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Abstract. Magnetic compensation of gravity forces, similarthe space conditions of
“microgravity”, needs the production of a uniforragmetic force field. We derive here a
basic mathematical result that shows the impodyibtb establish exact gravity
compensation in a finite volume. The imperfectidncompensation can be, however,
guantified and a relation is derived between hometyg accuracy and compensation
volume in a cylindrical symmetry. We study how tiee of inserts made of saturated
ferromagnetic materials can modify the homogeneitynagnetic force field. In order to
illustrate this result, an iron insert has been eucally calculated for the particular case
of gravity compensation of Hn a 10 T superconducting coil. An experimentat teas
been carried out on a;Mapour bubble very close to its gas-liquid critigaint. Near the
critical point the gas-liquid interfacial tensia® vanishing, then any bubble deformation
from the ideal spherical shape reveals the non-lgemeities in the magnetic

compensation force.
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1 Introduction

Magnetic compensation of gravity forces (“magnégicitation”) finds one of its most
useful applications in recreating some featurepaice conditions where weightlessness
conditions or “microgravity” prevail. Nowadays, i not uncommon in biology and
fluids physics to levitate organic substances,itigiand solids [1- 3]. Another example
can be found in aerospace where studying the behaf/cryopropellants under variable
acceleration, including the weightlessness sitnativas been envisaged [4]. If it is
relatively easy to compensate gravity at the ceafemass of a solid body, the same
problem with a mixture of gas, liquid and solid erals is much more difficult. Indeed,
the magnetic force density must exhibit the sangresdeof homogeneity than the earth
gravity field.

The principle of magnetic levitation in static magia field is based on the compensation
of gravity by applying to a pure material a magn&blumic force directed antiparallel to
the gravity force. The material can exhibit difiergphases (gas, liquid, solid) but with
the same specific magnetic susceptibility. In pcactthis condition limits the use of this
technique to the different phases of a pure substarhe phases can be at coexistence or

not, at equilibrium or not.
If a small volumeV of material under the magnetic field is considered, this magnetic

force F, is given by:

F = YVxtooradFi?) (1)



where 4,is the magnetic permeability of vacuum apgthe magnetic susceptibility of

the material.
To produce a force that can compensate gravitgctov field G = gr—ac(éz) is needed,

where B = ,H is the applied magnetic flux density. The followinglues ofG, G~

2800 F/m, 1000 T?#m and 2000 T?m are necessary to aehi@spectively the
compensation in Water, HydrogenJJHand Deuterium. HighB value and high spatial
variation of B are then needed to reach th€&ealues with a good homogeneity in a
useful volume of at least several rhriihese conditions can be obtained near the ends of
superconducting magnets or hybrids coils [1-3, B6]Jas suggested and tested in [7], in
associating ferromagnetic materials with supercondg coils.

This paper is organized as follows. In the firstrtpamportant theoretical results

concerning the vector fielcﬁdéz) are presented. Then, in order to modify the

magnetic force field homogeneity preexisting in @esoid, a model of particular
ferromagnetic insert is derived. In the last segt®ome experimental results about the
shape of a KHbubble very near its critical point obtained wiahd without insert are

presented.

2 Some propertiesof the vector field gradB?)

Although there has been till now many applicationsscience and technology of
magnetic forces, no particular studies of magneictor force field has been performed

so far. In this section, some mathematical and ipayproperties of the vector field

grad B?) are introduced.



2.1 Theorem: of theimpossibility to create a uniform vector field gﬁf{éz)
The aim of the demonstration is to prove the folfays: if B defines a magnetic flux
density, the vectoﬁde) cannot be at the same time constant and non zero.

Here the space vectorl® is considered, with the basis formed by the umitters

{ux,uy,uz}, in which B can be written

5= 8,(x.y.2), + B, (x.y.2), +B.(x.y.2), @

If gr?dﬁZ) =C, wherecCis a constant vector, theﬁv(gﬁ&ﬁz)) =0. 3)

The following equivalence can be written
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obtained.

Then, using the fact th&is harmonic, (4) gives:
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A sum of positive terms equal to zero imposes ¢laah term of this sum is null. Then the

fact that B2 is uniform also impliegrad B%) = 0.

Therefore a perfect uniform compensation of gygae@&nnot be performed in a finite
volume. However, gravity can be non uniformly comgeged in a given volume if some
deviations to weightlessness are accepted. Thess@geconditions between the accepted

variations and the experimental variables are detdielow.

2.2 Relationship between theimportant variables

In this section, a relation is established betwthenmagnetic flux density, the magnetic
force, the size of the area under compensationrati@l and vertical homogeneities of
the force. The method is described below. It defittee performances of the magnetic

levitation technique.

Let us defineG(X) =gradB?)| with X a vector of 0°. A useful variable for the
X

magnetic levitation problem is the vecta&, « relative error vector of gravity

compensation » defined by the relation:

ErN)=—>z—— (7)



wheref is the coordinates vector of one close point f0, with |G(6)| =G,.

Previous works on two-dimensional structures iravariby translation have established

the relation betweenG,, the radius of the are® the horizontal and vertical
homogeneitiese, :|§(RGX)| and ¢, :|§(RUy)|, and the norm of the magnetic flux
density vectorB [8]. A relationship has been previously establisk&aiting from the
formalism using the complex magnetic potential [lwas then generalized with any
two-dimensional problem invariant by translatiam,any point where the vectoB and

gr—ac(éz) are either parallel or perpendicular

G,R

e ©

A close relation can be found betweBnG,, R, & and &, for the axisymmetric
geometries wheres, =|€(R0,)| defines the radial homogeneity amg =|£(Rd,)| the

vertical one. This relation was courteously comroated to the authors [9]. The
demonstration is based on a series expansion ofdhgonents of the magnetic flux
density. Thereafter we make the assumption thaexiaet compensation of the gravity
force, for material concerned, takes place at tigiropoint O with the axis ©taken as
vertical.

For a general three-dimensional case, we have:

G
+ v——

y
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- - 0G
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(x..2)=6(000)+ x°

(0,0,0) (0,0,0)



In the reference framfO, . ,0,,0,) and given the symmetry conditions for this kind of

geometriesB can be written:
B=B,(r,z)u, +B,(r,z)q, : (10)
In the neighbourhood of point O, the coordinateghaf magnetic flux density can be

written with an expansion of order 2:
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In vacuum, in a space free of currents, the magiletk density B satisfiesﬁ(g) =0

and div(B) = 0, which yields:
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Defining a, =-—* , and choosingB has the directiorni,, one can write at the
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second order:



B,(r.z)= —%alr —a,rz (15)

2
Bz(r,z)=ao+alz+a2Ezz—%E (16)
Since
G =2lB gradB, )+ B,gra(8,) @)
At the first order, we get the following expression G:

Glr,z)= %af - 20,0, @Gr

+(2aga, + (207 + 40 a1, )2)i, (18)
The radial and vertical homogeneities at the sertd#fca spherical domain of radiRsare

then obtained:

2 —
g =040, o 19)
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As B, =a, and G, = 2a,a,, one finally obtains a relationship between thegnetic
flux density B,, the magnetic forc&,, the sizeR of the area and the radial and vertical
homogeneities of the forag andg; for an axisymmetric system:

3G,R
2, +¢g,

1
B == 21
0 2 ( )

This relation is very important in practice, aslétermines the size of the compensated

volume for a given material with the allowed inhayeoeitiess; andé,.



3 Calculation of aferromagnetic insert for compensation in H,

3.1 Context

In order to lower the unavoidable force field infageneities, or increase the working
volume at given homogeneity, the use of a magriesert inside a regular coil is a
simple and powerful means. To illustrate this poiwe calculate in the following a
ferromagnetic insert made of pure iron to modifg thagnetic force field created by a
superconducting (NbTi) solenoid. This coil can te&cT at 4.2 K and 10 T when cooled
down at 2.17 K. The useful parameters of the supehacting solenoid are given in

Table I.

Tab. |. Parameters of the superconducting solenoid

Inner diameter (mm) 89.5
Outer diameter (mm) 186
Total height (mm) 200
Critical current at 2.17 K (A) 72

Let us define Z as the position of the center of the levitatioeaafrom the coil centre.
Several working areas can be considered if theentirn the coil makes possible to reach
the required value oB. Thereafter, we will only focus on two differenbiking areas:

we define the so-calledkx case which corresponds to the positionwhere G is



maximum, and the so-calledsduai Case which corresponds to the positionwhere
E =E,.
We will consider in the following only inserts with simple shape easy to manufacture.

The aim is to obtain homogeneity as low as possiblee Leq.aCcase.

3.2 Insert calculation

The numerical calculation of this insert was cafrat by using the RADIA software
[10]. The ferromagnetic parts are modelled by usinglaxation method; a formulation
of Biot and Savart type is used for the supercotidggarts. The ferromagnetic insert is
meshed and the magnetization of each elementawneois supposed to be parallel with
the field lines. The total magnetic field, sum bk tmagnetic field produced by each
element and the field of the coil is finally calatdd. The process is then reiterated until
the difference between the magnetic field valudsutaied for two successive iterations
is lower than a preliminary fixed tolerance. Thigthod has the disadvantage of using
mesh calculations that produce discontinuities ¢ tmagnetic field through the
boundaries of each element. However, as the magfmte is computed outside the
magnetic materials and outside the field sourdas,influence of the discontinuities is
much reduced.

Nevertheless, a sufficient precision for the catoh of the magnetic flux density is

necessary to evaluatgradB?). In the following calculations, a regular mesh of

40*40*40 elements and a convergence criteria of a0 calculated fields were used.



Refining these both parameters did not really inaprine precision of the results (<0.1%)
whereas the time of calculation was consideraldyeiased.
A parametrical study of the dimensions of the ingsads to a hollow cylinder made of

iron (magnetic saturation of 2.16 T). Its geometrtharacteristics are listed in Table II.

Tab. I1. Dimensions of the insert. The bottom of the insefplaced at 50 mm over the

coil centre. The insert centre is located at 70 owar the coil centre.

Position (mm) 50
Outer radius (mm) 445
Height (mm) 40
Inner radius (mm) 28

Without insert, in the kax case, the levitation can be carried out @85 mm from the
coil centre with a current density J = 188 A/mnmPthe Lequa Case, 4 = 90.8 mm with
189.3 A/mmz2. With insert, the calculations showttitais necessary to increase the
current circulating in the coil to perform the l&tion. Indeed, in theax case, levitation

is obtained at = 57.6 mm with a current density of 194.1 A/fnto reach the value of
1000 T2/m; in the bquaCase, ¢ =+ 62.3 mm and J = 195 A/mm?2. These parameters ar

summarized in Table Ill. Figures 1 and 2 show th#uence of the insert on the

components of the vectcgﬁc{éz) for the Lequaiand LimaxCases.
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Fig. 1.: LequaiCase with insert (J = 195 A/mm?, Z 62.3 mm) and without insert (J =

189.3 A/mm?, 4 = 90.8 mm). (a) Variation of the radial compon@iftthe vector

gﬁc{éz) in T2/m. (b) Variation of the vertical componenttbé vectorﬁdéz) in T2/m

on the vertical axis as a function of the distainoen the coil centre.
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Fig. 2. Lmax Case with insert (J = 194.1 A/mm3, Z 57.6 mm) and without insert (J =
188 A/mmz, Z = 85 mm). (a) Variation of the radial componenthad vectorﬁdéz) in

T2/m. (b) Variation of the vertical component ofetlector gﬁf{éz)in T2/m on the

vertical axis as a function of the distance from tbil centre.



Figures 3 and 4 represent the radial and verticaindgeneities of the gravity
compensation respectively fokduaiand Lnaxcases without and with insert. Spacing of
contour lines clearly shows the influence of thgem on the residual force field. Indeed

each line corresponds to a variation of 0.25%.
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Fig. 3. Lequal case: Contour plots of the radial homogeneitya) and of the vertical
homogeneitys, (b) in a window containing the working area withansert (4 = 90.8

mm). Contour plots of the radial homogeneityc) and of the vertical homogeneiy(d)

in a window containing the working area with ingght = 62.3 mm).
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Fig. 4. Lmax case : Contour plots of the radial homogeneijtya) and of the vertical
homogeneityg, (b) in a window containing the working area withmgert (Z, = 85 mm).
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window containing the working area with insert, 57.6 mm).



Tab. I11. Comparison of the levitation area location andhefrtequired current density

value needed to perform levitation with and withmsiert for both casesduaand Lnax

I—equal I—max

Without insert  With insert Without insert  With insert

J (A/mm?) 189.3 195 188 194.1
I (A) 64.3 66.3 63.9 66
Zy (mm) 90.8 62.3 85 57.6

Table IV. shows the comparison between the numnibricalculated values of the
magnetic flux density and the order of magnitudehef magnetic flux density derived

from formula (21).

Tab. 1V. Comparison of the calculation of the average mégiflax density in the
levitation area by using formula (21) and using euoal simulation folG=1000 T2/m

and R=4 mm

Lequal Lmax

Without insert With insert Without insert With &1

£, (%) 2.9 1.6 3.6 2.1

£,(%) 2.9 16 0.6 0.7




Bformu|a (T) 59 79 62 78

In the LequaiCase, Table 1V and Figure 3 point out that inBagroves vertical and radial
homogeneities. In the lax case, only radial homogeneity is greatly improvwsdthe
insert.

Note the good correlation between the evaluatioB a§ing formula (21) and the Radia

calculation that checks the pertinence of the nicakevaluation.

4 Experimental results

In this section, experimental results are preserfitedthree cases dealing with the
behaviour of the liquid / gas phases at equilibrzoexistence. The phases are separated
by an interface whose shape is very dependenteartiplitude of the different forces in
presence. These forces are of capillary, gravity magnetic origin. In order to reveal
the residual magnetic and gravity forces, we vatluce as much as possible the capillary
forces.

For this purpose, a closed, ldample is prepared at critical density, such ayivg
temperature enables the fluid to remain on therattun line till its end point, the critical
point. Below the critical point temperature, Tthe fluid shows up as two gas-liquid
phases. Above { the fluid is homogeneous, it is a gas at liquehsity, a so-called
“supercritical” fluid.

The vicinity of the critical point is accompaniey & number of important anomalies that
will be used to detect the magnetic forces inhomedes. In particular, the gas-liquid

surface tensiow goes to zero according to the power aw (1-T/T,)*° [4]. Therefore,



the capillary pressures(R), which maintains spherical the gas bubble (raduswill

also go to zero. When going near the critical painder magnetic compensation of
gravity, the shape of the bubble can then be defdrfnom an ideal sphere even by
minute forces. The gas-liquid interface therefamds to follow the force field lines and
its shape will visualize the local force field imhogeneities in a spectacular manner.

We will consider first the interface shape withanagnetic field. Second, we present
results under compensation without insert in thgyxlcase and, finally, consider

compensation with insert in thedua case.



4.1 Test facility
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Fig. 5. Sketch of the experimental setup

The test facility (Fig. 5) consists in a supercartdke solenoid immersed into a helium
bath. The cell used was made of a copper cavig/ram thickness and 8 mm in diameter
closed by two sapphire windows of 24 mm in diametad 2 mm thickness that permit
direct observation (Fig. 6). These windows aredix& the copper cavity with screws.

Indium seals ensure the sealing of the cell. Olagenv of the levitation phenomena is

performed with an endoscope and a CCD camera.
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Fig. 6. A photograph of the 8 mm cell

The following operations are performed in ordelctonpensate the gravity and levitate
the hydrogen in the cell. (i) The system « cell acmum vessel » is placed into the
cryostat; (i) the vacuum vessel is pumped to alidift mbar; (iii) the solenoid and the
vacuum vessel are cooled down to 2.17K; (iv) tHeiedeated to about 20K; (v) gaseous
H. is slowly introduced into the cell by the capiflafvi) when a sufficient quantity is
condensed in the cell, heating of the valve is gdpso that an ice plug clogs up the
capillary. (vii) the temperature of the cell is talled; (viii) the current in the solenoid is
increased to the required value to compensatetgravi

In the following, we will observe and analyse thHeae of the vapour bubble. The

photographs correspond to a front view of the cell.



4.2 Bubbleinterface without magnetic field

Figure 7 shows an example of the liquid / gas fater that can be observed in the cell (8
mm diameter) under earth gravity, at T = 20 K (=113 K). Here the magnetic field is

switched off. The liquid is located in the bottomdahe gas at the top, surrounded by a
gravity-thinned wetting layer. The shape of the imeums corresponds to the competition
between gravity forces, which tend to flatten theeiface, and the capillary pressure,

which tend to make the bubble spherical.

Fig. 7. Picture of the interface in a 8mm diameter cell

without magnetic field at T-J=-13 K.

4.3 Levitation without insert in the L ma case
The following Figure 8 shows a picture of the @lthe same temperature T = 20 K (T-

T, = -13 K) under compensation of gravity.




Fig. 8. Picture of the interface in a 8 mm cell

with magnetic field at T-J=-13 K. (Lmax Case)

Compensation is observed at Z 85 mm and | = 63.9 A, which is in good agreement
with the results of the calculation as reportedable Ill. In the case of this experiment,
performed far from the critical point, the surfaemsion forces dominate the residual
magnetic forces. Consequently, the bubble shaperigctly circular, as it would have
been in actual weightlessness conditions. The leulsbtlose to a wall because of the
radial centripetal forces. These forces make ufesthle position where the vapour phase

is on the coil symmetry axis.




Fig. 9. Bubble shape close tgWhen a 8 mm diameter cell is used without insejt.T¢

T.=-500 mK. (b) T-T=-20 mK. (c) T-E=-10 mK. (Lnax case)

Much closer to T[Figures 9(a), 9(b) and 9(c)], at T-¥ -500 mK, -20 mK and -10 mK,

a progressive deformation of the liquid / gas fisiee from the spherical shape is
observed. The deformations are the hall-mark ofntlhgnetic residual forces. The radial
components of the magnetic forces "push” the ligowdards the centre of the cell. It can
easily be thus concluded that gravity is not homegesly compensated. These results

agree with the data of [4].

4.4 Levitation with insert in the L gqua Case

In accord with the calculation of Table I, we leawbserved the gravity compensation at

Z, =62 mm (62.3 mm expected) and for a current=0656.4 A.




Fig. 10. Bubble shape close tq When a 8 mm diameter cell is used with insert.
(@) T-Tc = -500 mK. (b) T-E=-20 mK. (c) T-E = -10 mK. (d) T-E = -5 mK. (Lequa

case).

Figures 10(a), 10(b) and 10(c) show the bubble eshvaith gravity compensation with

insert. In this case wherg, =¢,, the interface tends to keep a circular shape vithen

critical point is neared, which means that the dwesli forces are less important than
without insert. At T-T = -5 mK [Fig 10(d)], the deformation becomes intpat;

however the liquid phase is still in contact witle tvalls.

5 conclusionsand per spectives

From mathematical arguments it thus comes out ihaimpossible to rigorously

compensate gravity in a finished volume. The useotiimic magnetic forces is thus an



approximate technique to achieve gravity compeosatt is possible, however, to draw
a relationship between the size of the volume tanpensate, the residual
inhomogeneities of the magnetic force field, thegnedic force value and the magnetic
flux density in the levitation volume. This relatship highlights the fact that the
homogeneity of the magnetic force and the dimersiointhe levitation area are two
parameters to take into account in any magnetiqpemsation device.

It appears that, in a classical coil, the forcé&dftleomogeneity can be improved by the use
of a ferromagnetic insert. Such an insert, aftetifgabeen numerically calculated in the
particular case of Hlevitation in a 10 T superconducting coil, has rbeested by
observing the deviation from a sphere of thevidpour phase very close to the critical
point, where the surface tension goes to zero.

The results presented in this paper thus give &npet way to quickly evaluate the
parameters of a given levitation problem. Theywallbe understanding of the intrinsic
relationship between these parameters and theslohithe magnetic levitation technique
to be quantitatively determined.

The experimental results presented in this papereary encouraging and validate at the
same time the methodology used to calculate thertinend the relevance of the
association between a superconductive magnet afetframagnetic material in the
levitation problems. Following this first stage, myaprospects are thus open. In
particular, it can be envisaged to develop newgtesof insert and to use high critical
temperature superconductors or materials with kaguration magnetic flux density at

low temperature.
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