a box of 141.4 h~! Mpc side.

e The second point pattern represents the galaxy positions extracted from a cosmological
A-CDM N-body simulation. The simulation has been carried out by the Virgo consortium
and related groups (see http://www.mpa-garching.mpg.de/Virgo). The simulation is

11



Figure 11: Simulated data sets. Top, the Voronoi vertices point pattern (left) and the galaxies
of the GIF A-CDM N-body simulation (right). The bottom panels show one 10 h~! width slice
of the each data set.

a low-density (€2 = 0.3) model with cosmological constant A = 0.7. It is, therefore, an
approximation to the real galaxy distribution[10]. There are 15445 galaxies within a box
with side 141.3 h~! Mpec. Galaxies in this catalog have stellar masses exceeding 2 x 1010
M.

Figure 11 shows the two simulated data sets, and Figure 12 shows the two-point correlation
function curve for the two point processes. The two point fields are different, but as can be seen
in Fig. 12, both have very similar two-point correlation functions in a huge range of scales (2
decades).

We have applied the three transforms to each data set, and we have calculated the skewness
vector S = (s, s,s]) and the kurtosis vector K = (ki,, ki, k]) at each scale j. si,,s7,s] are
respectively the skewness at scale j of the wavelet coefficients, the ridgelet coefficients and the
beamlet coefficients. ki, ki, k‘i are respectively the kurtosis at scale j of the wavelet coefficients,
the ridgelet coefficients and the beamlet coefficients. Figure 13 shows the kurtosis and the
skewness vectors of the two data sets at the two first scales. In contrast to the case with the

12
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Figure 12: The two-point correlation function of the Voronoi vertices process and the GIF
A-CDM N-body simulation. They are very similar in the range [0.02,2] h~! Mpc.

two-point correlation function, this figure shows strong differences between the two data sets,
particularly on the wavelet axis, which indicates that the second data contains more or higher
density clusters than the first one.

5.3 Experiment 3

In this experiment, we have used a A-CDM simulation based on the N-body hydrodynamical
code, RAMSES [31]. The simulation uses an Adaptive Mesh Refinement (AMR) technique,
with a tree-based data structure allowing recursive grid refinements on a cell-by-cell basis. The
simulated data were obtained using 2562 particles and 4.1 x 107 cells in the AMR grid, reaching a
formal resolution of 81923. The box size was set to 100h~! Mpc, with the following cosmological
parameters:

Qn =03 Q=07 € =0.039
h=0.7 og=0.92 (6)

We used the results of this simulation at six different redshifts (z = 5,3,2,1,0.5,0). Fig. 14
shows a projection of the simulated cubes along one axis. We applied the 3D wavelet trans-
form, the 3D beamlet transform and the 3D ridgelet transform on the six data set. Let
a%v’z’ 1 0%7 s 0129’2’ j denote the variance of the wavelet, the ridgelet and the beamlet coefficients
of the scale j at redshift z.

Figure 15 shows respectively, from top to bottom, the wavelet spectrum P, (z, j) = O'%V’ 25 the
beamlet spectrum Py(z,j) = 0?37 »; and the ridgelet spectrum F,(z,j) = 0%7 .;- In order to see

the evolution of matter distribution with redshift and scale, we calculate the ratio M, /b( J,z) =

Pu(z,5) . _ Pu(zj)
pb(zj') and Mw/r(]a Z) - PT(ZJJ') .
Figure 16 shows the M, ;, and M, curves as a function of z and Figure 17 shows the M;/lb

and M;/lr curves as a function of the scale number j.

13
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Figure 13: Skewness and kurtosis for the two simulated data set.

The M, ), curve does not show much evolution, while the M, . curve presents a significant
slope. This shows that the beamlet transform is more sensitive clustering than the ridgelet
transform. This is not surprising since the support of beamlets is much smaller than the sup-
port of ridgelets. M,, ;. increases with z, reflecting the cluster formation. The combination of
multiscale transformations gices clear information about the degree of clustering, filamentarity,

and sheetedness.

6 Conclusion

We have introduced in this paper a new method to analyze catalogs of galaxies based on the
distribution of coefficients obtained by several geometric multiscale transforms.

We have introduced two new multiscale decompositions, the 3D ridgelet transform and the
3D beamlet transform, matched to sheetlike and filament features respectively. We described
fast implementations using FFTs. We showed that combining the information related to wavelet,
ridgelet and beamlet coefficients leads to a new description of point catalogs. In this paper, we
described transform coefficients using skewness and kurtosis, but other recent statistic estimator
such the Higher Criticism [5] could be used as well. Each multiscale transform is very sensitive
to one kind of feature: wavelets to clusters; beamlets to filaments; and ridgelets to walls. A
similar method has been proposed for analyzing CMB maps [25] where both the curvelet and
the wavelet transform were used for the detection and the discrimination of non Gaussianities.
This combined multiscale statistic is very powerful and we have shown that two data sets with
identical two point correlation functions are clearly distinguished by our approach. These new

14



tools lead better constraints on cosmological models.
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Figure 14: A-CDM simulation at different redshifts.
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Figure 16: M, (z,7) (top) and M,,/,(z,j) (bottom) for the scale number j equals to 1,2 and 3.
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