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Abstract— We survey a number of applications of the [24], [3], [14], Kalman filtering [6], [13], or an AR
wavelet transform in time series prediction. We show (autoregressive) model [19]. In Zheng et al. [24] and
how multiresolution predi(_:tion can capture short-range gg|tani et al. [19], the undecimated Haar transform
and long-term dependencies with only a few parameters ,, ..« \,seq  This choice of the Haar transform was
to be estimated. We then develop a new multiresolution . .
methodology for combined noise filtering and prediction, motivated by the fact that the Wave_let Coeﬂ"?'ents
based on an approach which is similar to the Kalman a@re calculated only from data obtained previously
filter. Based on considerable experimental assessment, wdn time, and the choice of an undecimated wavelet
demonstrate the powerfulness of this methodology. transform avoids aliasing problems. See also Daoudi

Index Terms—Wavelet transform, filtering, forecast- €t @l. [7], which relates the wavelet transform to a

ing, resolution, scale, autoregression, time series, made Multiscale autoregressive type of transform.
Kalman filter. In this paper, we propose a new combined pre-
diction and filtering method, which can be seen as
a bridge between the wavelet denoising techniques
and the wavelet predictive methods. Section II in-

There has been abundant interest in wavelgdduces the wavelet transform for time series, and
methods for noise removal in 1D signals. In manyection Il describes the Multiscale Autoregressive
hundreds of papers published in journals throughawbdel (MAR), that is based on the above transform.
the scientific and engineering disciplines, a widg can be used either merely for prediction or as the

range of wavelet-based tools and ideas have bgpst step of the new filtering approach presented in
proposed and studied. Initial efforts included veryection IV.

simple ideas like thresholding of the orthogonal
wavelet coefficients of the noisy data, followed by
reconstruction. More recently, tree-based wavelet
denoising methods were developed in the contékt Introduction

of image denoising, which exploit tree structures The continuous wavelet transform of a continuous
of wavelet coefficients and parent-child correlationfiynction produces a continuum of scales as outpuit.
which are present in wavelet coefficients. Alsadowever input data are usually discretely sampled,
many investigators have experlmenteq _Wlt_h vargnd furthermore a “dyadic” or two-fold relationship
ations on the basic schemes — modifications Bétween resolution scales is both practical and ad-
thresholding functions, level-dependent thresholdquate. The latter two issues lead to the discrete
ing, block thresholding, adaptive choice of threskyavelet transform.

old, Bayesian conditional expectation nonlinearities, The output of a discrete wavelet transform can
and so on. In parallel, several approaches have bggke various forms. Traditionally, a triangle (or pyra-
proposed for time-series filtering and prediction bid in the case of 2-dimensional images) is often
the wavelet transform, based on a neural netwaiked to represent the information content in the
o _ _ sequence of resolution scales. Such a triangle comes
O. Renaud is with Methodology and Data Analysis, Section ofb It of “deci . h . ;
Psychology, University of Geneva, 1211 Geneva 4, Switzerlarid, J. 800Ut @S a result of “decimation” or the retaining o
Starck is with DAPNIA/SEDI-SAP, Service d’Astrophysique, CEA-ONe sample out of every two. The major advantage
Saclay, 91191 Gif sur Yvette, France. F. Murtagh is with the Depaggf decimation is that just enough information is
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Murtagh, fmurtagh@acm.org Therefore decimation is ideal for an application such
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II. WAVELETS AND PREDICTION



as compression. It can be easily shown too that tleked to another resolution level of the signal. The
storage required for the wavelet-transformed datadstance between levels increases by a factor 2 from
exactly the same as is required by the input datme scale to the next.
The computation time for many wavelet transform The smoothed datéc;,} at a given resolutiory
methods is also linear in the size of the input datand at a positiort is the scalar product
i.e. O(N) for an N-length input time series. 1 r—t

A major disadvantage of the decimated form of Cjp = »<f(iv)7¢( 5 )> 3)
output is that we cannot simply — visually or graphi- . ) ,
cally — relate information at a given time point at thé NiS iS consequently obtained by the convolution:
different scgles. With somewhat greater difficu!ty, e =Y h(k) ¢jipain (4)
however, this goal is possible. What is not possible 2
is to have shift invariance. This means that if we haghe signal difference between two consecutive res-
deleted the first few values of our input time seriegy,tions is:
then the output wavelet transformed, decimated,
data would not be the same as heretofore. We can Wjt1t = Cjt — Cjy1n (%)
get around this problem at the expense of a greafgli , \ye can also, independently, express as:
storage requirement, by means of a redundant or
non-decimated wavelet transform. Wi = i.(f(:u) W (x - t)> (6)

A redundant transform based on aw-length 2 ’ 2
input time series, then, has an-length resolution Here, the wavelet function is defined by:
scale for each of the resolution levels that we con- 1 s 1 sz
sider. It is easy, under these circumstances, to relate 5@/} (2) = ¢(z) — §¢ (2> (7)
information at each resolution scale for the same ) . )
time point. We do have shift invariance. Finally, the Equation 6 defines the discrete wavelet transform,
extra storage requirement is by no means excessi®. @ resolution leve};. o _ _
The redundant, discrete wavelet transform described® Series expansion of the original signaj, in
in the next section is one used in Aussem et &rms of the wavelet coefficients is now given as

[2]. The successive resolution levels are formdgllows. The final smoothed signal is added to all
by convolving with an increasingly dilated wavelethe differences: for any time,

function. J
Cot = Cjt + Z Wy ¢ (8)
B. Thea trous Wavelet Transform J=1

Our input data is decomposed into a set of band-NOte that in time series, the functighis known

pass filtered components, the wavelet coefficienf]ly through the seried X;}, which consists of
plus a low-pass filtered version of our data tHliscrete measurements at fixed intervals. It is well

continuum (or background or residual). known thatc,, can be satisfactorily approximated
We consider a signal or time serieS;;}, de- by X;, see e.g. [22]. _

fined as the scalar product at samplesf the Equation 8 provides a reconstruction formula for

function f(z) with a scaling functiong(z) which the original signal. At each scajge we obtain a set,

corresponds to a low-pass filter: which we call a wavelet scale. The wavelet scale
has the same number of samples as the signal, i.e.
cor = (f(z),0(z —1)) (1) it is redundant, and decimation is not used.
The scaling function is chosen to satisfy the Equation 4 also is relevant for the name of this
dilation equation: transform (“with holes”: [12]). Unlike widely used

1 /x non-redundant wavelet transforms, it retains the

—¢ () => h(k)¢(z — k) (2) same computational requirement (linear, as a func-

2°\2 k tion of the number of input values). Redundancy

where h is a discrete low-pass filter associatefl.e. each scale having the same number of samples
with the scaling function. This means that a lowas the original signal) is helpful for detecting fine
pass filtering of the signal is, by definition, closelyeatures in the detail signals since no aliasing biases



arise through decimation. However this algorithrh is non-symmetric. Consider the creation of the
is still simple to implement and the computationdirst wavelet resolution level. We have created it by
requirement isO(N) per scale. (In practice theconvolving the original signal wittk. Then:
number of scales is set as a constant.)

Our application — prediction of the next value — ¢r1e = 0.5(¢e-2 + i) ()
points to the critical importance for us of the final 4
values. Our time series is finite, of size s&y and
values at timesV, N — 1, N — 2, ..., are of greatest W1t = Cjt — Cjp1t (10)
interest for us. Any symmetric wavelet function is ' . . .
problematic for the handling of such a boundary (d¥ any time point, ¢, we never use information
edge). We cannot use wavelet coefficients if thedéert in calculating the wavelet coefficient. Figure
coefficients are calculated from unknown futuré Shows which time steps of the input signal are
data values. An asymmetric filter would be bettéfsed to calculate the last Wavellet. coefficient ir] _the
for dealing with the edge of importance to ugi'fferent scales. A Wavelgt coefficient at a position
Although we can hypothesize future data based s calculated from the signal samples at positions
values in the immediate past, there is nevertheld§§S than or equal tg but never larger.
discrepancy in fit in the succession of scales, whichBecause we do not shift the signal, the wavelet

grows with scale as larger numbers of immediatefipefficients at any scalgof the signal( X, ..., Xi)
past values are taken into account. are strictly equal to the first wavelet coefficients
In addition, for both symmetric and asymmetri@t scalej of the signal(Xy, ..., Xy), N > ¢.

functions, we have to use some variant of the This is convenient in practice. For instance, if

transform that handles the edge problem. It cdfe data are regularly updated (i.e. we get new
be the mirror or periodic border handling or thé'éasurements), we do not have to recompute the
transformation of the border wavelets and scalif@velet transform of the full signal.

functions as in [5]. Although all these methods

work well in a lot of applications, they are veryy Signal Denoising

problematic in prediction applications as they add o ,
artifacts in the most important part of the signal: its Many filtering methods have been proposed in the
- ) years

right border values. last ten yearsHard thresholdingconsists of setting

The only way to alleviate this boundary problerﬁo 0 all wavelet coefficients which have an absolute

is to use a wavelet basis that does not suffer froYﬁlue. lower than a_threshovq andsoft thre_sholding
it, namely the Haar system. consists of replacing each wavelet coefficient by the

On the other side, the first values of our tim§alueéw where
series, which also constitute a boundary, may be [ sgn(w;)(| w;, | =X;) i |w;|> N
arbitrarily treated as a consequence, but this is 6f* =y ¢ otherwise

little importance. _
Different threshold values have been proposed

such as the universal threshold [8], [}, =

\/2log(N)o;, whereN is the number of time steps
The Haar wavelet transform was first described in the input data, the SURE (Stein unbiased risk esti-
the early years of the 20th century and is describethtor) threshold [10], or the MULTI-SURE thresh-
in almost every text on the wavelet transform. Thald. (The SURE method is applied independently on
asymmetry of the wavelet function used makes iteach band of the wavelet transform). The multiscale
good choice for edge detection, i.e. localized jumpsntropy filtering method [20], [21] (MEF) consists
The usual Haar wavelet transform, however, is af measuring the informatiohy; relative to wavelet
decimated one. We now develop a non-decimatedefficients, and of separating this into two parts
or redundant version of this transform. hs, and h,,. The expressior, is called the signal
The non-decimated Haar algorithm is thdrous information and represents the part bfi; which
algorithm described in the previous section, with ia definitely not contaminated by the noise. The

low-pass filterh equal to(%, %). See Figure 1. Hereexpressionh,, is called the noise information and

C. The Redundant Haar Wavelet Transform
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Fig. 1. Redundant Haar wavelet transform: This figure shows which staps of the input signal are used to calculate the last wavelet
coefficient in the different scales.

represents the part df,,; which may be contam- sparse representation of the information contained
inated by the noise. We havky, = h, + h,. inthe decomposition is the key to addressing this.
Following this notation, the corrected coefficient After some simulations and for theoretical reasons
should minimize: that will become clear, the wavelet and scaling
- - - function coefficients that will be used for the pre-
J( ;) = hs(w; — ;) + @b () —wp) - (11) diction at timeN +1 have the formw; ;1) and

where w,, is a prior (, = 0 in the general c;y_,s (1) for positive values of, as depicted in
case). l.e. there is a minimum of information in th€igure 2. Note that for eaclV this subgroup of
residual {v;—w,) which can be due to the significantoefficients is part of an orthogonal transform.
signal, and a minimum of information which could
be due to the noise in the solutioi,. _ B. Stationary Signal

In order to verify a number of properties, the
following functions have been proposed floy and
h, in the case of Gaussian noise [21]:

Assume a stationary signdf = (Xi,...,Xy)
and assume we want to predigiy ;. The basic
] idea is to use the coefficients; y_s(,_1) for k =
ho(w;) = 12/ g erf<| wj | _“> du L...,Ajandj =1,....J ande;n o1y for k =
05 /0 \/§aj 1,..., Ay (see Figure 2) for this task.
1 flwl | w; | —u We focus on an autoregressive type of prediction,
ho(wj) = g/o u erfc (\@U) du12) pyt generalization to virtually any type of prediction
_ _ ! I is not difficult.

Simulations have shown [20] that the MEF peocq)l that to minimize the mean square error, the
method produces a better result than the Stand%We-step forward prediction of an AR process is
soft or hard thresholding, from both the visug}ien Xy =30, X n— (1), Whered, is an
aspect and PSNR (peak signal to noise ratio).  ,ctimated weight,

The next section will describe how prediction ., qrder to use the wavelet decomposition, we
can be achieved using the wavelet coefficients, a dify the prediction to give AR multiscale predic-
section IV will show how the MEF filtering can US&;qn (MAR):
this prediction.

J A
[1. PREDIC.:TION USINGMULTISCALE MODELS Xyor = Z Z B 0523 o)
A. Introduction j=1k=1
In this section, we use the above decomposition A
of the signal for prediction. Instead of using the + (7 41,kCIN—27 (k1) (13)
vector of past observation¥ = (Xi,..., Xy) to k=1
predict Xy, we will use its wavelet transform. where the setl’ = {w,...,w,,c;} represents the

The first task is to know how many and whichHaar a trous wavelet transform ok. l.e., X =
wavelet coefficients will be used at each scale. E}’:l w; +cy.
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Fig. 2. Wavelet coefficients that are used for the prediction of the relxev Redundant Haar wavelet transform used.

Figure 2 shows which wavelet coefficients arpast values of the series.
used for the prediction usingl; = 2 for all  This choice is an extremely important point in
resolution levelg, and a wavelet transform with fivethe proposed algorithm and we differ here from
scales (four wavelet scales + the smoothed signdi)9], where these authors use all the coefficients
In this case, we can see that only ten coefficients e n_ (1) andey v k-1 (N0 lagging) fork running
used, including coefficients that take into accoufiom 1 to a given valuek. The idea of lagging on
low-resolution information. This means that longthe other hand is the same as in [14], although we
term prediction can easily be introduced, eithesan note a few differences relative to the algorithm
by increasing the number of scales in the wavelgt [14]: there the values of thel; are bound and
transform, or by increasing the AR order in the lasixed to be of the forn2’—7 but soft thresholding is
scales, but with a very small additional number aficluded in the algorithm. Finally a referee proposed
parameters. to view the selection of coefficients as a problem of
The choice of using lagged wavelet coefficient®odel selection. This is an interesting idea that is
(every other coefficient on the first scale, each fourthorth pursuing, but our objective is to provide an
coefficient on the second scale, and so on) is bassby and very fast algorithm for the prediction, since
both on simulation results that tend to show th#twill be included in a more complex structure for
this schema gives quite good results, and onfiliering.
few theoretical results. We will now look at these To further link this method with prediction based
reasons in more detail. on aregular AR, note that if on each scale the lagged
The first reason is completeness: if we let atioefficients follow an ARA;), the addition of the
the A; grow, the selected coefficients form an omredictions on each level would lead to the same
thogonal basis for all the past values, so for largeediction expression 13.
A;, these coefficients are just sufficient to convey If we use the linear form given in expression
all the information on the series. If the series hds3 for prediction, then the theory of autoregressive
some Markov property (i.e. best prediction can beodels can be applied here. This means that ac-
achieved knowing only a finite number of pastording to [4] (Theorems 8.1.1, 8.1.2, 8.10.1 and
values, like e.g. the case of AR processes), then f0.8.2), the estimating of the parameters, by
a finite value for theA;, the selection coefficientsMLE (maximum likelihood estimation), by Yule-
can achieve the optimal prediction. Walker, or by least squares, has the same asymptotic
The second reason is parsimony. As stated, t@#iciency. In our programs, to estimate tig =
selected coefficients are part of a basis, but the a{m;,j = 1,... J+1} unknown parameters, we used
is to select through the choice of thg just enough the least squares approach: we minimize the sum of
so that we have the minimum number of coefficiengsjuares of the differences between the prediction as
to ensure a good prediction, with the proviso thét expression 13 and the actual valig,; over all
we have as few coefficients as possible to estimadfe values ofN in the training sample time.
(variance-bias trade-off). These coefficients can beThe AR order at the different scales must now be
viewed as parsimonious summary statistics on thefined. A global optimization of alll; parameters



. : data best AR best MAR
would be the ideal method, but is too computer order stderr| order std.err

intensive. However, by the relative non-overlapping ~Fin. futures 1 139613 1,1,1  13.8951
frequencies used in each scale, we can consider Internet| 10 1,019,880] 1 (5x) 1,010,330

selecting the parameter$; independently on each TABLE |
scale. This can be done by standard methods, bas&@ber seLECTION AND STANDARD ERROR ON TEST SAMPLE OF
on AIC, AICC or BIC methods [18]. DIFFERENT METHODS ON REAL DATASETS

C. Non-linear and Non-stationary Generalizations

This Multiresolution AR prediction model is ac-nq ;s (or about 4 years’ data). Modeling and fore-
tually linear. To go beyond this, we can imagingasting of web site accesses [2], just as for other
using virtually any type of prediction, linear or NONy4ternet traffic [1], [23], is important for perfor-

linear, that uses the previous dalav,...,Xn—, mance evaluation, and for preemptive performance-
and generalize it through the use of the Coeﬁ|C|er§§pp0rting options such as caching and prefetching.

. < Ni : : : .
wjie Andeyy, < N instead : Evaluation on this data used the first half of the
One example is to feed a multilayer perceptrgn

: - time series as training data, and the second half
neural network with these coefficients and ¢ as o
: . as test data. In all cases, the BIC criterion was
inputs, use one or more hidden layer(s), and obtaln ) . :

: used for model selection. A simple autoregressive
Xnyy1 as the (unique) output, as has been done in

[15]. In this case, a backpropagation algorithm Camodel was used, with AR(10) selected as best. The

be used for the estimation of the parameters prediction error, given by the standard deviation, on

We can also think of using a model that aIIOWtshe evaluation part (second half) of the time series
. : was 1,019,880.
for some form of non-stationarity. For example we

could use an ARCH or GARCH model on each Next, a multiresolution autoregressive model was

scale to model the conditional heteroscedasticitf€d- An MAR(1) model gave the best fit. The
often present in financial data. prediction error, given by the standard deviation, on

Finally, if we stay with the linear MAR, it is easythe evaluation part (secor_ld half)_ of the time series
to change slightly the algorithm to handle signdfas 1,010,330, therefore improving on the best AR
with a piecewise smooth trend. We show in [16f]t’ AR(10).
how to extend this method, and to take advantageOther examples and an extended simulation study
of the last smooth signal to estimate it. can be found in [16].

D. Assessments on Real Data

Using financial futures, we used a set of 6168. Conclusion on Prediction
highs. The first half of the time series was taken
as training data, and the second half as test dataThis prediction method, that is a very flexible
Using BIC, the best AR model was an AR(1) modeprocedure, permits capturing of short-range as well
giving a standard deviation error on the test set aé long-range dependencies with only a few pa-
13.9613. The best MAR model, again based on Bl@&ameters. In its simplest form this method is a
was MAR(1), in line with the illustration of the generalization of the standard AR method: instead
Haara trous transform in Figure 2. In this case, thef a linear prediction based on past values, we use
standard deviation error was 13.8951 for a 2-scaelinear prediction based on some coefficients of
wavelet architecture. the decomposition of the past values. Our proposed

In another setting, we took web site accessengthod can easily be extended to generalize more
measured as numbers of bytes per hour, from sophisticated methods such as GARCH. The con-
active web site (run by one of the authors in theept is very simple and easy to implement, while
1990s). The first three values were: 2538, 5554e potential is clear. We will see in the following
14691. The last three values were 9152, 4383 tw the prediction approach can be extended to the
416421. Data was gathered for 34,726 successogse of noisy data.



IV. FILTERING USING THE MULTISCALE past values € E(xyi1|y1,...,yn)) and fyiq is
PREDICTION the best filter in the sense that it minimizes the
A. Introduction mean square error given all values up A0+ 1

. . = E(xyi1|y1,--.,y~n+1)). If the errors are not
. In this section, we show how to execute the pr >aussian, the estimators are optimal within the class
diction and filtering in the wavelet domain to tak%

advantage of the decomposition. We will consider]c linear estimators, see [11].
9 P ) Under Gaussianity of the errors,f,, 7; and>,

stochastic signals measured with an error noise.. , . only up to a given number of param-

Therefore the type of equations that are believed é?ers the maximum likelihood of the innovations
drive the signal can be expressed as the followi ’

tand t i tions: "Wn be stated and either a Newton-Raphson or an
measurement and transition equations. EM (expectation-maximization) algorithm can be

YN+l = ZN1XN41 + VN4l (14) used to minimize the likelihood which is severely
) non-linear in the unknown parameters, and gives
xn+1 = function(xy) + en1, (15) estimates for these parameters.

where thev, are IID N (0,%,), the ¢ are zero- B. Filteri
mean noise, and the, are independent of the. =~ ' o9 N
The procesgx;} has a stochastic behavior, but we In this work we propose a method similar to the
measure it only througHy,}, which is essentially Kalman filter but that allows two generalizations on
a noisy version of it. Data that seem to follow thighe type of equation that can be treated. The first one
kind of equation can be found in many differeni to allow for different functions in the transition
fields of science, since error in measurement is mdgt@uation 15. The versatility of the wavelet transform
the rule than the exception. The aim is clearly to befd the freedom to choose the prediction form
predict the future value of the underlying procesdlow for very general function approximation. The
xn+1, based on the observed valugs second generalization is to allow the noise of the
Solving these equations and finding the best prgansition equatior; to be non-Gaussian and even
diction and the best filtered value at each time poitft have some very large values. Using multiscale
seem difficult and computer intensive. However ifintropy filtering, these cases will be detected and
a special case of equations 14 and 15, the Kalmié# filtering will not be misled.
filter gives rise to an algorithm that is easy to Like in the Kalman filter, we define a recurrence
implement and that is very efficient, since the futui@cheme to obtain the predicted values and the fil-
predicted and filtered values are only based on tfed values. This allows us to have a fast algorithm
present values, and depend on the past values ot does not have to recompute all estimations at
through a pair of matrices that are updated at ea@@Ch new value. However, the recurrence equations
time point. This method supposes in addition to tH’é!" not be linear as in the Kalman filter and they_
previous equation thaty 1 = T Xy +en1, that Will not_be base_d on the values ther_nselves, but will
both errors are Gaussian, are N/(0,X,) ande, are be carried out in the wavelet domain.
N(0,%,), and thatZ, %,, T, and ¥, are known. For notational convenience, we present our
The Kalman filter gives a recursive construction gféthod for a simplified equation whese is uni-
the predicted and filtered values which has optim@imensional andz, is equal to 1 for allt < N.
properties. The predictegh) and filtered ) values For the prediction part, instead of using the vector

of xy.1 are given by the coupled recurrence: ~ Of past filtered valued = (f;,..., fx) to predict
pni1, @S in 16, we will use its wavelet transform.
Pyl = Inafy (16) It has been shown previously that the wavelet

and scaling function coefficients that must be used
for the prediction at timeN + 1 have the form
where Ky is the gain matrix that is also given byw! _,,, , ande} ,,, , for positive values of

a recursive scheme and dependsfn {, ¥, Tyy+1 k. Given the wavelet decomposition of the filtered
andy, (see [11], [17]). Ifv, ande;, t < N +1, are values f;,, w/ and ¢/, we predict the next value
Gaussianpy 1 is the best prediction in the senséased on the Multiresolution Autoregressive (MAR)
that it minimizes the mean square error given threodel

fni1 =pyvi1 + Envii(Yver — Zyvsipn+) (A7)
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w: wr;
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PN+1 = Zz&j,kwizv—ww—l) @l N Tv
j=1k=1 f —wP
Ao AR, Wi N1 — WiNt1 (19)
+ Z dJ+LkC§,N—2J(k—1) (18) e
k=1

and similarly for the smooth arra;{,wﬂ. The coef-

ficient w{NH must be close to the same coefficient
for the measured signaland at the same time close
to the predicted valuevy y,,. Since the standard

supposed process that generated the data, we %E{Rrs of the g%isef ande; 'r? equations §4 g_nd ts h
imagine other prediction equations based on thes e very different, we have to standardize bot

coefficients, like Multiresolution Neural Networkd!feTences in 19. Note thak plays the role of the
(MNN), Multiresolution GARCH, and so on trade-off parameter between the prediction and the

This first part of the algorithm has th IneW value. This can be viewed as the thresholding

IS 'f[.s palr6°f ?ha g|2n| m ?’Tt € égme ;ﬁ(’?onstant in the regression context. Having obtained

as equation or the ralman hiter. LSVen Mg, e fitered coefficients for all scales, we can simply
filtered values up to timeV , f;,, t = 1,..., N,

nd its Haara tr et transform! . for recover fy,1 with equation 8.
and 1ts Haara Qus wavelet tra S? Moj 10 This algorithm with the Multiresolution AR is of
t=1,...,Nandj =1,...,J, and¢), for t =

it the same complexity as the Kalman filter, since the

l,...,N, we use the wavelet decomposition Af 3 toys transform is of linear order. If one considers
to predict the next valupy .. The difference with we nymber of scales as a (necessarily logarithmic)
Kalman is the form of the prediction: it is based,nction of the number of observations, an addi-
on th_e mul_tiresoluti(_)n decomposition and might bg, | factor oflog(N) is found in the complexity.
non-linear if so desired. The key to this lies in the fact that we do not

For the second part of the algorithm, like theecompute the entir@ trous transform off, p or
Kalman filtering equation 17, we will compare the, each time a new value is added, but we compute
observed valugy,, and the predicted valugyv.1, only the.J+1 coefficientsw;, for j =1,...,.J and
but in the wavelet domain. From the predicted Va|L@’t at a given timet. If one uses a more complex
pn+1 We decompose in the wavelet domain (with prediction scheme, like a neural network, then the
some of — the previous filtered values upftg) to complexity of our algorithm is driven by this pre-
obtain theJ +1 coefficientsw} ., for j =1,...,J diction algorithm. The proposed algorithm is also
andc} v, For the filtering part, we first decomposgimple, thanks to the Haar transform (equations 8,
the new observationy,, in the wavelet domain 9 and 10) which is especially easy to implement.
(using also the previous observationg to obtain  The estimation of the unknown parameters fol-
the J + 1 coefficientsw] v, for j =1,...,J and |ows the same lines as for prediction, although the
CZ,N-H' estimation of the noise levels is known to be a more

Informally, the Kalman filter computes a filteredlifficult task. The key to the performance of the
value fy 1 on the basis of the predicted valpg,; method in the pure prediction case was to allow
and corrects it only if the new observation is fait to adapt the numberd; of coefficients kept at
from its predicted value. Here we work on theach scale for the prediction. This was done using
wavelet coefficients and we will also set the filtered penalization criterion such as BIC. We believe
value as close to the predicted value, unless ttit it is important to do exactly the same in the
prediction is far from the actual coefficient. To carrfiltering framework. We refer to Section Ill for these
out the compromise, we use the multiscale entropgrameters. The estimation @f, o. and \ is more
given in expression 11, and tailor it to the situatiorelicate, and in our programs, we leave the choice to
The wavelet coefficient of the filtered value will behe user either to provide these values or to let them
the one that satisfies be estimated. Of course, when the true values for

where the setV = {w!,... w) ¢/} represents
the Haara trous wavelet transform of, and we
have: f = °7_ w! + ¢/. Again, depending on the



the standard deviations are known independentlyattainable best filter. SecondEstim.Kal which
the method is more effective, but we note that evés a Kalman filter that has been fed with the true
if the algorithm over- or underestimates these valuAfk orderp but we have to estimate the values of
up to 50%, performance is still good. ¢;, 0. ando,. This is done through the likelihood of
First, the optimal\ is strongly related to thethe innovations [17]. It is well known that the most
two standard deviations, and more precisely to thaiifficult parameters to estimate are the estimates of
ratio. In our simulations, we setto be0.10,/0.. both variabilitess, and o,. So the third method
The leading parameter hereds, since it drives Est.AR.Kal is again a Kalman filter which has been
all the smoothing, and once this parameter has bded with p, o, ando,, and has only to estimate the
set or estimated, the procedure proceeds as in the Note that these three Kalman methods are fed
prediction case. If the program has to estimate thigth the true ordemp. If they had to select it via a
parameter, a grid of 30 different values foy is criterion, we could expect significant deterioration
tried, from zero to the standard deviation of thi@ their performance. The fourth methd@bser is
observed datg. The resulting models are comparethe simplistic choice not to do any filtering and to
on the innovation error and we select the one thatovide y;, as being the best estimate foy. If a
minimizes the error. We could use a more complerethod gives results that are worse th@bser,
algorithm that refines the grid close to the minimal has clearly missed the target. It is however not
values, but we do not believe that this will improvan easy task when, is small. The last approach,
the model in a significant way. On the contrary, willultiRes, is our proposed method, with 5 scales as
have found that this method is relatively robust tim prediction, and with the level of the measurement
the parameter estimation and that there is an intervalise that is given. So, contrary to the three Kalman
of values that leads to the same standard deviatiidters, the method is not fed with the true order,

of error. but has to select it levelwise with the BIC criterion.
However, likeEst.AR.Kal, the method is fed with
V. SIMULATIONS T

The 50 series are of length 1000 and the first
500 points are used for training and the last 500 are
In this section, we use a Monte-Carlo study tased to compare the standard deviation of the error
compare the proposed filtered method with the relgetween the filtered and the true values. A boxplot
ular Kalman filter. The first two simulation studiegjives in the center the median value for the response
have models where Kalman is known to be optimand the box contains 50% of the responses, giving
The aim is to see whether the multiresolution aan idea of the variability between the samples.
proach is able to get close to this “gold standard” iHence the best method is the one for which the
this special case. The second part uses a much mieogplot is the most stumpy and compact.
difficult model (ARFIMA plus noise) where Kalman For Figure 3 the AR order ig = 2 with parame-
is not optimal any more. We will be interested iter¢’ = (0.5, —0.7). The noise levels are as follows:
the deterioration of performance of both methodsfor subplot (a)o. = 1 and o, = 1, for subplot (b)

In the first case, we generated procedsg€g that 0. = 1 and o, = 0.4, for subplot (c)o. = 1 and
follow a causal AR process of ordgy which means ¢, = 0.1 and finally for subplot (dy. = 0.4 and
that they satisfyX;, = ;. X1 +--- + ¢, Xs—, + &. o0, = 1. In all cases, thdrue.Kal method should
We measure onlyy; which is a noisy version of be the best one. In addition, in case (c) where the
this processY; = X; + v;. Both noises are takenmeasurement error is very small, the sim@lbser
to be Gaussian, i.€e;} are N'(0,0%) and {v,} are should be competitive or even difficult to beat. This
N(0,02). For any value ofp this process can beis in fact the case. In addition, the proposed method
written in the Kalman form of equations 14 and 19ViultiRes has standard deviations of the errors al-
with a p-dimensionatx; [11]. most as good as the oracultue.Kal, and is very

We compare 5 different filtering algorithms. Firstcompetitive withEstim.Kal andEst.AR.Kal, which
True Kal is the oracular Kalman filter that has beeare both based on the correct Kalman filter but have
fed with the true values of all parameters: the AR estimate some parameters.
orderp and the values of;, 0. ando,. This is the  The second simulation, the results of which are

A. Experiment 1
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Standard Deviation of Error for AR(2) + noise (a) Standard Deviation of Error for AR(2) + noise (b)
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Fig. 3. Boxplots of the standard deviation of the error for an AR(2) plisenmodel. The noise levels ase = 1 ando, = 1 for (a),
o. =1 ando, = 0.4 for (b), o =1 ando, = 0.1 for (¢) ando. = 0.4 ando,, = 1 for (d). The proposed methddultiRes is compared
with three versions of Kalman filtefrue.Kal, Estim.Kal and Est.AR.Kal, and to the naive filteringdbser. Although this framework is
optimal for the Kalman filter, the proposed method is very competitive.
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Fig. 4. Same setting as that of Figure 3, except that the model is AR(4)nglise. Depending on the noise levels, the proposed method
is either as good as or even better than the Kalman methods that have taestifea parameters.
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shown in Figure 4, is an AR) plus noise, with variety of processes.
parameter sep’ = (0.5, —0.5,—0.1,0.3). The stan-
dard deviations for both noises are the same four .
couples as for Figure 3. As expected agamie.Kal ~ Experiment 2
is the best, but unattainable, method. However, Previous experiments focused on the determin-
since the number of parameters to estimate héséc part of the underlying process and showed
has increased, we see a major deterioration in tigt the proposed method is quite flexible. We now
performance oEstim.Kal in three out of four cases,turn to the stochastic part, the process eroand
(a), (b) and (d). This deterioration takes the form show that here again the proposed method is more
a much wider range of errors (large boxplot) anitexible.
of an average performance that is poorer (higherRecall that the Kalman filter is designed for Gaus-
center of the boxplot)Est.AR.Kal performs well sian error for both the process and the measurement
except in case (d) where the process noise is smadise. This explains that the best filtered value, as
o. = 0.4. It is remarkable that the proposed methoghown in equation 17, is a linear combination of
MultiRes works well in all cases and still hasthe predictionpy,; and the observed valugy .
compact boxplots and therefore consistently godda huge value in the process noise arrives, and
results. It shows that this method adapts easily b@ence an observed value very different from the
different orders of the underlying process and farediction, the Kalman filter will still achieve a
different values for both noises. trade-off, and therefore be off target in the predicted
The last type of signal (Figure 5) is a fractionaknd the filtered values for a few events after this
ARIMA (1,0.49,0), with parameteky; = —0.5 and burst (see Figure 6).
with a unit Gaussian innovation. The measurementThe proposed method does not use a linear com-
error standard deviation is, = 1 for subplot (a), bination between the observed and predicted value
o, = 0.4 for subplot (b) andr, = 0.1 for subplot but uses a more sensible non-linear and adaptive
(c). Our software does not allow us to vary thecheme through the multiscale entropy filtering,
process noise level in this case, so we were not aBen in expression 19. Informally, it acts as a
to simulate the equivalent of subplot (d) of the twthreshold towards the predicted value (whereas the
previous graphs. This type of process is more chéiweshold is towards zero in the regression context).
lenging to filter, since it is an example of so-calletience if the difference between the observed and
long memory orl/f process. It cannot be put in ahe predicted values is larger than expected the
Kalman filter form, so there is no oracul@mue.Kal. filtered wavelet coefficients will be quite close to
However, we still can estimate the parameters oftlae observed value. If the difference is smaller,
Kalman filter that best approaches this model. Thike wavelet coefficient will be a larger compromise
has been done fdEstim.Kal andEst.AR.Kal, with between them. (See equations 11 and 12.)
an AR(4) plus noise structure. These are not optimalAn illustration of this difference between Kalman
in the statistical sense. As in the two previous casdifter and the proposed method is given in Figure 6.
the proposed methollultiRes can select the orderThe process and measurement is exactly the same
on each scale with a BIC criterion. The boxplots ias for Figure 3(a), that is to say an AR(2) plus
Figure 5 depict the results, and we see MattiRes noise model. The only difference is that at the 700th
convincingly outperforms all other methods, whickime point, the process noise was increased by an
is again a demonstration that it can automaticalgmount of 10 units. We can see the underlying (not
adapt easily to a wide range of processes. observed) procesState and the measured values
In conclusion, the proposed method seems to &dser around time 700. The Kalman filter that has
very adaptive to the underlying process of the tygmeen fed with all the true values for the parame-
of model considered. Equation 15 stated loosely thats (except this burst) is also depicteltue.Kal)
xv4+1 Must be some function of the past. Contrary @nd we see that it does not follow the very large
the Kalman filter that is designed (and optimal) foobserved value at time 700 but goes only half way.
a very special form for this function, the multiresAt time 701 it has still not joined the large value,
olution approach, empowered with the multiscalend only when the series changes sign it comes back
entropy filtering, can accommodate a much widetoser to process and observed values. The estimated
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Standard Deviation of Error for FRAC + noise (a) Standard Deviation of Error for FRAC + noise (b)
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Fig. 5. Same setting as that of Figure 3 (a), (b) and (c), except thantdel is a fractional AR plus noise. It is known that here the
Kalman filter is not optimal any more, and its performance deteriorates awh@reas the proposed method is adapted to the nature of the
process and gives very good results.
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Fig. 6. Behavior of the same methods as in Figure 3 in the case wherestahlppens at time 70&tate is the unobserved process that
has to be estimated. The proposed methadtiRes reacted correctly to the burst and stays close to the state values, wiezd@alman
methods are off target at time 700 and 701.

Kalman filter Estim.Kal has very similar behavior. On the other hand, the proposethadeMul-
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tiRes detects immediately that something strangmefficient per scale and gives a standard error on
has happened at time 700, and decides to folldhe second part of the data of 89,217, which is a
the observation and not to take into account ti®% improvement. Moreover, even if we provide
prediction. As a result, the proposed method, evéor the measurement noise a value from 50,000 to
if it does not know the equation of the process ar800,000, the standard error does not increase by
even if it has to estimate some parameters, didn@re than 1%, which shows that the method is quite
much better job than the Kalman filter that does nabbust.
even have to estimate any parameters. Note that the above values cannot be compared
with the value in the prediction section. Indeed, in
the filtering case the value to be predicted is not a
future value, but the actual value of the unobserved
Assessing the quality of different methods on reglate time series.
data is more complicated than in the pure prediction Finally, since the data are very asymmetric, we
case of section Ill. The problem resides in the faglso wanted to test the different methods on the
that we want to compare the filtered values with th@garithm of the data. The log values look quite
underlying state time series, which is unknown fa§ymmetric and Gaussian, and maybe more suited for
real data. To circumvent this difficulty, we providgnhe Kalman filter. In this case, we added a Gaussian
to the algorithms the real data time series perturbg@ghite noise of unit standard deviation. Taken on the
with Gaussian white noise. Of course, the criterigacond half of the data, the standard deviation of
for each method will be the standard deviation @he difference between the observed data and the
the difference between the filtered values and they) (log) data is 1.00017. The best Kalman (with
original, unperturbed real values. the standard error of both noises provided) is an
data|  Obser| best ESLAR Kal VAR AR(4) and_ has an error of 0.954. With a fixed 5-
stderr| order  stderrl order stder| SCale architecture, our proposed method has an error
Internet | 100,140 7 99379 1 5x) 89,217 of 0.873, again improving on the foregoing results.
log(Internet) | 1.00017 4 0954 1(5x) 0.873] Additionally, the results are robust to the provided
TABLE I standard error of measurement: the error varies less
STANDARD ERROR OF FILTERING ON TEST SAMPLE oF piFrerent than 2% for the range of values between 0.5 and 3.
METHODS ON REAL DATASETS

C. Experiments with Real Data

VI. CONCLUSION

We first compare the methods on the web site We have presented in this article a new method
access data, as described in subsection IlI-D. W the prediction of time series and for filtering
added to the data a white Gaussian noise witinocesses that are measured with noise. It is based
standard deviation of 100,000. The first half obn a special (overcomplete) wavelet decomposition
the data is for training and the second half fasf the signal called thé& trous wavelet transform.
testing. If we do no filtering at all and use thén the case of prediction, virtually any prediction
observed data as our best guess (caleder in the scheme can be adapted to the multiresolution rep-
simulations), the standard error on the second halfresentation induced by the transformation, but even
the data is 100,140 (close to 100,000, as expectedijth the simplest scheme of all, the autoregressive
Any method that does better than that improves tiheodel, this method is able to capture short and long
filtering. The best Kalman filter that was found wasiemory components in an adaptive and very effi-
fed with the true standard deviation of both noisesent way. In the filtering case, the same prediction
(called Est.AR.Kal in the simulations). It is an scheme can be used and the use of multiscale en-
AR(7) and gives a standard error on the second padpy filtering instead of the usual trade-off inherent
of the data of 99,379, improving slightly the nonin the Kalman filter is powerful and has several
fillered data. Fixing the number of wavelet scalemivantages. This method is competitive in the cases
to five, and providing the value of the standardhere the Kalman filter is known to be optimal, but
deviation of the measurement noise (100,000), thes much more useful when the transition equation
proposed multiresolution method selected only om® not linear any more. Moreover, the multiscale
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entropy filtering is robust relative to Gaussianity 2] M. Vetterli and J. Kovéevic. Wavelets and Subband Coding
the transition noise. Prentice Hall PTR, New Jersey, 1995.
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