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Abstract. Wobbling is an excitation mode unique to triaxial nuclei. Even though it is a general consequence of triaxiality in
nuclei, it has so far only been observed in the odd-mass Lu isotopes around163Lu. The principal evidence for the wobbling
mode is based on the pattern of rotational bands characterized and described by a wobbling phonon number and the decay
between different bands belonging to the same family. A new measurement revealed lifetimes of states in an excited wobbling
band for the first time and gave access to absolute transitionprobabilities for both in-band and interband transitions.A
general recipe how to derive quadrupole moments for triaxial nuclei from experimental data is discussed. The results show a
remarkable similarity of the quadrupole moments for the different bands, further supporting the wobbling scenario. A decrease
of the quadrupole moments is observed with increasing spin.This is attributed to an increase in triaxiality with spin, which
can at the same time explain the dependence of the interband transitions on spin. Such an increase in triaxiality is qualitatively
reproduced by cranking calculations to which the experimental results are compared.

Introduction

The wobbling mode of excitation in nuclei was first found in163Lu [1, 2] and is now also established in the
neighboring odd-mass Lu isotopes [3, 4, 5]. The phenomenon is uniquely related to nuclei with stable triaxiality.
While the triaxial nucleus favors the rotation about the axis with the largest moment of inertia, it can transfer a
quantized amount of angular momentum to the the other axes. Such a collective excitation competes with other
collective and single-particle excitations, and can be described in terms of a wobbling phonon [6]. In the high-spin
limit and neglecting the intrinsic structure, the energiescan be separated into the rotation about the principal axis and
the wobbling motion:E(I ,nw) = I(I +1)/(2ℑx)+ h̄ωw(nw +1/2), wherenw is the wobbling phonon number andωw

the wobbling frequency, which depends only on the three moments of inertia with respect to the principal axes. As
a consequence, the wobbling mode results in a family of rotational bands built on the same intrinsic structure with a
phonon-like excitation spectrum between the different bands and enhanced collectiveE2 transitions not only within the
bands but also between states with∆I = 1 and∆nw = 1. The strength of the interband transitionsB(E2;nw → nw−1)
should be proportional tonw/I . The influence of the oddi13/2 proton has been studied in particle-rotor calculations
[7, 8]. It was shown that it is energetically favorable in theodd Lu cases to keep the unpaired proton aligned and tilt
the angular momentum of the core with respect to the axis of the largest moment of inertia to reach states of unfavored
signature, thus realizing the wobbling mode in the presenceof an unpaired high-j particle. This is schematically
illustrated in Fig. 1.

Four triaxial strongly deformed (TSD) bands are observed in163Lu, the first three of which form a family of
wobbling bands with wobbling phonon numbersnw = 0,1,2. A partial level scheme of these bands is shown in the
left-hand part of Fig. 1. The bands show remarkably similar properties, as is illustrated in the right-hand part of Fig. 1,
where the differences in the dynamic moment of inertia and the differences in the alignment of bands TSD2 and 3 are
plotted relative to TSD1. The strongest evidence for the wobbling scenario is based on the characteristic properties
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FIGURE 1. left: Level scheme showing the lower part of TSD bands 1, 2, and 3 andthe decay between the bands. The full
level scheme extending to higher spins and linking the bandsto the normal-deformed scheme can be found in refs. [2, 9]. The
lifetimes of states measured in bands TSD1 and 2 are given in picoseconds.top right: Differences between the dynamic moment
of inertia and the alignment of bands TSD2 and 3 relative to TSD1 [2]. A rigid reference withJre f = 62h̄2 MeV−1 was used to
extract the alignments.bottom right:schematic coupling scheme of the collective and single-particle angular momenta for different
wobbling-phonon numbers.

of the transitions between the bands. Angular correlation and linear polarization measurements [1, 2, 9] have proven
the (mainly) E2 character of the∆I = 1 transitions. These strong interband transitions are collective and compete with
the enhancedE2 transitions within the strongly deformed bands. Furthermore, the reduced transition probability for
the decay from band TSD3 to TSD2,B(E2;nw=2→ nw =1), is about twice as strong as the one for the decay from
TSD2 to TSD1,B(E2;nw=1→ nw=0), as expected in the wobbling phonon picture. The ratioB(E2)out/B(E2)in is
∼ 25% for thenw=1→ nw=0 transitions, while it is∼ 50% for the ones withnw=2→ nw=1 [2]. Transitions from
TSD3 to TSD1 are also observed even though the∆I =2, ∆nw =2 decay is forbidden in the pure wobbling phonon
case. TheB(E2) ratios for these transitions are indeed very small (B(E2)out/B(E2)in ≈ 0.02), and the transitions can
only proceed because of their high energy. This decay can be attributed to anharmonicities in the wobbling picture.

Lifetime measurements give access to the shape and can provide a crucial test for the wobbling interpretation. So
far only theB(E2) ratios of the interband and in-band transitions have been accessible and been shown to match the
expected behavior of wobbling excitations. AbsoluteB(E2) values can be derived from lifetime measurements. Very
similar in-bandB(E2) strengths and quadrupole moments are expected for the transitions of the different members
of the family of wobbling bands, as they are all built on the same intrinsic structure. Earlier lifetime measurements
[10, 11, 12] gave results for band TSD1 only. A new measurement with the Gammasphere spectrometer [13] improved
significantly on the previous data and revealed lifetimes for band TSD2 for the first time, so that the wobbling scenario
could be tested. Furthermore, the new data provided important insight into the evolution of triaxiality as a function
of spin and could simultaneously explain the observed spin dependence of the in-band and interbandB(E2) values.
Before interpreting the new results it is necessary to discuss the relation between theB(E2) values and the quadrupole
moments in a triaxial nucleus, as the formalism to extract quadrupole moments that is usually used for nuclei with
axial symmetry is not valid for triaxial nuclei.



Shape parameters and transition rates of triaxial nuclei

For a nucleus with axial symmetry, the reduced transition probability B(E2) is related to the intrinsic quadrupole
momentQ0:

B(E2;Ii,K→I f ,K) =
5

16π
(eQ0)

2〈

Ii K 20| I f K
〉2

, (1)

whereK is the projection of the angular momentum on the symmetry axis. The vector coupling coefficient approaches
√

3/8 in the high-spin limit(I ≫ K). Obviously this expression cannot be used in the case of a triaxial nucleus. In
the case where there is no symmetry axis, it is easier to use the axis of rotation as the quantization axis. Using the
quadrupole parametersQ0 = 4

5ZR2β cosγ andQ2 =− 4
5
√

2
ZR2β sinγ, the E2 operator quantized along the rotation axis

becomes
Q̂µ = D2

µ0Q0 +(D2
µ2 +D2

µ−2)Q2 . (2)

Assuming the rotation axis to be perpendicular to the axis towhich Q0 andQ2 are referred, for∆I = 2 transitions in
the high-spin limit one obtains

Q̂2 ≈
√

3
8

Q0 +
1
2

Q2 =
4

5
√

2
ZR2β cos(γ +30◦) . (3)

The reduced transition probabilities within a band with fully aligned spin and the rotation axis as quantization axis can
be written using the above definition as

B(E2;I ,K = I → I−2,K= I−2) =
5

16π
(eQ̂2)

2 〈 I I 2 −2| I−2 I−2〉2 =
5

16π
(eQ̂2)

2 2I −3
2I +1

. (4)

Note thatK is now the projection of the angular momentum on the rotationaxis. The wobbling band withnw = 0 has
(in a good approximation) fully aligned spin,i.e. K= I , whereas thenw = 1 band has the collective angular momentum
R tilted away from the rotation axis so thatK = I −1. For wobbling bands in general it isK = I −nw. Accordingly, for
the one-phonon band one can write

B(E2;I ,K = I−1→ I−2,K= I−3) =
5

16π
(eQ̂2)

2 〈 I I −1 2 −2| I−2 I−3〉2 =
5

16π
(eQ̂2)

2 (2I −4)(2I −3)

(2I)(2I +1)
. (5)

These expressions allow to extract the expected differences of the in-bandB(E2) values for thenw = 0 andnw = 1
bands due to the different coupling schemes. This expected difference changes from 12% at the bottom of the bands to
4% at the highest spins. Around spin 30 where lifetimes couldbe measured, the expected difference inB(E2) is about
7%.

Lifetime measurement in 163Lu

Lifetimes of states in thenw = 0 (TSD1) andnw = 1 (TSD2) bands in163Lu were measured in a Doppler-shift
attenuation measurement [13] using Gammasphere at Lawrence Berkeley National Laboratory. High-spin states in
163Lu were populated in the reaction123Sb(44Ca,4n) at a beam energy of 190 MeV. A total of 1.6×109 events with
fold five or higher were recorded in a three-day experiment. A123Sb target of 1 mg/cm2 was used and the recoils were
slowed down and finally stopped in a 12 mg/cm2 gold backing. The 102 Compton-suppressed germanium detectors of
Gammasphere were grouped in 17 rings covering angles between 17.3◦ and 162.7◦. The level lifetimes were extracted
by the analysis of the Doppler-broadened line shapes observed at various angles with respect to the beam direction.
The details of the procedure are described in ref. [13]. Examples of typical line shapes are shown in Fig. 2 together
with the results of the fitting procedure. The first two examples show transitions belonging to band TSD1 withnw = 0
which is populated with∼ 10% of the yrast intensity. Band TSD2 withnw = 1 carries∼ 3% of the yrast intensity and
the statistics for the transitions is accordingly weaker and the spectra show more contaminants (which were included in
the fit). Nevertheless, through simultaneous fitting of the entire cascade observed at different angles, consistent results
were found. Eight lifetimes of states in TSD1 and seven in TSD2 were determined. The side-feeding quadrupole
moments were treated as free parameters, and in some cases itwas possible to gate from above, eliminating side-
feeding effects. The results are summarized in table 1. The quoted errors are those derived from the covariance matrix
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FIGURE 2. Spectra and fitted lineshapes for the (from left to right) 639and 753 keV transitions of TSD1 and 766 and 873 keV
transitions of TSD2, observed at 50◦ (top), 70◦ (center), and 130◦ (bottom). Contaminant peaks are present in some spectra and
included in the fit.

TABLE 1. Lifetimes,B(E2) values, and the quadrupole moment as defined in eq. 2 for the in-band transitions in the
nw = 0 band (upper part) and thenw = 1 band (lower part). Note that this quadrupole moment is different from the one
generally used for axially symmetric nuclei. The right-hand part shows the absoluteB(E2) andB(M1) values for the
out-of-band transitions to band TSD1.

Iπ
i Eγ (keV) τ (ps) B(E2)in (e2b2) Q̂2 (b) Eγ (keV) B(E2)out (e2b2) B(M1)out(µ2

N)

41/2+ 578.6 0.364+0.073
−0.085 3.45+0.80

−0.69 6.19+0.72
−0.62

45/2+ 639.0 0.250+0.035
−0.039 3.07+0.48

−0.43 5.81+0.45
−0.41

49/2+ 697.0 0.202+0.021
−0.023 2.45+0.28

−0.25 5.17+0.30
−0.26

53/2+ 752.6 0.119+0.009
−0.010 2.84+0.24

−0.22 5.55+0.23
−0.22

57/2+ 805.6 0.096+0.011
−0.012 2.50+0.32

−0.29 5.20+0.33
−0.30

61/2+ 857.7 0.088+0.010
−0.011 1.99+0.26

−0.23 4.62+0.30
−0.27

65/2+ 909.7 0.067+0.010
−0.015 1.95+0.44

−0.30 4.57+0.52
−0.35

69/2+ 962.5 0.047+0.017
−0.011 2.10+0.80

−0.48 4.73+0.90
−0.54

47/2+ 654.6 0.215+0.037
−0.048 2.56+0.57

−0.44 5.54+0.62
−0.48 658.9 0.54+0.13

−0.11 0.017+0.006
−0.005

51/2+ 711.2 0.144+0.017
−0.022 2.67+0.41

−0.33 5.62+0.43
−0.35 673.2 0.54+0.09

−0.08 0.017+0.005
−0.005

55/2+ 766.2 0.095+0.013
−0.018 2.81+0.53

−0.41 5.73+0.54
−0.42 686.8 0.70+0.18

−0.15 0.024+0.008
−0.007

59/2+ 819.9 0.087+0.026
−0.037 2.19+0.94

−0.65 5.03+1.08
−0.75 701.1 0.65+0.34

−0.26 0.023+0.013
−0.011

63/2+ 872.9 0.064+0.013
−0.021 2.25+0.75

−0.48 5.08+0.85
−0.54 716.3 0.66+0.29

−0.24 0.024+0.012
−0.010

67/2+ 926.5 0.075+0.017
−0.025 1.60+0.52

−0.37 4.26+0.69
−0.49

71/2+ 980.2 0.056+0.017
−0.029 1.61+0.82

−0.49 4.26+1.09
−0.65

of the χ2 minimization and from the spread of the results obtained fordifferent combination of angles. Systematic
errors originating from the choice of stopping powers are not included. The values for the 753, 806, and 858 keV
transitions agree within errors with an earlier GASP measurement of Schönwaßeret al. [11]. They are, however,
in disagreement with older Nordball results by Schmitzet al. [10]. Given that the level of statistics in the present
Gammasphere data is about 35 times higher than of the Nordball data and that many more angles can be used for the
analysis, we feel that the weight of evidence is against the results reported by Schmitzet al.. The new Gammasphere
experiment revealed lifetime data for thenw=1 wobbling band for the first time. Thenw=2 band TSD3 is populated
too weakly (∼ 1.2%) in order to extract reliable lifetimes.

While the lifetimes of states in band TSD1 can be directly converted into the in-bandB(E2) strengths, the ones
measured in TSD2 have to be corrected for the competing interband decay. Since the branching ratios are difficult to
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FIGURE 3. a) Quadrupole momentŝQ2 of the in-band transitions for bands TSD1 and TSD2. b)to be replaced by comparison
with calculated Q̂2 c) Quadrupole deformationε2 (solid line) and triaxiality parameterγ (dashed line) at the triaxial strongly
deformed minimum as a function of spin from the cranking calculations.

determine from the Doppler-broadened peaks, the ones measured in a thin-target experiment [9] were used instead.
The resulting in-bandB(E2) values are presented in table 1. These can be used to determine the quadrupole moments
Q̂2 with respect to the rotation axis using eqs. 4 and 5. The results are also found in table 1 and compared in Fig. 3a).
The values for the two bands show a striking similarity as expected for wobbling excitations that are built on the
same intrinsic structure. The average ratioB(E2;nw = 0)/B(E2;nw = 1) for pairs of transitions with spinI andI +1
is slightly bigger than one, as expected from eqs. 4 and 5, whereas the in-band quadrupole momentsQ̂2 are almost
identical, certainly within the error bars. The similarityof the quadrupole moments cannot stand as a proof for the
wobbling scenario alone, but is a necessary condition to be fulfilled by wobbling bands and is, therefore, further
evidence for the wobbling motion and stable triaxiality.

Not only do theB(E2) values and quadrupole moments of the two bands show a remarkable similarity, they also
exhibit a decrease in theB(E2) andQ̂2 as the spin increases. The fact that both bands show the same changes further
strengthens the argument that they are built on the same intrinsic structure. In order to understand this decrease, the
experimental values may be compared to cranking calculations using the ULTIMATE CRANKER code [14]. The code
has been modified in order to extract the quadrupole momentQ̂2 from the calculated wave functions, rather than the
quadrupole momentQ0, which is commonly used for nuclei with axial symmetry.

Discussion

comparison with Ragnar’s results
Using the lifetimes of states in band TSD2, the branching ratios from the thin-target data [9], and the mixing ratios

from a linear polarization measurement [1], the absoluteB(E2) andB(M1) values for the interband decay between
bands TSD2 and TSD1 could be established for the first time. The results are shown in the right-hand part of table 1.
Due to the combined uncertainties of the quantities entering, the resulting errors are too large to determine the spin
dependence of the interbandB(E2) strength, which is expected to be proportional tonw/I . However, it is possible
to use theB(E2) ratios of the interband and in-band transitions for which the uncertainties of the lifetimes do not
enter, and compare them to the particle-rotor calculations[7, 8]. The experimental ratioB(E2)out/B(E2)in for the
transitions depopulating states in band TSD2 is shown in Fig. 4 as a function of spin together with the results from
the particle-rotor calculations. The calculated ratios are shown for different values of the triaxiality parameterγ. Since
B(E2)out ∝ ε2

2 sin2(γ +30◦) andB(E2)in ∝ ε2
2 cos2(γ +30◦), the ratio is independent of the quadrupole deformationε2

and exhibits a strong dependence on the triaxiality parameterγ [8]. The experimentalB(E2) ratios are constant and do
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not follow the expected 1/I dependence. This behavior could be explained by an increasein triaxiality towards higher
spin, which would be in agreement both with the decrease of the in-bandB(E2) values and the cranking calculations.
An increase fromγ ≈ 16◦ to γ ≈ 22◦ would quantitatively explain the pronounced decrease in the quadrupole moments
and, at the same time, explain the constancy of the interbandto in-bandB(E2) ratios, so that a consistent overall
description of the data is reached. The fact that such an increase inγ is stronger than found in the cranking calculations
might help to refine the calculations for triaxial nuclei in general.

Summary
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