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1 Introduction: analyzing singular signals.
The multifractal formalism was introduced in the mid 1980s to provide a statistical description of the fluctuations of regularity of singular
measures found in chaotic dynamical systems [1] or in modelling the energy cascading process in turbulent flows [2]. Box-counting algo-
rithms were successfully adapted to resolve multifractal scaling for isotropic self-similar fractals [3]. As to self-affine fractals, Parisi and
Frisch [4] developed, in the context of turbulence velocity data analysis, an alternative multifractal description based on the investigation
of the scaling behavior of the moments of the velocity increments, the so-called structure functions: Sp(l) =< (δvl)

p >∼ lζp (p integer
> 0), where δvl(x) = v(x+ l)− v(x) is an increment of the recorded signal over a distance l. Then from the local behavior δvl(x) ∼ lh(x),
the D(h) singularity spectrum is defined, in full analogy with the f(α)-spectrum for singular measure, as the Hausdorff dimension of the
set of points x where the local roughness (or Hölder) exponent h(x) of v is h. In principle, D(h) can be attained by Legendre transforming
the SF scaling exponents ζp [4]. A natural way of performing a unified multifractal analysis of both singular measures and multi-affine
functions [5], consists in using the continuous wavelet transform (WT). In the early nineties, a wavelet-based statistical approach was
proposed as a unified multifractal description of singular measures and multi-affine functions [5].

Applications of the so-called wavelet transform modulus maxima (WTMM) method have already provided insight into a wide variety

of problems, e.g., fully developed turbulence, econophysics, meteorology, physiology and DNA sequences [6]. Later on, the WTMM

method was generalized to 2D for multifractal analysis of rough surfaces, with very promising results in the context of the geophysical

study of the intermittent nature of satellite images of the cloud structure [7] and the medical assist in the diagnosis in digitized mammo-

grams [7]. Recently the WTMM method has been further extended to 3D analysis and applied to dissipation and enstrophy 3D numerical

data issue from isotropic turbulence direct numerical simulations (DNS) [8]. Thus far, the multifractal description has been mainly de-

voted to scalar measures and functions. In the spirit of a preliminary theoretical study of self-similar vector-valued measures by Falconer

and O’Neil [9], our objective here is to generalize the WTMM method to vector-valued random fields with the specific goal to achieve a

comparative 3D vectorial multifractal analysis of DNS velocity and vorticity fields.

Fractal objects: self-similarity
• statistical self-similarity: scalar case

f(x0 + λu) − f(x0) ∼ λh(x0)
(

f(x0 + u) − f(x0)
)

• statistical self-similarity: vectorial case (Falconer et O’Neil, 1995):
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2 Generalizing the wavelet-based multifractal formalism to
vector-valued random fields

2.1 Tensorial wavelet transform (2D case)
1. Tensorial wavelet transform of field V = (V1, V2) :

Tψ[V](b, a) = (Tψi[Vj](b, a)) =

(

Tψ1
[V1] Tψ1

[V2]
Tψ2

[V1] Tψ2
[V2]

)

Tψi[Vj](b, a) = a−3
∫

d3r ψi
(

a−1(r − b)
)

Vj(r), j = 1, 2

2. Direction of greatest variation of vector field : |Tψ[V]| = supC6=0
||Tψ[V].C||

||C||

3. Singular value decomposition of WT tensor: Tψ[V] =
(

G
)

.( σmax 0
0 σmin

).
(

D
)T

4. Tensorial wavelet transform : Tψ,max[V](b, a) = σmaxGσmax

2.2 Multi-scale edge detection

2D vector field

Modulus Maxima σmax chains of tensorial wavelet transform at scale a:
{

(b, a)/
∂σmax

∂Gmax
= 0 and

∂2σmax

∂G2
max

< 0

}

↓

2.3 Wavelet transform skeleton
WTMM Chains

WTMMM

WTMM Chains at 3 different scales (a1 < a2 < a3)

WTMMM Chaining: WT Skeleton

2.4 Multifractal formalism
Singularity Spectrum:

D(h) = dH
{

r ∈ Rd, h(r) = h
}

Legendre transform:

D(h) = minq
(

qh− τ (q)
)

D(h)

h

D

h

D

h

D

D

D(h)

h h h

Analogy with statistical physics : compute
partition functions

Z(q, a) =
∑

L(a)

(

Mψ(r, a)
)q

∼ aτ (q)

H(q, a) =
∑

L(a)

ln |Mψ(r, a)| Wψ(r, a) ∼ ah(q)

D(q, a) =
∑

L(a)

ln |Wψ(r, a)| Wψ(r, a) ∼ aD(q)

2.5 Monofractal 2D vector fields:
fractional Brownian fields BH(r)
(Spectral method simulation):

Theoretical predictions :
• linear τ (q): τ (q) = qH − 2

• degenerated singularity spectrum: D(h = H) = 2

3 Application in 3D turbulence (Direct Numerical Simulation)

Tensorial 3D WTMM method: computing singularity spectrum of velocity
and vorticity

• parabolic fit: τ (q) = −C0 − C1q − C2
q2

2

• same intermittency coefficient (velocity and
vorticity) C2 = 0.049 ± 0.004

•

1D increments method:
longitudinal :C2(δvL) ∼ 0.025
transverse : C2(δvT ) ∼ 0.040

Preliminary applications to DNS turbulence data
have revealed the existence of an intimate relation-
ship between the velocity and vorticity 3D statistics
that turn out to be significantly more intermittent
than previously estimated from 1D longitudinal ve-
locity increments statistics.

This new methodology looks very promising to many extents. Thanks to the singular value decomposition, one
can focus on fluctuations that are locally confined in 2D (mini σi = 0) or in 1D (the two smallest σi are zero)
and then simultaneously proceed to a multifractal and structural analysis of turbulent flows. The investigation
along this line of vorticity sheets and vorticity filaments in DNS is in current progress. We are very grateful to
E. Lévêque for allowing us to have access to his DNS data and to the CNRS under GDR turbulence.
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