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Wavelet-Based Combined Signal Filtering and
Prediction

Olivier Renaud, Jean-Luc Starck, and Fionn Murtagh

Abstract— We survey a number of applications of the
wavelet transform in time series prediction. We show
how multiresolution prediction can capture short-range
and long-term dependencies with only a few parameters
to be estimated. We then develop a new multiresolution
methodology for combined noise filtering and prediction,
based on an approach which is similar to the Kalman
filter. Based on considerable experimental assessment, we
demonstrate the powerfulness of this methodology.

Index Terms— Wavelet transform, filtering, forecast-
ing, resolution, scale, autoregression, time series, model,
Kalman filter.

I. I NTRODUCTION

There has been abundant interest in wavelet
methods for noise removal in 1D signals. In many
hundreds of papers published in journals throughout
the scientific and engineering disciplines, a wide
range of wavelet-based tools and ideas have been
proposed and studied. Initial efforts included very
simple ideas like thresholding of the orthogonal
wavelet coefficients of the noisy data, followed by
reconstruction. More recently, tree-based wavelet
denoising methods were developed in the context
of image denoising, which exploit tree structures
of wavelet coefficients and parent-child correlations,
which are present in wavelet coefficients. Also,
many investigators have experimented with vari-
ations on the basic schemes – modifications of
thresholding functions, level-dependent threshold-
ing, block thresholding, adaptive choice of thresh-
old, Bayesian conditional expectation nonlinearities,
and so on. In parallel, several approaches have been
proposed for time-series filtering and prediction by
the wavelet transform, based on a neural network
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[24], [3], [14], Kalman filtering [6], [13], or an AR
(autoregressive) model [19]. In Zheng et al. [24] and
Soltani et al. [19], the undecimated Haar transform
was used. This choice of the Haar transform was
motivated by the fact that the wavelet coefficients
are calculated only from data obtained previously
in time, and the choice of an undecimated wavelet
transform avoids aliasing problems. See also Daoudi
et al. [7], which relates the wavelet transform to a
multiscale autoregressive type of transform.

In this paper, we propose a new combined pre-
diction and filtering method, which can be seen as
a bridge between the wavelet denoising techniques
and the wavelet predictive methods. Section II in-
troduces the wavelet transform for time series, and
section III describes the Multiscale Autoregressive
Model (MAR), that is based on the above transform.
It can be used either merely for prediction or as the
first step of the new filtering approach presented in
section IV.

II. WAVELETS AND PREDICTION

A. Introduction

The continuous wavelet transform of a continuous
function produces a continuum of scales as output.
However input data are usually discretely sampled,
and furthermore a “dyadic” or two-fold relationship
between resolution scales is both practical and ad-
equate. The latter two issues lead to the discrete
wavelet transform.

The output of a discrete wavelet transform can
take various forms. Traditionally, a triangle (or pyra-
mid in the case of 2-dimensional images) is often
used to represent the information content in the
sequence of resolution scales. Such a triangle comes
about as a result of “decimation” or the retaining of
one sample out of every two. The major advantage
of decimation is that just enough information is
kept to allow exact reconstruction of the input data.
Therefore decimation is ideal for an application such



2

as compression. It can be easily shown too that the
storage required for the wavelet-transformed data is
exactly the same as is required by the input data.
The computation time for many wavelet transform
methods is also linear in the size of the input data,
i.e. O(N) for anN -length input time series.

A major disadvantage of the decimated form of
output is that we cannot simply – visually or graphi-
cally – relate information at a given time point at the
different scales. With somewhat greater difficulty,
however, this goal is possible. What is not possible
is to have shift invariance. This means that if we had
deleted the first few values of our input time series,
then the output wavelet transformed, decimated,
data would not be the same as heretofore. We can
get around this problem at the expense of a greater
storage requirement, by means of a redundant or
non-decimated wavelet transform.

A redundant transform based on anN -length
input time series, then, has anN -length resolution
scale for each of the resolution levels that we con-
sider. It is easy, under these circumstances, to relate
information at each resolution scale for the same
time point. We do have shift invariance. Finally, the
extra storage requirement is by no means excessive.
The redundant, discrete wavelet transform described
in the next section is one used in Aussem et al.
[2]. The successive resolution levels are formed
by convolving with an increasingly dilated wavelet
function.

B. Theà trous Wavelet Transform

Our input data is decomposed into a set of band-
pass filtered components, the wavelet coefficients,
plus a low-pass filtered version of our data, the
continuum (or background or residual).

We consider a signal or time series,{c0,t}, de-
fined as the scalar product at samplest of the
function f(x) with a scaling functionφ(x) which
corresponds to a low-pass filter:

c0,t = 〈f(x), φ(x− t)〉 (1)

The scaling function is chosen to satisfy the
dilation equation:
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where h is a discrete low-pass filter associated
with the scaling function. This means that a low-
pass filtering of the signal is, by definition, closely

linked to another resolution level of the signal. The
distance between levels increases by a factor 2 from
one scale to the next.

The smoothed data{cj,t} at a given resolutionj
and at a positiont is the scalar product

cj,t =
1

2j
〈f(x), φ
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)

〉 (3)

This is consequently obtained by the convolution:

cj+1,t =
∑

k

h(k) cj,t+2jk (4)

The signal difference between two consecutive res-
olutions is:

wj+1,t = cj,t − cj+1,t (5)

which we can also, independently, express as:

wj,t =
1

2j
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)

〉 (6)

Here, the wavelet function is defined by:
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Equation 6 defines the discrete wavelet transform,
for a resolution levelj.

A series expansion of the original signal,c0, in
terms of the wavelet coefficients is now given as
follows. The final smoothed signal is added to all
the differences: for any timet,

c0,t = cJ,t +
J
∑

j=1

wj,t (8)

Note that in time series, the functionf is known
only through the series{Xt}, which consists of
discrete measurements at fixed intervals. It is well
known thatc0,t can be satisfactorily approximated
by Xt, see e.g. [22].

Equation 8 provides a reconstruction formula for
the original signal. At each scalej, we obtain a set,
which we call a wavelet scale. The wavelet scale
has the same number of samples as the signal, i.e.
it is redundant, and decimation is not used.

Equation 4 also is relevant for the name of this
transform (“with holes”: [12]). Unlike widely used
non-redundant wavelet transforms, it retains the
same computational requirement (linear, as a func-
tion of the number of input values). Redundancy
(i.e. each scale having the same number of samples
as the original signal) is helpful for detecting fine
features in the detail signals since no aliasing biases
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arise through decimation. However this algorithm
is still simple to implement and the computational
requirement isO(N) per scale. (In practice the
number of scales is set as a constant.)

Our application – prediction of the next value –
points to the critical importance for us of the final
values. Our time series is finite, of size sayN , and
values at timesN , N − 1, N − 2, ..., are of greatest
interest for us. Any symmetric wavelet function is
problematic for the handling of such a boundary (or
edge). We cannot use wavelet coefficients if these
coefficients are calculated from unknown future
data values. An asymmetric filter would be better
for dealing with the edge of importance to us.
Although we can hypothesize future data based on
values in the immediate past, there is nevertheless
discrepancy in fit in the succession of scales, which
grows with scale as larger numbers of immediately
past values are taken into account.

In addition, for both symmetric and asymmetric
functions, we have to use some variant of the
transform that handles the edge problem. It can
be the mirror or periodic border handling or the
transformation of the border wavelets and scaling
functions as in [5]. Although all these methods
work well in a lot of applications, they are very
problematic in prediction applications as they add
artifacts in the most important part of the signal: its
right border values.

The only way to alleviate this boundary problem
is to use a wavelet basis that does not suffer from
it, namely the Haar system.

On the other side, the first values of our time
series, which also constitute a boundary, may be
arbitrarily treated as a consequence, but this is of
little importance.

C. The Redundant Haar Wavelet Transform

The Haar wavelet transform was first described in
the early years of the 20th century and is described
in almost every text on the wavelet transform. The
asymmetry of the wavelet function used makes it a
good choice for edge detection, i.e. localized jumps.
The usual Haar wavelet transform, however, is a
decimated one. We now develop a non-decimated
or redundant version of this transform.

The non-decimated Haar algorithm is theà trous
algorithm described in the previous section, with a
low-pass filterh equal to(1

2
, 1

2
). See Figure 1. Here

h is non-symmetric. Consider the creation of the
first wavelet resolution level. We have created it by
convolving the original signal withh. Then:

cj+1,t = 0.5(cj,t−2j + cj,t) (9)

and

wj+1,t = cj,t − cj+1,t (10)

At any time point, t, we never use information
after t in calculating the wavelet coefficient. Figure
1 shows which time steps of the input signal are
used to calculate the last wavelet coefficient in the
different scales. A wavelet coefficient at a position
t is calculated from the signal samples at positions
less than or equal tot, but never larger.

Because we do not shift the signal, the wavelet
coefficients at any scalej of the signal(X1, . . . , Xt)
are strictly equal to the firstt wavelet coefficients
at scalej of the signal(X1, . . . , XN), N > t.

This is convenient in practice. For instance, if
the data are regularly updated (i.e. we get new
measurements), we do not have to recompute the
wavelet transform of the full signal.

D. Signal Denoising

Many filtering methods have been proposed in the
last ten years.Hard thresholdingconsists of setting
to 0 all wavelet coefficients which have an absolute
value lower than a thresholdλj andsoft thresholding
consists of replacing each wavelet coefficient by the
value w̃ where

w̃j,t =

{

sgn(wj,t)(| wj,t | −λj) if | wj,t |≥ λj

0 otherwise

Different threshold values have been proposed
such as the universal threshold [8], [9]λj =
√

2 log(N)σj, whereN is the number of time steps
in the input data, the SURE (Stein unbiased risk esti-
mator) threshold [10], or the MULTI-SURE thresh-
old. (The SURE method is applied independently on
each band of the wavelet transform). The multiscale
entropy filtering method [20], [21] (MEF) consists
of measuring the informationhW relative to wavelet
coefficients, and of separating this into two parts
hs, andhn. The expressionhs is called the signal
information and represents the part ofhW which
is definitely not contaminated by the noise. The
expressionhn is called the noise information and
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Fig. 1. Redundant Haar wavelet transform: This figure shows which time steps of the input signal are used to calculate the last wavelet
coefficient in the different scales.

represents the part ofhW which may be contam-
inated by the noise. We havehW = hs + hn.
Following this notation, the corrected coefficientw̃j

should minimize:

J(w̃j) = hs(wj − w̃j) + αhn(w̃j − wm) (11)

where wm is a prior (wm = 0 in the general
case). I.e. there is a minimum of information in the
residual (wj−w̃j) which can be due to the significant
signal, and a minimum of information which could
be due to the noise in the solution,w̃j.

In order to verify a number of properties, the
following functions have been proposed forhs and
hn in the case of Gaussian noise [21]:

hs(wj) =
1

σ2
j

∫ |wj |

0
u erf

(

| wj | −u√
2σj

)

du

hn(wj) =
1

σ2
j

∫ |wj |

0
u erfc

(

| wj | −u√
2σj

)

du(12)

Simulations have shown [20] that the MEF
method produces a better result than the standard
soft or hard thresholding, from both the visual
aspect and PSNR (peak signal to noise ratio).

The next section will describe how prediction
can be achieved using the wavelet coefficients, and
section IV will show how the MEF filtering can use
this prediction.

III. PREDICTION USINGMULTISCALE MODELS

A. Introduction

In this section, we use the above decomposition
of the signal for prediction. Instead of using the
vector of past observationsX = (X1, . . . , XN) to
predictXN+1, we will use its wavelet transform.

The first task is to know how many and which
wavelet coefficients will be used at each scale. A

sparse representation of the information contained
in the decomposition is the key to addressing this.
After some simulations and for theoretical reasons
that will become clear, the wavelet and scaling
function coefficients that will be used for the pre-
diction at timeN+1 have the formwj,N−2j(k−1) and
cJ,N−2J (k−1) for positive values ofk, as depicted in
Figure 2. Note that for eachN this subgroup of
coefficients is part of an orthogonal transform.

B. Stationary Signal

Assume a stationary signalX = (X1, . . . , XN)
and assume we want to predictXN+1. The basic
idea is to use the coefficientswj,N−2j(k−1) for k =
1, . . . , Aj andj = 1, . . . , J andcJ,N−2J (k−1) for k =
1, . . . , AJ+1 (see Figure 2) for this task.

We focus on an autoregressive type of prediction,
but generalization to virtually any type of prediction
is not difficult.

Recall that to minimize the mean square error, the
one-step forward prediction of an AR(p) process is
written X̂N+1 =

∑p
k=1 α̂kXN−(k−1), whereα̂k is an

estimated weight.
In order to use the wavelet decomposition, we

modify the prediction to give AR multiscale predic-
tion (MAR):

X̂N+1 =
J
∑

j=1

Aj
∑

k=1

âj,kwj,N−2j(k−1)

+
AJ+1
∑

k=1

âJ+1,kcJ,N−2J (k−1) (13)

where the setW = {w1, . . . , wJ , cJ} represents the
Haar à trous wavelet transform ofX. I.e., X =
∑J

j=1wj + cJ .
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Fig. 2. Wavelet coefficients that are used for the prediction of the next value. Redundant Haar wavelet transform used.

Figure 2 shows which wavelet coefficients are
used for the prediction usingAj = 2 for all
resolution levelsj, and a wavelet transform with five
scales (four wavelet scales + the smoothed signal).
In this case, we can see that only ten coefficients are
used, including coefficients that take into account
low-resolution information. This means that long-
term prediction can easily be introduced, either
by increasing the number of scales in the wavelet
transform, or by increasing the AR order in the last
scales, but with a very small additional number of
parameters.

The choice of using lagged wavelet coefficients
(every other coefficient on the first scale, each fourth
coefficient on the second scale, and so on) is based
both on simulation results that tend to show that
this schema gives quite good results, and on a
few theoretical results. We will now look at these
reasons in more detail.

The first reason is completeness: if we let all
the Aj grow, the selected coefficients form an or-
thogonal basis for all the past values, so for large
Aj, these coefficients are just sufficient to convey
all the information on the series. If the series has
some Markov property (i.e. best prediction can be
achieved knowing only a finite number of past
values, like e.g. the case of AR processes), then for
a finite value for theAj, the selection coefficients
can achieve the optimal prediction.

The second reason is parsimony. As stated, the
selected coefficients are part of a basis, but the aim
is to select through the choice of theAj just enough
so that we have the minimum number of coefficients
to ensure a good prediction, with the proviso that
we have as few coefficients as possible to estimate
(variance-bias trade-off). These coefficients can be
viewed as parsimonious summary statistics on the

past values of the series.
This choice is an extremely important point in

the proposed algorithm and we differ here from
[19], where these authors use all the coefficients
wj,N−(k−1) andcJ,N−(k−1) (no lagging) fork running
from 1 to a given valueK. The idea of lagging on
the other hand is the same as in [14], although we
can note a few differences relative to the algorithm
in [14]: there the values of theAj are bound and
fixed to be of the form2J−j but soft thresholding is
included in the algorithm. Finally a referee proposed
to view the selection of coefficients as a problem of
model selection. This is an interesting idea that is
worth pursuing, but our objective is to provide an
easy and very fast algorithm for the prediction, since
it will be included in a more complex structure for
filtering.

To further link this method with prediction based
on a regular AR, note that if on each scale the lagged
coefficients follow an AR(Aj), the addition of the
predictions on each level would lead to the same
prediction expression 13.

If we use the linear form given in expression
13 for prediction, then the theory of autoregressive
models can be applied here. This means that ac-
cording to [4] (Theorems 8.1.1, 8.1.2, 8.10.1 and
10.8.2), the estimating of the parametersaj,k by
MLE (maximum likelihood estimation), by Yule-
Walker, or by least squares, has the same asymptotic
efficiency. In our programs, to estimate theQ =
{Aj, j = 1, . . . J+1} unknown parameters, we used
the least squares approach: we minimize the sum of
squares of the differences between the prediction as
in expression 13 and the actual valueXN+1 over all
the values ofN in the training sample time.

The AR order at the different scales must now be
defined. A global optimization of allAj parameters
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would be the ideal method, but is too computer
intensive. However, by the relative non-overlapping
frequencies used in each scale, we can consider
selecting the parametersAj independently on each
scale. This can be done by standard methods, based
on AIC, AICC or BIC methods [18].

C. Non-linear and Non-stationary Generalizations

This Multiresolution AR prediction model is ac-
tually linear. To go beyond this, we can imagine
using virtually any type of prediction, linear or non-
linear, that uses the previous dataXN , . . . , XN−q

and generalize it through the use of the coefficients
wj,t andcJ,t, t ≤ N instead.

One example is to feed a multilayer perceptron
neural network with these coefficientsw and c as
inputs, use one or more hidden layer(s), and obtain
XN+1 as the (unique) output, as has been done in
[15]. In this case, a backpropagation algorithm can
be used for the estimation of the parameters.

We can also think of using a model that allows
for some form of non-stationarity. For example we
could use an ARCH or GARCH model on each
scale to model the conditional heteroscedasticity
often present in financial data.

Finally, if we stay with the linear MAR, it is easy
to change slightly the algorithm to handle signal
with a piecewise smooth trend. We show in [16]
how to extend this method, and to take advantage
of the last smooth signal to estimate it.

D. Assessments on Real Data

Using financial futures, we used a set of 6160
highs. The first half of the time series was taken
as training data, and the second half as test data.
Using BIC, the best AR model was an AR(1) model,
giving a standard deviation error on the test set of
13.9613. The best MAR model, again based on BIC,
was MAR(1), in line with the illustration of the
Haarà trous transform in Figure 2. In this case, the
standard deviation error was 13.8951 for a 2-scale
wavelet architecture.

In another setting, we took web site accesses,
measured as numbers of bytes per hour, from an
active web site (run by one of the authors in the
1990s). The first three values were: 2538, 55540,
14691. The last three values were 9152, 438370,
416421. Data was gathered for 34,726 successive

data best AR best MAR
order std.err order std.err

Fin. futures 1 13.9613 1,1,1 13.8951
Internet 10 1,019,880 1 (5x) 1,010,330

TABLE I

ORDER SELECTION AND STANDARD ERROR ON TEST SAMPLE OF

DIFFERENT METHODS ON REAL DATASETS.

hours (or about 4 years’ data). Modeling and fore-
casting of web site accesses [2], just as for other
Internet traffic [1], [23], is important for perfor-
mance evaluation, and for preemptive performance-
supporting options such as caching and prefetching.

Evaluation on this data used the first half of the
time series as training data, and the second half
as test data. In all cases, the BIC criterion was
used for model selection. A simple autoregressive
model was used, with AR(10) selected as best. The
prediction error, given by the standard deviation, on
the evaluation part (second half) of the time series
was 1,019,880.

Next, a multiresolution autoregressive model was
used. An MAR(1) model gave the best fit. The
prediction error, given by the standard deviation, on
the evaluation part (second half) of the time series
was 1,010,330, therefore improving on the best AR
fit, AR(10).

Other examples and an extended simulation study
can be found in [16].

E. Conclusion on Prediction

This prediction method, that is a very flexible
procedure, permits capturing of short-range as well
as long-range dependencies with only a few pa-
rameters. In its simplest form this method is a
generalization of the standard AR method: instead
of a linear prediction based on past values, we use
a linear prediction based on some coefficients of
the decomposition of the past values. Our proposed
method can easily be extended to generalize more
sophisticated methods such as GARCH. The con-
cept is very simple and easy to implement, while
the potential is clear. We will see in the following
how the prediction approach can be extended to the
case of noisy data.
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IV. F ILTERING USING THE MULTISCALE

PREDICTION

A. Introduction

In this section, we show how to execute the pre-
diction and filtering in the wavelet domain to take
advantage of the decomposition. We will consider
stochastic signals measured with an error noise.
Therefore the type of equations that are believed to
drive the signal can be expressed as the following
measurement and transition equations:

yN+1 = ZN+1xN+1 + vN+1 (14)

xN+1 = function(xN) + ǫN+1, (15)

where thevt are IID N (0,Σv), the ǫt are zero-
mean noise, and thevt are independent of theǫt.
The process{xt} has a stochastic behavior, but we
measure it only through{yt}, which is essentially
a noisy version of it. Data that seem to follow this
kind of equation can be found in many different
fields of science, since error in measurement is more
the rule than the exception. The aim is clearly to best
predict the future value of the underlying process
xN+1, based on the observed valuesy.

Solving these equations and finding the best pre-
diction and the best filtered value at each time point
seem difficult and computer intensive. However in
a special case of equations 14 and 15, the Kalman
filter gives rise to an algorithm that is easy to
implement and that is very efficient, since the future
predicted and filtered values are only based on the
present values, and depend on the past values only
through a pair of matrices that are updated at each
time point. This method supposes in addition to the
previous equation thatxN+1 = TN+1xN +ǫN+1, that
both errors are Gaussian,vt areN (0,Σv) andǫt are
N (0,Σe), and thatZt, Σv, Tt and Σe are known.
The Kalman filter gives a recursive construction of
the predicted and filtered values which has optimal
properties. The predicted (p) and filtered (f ) values
of xN+1 are given by the coupled recurrence:

pN+1 = TN+1fN (16)

fN+1 = pN+1 +KN+1(yN+1 − ZN+1pN+1) (17)

whereKN+1 is the gain matrix that is also given by
a recursive scheme and depends onZN+1, Σv, TN+1

andΣe (see [11], [17]). Ifvt andǫt, t ≤ N +1, are
Gaussian,pN+1 is the best prediction in the sense
that it minimizes the mean square error given the

past values (= E(xN+1|y1, . . . ,yN)) and fN+1 is
the best filter in the sense that it minimizes the
mean square error given all values up toN + 1
(= E(xN+1|y1, . . . ,yN+1)). If the errors are not
Gaussian, the estimators are optimal within the class
of linear estimators, see [11].

Under Gaussianity of the errors, ifΣv, Tt andΣe

are known only up to a given number of param-
eters, the maximum likelihood of the innovations
can be stated and either a Newton-Raphson or an
EM (expectation-maximization) algorithm can be
used to minimize the likelihood which is severely
non-linear in the unknown parameters, and gives
estimates for these parameters.

B. Filtering

In this work we propose a method similar to the
Kalman filter but that allows two generalizations on
the type of equation that can be treated. The first one
is to allow for different functions in the transition
equation 15. The versatility of the wavelet transform
and the freedom to choose the prediction form
allow for very general function approximation. The
second generalization is to allow the noise of the
transition equationǫt to be non-Gaussian and even
to have some very large values. Using multiscale
entropy filtering, these cases will be detected and
the filtering will not be misled.

Like in the Kalman filter, we define a recurrence
scheme to obtain the predicted values and the fil-
tered values. This allows us to have a fast algorithm
that does not have to recompute all estimations at
each new value. However, the recurrence equations
will not be linear as in the Kalman filter and they
will not be based on the values themselves, but will
be carried out in the wavelet domain.

For notational convenience, we present our
method for a simplified equation wherext is uni-
dimensional andZt is equal to 1 for allt ≤ N .
For the prediction part, instead of using the vector
of past filtered valuesf = (f1, . . . , fN) to predict
pN+1, as in 16, we will use its wavelet transform.

It has been shown previously that the wavelet
and scaling function coefficients that must be used
for the prediction at timeN + 1 have the form
wf

j,N−2j(k−1) and cf
J,N−2J (k−1) for positive values of

k. Given the wavelet decomposition of the filtered
values ft, wf and cf , we predict the next value
based on the Multiresolution Autoregressive (MAR)
model
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pN+1 =
J
∑

j=1

Aj
∑

k=1

âj,kw
f

j,N−2j(k−1)

+
AJ+1
∑

k=1

âJ+1,kc
f

J,N−2J (k−1) (18)

where the setW = {wf
1 , . . . , w

f
J , c

f
J} represents

the Haarà trous wavelet transform off , and we
have:f =

∑J
j=1w

f
j + cfJ . Again, depending on the

supposed process that generated the data, we can
imagine other prediction equations based on these
coefficients, like Multiresolution Neural Network
(MNN), Multiresolution GARCH, and so on.

This first part of the algorithm has the same role
as equation 16 for the Kalman filter. Given the
filtered values up to timeN , ft, t = 1, . . . , N ,
and its Haarà trous wavelet transformwf

j,t for
t = 1, . . . , N and j = 1, . . . , J , and cfJ,t for t =
1, . . . , N , we use the wavelet decomposition offt

to predict the next valuepN+1. The difference with
Kalman is the form of the prediction: it is based
on the multiresolution decomposition and might be
non-linear if so desired.

For the second part of the algorithm, like the
Kalman filtering equation 17, we will compare the
observed valueyN+1 and the predicted valuepN+1,
but in the wavelet domain. From the predicted value
pN+1 we decompose in the wavelet domain (with –
some of – the previous filtered values up tofN ) to
obtain theJ+1 coefficientswp

j,N+1 for j = 1, . . . , J
andcpJ,N+1. For the filtering part, we first decompose
the new observationyN+1 in the wavelet domain
(using also the previous observationsyt) to obtain
the J + 1 coefficientswy

j,N+1 for j = 1, . . . , J and
cyJ,N+1.

Informally, the Kalman filter computes a filtered
valuefN+1 on the basis of the predicted valuepN+1

and corrects it only if the new observation is far
from its predicted value. Here we work on the
wavelet coefficients and we will also set the filtered
value as close to the predicted value, unless the
prediction is far from the actual coefficient. To carry
out the compromise, we use the multiscale entropy
given in expression 11, and tailor it to the situation.
The wavelet coefficient of the filtered value will be
the one that satisfies

min
w

f

j,N+1

hs





wy
j,N+1 − wf

j,N+1

σv





+λhn





wf
j,N+1 − wp

j,N+1

σe



 (19)

and similarly for the smooth arraycfJ,N+1. The coef-
ficientwf

j,N+1 must be close to the same coefficient
for the measured signaly and at the same time close
to the predicted valuewp

j,N+1. Since the standard
errors of the noisevt andǫt in equations 14 and 15
can be very different, we have to standardize both
differences in 19. Note thatλ plays the role of the
trade-off parameter between the prediction and the
new value. This can be viewed as the thresholding
constant in the regression context. Having obtained
the filtered coefficients for all scales, we can simply
recoverfN+1 with equation 8.

This algorithm with the Multiresolution AR is of
the same complexity as the Kalman filter, since the
à trous transform is of linear order. If one considers
the number of scales as a (necessarily logarithmic)
function of the number of observations, an addi-
tional factor of log(N) is found in the complexity.
The key to this lies in the fact that we do not
recompute the entirèa trous transform off , p or
y each time a new value is added, but we compute
only theJ+1 coefficientswj,t for j = 1, . . . , J and
cJ,t at a given timet. If one uses a more complex
prediction scheme, like a neural network, then the
complexity of our algorithm is driven by this pre-
diction algorithm. The proposed algorithm is also
simple, thanks to the Haar transform (equations 8,
9 and 10) which is especially easy to implement.

The estimation of the unknown parameters fol-
lows the same lines as for prediction, although the
estimation of the noise levels is known to be a more
difficult task. The key to the performance of the
method in the pure prediction case was to allow
it to adapt the numberAj of coefficients kept at
each scale for the prediction. This was done using
a penalization criterion such as BIC. We believe
that it is important to do exactly the same in the
filtering framework. We refer to Section III for these
parameters. The estimation ofσv, σe andλ is more
delicate, and in our programs, we leave the choice to
the user either to provide these values or to let them
be estimated. Of course, when the true values for
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the standard deviations are known independently,
the method is more effective, but we note that even
if the algorithm over- or underestimates these values
up to 50%, performance is still good.

First, the optimalλ is strongly related to the
two standard deviations, and more precisely to their
ratio. In our simulations, we setλ to be0.1σv/σe.

The leading parameter here isσv, since it drives
all the smoothing, and once this parameter has been
set or estimated, the procedure proceeds as in the
prediction case. If the program has to estimate this
parameter, a grid of 30 different values forσv is
tried, from zero to the standard deviation of the
observed datay. The resulting models are compared
on the innovation error and we select the one that
minimizes the error. We could use a more complex
algorithm that refines the grid close to the minimal
values, but we do not believe that this will improve
the model in a significant way. On the contrary, we
have found that this method is relatively robust to
the parameter estimation and that there is an interval
of values that leads to the same standard deviation
of error.

V. SIMULATIONS

A. Experiment 1

In this section, we use a Monte-Carlo study to
compare the proposed filtered method with the reg-
ular Kalman filter. The first two simulation studies
have models where Kalman is known to be optimal.
The aim is to see whether the multiresolution ap-
proach is able to get close to this “gold standard” in
this special case. The second part uses a much more
difficult model (ARFIMA plus noise) where Kalman
is not optimal any more. We will be interested in
the deterioration of performance of both methods.

In the first case, we generated processes{Xt} that
follow a causal AR process of orderp, which means
that they satisfyXt = φ1Xt−1 + · · · + φpXt−p + ǫt.
We measure onlyYt which is a noisy version of
this process:Yt = Xt + vt. Both noises are taken
to be Gaussian, i.e.{ǫt} areN (0, σ2

e) and{vt} are
N (0, σ2

v). For any value ofp this process can be
written in the Kalman form of equations 14 and 15,
with a p-dimensionalxt [11].

We compare 5 different filtering algorithms. First,
True Kal is the oracular Kalman filter that has been
fed with the true values of all parameters: the AR
orderp and the values ofφi, σe andσv. This is the

unattainable best filter. Second isEstim.Kal which
is a Kalman filter that has been fed with the true
AR order p but we have to estimate the values of
φi, σe andσv. This is done through the likelihood of
the innovations [17]. It is well known that the most
difficult parameters to estimate are the estimates of
both variabilitiesσe and σv. So the third method
Est.AR.Kal is again a Kalman filter which has been
fed with p, σe andσv, and has only to estimate the
φ’s. Note that these three Kalman methods are fed
with the true orderp. If they had to select it via a
criterion, we could expect significant deterioration
in their performance. The fourth methodObser is
the simplistic choice not to do any filtering and to
provide yt as being the best estimate forxt. If a
method gives results that are worse thanObser,
it has clearly missed the target. It is however not
an easy task whenσv is small. The last approach,
MultiRes, is our proposed method, with 5 scales as
in prediction, and with the level of the measurement
noise that is given. So, contrary to the three Kalman
filters, the method is not fed with the true order,
but has to select it levelwise with the BIC criterion.
However, likeEst.AR.Kal, the method is fed with
σv.

The 50 series are of length 1000 and the first
500 points are used for training and the last 500 are
used to compare the standard deviation of the error
between the filtered and the true values. A boxplot
gives in the center the median value for the response
and the box contains 50% of the responses, giving
an idea of the variability between the samples.
Hence the best method is the one for which the
boxplot is the most stumpy and compact.

For Figure 3 the AR order isp = 2 with parame-
terφ′ = (0.5,−0.7). The noise levels are as follows:
for subplot (a)σe = 1 andσv = 1, for subplot (b)
σe = 1 and σv = 0.4, for subplot (c)σe = 1 and
σv = 0.1 and finally for subplot (d)σe = 0.4 and
σv = 1. In all cases, theTrue.Kal method should
be the best one. In addition, in case (c) where the
measurement error is very small, the simpleObser
should be competitive or even difficult to beat. This
is in fact the case. In addition, the proposed method
MultiRes has standard deviations of the errors al-
most as good as the oracularTrue.Kal, and is very
competitive withEstim.Kal andEst.AR.Kal, which
are both based on the correct Kalman filter but have
to estimate some parameters.

The second simulation, the results of which are
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Fig. 3. Boxplots of the standard deviation of the error for an AR(2) plus noise model. The noise levels areσe = 1 and σv = 1 for (a),
σe = 1 andσv = 0.4 for (b), σe = 1 andσv = 0.1 for (c) andσe = 0.4 andσv = 1 for (d). The proposed methodMultiRes is compared
with three versions of Kalman filterTrue.Kal, Estim.Kal and Est.AR.Kal, and to the naive filteringObser. Although this framework is
optimal for the Kalman filter, the proposed method is very competitive.
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Fig. 4. Same setting as that of Figure 3, except that the model is AR(4) plus noise. Depending on the noise levels, the proposed method
is either as good as or even better than the Kalman methods that have to estimate a few parameters.
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shown in Figure 4, is an AR(4) plus noise, with
parameter setφ′ = (0.5,−0.5,−0.1, 0.3). The stan-
dard deviations for both noises are the same four
couples as for Figure 3. As expected again,True.Kal
is the best, but unattainable, method. However,
since the number of parameters to estimate here
has increased, we see a major deterioration in the
performance ofEstim.Kal in three out of four cases,
(a), (b) and (d). This deterioration takes the form of
a much wider range of errors (large boxplot) and
of an average performance that is poorer (higher
center of the boxplot).Est.AR.Kal performs well
except in case (d) where the process noise is small
σe = 0.4. It is remarkable that the proposed method
MultiRes works well in all cases and still has
compact boxplots and therefore consistently good
results. It shows that this method adapts easily to
different orders of the underlying process and to
different values for both noises.

The last type of signal (Figure 5) is a fractional
ARIMA (1, 0.49, 0), with parameterφ1 = −0.5 and
with a unit Gaussian innovation. The measurement
error standard deviation isσv = 1 for subplot (a),
σv = 0.4 for subplot (b) andσv = 0.1 for subplot
(c). Our software does not allow us to vary the
process noise level in this case, so we were not able
to simulate the equivalent of subplot (d) of the two
previous graphs. This type of process is more chal-
lenging to filter, since it is an example of so-called
long memory or1/f process. It cannot be put in a
Kalman filter form, so there is no oracularTrue.Kal.
However, we still can estimate the parameters of a
Kalman filter that best approaches this model. This
has been done forEstim.Kal andEst.AR.Kal, with
an AR(4) plus noise structure. These are not optimal
in the statistical sense. As in the two previous cases,
the proposed methodMultiRes can select the order
on each scale with a BIC criterion. The boxplots in
Figure 5 depict the results, and we see thatMultiRes
convincingly outperforms all other methods, which
is again a demonstration that it can automatically
adapt easily to a wide range of processes.

In conclusion, the proposed method seems to be
very adaptive to the underlying process of the type
of model considered. Equation 15 stated loosely that
xN+1 must be some function of the past. Contrary to
the Kalman filter that is designed (and optimal) for
a very special form for this function, the multires-
olution approach, empowered with the multiscale
entropy filtering, can accommodate a much wider

variety of processes.

B. Experiment 2

Previous experiments focused on the determin-
istic part of the underlying process and showed
that the proposed method is quite flexible. We now
turn to the stochastic part, the process errorǫt and
show that here again the proposed method is more
flexible.

Recall that the Kalman filter is designed for Gaus-
sian error for both the process and the measurement
noise. This explains that the best filtered value, as
shown in equation 17, is a linear combination of
the predictionpN+1 and the observed valueyN+1.
If a huge value in the process noise arrives, and
hence an observed value very different from the
prediction, the Kalman filter will still achieve a
trade-off, and therefore be off target in the predicted
and the filtered values for a few events after this
burst (see Figure 6).

The proposed method does not use a linear com-
bination between the observed and predicted value
but uses a more sensible non-linear and adaptive
scheme through the multiscale entropy filtering,
seen in expression 19. Informally, it acts as a
threshold towards the predicted value (whereas the
threshold is towards zero in the regression context).
Hence if the difference between the observed and
the predicted values is larger than expected the
filtered wavelet coefficients will be quite close to
the observed value. If the difference is smaller,
the wavelet coefficient will be a larger compromise
between them. (See equations 11 and 12.)

An illustration of this difference between Kalman
filter and the proposed method is given in Figure 6.
The process and measurement is exactly the same
as for Figure 3(a), that is to say an AR(2) plus
noise model. The only difference is that at the 700th
time point, the process noise was increased by an
amount of 10 units. We can see the underlying (not
observed) processState and the measured values
Obser around time 700. The Kalman filter that has
been fed with all the true values for the parame-
ters (except this burst) is also depicted (True.Kal)
and we see that it does not follow the very large
observed value at time 700 but goes only half way.
At time 701 it has still not joined the large value,
and only when the series changes sign it comes back
closer to process and observed values. The estimated
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Fig. 5. Same setting as that of Figure 3 (a), (b) and (c), except that themodel is a fractional AR plus noise. It is known that here the
Kalman filter is not optimal any more, and its performance deteriorates a lot, whereas the proposed method is adapted to the nature of the
process and gives very good results.
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Fig. 6. Behavior of the same methods as in Figure 3 in the case where a burst happens at time 700.State is the unobserved process that
has to be estimated. The proposed methodMultiRes reacted correctly to the burst and stays close to the state values, whereasthe Kalman
methods are off target at time 700 and 701.

Kalman filterEstim.Kal has very similar behavior. On the other hand, the proposed method Mul-
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tiRes detects immediately that something strange
has happened at time 700, and decides to follow
the observation and not to take into account the
prediction. As a result, the proposed method, even
if it does not know the equation of the process and
even if it has to estimate some parameters, did a
much better job than the Kalman filter that does not
even have to estimate any parameters.

C. Experiments with Real Data

Assessing the quality of different methods on real
data is more complicated than in the pure prediction
case of section III. The problem resides in the fact
that we want to compare the filtered values with the
underlying state time series, which is unknown for
real data. To circumvent this difficulty, we provide
to the algorithms the real data time series perturbed
with Gaussian white noise. Of course, the criteria
for each method will be the standard deviation of
the difference between the filtered values and the
original, unperturbed real values.

data Obser best Est.AR.Kal MAR
std.err order std.err order std.err

Internet 100,140 7 99,379 1 (5x) 89,217
log(Internet) 1.00017 4 0.954 1 (5x) 0.873

TABLE II

STANDARD ERROR OF FILTERING ON TEST SAMPLE OF DIFFERENT

METHODS ON REAL DATASETS.

We first compare the methods on the web site
access data, as described in subsection III-D. We
added to the data a white Gaussian noise with
standard deviation of 100,000. The first half of
the data is for training and the second half for
testing. If we do no filtering at all and use the
observed data as our best guess (calledObser in the
simulations), the standard error on the second half of
the data is 100,140 (close to 100,000, as expected).
Any method that does better than that improves the
filtering. The best Kalman filter that was found was
fed with the true standard deviation of both noises
(called Est.AR.Kal in the simulations). It is an
AR(7) and gives a standard error on the second part
of the data of 99,379, improving slightly the non-
filtered data. Fixing the number of wavelet scales
to five, and providing the value of the standard
deviation of the measurement noise (100,000), the
proposed multiresolution method selected only one

coefficient per scale and gives a standard error on
the second part of the data of 89,217, which is a
10% improvement. Moreover, even if we provide
for the measurement noise a value from 50,000 to
300,000, the standard error does not increase by
more than 1%, which shows that the method is quite
robust.

Note that the above values cannot be compared
with the value in the prediction section. Indeed, in
the filtering case the value to be predicted is not a
future value, but the actual value of the unobserved
state time series.

Finally, since the data are very asymmetric, we
also wanted to test the different methods on the
logarithm of the data. The log values look quite
symmetric and Gaussian, and maybe more suited for
the Kalman filter. In this case, we added a Gaussian
white noise of unit standard deviation. Taken on the
second half of the data, the standard deviation of
the difference between the observed data and the
real (log) data is 1.00017. The best Kalman (with
the standard error of both noises provided) is an
AR(4) and has an error of 0.954. With a fixed 5-
scale architecture, our proposed method has an error
of 0.873, again improving on the foregoing results.
Additionally, the results are robust to the provided
standard error of measurement: the error varies less
than 2% for the range of values between 0.5 and 3.

VI. CONCLUSION

We have presented in this article a new method
for the prediction of time series and for filtering
processes that are measured with noise. It is based
on a special (overcomplete) wavelet decomposition
of the signal called thèa trous wavelet transform.
In the case of prediction, virtually any prediction
scheme can be adapted to the multiresolution rep-
resentation induced by the transformation, but even
with the simplest scheme of all, the autoregressive
model, this method is able to capture short and long
memory components in an adaptive and very effi-
cient way. In the filtering case, the same prediction
scheme can be used and the use of multiscale en-
tropy filtering instead of the usual trade-off inherent
in the Kalman filter is powerful and has several
advantages. This method is competitive in the cases
where the Kalman filter is known to be optimal, but
it is much more useful when the transition equation
is not linear any more. Moreover, the multiscale
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entropy filtering is robust relative to Gaussianity of
the transition noise.
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[22] M. Vetterli and J. Kovǎcevíc. Wavelets and Subband Coding.
Prentice Hall PTR, New Jersey, 1995.

[23] W. Willinger, M. Taqqu, W.E. Leland, and D. Wilson. Self-
similarity in high-speed packed traffic: analysis and modeling
of ethernet traffic measurements.Statistical Science, 10:67–85,
1995.

[24] G. Zheng, J.-L. Starck, J. Campbell, and F. Murtagh. The
wavelet transform for filtering financial data streams.Journal
of Computational Intelligence in Finance, 7(3):18–35, 1999.

Olivier Renaud received the MSc degree
in Applied Mathematics and the PhD de-
gree in Statistics from Ecole Polytechnique
Féd́erale (Swiss Institute of Technology), Lau-
sanne, Switzerland. He is currently Maı̂tre
d’Enseignement et de Recherche in Data Anal-
ysis, University of Geneva. He earned a one-
year fellowship at Carnegie-Mellon University,
Pittsburgh, PA, and was also visiting scholar at

Stanford University, Stanford, CA for a year. His research interests
include non-parametric statistics, wavelet-like methods and machine
learning.

Jean-Luc Starck has a Ph.D from Univer-
sity Nice-Sophia Antipolis and an Habilitation
from University Paris XI. He was a visitor at
the European Southern Observatory (ESO) in
1993 and at Stanford’s Statistics Department
in 2000 and 2005. He is a Senior Researcher
at CEA. His research interests include image
processing, multiscale methods and statistical
methods in astrophysics. He is author of the

booksImage Processing and Data Analysis: the Multiscale Approach
(Cambridge University Press, 1998), andAstronomical Image and
Data Analysis(Springer, 2002).

Fionn Murtagh holds BA and BAI degrees
in mathematics and engineering science, and
an MSc in computer science, all from Trin-
ity College Dublin, Ireland, a PhD in math-
ematical statistics from Université P. & M.
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