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The presence of 2γ exchange in electron proton elastic scattering is discussed. From
C-invariance and crossing symmetry, the 2γ contribution induces a specific dependence
of the reduced cross section on the variable ǫ. No evidence of such dependence exists in
the available experimental data.

1. INTRODUCTION

In 1999 M. P. Rekalo and myself investigated the possible presence of 2γ exchange
[1] in the precise data on the structure function A(Q2), obtained at the Jefferson Lab-
oratory (JLab) in electron − deuteron elastic scattering, up to a value of momentum
transfer squared, −t = Q2 = 6 GeV2 [2,3]. A prescription for the differential cross section
was derived from general properties of the hadron electromagnetic interaction, as the C-
invariance and the crossing symmetry. The discrepancy from the two experiments [2,3],
which had been performed in different kinematical conditions, could not be explained in
terms of a 2γ contribution, but the possibility of 2γ corrections was not excluded, starting
from Q2 = 1 GeV2 and the necessity of dedicated experiments was pointed out [1].

The relative contribution of 2γ exchange, through its interference with the main (i.e.,
one-photon) mechanism is expected to be of the order of the fine structure constant,
α = e2/4π ≃ 1/137. But, more than thirty years ago, it was observed [4] that the relative
role of two-photon exchange can essentially increase in the region of high momentum
transfer, due to the steep decreasing of the form factors (FFs). This effect can be observed
in particular in ed-elastic scattering where it would appear already at momentum transfer
squared of the order of 1 GeV2.

The main consequence of the presence of 2γ exchange is that the traditional description
of the electron-hadron interaction in terms of electromagnetic currents (and electromag-
netic FFs) can become incorrect. In one-photon exchange, two real amplitudes (functions
of one variable, Q2) fully describe elastic ep scattering. If the 2γ exchange is present,
one has to deal with three complex amplitudes, which are functions of two kinematical
variables, Q2 and the polarization of the virtual photon ǫ (ǫ = [1 + 2(1 + τ) tan2(θe/2)]

−1
,

θe is the electron scattering angle in the Lab system, τ = Q2/(4m2), m is the nucleon
mass).

The presence of 2γ exchange leads to very complicated analysis of polarization effects.
It destroys the linearity in the variable ǫ of the differential cross section for elastic eN
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scattering [5], and the relatively simple dependence of the ratio Px/Pz (the components
of the final nucleon polarization in the scattering of longitudinally polarized electrons by
an unpolarized nucleon target) on the ratio of the electric and magnetic FFs, GE/GM ,
which holds for the one-photon mechanism [6]. It can be shown that the situation is not
so involved, and that even in case of two-photon exchange, one can still use the formalism
of FFs, if one takes into account the C-invariance of the electromagnetic interaction of
hadrons. In this case, a model independent determination of FFs can be obtained either
with a specific combination of three T-odd (or five T-even) polarization observables or
with positron and electron beams in the same kinematical conditions [7].

The exact calculation of the 2γ contribution to the amplitude of the e±p → e±p-
process requires the knowledge of the matrix element for the double virtual Compton
scattering, γ∗ + N → γ∗ + N , in a large kinematical region of colliding energy and
virtuality of both photons, and cannot be done in a model independent form. Therefore
we follow another approach: general properties of the hadron electromagnetic interaction,
as the C-invariance and the crossing symmetry, give rigorous prescriptions for different
observables for the elastic scattering of electrons and positrons by nucleons, in particular
for the differential cross section and for the proton polarization, induced by polarized
electrons. These concrete prescriptions help in identifying a possible manifestation of
the two-photon exchange mechanism and to avoid unjustified assumptions. For example,
symmetry properties appear in the spin structure of the amplitudes, with respect to the

change x → −x with x =
√

(1 + ǫ)/(1 − ǫ).

2. MODEL INDEPENDENT ANALYSIS OF EXPERIMENTAL DATA

Crossing symmetry allows to connect the matrix elements for the cross-channels: e− +
N → e− + N , in s–channel, and e+ + e− → N + N , in t–channel.

The C-invariance of the electromagnetic hadron interaction and the corresponding se-
lection rules can be applied to the annihilation channel and this allows to find specific
properties for one and two-photon exchanges.

To illustrate this, let us consider firstly the one-photon mechanism for e+ + e− → p+p.
The conservation of the total angular momentum, J , allows only J = 1 and J P = 1−,
C = −1 (the quantum numbers of the photon). The selection rules with respect to C
and P-invariances allow two states for e+e− (and pp): S = 1, ℓ = 0 and S = 1, ℓ =
2 with J P = 1−, where S is the total spin and ℓ is the orbital angular momentum. As a
result, the θ-dependence of the cross section (θ is the angle of the detected proton in the
CMS system) in the one-photon exchange mechanism is:

dσ

dΩ
(e+ + e− → p + p) ≃ a(t) + b(t) cos2 θ (1)

where a(t) and b(t) are definite quadratic contributions of GE(t) and GM(t), a(t), b(t) ≥ 0
for t ≥ 4m2.

Let us consider now the cos θ-dependence of the 1γ
⊗

2γ-interference contribution to
the differential cross section of e+ + e− → p + p. The spin and parity of the 2γ-states is
not fixed, in general, but, as C-parity is a multiplicative quantum number, in this case
only a positive value of C-parity, C(2γ) = +1, is allowed. Therefore, the cos θ-dependence
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of the contribution to the differential cross section for the 1γ
⊗

2γ-interference is C-odd:

dσ

dΩ

(int)

(e+ + e− → p + p) = cos θ[c0(t) + c1(t) cos2 θ + c2(t) cos4 θ + ...] (2)

where ci(t), i = 0, 1.. are real coefficients, which are functions of t only. An infinite number
of states with different quantum numbers can contribute, and their relative role is deter-
mined by the dynamics of the process γ∗+γ∗ → p+p, with both virtual photons. But the
odd cos θ (or x)-dependence is essentially different from the even cos θ-dependence of the
cross section for the one-photon approximation. Therefore the interference contribution to
the differential cross section (2) cannot be reduced to a linear function in cos2 θ, because
this is in contradiction with the C-invariance of hadronic electromagnetic interaction.

The following correspondence holds between kinematical variables in the crossed chan-
nels: cos2 θ ↔ (1 + ǫ)/(1 − ǫ). It follows that, in presence of 2γ exchange, the reduced
elastic ep cross section can be rewritten in the following general form [8]:

σred(Q
2, ǫ) = ǫG2

E(Q2) + τG2
M (Q2) + αF (Q2, ǫ) (3)

where F (Q2, ǫ) is a real function describing the effects of the 1γ
⊗

2γ interference. In
order to estimate the upper limit for a possible 2γ contribution to the differential cross
section and the corresponding change in GE,M(Q2), we analyzed four sets of data [9],
applying Eq. (3) with a simple parametrization for F (Q2, ǫ), which is consistent with
C-invariance [8]:

F (Q2, ǫ) → ǫ

√

1 + ǫ

1 − ǫ
f(Q2), f(Q2) =

C

(1 + Q2[GeV] 2/0.71)2(1 + Q2[GeV]2/m2)2
(4)

where C is a fitting parameter, m is the mass of a tensor or an axial meson with positive
C-parity. For m ≃ 1.5 GeV, one can predict that the relative role of the 2γ contribution
should increase with Q2. It is important to stress that Eq. (4) is a simple expression
which contains the necessary symmetry properties of the 1γ

⊗

2γ interference, through a
specific (and non linear) ǫ-dependence. Therefore, in presence of 2γ, the dependence of
the reduced cross section on ǫ can be parametrized as a function of three parameters, G2

E ,
G2

M and C, according to Eqs. (3) and (4). In Fig. 1, from top to bottom, the electric
and magnetic FFs, as well as the two-photon parameter C, are shown as a function of Q2

(solid symbols).
The previously published data, derived from the traditional Rosenbluth fits, are also

shown (open symbols). Including a third fitting parameter, C, increases the errors on the
extracted FFs. The resulting parameter C is compatible with zero.

3. CONCLUSIONS

From the present analysis it appears that the available data on ep elastic scattering do
not show any evidence of deviation from the linearity of the Rosenbluth fit, and hence of
the presence of the 2γ contribution, when parametrized according to Eq. (4).

Besides the deviation from the linearity of the Rosenbluth fit, other possible methods
to test the presence of 2γ exchange in elastic electron-hadron scattering can be listed:
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Figure 1. From top to bottom: GE/GD, GM/µGD

and the two-photon contribution, C. µ = 2.79
is the proton magnetic moment, GD = (1 +
Q2[GeV2]/0.71)−2. Published data are shown as
open symbols, the present results which include
the 2γ contribution as solid symbols.

comparison of the cross section
for scattering of unpolarized
electrons and positrons (by pro-
tons or deuterons) in the same
kinematical conditions; specific
polarization phenomena such as
the appearance of T-odd po-
larization observables; violation
of definite relations between
T-even polarization observables
and structure functions [1,7].
The experimental evidence of
the presence of the 2γ-exchange
and its quantitative estimation
are very important. If this effect
appears in elastic ep scattering
already in the range of momen-
tum transfer investigated at
JLab, the findings based on the
one-photon assumption will have
to be reanalyzed at the light of a
new and complicated formalism.
In this case, as indicated already

long ago [4] most of the advantages related to the electromagnetic probe would be lost.
The results quoted here would not have been obtained without a fruitful collaboration

and enlightning discussions with Professor M. P. Rekalo.
Thanks are due to G.I. Gakh for a careful reading of the manuscript.
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