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3Laboratoire Transdisciplinaire Joliot Curie, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon cédex 07, France
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Extreme atmospheric events are intimately related to the statistics of atmospheric turbulent
velocities. These, in turn, exhibit multifractal scaling, which is determining the nature of the
asymptotic behavior of velocities, and whose parameter evaluation is therefore of great interest
currently. We combine singular value decomposition techniques and wavelet transform analysis
to generalize the multifractal formalism to vector-valued random fields. The so-called Tensorial
Wavelet Transform Modulus Maxima (TWTMM) method is calibrated on synthetic self-similar 2D
vector-valued multifractal measures and monofractal 3D vector-valued fractional Brownian fields.
We report the results of some application of the TWTMM method to turbulent velocity and vorticity
fields generated by Direct Numerical Simulations (DNS) of the incompressible Navier-Stokes
equations. This study reveals the existence of an intimate relationship Dvvv(h+1) = Dω(h), between
the singularity spectra of these two vector fields which are found significantly more intermittent
than previously estimated from longitudinal and transverse velocity increment statistics.

PACS numbers: 47.53.+n, 02.50.Fz, 05.40-a, 47.27.Gs

I. INTRODUCTION

Several studies over the last decade have shown that atmospheric extremes are subject to multifractal scaling [1–6],
a finding that is heuristically supported by the multifractality found in chaotic dynamical systems in general [7–9], and
in turbulent flows in particular [10–13]. Estimating the asymptotic behavior resulting from the observed scaling laws
relies in a fundamental manner on the correctness of the parameterization of the multifractal singularity spectra in
the domain where statistics are robust. Box-counting and correlation algorithms were successfully adapted to resolve
multifractal scaling for isotropic self-similar fractals by computation of the generalized fractal dimensions Dq [14–18].
As to self-affine fractals [19, 20], Parisi and Frisch [21] proposed, in the context of the analysis of fully developed
turbulence velocity data, an alternative multifractal description based on the investigation of the scaling behavior of
the so-called structure functions [22, 23]: Sp(l) =< (δvl)

p > ∼ lζp (p integer > 0), where δvl(x) = v(x+ l)− v(x) is
an increment of the recorded longitudinal velocity component over a distance l. Then, from the local scaling behavior
of the velocity increments, δvl(x) ∼ lh(x), the D(h) singularity spectrum is defined as the Hausdorff dimension of the
set of points x where the local roughness (or Hölder) exponent h(x) of v is h [21, 24–27]. In principle, D(h) can be
attained by Legendre transforming the structure function scaling exponents ζp [21, 26, 27]. Unfortunately, as noticed
by Muzy et al [28], there are some fundamental drawbacks to the structure function method. Indeed, it generally
fails to fully characterize the D(h) singularity spectrum since only the strongest singularities of the function v itself
(and not the singularities present in the derivatives of v) are a priori amenable to this analysis. Even though one
can extend this study from integer to real positive p values by considering the increment absolute value |δvl|, the
structure functions generally do not exist for p < 0, which makes the decreasing right part of the D(h) singularity
spectrum inaccessible to this method. Moreover, singularities corresponding to h > 1, as well as regular behavior,
bias the estimate of ζp [26–28].

In a previous work, Arneodo and collaborators [26–28] have shown that there exists a natural way of performing a
unified multifractal analysis of both singular measures and multi-affine functions, which consists in using the continuous
wavelet transform (WT) [29–33]. By using wavelets instead of boxes, one can take advantage of freedom in the choice
of these “generalized oscillating boxes” to get rid of possible smooth behavior that might either mask singularities or
perturb the estimation of their strength h. The other fundamental advantage of using wavelets is that the skeleton
defined by the wavelet transform modulus maxima (WTMM) [34, 35], provides an adaptive space-scale partitioning
from which one can extract the D(h) singularity spectrum via the scaling exponents τ(q) (q real positive as well
as negative) of some partition functions defined from the WT skeleton. The so-called WTMM method [26–28]
therefore provides access to the entire D(h) spectrum via the usual Legendre transform D(h) = minq

(

qh − τ(q)
)

.
We refer the reader to Refs. [36, 37] for rigorous mathematical results and to Ref. [38] for the theoretical treatment
of random multifractal functions. Let us also note that from a fundamental point of view, the WTMM multifractal
formalism has been revisited in Refs. [39, 40], in order to incorporate in this statistical “canonical” description (which
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applies for cusp-like singularities only), the possible existence of oscillating singularities [35, 39, 41]. This new “grand
canonical” description [39, 40] allows us to compute the singularity spectrumD(h, β), which accounts for the statistical
contribution of singularities of Hölder exponent h and oscillating exponent β (where β characterizes the local power
law divergence of the instantaneous frequency).

Applications of the WTMM method to 1D signal have already provided insight into a wide variety of
problems [42, 43], e.g., the validation of the log-normal cascade phenomenology of fully developed turbulence [44–48],
the characterization and the understanding of long-range correlations in DNA sequences [49–52], the demonstration
of the existence of a causal cascade of information from large to small scales in financial time series [53, 54], the use
of the multifractal formalism to discriminate between healthy and sick heartbeat dynamics [55, 56], the discovery of a
Fibonacci structural ordering in 1D cuts of diffusion limited aggregates (DLA) [57–60]. The canonical WTMM method
has been further generalized from 1D to 2D with the specific goal to achieve multifractal analysis of rough surfaces with
fractal dimensions DF anywhere between 2 and 3 [61–64]. The 2D WTMM methodology has been successfully applied
to characterize the intermittent nature of satellite images of the cloud structure [61–64], to perform a morphological
analysis of the anisotropic structure of atomic hydrogen (H1) density in Galatic spiral arms [65] and to assist in the
diagnosis in digitized mammograms [66]. We refer the reader to Ref. [67] for a review of the 2D WTMM methodology,
from the theoretical concepts to experimental applications.

In a recent work [68, 69], we have further extended the canonical WTMM method to 3D analysis. After some
convincing test applications to synthetic 3D monofractal Brownian fields and to 3D multifractal realizations of singular
cascade measures as well as their random function counterpart obtained by fractional integration, we have applied
the 3D WTMM method to dissipation and enstrophy 3D numerical data issued from Direct Numerical Simulations
(DNS) of isotropic turbulence. The results so obtained have revealed that the multifractal spatial structure of both
the dissipation and enstrophy fields are likely to be well described by a multiplicative cascade process that is definitely
non-conservative. This contrasts with the conclusions of previous box-counting analysis [11, 13, 70–75] that failed to
estimate correctly the corresponding multifractal spectra because of their intrinsic inability to master non-conservative
singular cascade measures [68, 69]. To our knowledge, thus far, the multifractal description has been mainly devoted
to scalar measures and functions. However, in physics as well as in other fundamental and applied sciences, fractals
appear not only as deterministic or random scalar fields but also as vector-valued deterministic or random fields. In
the spirit of a preliminary theoretical study of self similar vector-valued measures by Falconer and O’Neil [76], our
objective here is to generalize the WTMM method to multi-dimensional vector valued fields with the specific goal to
achieve the first comparative 3D vectorial multifractal analysis of numerical velocity and vorticity fields generated in
(256)3 DNS of the incompressible Navier-Stokes equations. The preliminary results of this study have been announced
in a previous short communication [77].

The article is organized as follows. In Section II, we define the tensorial wavelet transform of a vector-valued field.
Using singular value decomposition techniques [78], we show how to characterize the (Hölder) regularity of this vector
field taking into account all its components, from the scale-space decomposition provided by the Tensorial Wavelet
Transform Modulus Maxima (TWTMM) method which generalizes the WTMM method to the multifractal analysis
of vector-valued fields. Section III is devoted to test applications of the TWTMM method to synthetic self-similar 2D
vector-valued multifractal measures and to monofractal 3D vector-valued fractional Brownian fields. In Section IV,
we report the results of the application of the TWTMM method to DNS turbulence data. The singularity spectra of
the full 3D velocity and vorticity fields are computed and compared to previous estimates obtained from longitudinal
and transverse velocity increments. We conclude with some perspectives in Section V.

II. A WAVELET-BASED MULTIFRACTAL FORMALISM FOR VECTOR-VALUED FIELDS

A. The tensorial wavelet transform

Let us note V(x = (x1, x2, .., xd)), a vector-valued field with square integrable scalar components Vj(x), j = 1, 2, .., d.
Along the line of the multi-dimensional WTMM method [62–64, 67–69], let us define d analyzing wavelets ψi(x) that
are, respectively, the partial derivatives of a smoothing scalar function φ(x) :

ψi(x = (x1, x2, ..., xd)) = ∂φ(x = (x1, x2, ..., xd))/∂xi, i = 1, 2, .., d. (2.1)

We will assume that φ is well localized around |x| = 0 and that it is an isotropic function that depends on |x| only.
In this work, we will mainly use the Gaussian function:

φ(x = (x1, x2, ..., xd)) = e−|x|2/2. (2.2)
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For our specific 3D application to DNS data in Section IV, we will test the robustness of our estimates of the
multifractal spectra when using alternatively the isotropic mexican hat:

φ(x) = (3 − x
2)e−|x|2/2. (2.3)

This will correspond to use third-order analyzing wavelets ψi(x) (i = 1, 2, .., d) with their three first moments equal
to zero instead of first order analyzing wavelets with one zero moment only.

The wavelet transform of V with respect to ψi (i = 1, 2, .., d), at the point b and the scale a can be expressed in a
tensorial form [77]:

Tψ [V](b, a) =











Tψ1
[V1] Tψ1

[V2] ... Tψ1
[Vd]

Tψ2
[V1] Tψ2

[V2] ... Tψ2
[Vd]

...
...

...
Tψd

[V1] Tψd
[V2] ... Tψd

[Vd]











, (2.4)

where

Tψi
[Vj ](b, a) = a−d

∫

ddx ψi
(

a−1(x − b)
)

Vj(x). (2.5)

Let us point out that each column vector of the tensor in Eq. (2.4) is nothing but the 3D wavelet transform of the
component Vj of the vector field V [68, 69]. This vector Tψ [Vj ] defines the direction and the amplitude of the largest
variation of the scalar component Vj at scale a. Our strategy will thus consist in defining some equivalent for the
vector field V itself, i.e., in finding the direction that locally corresponds to the maximum amplitude variation of V.
To be more concrete, this requires to find the column vector C that maximizes the following norm:

||Tψ [V]|| = sup
C6=0

|Tψ [V].C|

|C|
, (2.6)

where |C| =

√

∑d
i=1 C

2
i is the Euclidean norm of R

d and . denotes the usual matrix product. This can be obtained

from the singular value decomposition [77, 78] of the matrix (Tψi
[Vj ]) (Eq. (2.4)):

Tψ [V] = GΣH
T , (2.7)

where G and H are orthogonal matrices (GTG = HTH = Id) and Σ = diag(σ1, σ2, .., σd) with σi ≥ 0, for 1 ≤ i ≤ d.
The columns of G and H are referred to as the left and right singular vectors respectively, and the singular values
of Tψ [V] are defined as the diagonal elements of Σ which are the non-negative square roots of the d eigenvalues of
Tψ [V]TTψ [V]. Let us note that this decomposition is unique, up to some permutation of the σi’s. The direction of
the largest amplitude variation of V, at point b, when seen at scale a by the “wavelet transform microscope”, is thus
given by the eigenvector Gρ(b, a) associated to the spectral radius

ρ(b, a) = max
j
σj(b, a). (2.8)

One is thus led to the analysis of the vector field:

Tψ,ρ[V](b, a) = ρ(b, a)Gρ(b, a), (2.9)

whose modulus is nothing but the spectral radius

Mψ(b, a) = |Tψ,ρ[V](b, a)| = ρ(b, a). (2.10)

Thus from the scaling behavior of the spectral radius, one can characterize the local Hölder regularity of the vector
field V. Let hj(x0), j = 1, 2, .., d, be the Hölder exponents of the d components of V respectively [19, 26, 36, 37].
Provided the number nψj

of zero moments of the analyzing wavelets ψj be larger than hj(x0) for j = 1, 2, .., d, then
as proved in Refs. [68, 69], the wavelet transform of the component Vj with respect to ψi behaves as:

Tψi
[Vj ](x0, a) =

∫

ddxψi(x)Vj (x0 + ax) = ahj(x0)Cj

∫

ddxψi(x) |x|hj (x0). (2.11)

It is then straightforward to show that, in the limit a→ 0+, the scaling behavior of the spectral radius is dominated
by the smallest Hölder exponent:

ρ(x0, a) ∼ aminj hj(x0), (2.12)

that we will call the Hölder exponent of V at the point x0.
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B. The tensorial wavelet transform modulus maxima method

Very much like what has been done for the WTMM analysis of multi-dimensional scalar fields [62, 67–69], let us
define, at a given scale a, the WTMM as the position b where the modulus Mψ[V](b, a) = ρ(b, a) (Eq. (2.10)) is
locally maximum along the direction of Gρ(b, a) (Eq. (2.9)). These WTMM lie on connected (d − 1) hypersurfaces
called maxima hypersurfaces (see Figs. 3 and 7). In theory, at each scale a, one only needs to record the position
of the local maxima of Mψ (WTMMM) along the maxima hypersurfaces together with the value of Mψ[V] and the
direction of Gρ. These WTMMM are disposed along connected curves accross scales called maxima lines [62, 67–69]
living in a (d + 1)-space (x1, x2, .., xd, a). The WT skeleton is then defined as the set of maxima lines that converge
to the (x1, x2, .., xd) hyperplane in the limit a → 0+ (see Fig. 3d). As originally demonstrated in Ref. [69, 77], the
local Hölder regularity of V, as characterized by h(x0) = minj hj(x0), can be estimated from the power-law behavior
of Mψ[V]:

Mψ[V]
(

Lx0
(a)

)

∼ ah(x0), (2.13)

along the maxima line Lx0
(a) pointing to the point x0 in the limit a → 0+, provided h(x0) be smaller than the

number nψ (= minj nψj
) of zero moments of the analyzing wavelet ψ [68, 69, 77].

As recalled in the introduction, the multifractal formalism aims at computing the singularity spectrum D(h) of the
considered field, here the vector-valued field V:

D(h) = dH{x ∈ R, h(x) = h}. (2.14)

D(h) associates with any h, the Hausdorff dimension of Sh, the set of all point x0 ∈ R, so that the Hölder exponent
of V is h. Mapping the WTMM methodology developed for multidimensional scalar fields [62, 67–69], we use the
space-scale partitioning given by the WT skeleton to define the following partition functions:

Z(q, a) =
∑

L∈L(a)

(Mψ[V](x, a))
q
, (2.15)

where q ∈ R and L(a) is the set of maxima lines that exist at scale a in the WT skeleton. From a deep analogy that
links the multifractal formalism to statistical thermodynamics [7–9, 11, 27], one can define the scaling exponents τ(q)
from the power-law behavior of the partition functions:

Z(q, a) ∼ aτ(q) , a→ 0+ , (2.16)

where q and τ(q) play respectively the role of the inverse temperature and the free energy. The main result of
the tensorial wavelet based multifractal formalism [77] is that in place of the energy and the entropy (i.e. the
thermodynamical variables conjugated to q and τ), one has the Hölder exponent h (Eq. (2.13)) and the singularity
spectrum D(h) (Eq. (2.14)). This means that the D(h) singularity spectrum of V can be determined from the
Legendre transform of the partition function scaling exponents τ(q):

D(h) = min
q

(qh− τ(q)). (2.17)

From the properties of the Legendre transform, it is easy to convince oneself that homogeneous (monofractal) vector-
valued fields that involve singularities of a unique Hölder exponent h = ∂τ/∂q, are characterized by a τ(q) spectrum
which is a linear function of q. On the contrary, a non-linear τ(q) curve is the signature of nonhomogenous fields
that display multifractal properties, in the sense that the Hölder exponent h(x) is a fluctuating quantity that depends
upon the spatial position x (in other words, the local roughness exponent is fluctuating from point to point).

From a practical point of view, one can avoid performing the Legendre transform by considering the quantities h
and D(h) as mean quantities defined in a canonical ensemble, i.e. with respect to their Boltzmann weights computed
from the WTMMM [26, 27, 62, 67–69]:

Wψ [V](q,L, a) =

(

Mψ[V](x, a)
)q

Z(q, a)
, (2.18)

where Z(q, a) is the partition function defined in Eq. (2.15). Then one computes the expectation values:

h(q, a) =
∑

L∈L(a)

ln |Mψ[V](r, a)| Wψ[V](q,L, a) , (2.19)
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FIG. 1: First construction steps of a singular vector-valued measure supported by the unit square. The norm of the four
similitudes Si are p1 = p4 = C = 1/2, p2 = 2 and p3 = 1 [76].

and

D(q, a) =
∑

L∈L(a)

Wψ [V](q,L, a) ln
(

Wψ [V](q,L, a)
)

, (2.20)

from which one extracts

h(q) = lim
a→0+

h(q, a)/ lna , (2.21)

D(q) = lim
a→0+

D(q, a)/ ln a , (2.22)

and therefore the D(h) singularity spectrum.

III. TEST APPLICATIONS OF THE TWTMM METHOD TO MONOFRACTAL AND MULTIFRACTAL

SYNTHETIC VECTOR FIELDS

A. Multifractal vector-valued measures

As a first test application of the TWTMM method described in Section II to the vector situation, let us consider
the self-similar vector measures defined on Euclidean space originally introduced by Falconer and O’Neil [76]. The
σ-additivity property of positive scalar measures [7–9, 12, 19] is now replaced by the vectorial equality:

µ(

m
⋃

i=1

Ai) = µ(A1) + ...+ µ(Am), (3.1)

where A1, .., Am are disjoint sets. In figure 1, are illustrated the first three steps in the construction of a multiplicative
2D vector measure supported by the unit square. From step n to step n+ 1, each square is divided into 4 identical
sub-squares and for each of these sub-squares, one defines a similitude Si that transforms the vector V

(n) at step n

into the vector V
(n+1)
i for the sub-square i at step n + 1. The so-defined four similitudes must satisfy the vectorial

additivity condition:

V
(n) =

4
∑

i=1

V
(n+1)
i . (3.2)

A straightforward calculation yields the following analytical expression for the partition function scaling exponents
τ(q) (Eq. (2.16)):

τ(q) = − log2(p
q
1 + pq2 + pq3 + pq4) − q, (3.3)
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FIG. 2: Theoretical multifractal spectra of the singular vector-valued measures described in Figure 1. (a) τ (q) spectrum
(Eq. (3.3)). (b) D(h) singularity spectrum obtained by Legendre transforming the τ (q) spectrum (eq. (2.17)). The symbols
correspond to the following model parameters: p2 = 2, p3 = 1 and C = p1 = p4 = 0.5 ((�)), 0.3 ((4)) and 0.1 ((◦)).

where pi, i = 1 to 4, are the norms of the similitudes Si, respectively. Note that this formula is identical to the
theoretical spectrum of a nonconservative scalar multinomial measure distributed multiplicatively on the unit square
with weights pi that do not satisfy the conservativity condition

∑4
i=1 pi = 1 [68, 69]. It is clear, from the example of

figure 1, that if the construction process is conservative from a vectorial point of view, it does not conserve the norm
of the measure since

∑4
i=1 pi = 4. In particular, it is remarkable that the vector measures in the left top and right

bottom subsquares at construction step 2 are along the y-axis whereas the original vector measure has no component
along this axis. By denoting C = p1 = p4(= 1/2 in figure 1) this coupling parameter between x and y directions in
the construction process, we show in figure 2a that the theoretical τ(q) spectrum (Eq. (3.3)) is a nonlinear function
of q that strongly depends on the value of 0 ≤ C ≤ 1. From Legendre transforming Eq. (3.3), one gets a D(h)
singularity spectrum with a characteristic multifractal single-humped shape (Fig. 2b) that expands over the interval
[hmin, hmax] = [−1− log2(maxi pi),−1− log2(mini pi)] and whose maximum DF = −τ(0) = 2 is the signature that the
considered vector-valued measure generated by iterating the rule described in figure 1 is almost everywhere singular
on the unit square.

In Fig. 3 are illustrated the main steps of our TWTMM methodology when applied to a (1024)2 realization of a
random generalization of the multiplicative construction process described in figure 1. At each successive construction
step, the similitudes Si are randomly permutated. Focusing on the central (128)2 sub-square, we show the singular
vector-valued measure (Fig. 3a), the WTMM chains computed with a first order analyzing wavelet at scales a = 22σW
(Fig. 3b) and a = 23σW (Fig. 3c), where σW = 7 (pixels) is the smallest resolved scale. On these maxima chains, the
black squares correspond to the location of the WTMMM at these scales. The size and the direction of the arrows that
originate from these black dots are respectively proportional to the spectral radius ρ(b, a) and along the eigenvector
Gρ(b, a); they allow to visualize Tψ,ρ[V](b, a) at the WTMMM. When linking these WTMMM across scales, one
gets the set of maxima lines shown in figure 3d as defining the WT skeleton. In figure 4 are reported the results of
the computation of the multifractal spectra when averaging the partition functions over 16 (1024)2 realizations of the
random vector measure construction process under consideration. As shown in figure 4a, Z(q, a) (Eq. (2.15)) displays
nice scaling behavior over four octaves, when plotted versus a in a logarithmic representation, for q ∈] − 2, 4[ for
which statistical convergence turns out to be achieved. A linear regression fit of the data yields the nonlinear τ(q)
spectrum shown in figure 4c, in remarkable agreement with the theoretical spectrum (Eq. (3.3)). This multifractal
diagnosis is confirmed in figure 4b where the slope of h(q, a) (Eq. (2.19)) versus log2 a, clearly depends on q. From
the estimate of h(q) (Eq. (2.21)) and D(q) (Eq. (2.22)), one gets the single-humped D(h) curve shown in figure 4d
which matches perfectly the theoretical D(h) spectrum obtained by Legendre transforming Eq. (3.3). In figure 4, we
have also reported, for comparison, the results obtained when using a box-counting (BC) algorithm adapted to the
multifractal analysis of singular vector-valued measures [69, 76, 77, 79]. There is no doubt that BC provides much
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FIG. 3: TWTMM analysis of the 2D vector-valued self-similar measure shown in figure 1 but with systematic random
permutation of the Si at each construction step. The model parameters are C = 0.5, p2 = 2 and p3 = 1. ψ is a first-
order analyzing wavelet; φ(r) is the Gaussian function defined in Eq. (2.2). (a) 32 grey-scale coding of the central (128)2

portion of the original (1024)2 field. In (b) a = 22σW and (c) a = 23σW , are shown the maxima chains; from the local maxima
(WTMMM) of Mψ along these chains (�) originates a black arrow whose length is proportional to Mψ and direction is along
Tψ,ρ[V] (Eq. (2.9)). (d) WT skeleton obtained by linking the WTMMM across scales. σW = 7 (pixels) is the characteristic
size of ψ at the smallest resolved scale.

poorer results, in particular as far as the estimates of the scaling exponents τ(q), h(q) and D(q), for negative q values,
are concerned. This deficiency mainly results from the fact that the vectorial resultant may be very small (even zero)
whereas the norms of the vector measures in the sub-boxes are not small at all. Altogether the results reported in
figure 4 bring the demonstration that our TWTMM methodology paves the way from multifractal analysis of singular
scalar measures to singular vector measures.

B. Monofractal vector-valued functions

Fractional Brownian motions (fbm) are homogeneous random self-affine functions that have been specifically used to
calibrate the 1D [26, 27, 42], 2D [62, 67] and 3D [68, 69] WTMM methodologies. A way to generalize fBm to vector-
valued random fields consists in generating independently the d components of such vector fields by fractionally
integrating a Gaussian white noise from Rd into Rd. The multifractal statistical properties of the so-generated
fractional Brownian vector fields BH(x) (hi = H , i = 1, 2, .., d) are characterized by a singularity spectrum which
reduces to a single point [69]:

D(h) = d if h = H ,
= −∞ if h 6= H .

(3.4)



8

FIG. 4: Multifractal analysis of the 2D vector-valued random measure field (Fig. 3a) using the 2D TWTMM method (�) and
box-counting techniques (�). (a) log

2
Z(q, a) vs log

2
a; (b) h(q, a) vs log

2
a; the solid lines correspond to linear regression fits

over σW . a . 24σW . (c) τ (q) vs q; the solid line corresponds to the theoretical prediction (Eq. (3.3)). (d) D(h) vs h; the
solid line is the Legendre transform of Eq. (3.3). The results reported in this figure correspond to annealed averaging over 16
(1024)2 realizations of the vector-valued random measure construction process. Same analyzing wavelet as in figure 3.

Almost all realizations of BH(x) are continuous, everywhere non-differentiable, isotropically scale-invariant as
characterized by a unique Hölder exponent h(x) = H , ∀x. By inverse Legendre transforming D(h) according to
Eq. (2.17), one gets the following expression for the partition function exponents (Eq. (2.16)):

τ(q) = qH − d . (3.5)

In figure 5 are illustrated three (128× 128) realizations of BH(x) for d = 2. From a visual inspection of figures 5a
(H = 0.2), 5b (H = 0.5) and 5c (H = 0.8), one can convince oneself that this vector-valued random field becomes less
and less irregular when increasing the index H . In figure 6 are reported the results of the computation of the τ(q)
and D(h) spectra using the TWTMM method described in Section II. As shown in figure 6a, the annealed average
partition functions Z(q, a) (Eq. (2.15)) over 16 (1024)2 realizations of B1/2(x), display remarkable scaling behavior
over 4 octaves when plotted versus the scale a in a logarithmic representation (Eq. (2.16)). Moreover, for a wide
range of values of q ∈ [−3, 4], the data are in good agreement with the theoretical τ(q) spectrum (Eq. (3.5)). When
proceeding to a linear regression fit of the data over the first four octaves, one gets the linear τ(q) spectrum shown
in figure 6(c) with a slope which slightly underestimates the corresponding H = 1/2 exponent. Let us point out that
a few percent underestimate has been also reported when preforming similar analysis of 1D [26, 27, 80], 2D [62, 67]
and 3D [68] scalar fBm fields. As seen in figure 6b, when plotting h(q, a) vs log2 a (Eq. (2.19)), the theoretical
Hurst exponent H = 1/2 provides an excellent fit of the limiting slope of the data at the smallest available scales
(σW . a . 4σW ) and this independently of the value of q ∈] − 2, 4[. In figure 6d are reported the corresponding
estimates of D(h) from a linear regression fit of D(q, a) vs log2 a (Eq. (2.20)) again at small scales. Independently of
the value of q, one gets quantitatively comparable values D(h = H = 1/2) = 2.00 ± 0.02. Let us emphasize that as
shown in figures 6c and 6d, similar quantitative estimates of both the τ(q) and D(h) spectra have been obtained for
BH(x) with H = 0.2 and H = 0.8. The TWTMM method can thus be considered as having successfully passed the
test of homogeneous monofractal stochastic vector-valued fields.
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FIG. 5: Fractional Brownian vector-valued fields BH(x) (128×128) generated by Fourier transform filtering of two independent
realizations of a Gaussian white noise from R

2 into R. (a) H = 0.2; (b) H = 0.5; (c) H = 0.8. The norm of BH(x) is represented
using a gray scale coding frow white (min) to black (max).

FIG. 6: Determination of the τ (q) and D(h) spectra of (1024 × 1024) fractional Brownian vector-valued fields BH(x) with
the TWTMM method. (a) log

2
Z(q, a) vs log

2
a, for BH=1/2(r); the solid lines correspond to the theoretical predictions

τ (q) = q/2 − 2 (Eq. (3.5)) for the corresponding values of q. (b) h(q, a) vs log
2
a; the solid lines correspond to the theoretical

slope H = 1/2. (c) τ (q) vs q for H = 0.2 (•), 0.5 (�) and 0.8 (N); the solid lines correspond to linear regression fit estimates of
H. (d) D(h) vs h obtained from the estimates of h(q) (Eq. (2.21)) and D(q) (Eq. (2.22)) via the scaling bahavior of h(q, a)
(Eq. (2.19)) and D(q, a) (Eq. (2.20)) respectively; the symbols have the same meaning as in (c). The analyzing wavelet is the
third-order wavelet generated using the isotropic mexican hat smoothing function φ(x) (Eq. (2.3)). These results correspond
to annealed averaging over 16 (1024 × 1024) realizations of BH(x). a is expressed in σW (= 13 pixels) units.



10

FIG. 7: 3D wavelet transform analysis of the velocity and vorticity fields from (256)3 DNS by Lévêque (Rλ = 140). ψ is
the third-order radially symmetric analyzing wavelet (the smoothing function φ(x) is the isotropic mexican hat defined in Eq.
(2.3)). Velocity field: (a) A snapshot of v(x) using a 64 gray level coding of |v| on the three visible sides of the (256)3 cube;
in (b) a = 22σW and (c) a = 23σW , are shown the WT modulus maxima surfaces; from the local maxima (WTMMM) of Mψ

(Eq. (2.10)) along these surfaces originates a black segment whose length is proportional to Mψ and direction is along Gρ(x, a)
(Eq. (2.9)). Vorticity field: (d), (e) and (f) are equivalent to (a), (b) and (c) but for the vorticity field ω(x). σW = 13 pixels.

IV. APPLICATION OF THE TWTMM METHOD TO VELOCITY AND VORTICITY FIELDS FROM

DIRECT NUMERICAL SIMULATIONS OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

This section is devoted to the application of the TWTMM method to the velocity (v) and vorticity (ω) fields from
DNS of isotropic turbulence carried out by Lévêque using a pseudo spectral method solver. The DNS were performed
using 2563 mesh points in a 3D periodic box. The Taylor microscale is Rλ = 140. Here we will examine only one
snapshot of the velocity (Fig. 7a) and vorticity (Fig. 7d) spatial fields. We will mainly proceed to a comparative
multifractal analysis based on the estimate of the corresponding τ(q) and D(h) spectra from some annealed averaging
of the partition functions over 18 different snapshots.

A. Velocity field

In figure 7(a-c) are illustrated the main steps of our TWTMM analysis of the velocity field v(x). Figure 7a shows a
3D representation of the spatial profile of |v| using a 64 gray level coding. In figures 7b and 7c are shown the WTMM
maxima surfaces along with the WTMMM points as computed with a third-order analyzing wavelet at the scales
a = 22σW and a = 23σW respectively (σW = 13 pixels is the smallest resolved scale). From these WTMMM originate
a black segment whose length is proportional to Mψ (Eq. (2.10)) and direction is along Gρ(x, a) (Eq. (2.9)). The
results of the computation of the τ(q) and D(h) spectra are reported in figure 8. As shown in figures 8a and 8b, both
the Z(q, a) (Eqs. (2.15) and (2.16)) and h(q, a) (Eq. (2.19)) partition functions display rather nice scaling properties
for q = −4 to 6, except at small scales (a . 21.5σW ) where some curvature is observed in the log-log plots as induced
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FIG. 8: Determination of the τvvv(q) and Dvvv(h) spectra of the velocity field with the TWTMM method. The analyzing wavelet
is the same as in figure 7. (a) log

2
Z(q, a) vs log

2
a; (b) h(q, a) vs log

2
a; the solid lines correspond to linear regression fit

estimates in the range 21.2σW . a . 23.5σW . (c) τvvv(q) vs q; the solid line corresponds to a fit of the data with the log-normal
parabolic spectrum (4.1) for the parameter values Cvvv

0 = 3.02, Cvvv
1 = −0.34 and Cvvv

2 = 0.049 (Eq. (4.2)). (d) Dvvv(h) vs h, as
obtained from the scaling behavior of h(q, a) (Eq. (2.19)) and D(q, a) (Eq. (2.20)); the solid line corresponds to a fit of the
data with the log-normal parabolic spectrum (4.3) with the same parameter values (Eq. (4.2)). These results correspond to
annealed averaging over 18 (256)3 snapshots of v(x). a is expressed in σW (= 13 pixels) units.

by dissipation effects [81–83]. Linear regression fit of the data in figure 8a in the range 21.5σW . a . 24.1σW , yields
the increasing non-linear τvvv(q) curve shown in figure 8c, the hallmark of multifractal continuous vector-valued fields.
Actually, this spectrum is quite well fitted by a parabola as predicted for log-normal statistics [45, 48, 84–86]:

τvvv(q) = −Cvvv0 − Cvvv1 q − Cvvv2
q2

2
, (4.1)

with the following parameter values

Cvvv0 = 3.02± 0.02, Cvvv1 = −0.34± 0.02, Cvvv2 = 0.049± 0.003. (4.2)

The corresponding singularity spectrum Dvvv(h) obtained from the scaling behavior of the partition functions h(q, a)
(Eqs. (2.19) and (2.21)) and D(q, a) (Eqs. (2.20) and (2.22)) is shown in figure 8d. Consistently, the data points fall
on a parabola which is well fitted by the Legendre transform of Eq. (4.1), namely:

Dvvv(h) = Cvvv0 −
(h+ Cvvv1 )2

2Cvvv2
, (4.3)

for the same parameter values as previously obtained in Eq. (4.2). The velocity field is thus found singular almost
everywhere: Cvvv0 = −τvvv(q = 0) = Dvvv(q = 0) = 3.02 ± 0.02. The most frequent Hölder exponent h(q = 0) = −C1

(corresponding to the maximum of D(h)) takes the value −Cvvv1 = 0.34± 0.02 which is much closer to the Kolmogorov
(1941) prediction h = 1/3 [22, 23, 87], than previous experimental measurements (h ' 0.39 ± 0.02) based on the
analysis of the longitudinal velocity fluctuations [48]. As far the intermittency coefficient Cvvv2 (that characterizes
the width of Dvvv(h)) is concerned, one gets a value Cvvv2 = 0.049 ± 0.003 which is much larger than the estimate
C2 = 0.025 ± 0.003 obtained for the 1D longitudinal velocity increment statistics [45, 48, 85, 86]. Actually this
estimate is comparable but still slightly larger than the value C2 ' 0.04 extracted from the experimental analysis of
transverse velocity increments [85, 88–94]. Even though one has to be cautious as regard to the rather modest value
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FIG. 9: Determination of the τω(q) and Dω(h) spectra of the vorticity field with the TWTMM method (�), with the same
analyzing wavelet as in figure 7, and with box-counting techniques (◦). (a) log

2
Z(q, a) vs log

2
a; (b) h(q, a) vs log

2
a; the solid

and dashed lines correspond to linear regression fit estimates in the range 21.2σW . a . 23.5σW . (c) τω(q) vs q; (d) Dω(h) vs
h as obtained from the scaling behavior of h(q, a) (Eq. (2.19)) and D(q, a) (Eq. (2.20)); the dashed line corresponds to the
parabolic spectrum found for v in figure 8d (Eqs. (4.2) and (4.3)); after a translation of one unit on the left (Eqs. (4.4) and
(4.5)); the dashed vertical line marks the K41 value hω = hvvv − 1 = −2/3. These results correspond to annealed averaging over
18 (256)3 snapshots of ω(x). a is expressed in σW (= 13 pixels) units.

of Rλ = 140 of the analyzed DNS data, it is not so surprising that when investigating the full 3D fluctuations of the
velocity field, one realizes that this field is much more intermittent than previously estimated from the fluctuations
of one of its component only.

B. Vorticity field

In figures 7d-f are shown for comparison the main steps of our TWTMM analysis of the vorticity field ω = ∇ ∧ v.
The results of the computation of the multifractal spectra τω(q) and Dω(h) with the TWTMM method are shown
in figure 9 (symbols (�)). The partition function Z(q, a) (Fig. 9a) and h(q, a) (Fig. 9b) display rather convincing
scaling behavior in the range 21.8σW . a . 23.2σW for values of q ∈ [−4, 6]. At smaller scales a . 21.8σW , one again
observes a clear bending of the data curves as the signature of viscous effects [81–83]. As shown in figure 9c, the τω(q)
spectrum estimated by linear regression fit of the Z(q, a) data in figure 9a, is a definite decreasing non-linear function
similar to the one obtained for the singular vector-value measures in figure 4c; hence h(q) = ∂τ(q)/∂q < 0 and the
support of the Dω(h) singularity spectrum expands over negative h values as confirmed in figure 9d where the data
points have been extracted from the scaling behavior of h(q, a) (Eqs. (2.19) and (2.21)) and D(q, a) (Eqs. (2.20) and
(2.22)).

What is quite remarkable with the results reported in figures 8 and 9, is the fact that, up to statistical uncertainty,
the data for h(q, a) in figures 8b and 9b strongly suggest the validity of the following relationship [69, 77]:

hω(q) = hvvv(q) − 1. (4.4)

Actually, as shown in figure 9d, both singularity spectra Dω(h) (symbols (�)) and Dvvv(h) (dashed line) are likely to
coincide after translating the later by one unit on the left. Some slight difference can be noticed for the right decreasing
branch of these spectra which actually is a consequence of the largest error bars obtained for the negative values of
q ≤ −2. Even though one could have guessed the results reported in figures 8 and 9 by noticing that ω = ∇ ∧ v
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involves first derivatives of v only, they bring, to our knowledge, the first numerical evidence that the singularity
spectra of v and ω are likely to be intimately related and to satisfy the equation:

Dω(h) = Dvvv(h+ 1). (4.5)

More precisely the τω(q) and Dω(h) spectra can again be very well fitted by a parabola of Eqs. (4.1) and (4.3)
respectively, with the following parameter values:

Cω0 = 3.01± 0.02, Cω1 = 0.66 ± 0.02, Cω2 = 0.055± 0.004. (4.6)

When comparing the parameter values to those found for the velocity in Eq. (4.2), one gets quite consistent estimates.
In particular the most frequent Hölder exponent corresponding to the maximum of the singularity spectrum satisfies
Eq. (4.4): −Cω1 = −0.66 ± 0.02 ' −Cvvv1 − 1, and therefore confirms the statistical predominance of singularities of
strength hω = −2/3, accordingly to K41 theoretical prediction hvvv = 1/3 [22, 23, 87].

In figure 9, we have also reported for comparison the estimates of the τω(q) and Dω(h) spectra when using classical
box-counting techniques [69]. The results obtained for positive q values (0 ≤ q ≤ 6) are in good agreement with those
obtained with our TWTMM methodology. This is no longer true for negative q values for which, very much like
what have already been observed for multifractal vector valued measures in figure 4, the box-counting techniques fail
to master the scaling behavior of the partition functions Z(q, a), h(q, a) and D(q, a). This justifies, a posteriori, the
need of elaborating and implementing a new wavelet based methodology for multifractal analysis of multidimensional
vector-valued random fields.

V. CONCLUSION AND PERSPECTIVES

To summarize, we have extended the wavelet based multifractal formalism to vector-valued random fields [69, 77].
Indeed we believe that the generalization of the 1D [26–28, 36], 2D [62, 63, 67] and 3D [68, 69] WTMM methodology
to vector-valued multidimensional fields is likely to provide a unified theoretical framework for the application of
fractal and multifractal concepts to various situations in fundamental as well as applied sciences. In particular,
we hope that the new algorithms we have implemented and the new softwares we have developed, will become as
useful to characterizing the roughness fluctuations of scalar and vector-valued fields as the well known phase portrait
reconstruction, Poincaré section and first return map techniques for the analysis of chaotic times series [95–98].
Moreover, besides the technical aspect and the potential interest for future applications, there is also some very
promising perspectives on the theoretical side. Actually, if our phenomenological approach has provided some keys
towards a unified multifractal statistical formalism for scalar and vector-valued fields, there is clearly a need to extend
in higher dimensions the rigorous mathematical results derived for the 1D WTMM method in Refs. [36, 37].

As far as the results of the application of the TWTMM method to DNS turbulence data reported in Section IV,
they have clearly revealed the existence of an intimate relationship between the velocity and the vorticity 3D statistics
that turn out to be significantly more intermittent than previously estimated from the statistics of 1D longitudinal
velocity increments. The multifractal spectra of both the velocity and the vorticity fields were shown to be very well
fitted by parabolic curves consistantly with the log-normal picture proposed by Kolmogorov [99] and Obukhov [100]
in 1962, to account for the intermittency corrections to K41 theory [87]. In the context of fully developed turbulence
numerical data analysis, the TWTMM method looks very promising to many extents. By applying the 3D WTMM
method to the dissipation and enstrophy scalar fields [68, 69] and the 3D TWTMM method to the velocity and
vorticity fields [69, 77], one can plan to revisit previous comparative studies of the statistics of these scalar and
vector-valued fields. In particular, several experiments and numerical works [13, 70, 73, 101–114] have tested various
facets of the so-called refined similarity hypothesis (RSH) [99, 100] between the statistics of the dissipation and
the longitudinal velocity increments. Nevertheless, so far, the support for the RSH is strong but not unequivocal.
Pioneering [115, 116] as well as more recent [68, 69, 117] numerical DNS studies have shown that the enstrophy field
is more intermittent than the dissipation field. As suggested by Chen et al. [94], this difference is likely to result from
the difference observed in the scaling exponents ζLp and ζTp of longitudinal and transverse velocity structure functions,
respectively [85, 88–93]. More precisely, Chen et al. [94] reported numerical results that demonstrate the possible
validity of a different RSH for the transverse direction (RSHT) that connects the statistics of the transverse velocity
increments to the locally averaged enstrophy in the inertial range. The important implication of RSHT is the possible
existence of two independent sets of scaling exponents respectively related to the symmetric (dissipation physics) and
antisymmetric (vortex dynamics) parts of the strain rate. But these results deserve further confirmation and some
caution should be taken when extrapolating them to high Reynolds numbers since different theoretical studies have
converged to the conclusion that asymptotic scaling exponents must be equal in the limit Rλ → ∞ [118–122]. Finally,
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the actual role of coherent and/or localized structures like vorticity filaments in the intermittent nature of turbulent
flows is still debated. In the past decade, the observation and the characterization of well organized structures have
received some renewed interest from both a numerical [115, 123–131] and an experimental [46, 132–142] point of view.
Thanks to the singular value decomposition, one has a way to focus on fluctuations that are locally confined in 2D
(mini σi = 0, i = 1, 2, 3 in Eq. (2.7)) or in 1D (the two smallest σi are zero) and then simultaneously proceed to
a multifractal and structural analysis of turbulent flows. The investigation along this line of vorticity sheets and
vorticity filaments in DNS of the incompressible Navier-Stokes equations is in current progress. We hope to elaborate
on the results of this study in a forthcoming publication.

Acknowledgments
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