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Abstract

We suggest a simple phenomenological parametrization for all three deuteron electromagnetic

form factors, and show that a good fit on the available data, with a minimal number of parameters,

can be obtained. The present description of the deuteron electromagnetic structure is based on

two components with different radii, one corresponding to two nucleons separated by ≃2 fm, and

a standard isoscalar contribution, saturated by ω and φ mesons, only.
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I. INTRODUCTION

The electromagnetic structure of hadrons is characterized by a set of electromagnetic form

factors (FFs), which are functions of one variable, the four momentum transfer squared, Q2.

Since the pioneering work of Hofstadter [1], a large number of experimental data have

been collected about hadron electromagnetic FFs, especially in the space-like region. It is

important to note that a relatively simple phenomenological parametrizations can be found

for the description of the Q2 dependence of different FFs, despite the possible complicated

dynamics which determines the hadronic electromagnetic structure. Therefore, even without

a complete understanding of the internal structure of the hadrons, simple analytical formulas

have been suggested for the hadronic FFs.

For example, in case of charged pion, the corresponding FF, Fπ(Q2), can be written as:

Fπ(Q2) = (1 + Q2/m2
ρ)

−1, (1)

where mρ is the ρ-meson mass, and Q2 ≥ 0 in the space-like region.

Similar formulas have also been suggested for FFs of the electromagnetic transition γ +

γ∗ → P 0, P 0 = π0, η, η′ and ηc:

FPγγ∗(Q2) = FP (0)(1 + γQ2/m2
P )−1, (2)

where mP is a fitting parameter, which depends on the type of pseudoscalar meson.

For a long time, the nucleon electromagnetic FFs have been described by a very simple

form:

GEp(Q
2) = GMp(Q

2)/µp = GMn(Q
2)/µn = [1 + Q2 [GeV2]/0.71]−2, GEn(Q2) = 0, (3)

where µp = 2.79(µn = −1.91) is the magnetic moment of proton (neutron). But the last

experiments at the Jefferson laboratory, using the polarization transfer method [2], showed a

large deviation from parametrization (3) and the proton electromagnetic FFs have, instead,

the following behavior [3]:

µpGEp(Q
2)/GMp(Q

2) = 1 − 0.13(Q2 [GeV]2 − 0.04). (4)

The experimental data about GEn(Q2), obtained from quasielastic scattering of longitudi-

nally polarized electrons by a polarized deuteron target, ~d(~e, en)p [4], and from the mea-

surement of the neutron polarization in d(~e, e′~n)p [5], show, indeed, that GEn(Q
2) 6= 0, with
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the following parametrization [6]: GEn(Q
2) = −ηGMn/(1 + 5.6η), with η = Q2/(4m2), and

m is the nucleon mass.

Note that the analysis [7] of all existing experimental data concerning elastic electron-

deuteron (ed) scattering - the structure functions A(Q2) and B(Q2) and the deuteron tensor

polarization - in framework of the impulse approximation, leads to comparable values of

GEn(Q
2) and GEp(Q

2) at relatively large momentum transfer, Q2 ≥ 2 GeV2.

Next in the list of simple parametrizations of hadronic electromagnetic FFs, we can

mention that the magnetic FF for the transition N → ∆(1232), J P = 3/2+ can also be

parametrized in a simple form [8]:

GN∆(Q2) = GN∆(0)(1 + Q2/m∗2)−2, m∗2 ≤ 0.71 GeV2. (5)

Finally, the nucleon axial FF, GA(Q2), for the transition W ∗ + p → n (W ∗ is the virtual

W -boson), can be described by the following simple formula [9]:

GA(Q2) = GA(0)(1 + Q2/m2
A)−n (6)

with mA = 1.06 GeV, if n = 2.

These simple parametrizations are very useful for the discussion of different processes of

elastic and inelastic scattering of electrons on nuclei at high energies. Nevertheless, these

parametrizations can not be considered a complete and precise description of the hadronic

electromagnetic structure in the full region of momentum transfer (space-like and time-like

region as well). An evident example is that the parametrizations (3) and (4) suggested

for the description of the nucleon structure in the space-like region, violate the relation

GEn(Q
2) = GMn(Q2), at Q2 = −4m2, i.e., at the threshold of the annihilation process

e+ + e− → N + N .

To avoid this and other problems, in Ref. [10] (updated in Ref. [11]), another parametriza-

tion of nucleonic FFs has been suggested, which can be extended in the whole region of

momentum transfer squared. The basic idea of this parametrization is the presence of two

components in the nucleon structure, with different radii: the intrinsic structure, with ra-

dius ≃ 0.34 fm (updated 0.49 fm), characterized by a dipole FF (which is the same for

electric, magnetic, proton and neutron FFs) and a meson cloud, (which contains the ρ, ω,

φ contributions) different for each of the four nucleon FFs.

In this paper we generalize this two-component picture to the case of deuteron electro-

magnetic FFs, with the aim to find a simple parametrization for all three FFs, at least in the
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region where they have been completely determined, for Q2 ≤ 2 GeV2. This parametrization

should be useful in corresponding calculations of deuteron electromagnetic processes, such

as e− + d → e− + d, e− + d → e− + n + p, e− + d → e− + d + π0 etc.

Any specific additional assumption about the validity of impulse approximation, the

role and size of meson exchange currents, relativistic corrections, model (relativistic or non

relativistic) of deuteron structure etc. is not needed. Instead, we parametrize the three

deuteron FFs in a simple form, with a small number of parameters, normalized for Q2 = 0

to the electric charge, the magnetic moment and the electric quadrupole moment of the

deuteron. In order to decrease the number of independent parameters, we will use the

experimental constraint of the position of the node for the electric and magnetic FFs.

II. FORMALISM

The matrix element for ed elastic scattering, for the one-photon approximation, Fig. 1,

can be written as:

M =
e2

Q2
u(k2)γµu(k1)Jµ(d), (7)

where k1 and k2 are the four momenta of the initial and final electron, and Jµ(d) is the

electromagnetic current of the deuteron. Applying the conservation of this current, the P

and C invariance of the electromagnetic interaction of hadrons, we can write Jµ(d) in the

following general form [12]:

Jµ(d) = −
{

G1(Q
2)(U∗

2 · U1)(p1 + p2)µ + G2(Q
2)[U1µ(U∗

2 · q) − U∗
2µ(U1 · q)]− (8)

G3(Q
2)

1

2M2
(U1 · q)(U∗

2 · q)(p1 + p2)µ

}

,

where p1(U1) and p2(U2) are the four momenta (polarization four vectors) of the initial and

final deuteron, and the polarization four vectors satisfy the condition: p1 · U1 = p2 · U2 = 0,

M is the deuteron mass.

The deuteron invariant form factors Gi, i = 1 − 3, are related to the charge, quadrupole

and magnetic FFs by:

Gc = G1 +
2

3
τG2, Gm = G2, Gq = G1 − G2 + (1 + τ)G3, τ =

Q2

4M2
. (9)

The differential cross section for elastic electron deuteron scattering can be expressed in

terms of two structure functions, A(Q2) and B(Q2), which depend on the three electromag-
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netic FFs:
dσ

dΩ
= σM

[

A(Q2) + B(Q2) tan2

(

θ

2

)]

, (10)

where σM = α2E ′ cos2(θ/2)/[4E3 sin4(θ/2)] is the Mott cross section. Here E and E ′

are the incident and scattered electron energies, θ is the electron scattering angle, Q2 =

4EE ′ sin2(θ/2) is the four-momentum transfer squared and α is the fine structure constant,

α = e2/4π = 1/137. The elastic electric and magnetic structure functions A(Q2) and B(Q2)

are written in terms of the charge, quadrupole and magnetic FFs Gc(Q
2), Gq(Q

2), and

Gm(Q2) as:

A(Q2) = G2
c(Q

2) +
8

9
τ 2G2

q(Q
2) +

2

3
τG2

m(Q2), B(Q2) =
4

3
τ(1 + τ)G2

m(Q2). (11)

In order to determine the three FFs, one needs another observables, usually the compo-

nent t20 of the tensor polarization of the recoil deuteron, in an unpolarized collision, which

contains the following combination of the three FFs:

t20 = − 1√
2S

{

8

3
τGcGq +

8

9
τ 2G2

q +
1

3
τ
[

1 + 2(1 + τ) tan2(θ/2)
]

G2
m

}

,

where S = A + B tan2(θ/2). The existing data on the differential cross section [13] and t20

[14] for electron deuteron elastic scattering allow the extraction of the three electromagnetic

deuteron FFs up to Q2 ≃ 2 GeV2. This has been done in Ref. [15] where the world data

were collected and three different analytical parametrizations were suggested, with a number

of parameters varying from 12 to 33.

In general, the existing parametrizations of deuteron electromagnetic FFs contain a large

number of parameters, and are often based on analytical formulas, with poor physical con-

tent. An attempt to find a global description based on the vector dominance model, and

satisfying the asymptotic conditions predicted by QCD at large Q2, [16], lead to a twelve

parameters fit. The fit was updated including the world data on ed elastic scattering in

Ref. [15] where two other fits were suggested. One is a sum of inverse polynomial terms,

where the first node of the corresponding FFs was introduced in a global multiplicative

term. The number of free parameters, necessary to obtain χ2/ndf = 1.5, was eighteen. The

last parametrization is a sum of gaussians, with some physical constraints on the parame-

ters, which are the width and the position of the maximum of the gaussians. In total the

parametrization contains 33 parameters for χ2/ndf = 1.5.
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We suggest here a simpler parametrization, based on transparent physical content, with

a minimal number of parameters. More precisely, we extend a two-component parametriza-

tion, already successfully applied to nucleon electromagnetic FFs [10, 11] and recently to

strange nucleon FFs [10, 17], to the deuteron electromagnetic FFs.

The deuteron is an isoscalar particle, therefore, considering only the contribution of the

isoscalar vector mesons, ω and φ, one can write:

Gi(Q
2) = Nigi(Q

2)Fi(Q
2), i = c, q, m (12)

with:

Fi(Q
2) = 1 − αi − βi + αi

m2
ω

m2
ω + Q2

+ βi

m2
φ

m2
φ + Q2

.

where mω (mφ) is the mass of the ω (φ)-meson. Note that the Q2 dependence of Fi(Q
2) is

parametrized in such form that Fi(0) = 1, for any values of the free parameters αi and βi,

which are real numbers.

The terms gi(Q
2) are written as functions of two parameters, also real, γi and δi, generally

different for each FF:

gi(Q
2) = 1/

[

1 + γiQ
2
]δi

, (13)

and Ni is the normalization of the i-th FF at Q2 = 0:

Nc = Gc(0) = 1,

Nq = Gq(0) = M2Qd = 25.83,

Nm = Gm(0) =
M

m
µd = 1.714,

where Qd, and µd are the quadrupole and the magnetic moments of the deuteron.

III. RESULTS AND DISCUSSION

In Ref. [15] the existing data on ed elastic scattering, differential cross section and the

polarization observables, were reconsidered. Values of the three deuteron FFs were extracted,

for the Q2 values where t20 measurements were available, getting the values of A(Q2) and

B(Q2) from an interpolation of the data on the differential cross section. While the magnetic

FF, Gm(Q2), is directly related to B(Q2), the extraction of the charge and quadrupole FFs

requires the solution of two quadratic equations, which may lead, in some cases, to two
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possible roots. Therefore, the analysis of Gc(Q
2) and Gq(Q

2) consists in two different sets

of solutions and two corresponding fits.

The experimental data for Gc and Gm show the existence of a zero, for Q2
0c ≃ 0.7 GeV2

and Q2
0m ≃ 2 GeV2. The constraint of a node gives the following relation between the

parameters αi and βi, i = c and m:

αi =
m2

ω + Q2
0i

Q2
0i

− βi

m2
ω + Q2

0i

m2
φ + Q2

0i

. (14)

In the fitting procedure this relation allows to obtain a better description of the data and a

faster convergency, reducing the number of free parameters.

The expression (12) contains four parameters, αi, βi, γi, δi, generally different for different

FFs. We consider the region Q2 ≤ 2 GeV2, where the separation of Gc and Gq has been

done.

In principle the parameters γ and δ, Eq. (13), may be fixed by the asymptotic behavior

of the deuteron FFs, which follows from quark counting rules [18]. However, the range of

applicability of the present parametrization is a priori restricted to Q2 ≤ 2 GeV2 and this

region is expected to be far from the asymptotic region [19].

The data basis of the present study consists in the data tabulated as in Table I of Ref.

[15] 1 and completed by more recent measurements from Ref. [21].

As a result of the procedure for the extraction of the values of Gc(Q
2) and Gq(Q

2) from

A(Q2), B(Q2) and t20(Q
2), some experimental points show a large asymmetry of the errors,

which can not be neglected in this analysis. While there is still no general guide how to

treat asymmetric errors, we used two different ways to handle them. At first no asymmetry

was assumed and the average of the upper (σ+) and lower (σ−) errors was taken. Then, two

approaches recently proposed in Ref. [22] were applied. Model 1, as proposed in the paper,

assumes linear dependencies and defines the contribution to a modified χ2 as

χ2 =
∑

i

ǫ2
i

σ2
−i

, for ǫi > 0, χ2 =
∑

i

ǫ2
i

σ2
+i

, for ǫi < 0, (15)

where ǫi is the discrepancy between the i-th experimental point and the value of the corre-

sponding function. Model 2, preferred by the author, is based on a quadratic approximation.

It was not always suitable for our analysis, because, in some cases it doesn’t give real solu-

tions for the contribution to χ2.

1 The value for Gq corresponding to Q = 2.788 fm−1 should be 2.59+0.07
−0.71, instead of 2.59(±0.073) [20]
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In any case, the analysis which takes into account the asymmetry of errors (15) gives

significant reduction of χ2 in all cases, but it didn’t influence significantly the resulting

parameters of the fit, except for Gq(Q
2), where the errors on the parameters were significantly

reduced.

The results were firstly obtained with a three parameter fit β, γ, δ, and the constraint

(14) for Gc and Gm and a four parameter fit α, β, γ, δ, according to Eq. (12), for Gq.

The parameters δ and γ are similar for all FFs Gc and Gm, with good accuracy (Table

I). A change within 10% in the position of the node, slightly affects the quality of the

fit, improving in general one parametrization, while the other gets worse. The fit is quite

sensitive to the choice of initial parameters, in particular for Gq. In case of Gq, which is

not constrained by a node, a good fit can be obtained with a large cancellation of the terms

driven by α and β.

The parameters γ and δ characterize the global structure of the deuteron, and the factor

1/(1 + γQ2)δ is related to the two nucleon core of the deuteron. But the isoscalar structure

of the electromagnetic structure of the deuteron FFs, which is described by the functions

Fi(Q
2), in terms of φ- and ω-mesons contributions, is different for the three FFs, with

different sets of parameters α and β.

From Table I one can see that the parameters γ and δ are not so different for the three

FFs. This means that FFs would be mostly sensitive to the meson cloud. In order to test

this, a global fit was performed, keeping the γ and δ the same for the three FFs, and fitting

(or fixing) α and β as previously. In such fit, two solutions appear also for Gm, related to

the choice of the other two FFs.

In Figs. 2, 3 and 4, the data points used in the present fit are shown, together with

the result of this last fit (solid (dashed) lines correspond respectively to the first (second)

parametrization). Open symbols in Figs. 2 and 4 correspond to the second solution for

Gc and Gq. The values of the best fit parameters are reported in Table II. The common

parameters are δ = 1.04 ± 0.03, γ = 12.1 ± 0.5, for the first solution, corresponding to

χ2/ndf = 1.1, whereas, for the second one, δ = 1.05±0.03, γ = 12.1±0.5 and χ2/ndf = 1.5.

In Ref. [23], in order to study the behavior of deuteron FFs, in framework of QCD, a

reduced deuteron FF, fR(Q2), was defined as:

fR(Q2) =
√

A(Q2)

(

1 +
Q2

m2
0

)

/F 2
N(

Q2

4
), (16)
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α β γ [GeV]−2 δ χ2/ndf

Gc (I) 5.9 ± 0.1 −5.2 ± 0.2 13.9 ± 1.4 0.96 ± 0.07 0.8

Gc (II) 5.0 ± 0.2 −4.5 ± 0.3 11.5 ± 1.2 1.11 ± 0.09 1.2

Gq(I) 3.1 ± 1.1 −2.1 ± 1.2 7.2 ± 2.8 1.6 ± 0.5 0.5

Gq(II) 1.4 ± 2.0 −0.1 ± 2.4 7.7 ± 1.6 1.7 ± 0.4 0.8

Gm 3.78 ± 0.04 −2.87 ± 0.04 11.4 ± 0.5 1.07 ± 0.03 1.5

TABLE I: Parameters for the three deuteron electromagnetic FFs. In case of Gc and Gm, α is not

a parameter, but it is derived from Eq. (14).

α β

Gc (I) 5.75 ± 0.07 −5.11 ± 0.09

Gc (II) 5.50 ± 0.06 −4.78 ± 0.08

Gq(I) 4.21 ± 0.05 −3.41 ± 0.07

Gq(II) 4.08 ± 0.07 −3.25 ± 0.09

Gm(I) 3.77 ± 0.04 −2.86 ± 0.05

Gm(II) 3.74 ± 0.04 −2.83 ± 0.05

TABLE II: Parameters α and β obtained from a global fit of the three deuteron electromagnetic

FFs. The parameters δ and γ are the same for all form factors and in case of Gc and Gm, α is not

a parameter, but it is derived from Eq. (14).

where m2
0 = 0.28 GeV2 and FN is a generalized nucleon electromagnetic FF2.

Comparing Eqs. (12) and (16), one can identify gi(Q
2) with the term (1 + Q2/m2

0)
−1,

then one expects δ = 1 and γ = 1/m2
0. From Table 1 it appears that δ ≃ 1, but γ is larger

and corresponds to m2
0 ≃ 0.1 GeV2. The product R2 = 6γδ is related to the radius of the

two-nucleon (2N) component, and one finds: R2N=1.7 fm, for m2
0 ≃ 0.08 GeV2.

Note, in this respect, that the standard nonrelativistic description of the deuteron results

in R ≃ 1/
√

2mED ≃ 4 fm, where ED is the deuteron binding energy.

Data are not expected to be extended at higher Q2 in next future. So, the present

parametrization can not be constrained at higher Q2. Nevertheless, we compared the pre-

2 A discussion of the dependence of fR(Q2) on the choice of FN can be found in Ref. [19].
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dictions for the structure function A(Q2), which has been measured up to 6 GeV2, as well

as for the observables B(Q2) and t20 (Fig. 5). The description is good, as expected, in

the range constrained by the fit. The difference between the experiment and the suggested

parametrization visible for A(Q2) at larger Q2, depends on the parametrization used, due

in particular to the position of a second node which appears for Gc(Q
2). The individual

charge, magnetic and quadrupole contributions to A(Q2) are shown in Fig. 6, for the two

possible solutions.

The discrepancy between the data for A(Q2) and the suggested deuteron FFs parametriza-

tions can be interpreted as an indication that the region at Q2 ≥ 2 GeV2 is a transition region

from the hadronic description of the deuteron structure to the quark degrees of freedom.

Another possible source of the difficulty to extend the fit at higher Q2 may originate from

the fact that at some point, at large Q2, the one-photon approximation, that is at the basis

of the relations used here among FFs and experimental observables, and usually assumed in

electron hadron elastic and inelastic scattering, does not hold anymore. A mechanism, where

two photons, which equally share the momentum transfer squared, could become important.

A discussion of this problem, concerning precisely ed elastic scattering data, can be found

in Ref. [24].

IV. CONCLUSIONS

We suggested a simple parametrization of the three deuteron electromagnetic FFs, with

a minimal number of parameters, based on a transparent physical picture. It can be used

in the comparison of different theoretical models with experiments involving deuterons,

and for a precise analytical interpolation of the experimental points in the region Q2 < 2

GeV2. The present parametrization is based on a classical description of the deuteron

structure, in terms of hadronic (nucleon+meson) degrees of freedom. The region of Q2,

where the separation of the charge and quadrupole deuteron FFs has been done, can not be

easily extended in next future [25]. For Q2 ≥ 1.8 GeV2, polarization measurements (which

normally require a secondary scattering or a polarized target) are extremely challenging at

the present accelerators, with the present techniques of polarized targets or polarimeters

due to the steep decreasing of the cross section.

The parametrization proposed here can be considered a generalization of the model [10],
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developped for the nucleon electromagnatic FFs. As in the nucleon case, the considered

parametrization obeys, by construction, to the analyticity properties of FFs and can be

extended to the time-like region. This is the object of a forthcoming work.
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[20] J. Ball, M. Garçon, private communication.

[21] D. M. Nikolenko et al., Phys. Rev. Lett. 90 (2003) 072501.

[22] R. Barlow, eConf C030908, WEMT002 (2003) [arXiv:physics/0401042].

[23] S. J. Brodsky and B. T. Chertok, Phys. Rev. D 14, 3003 (1976); Phys. Rev. Lett. 37, 269

(1976); S. J. Brodsky, C. R. Ji and G. P. Lepage, Phys. Rev. Lett. 51, 83 (1983).

[24] M. P. Rekalo, E. Tomasi-Gustafsson and D. Prout, Phys. Rev. C60, 042202(R) (1999).

[25] R. Gilman and F. Gross, J. Phys. G 28, R37 (2002).

12



FIG. 1: Feynman diagram for electron-deuteron elastic scattering, within the one-photon mecha-

nism.
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FIG. 2: Fit to deuteron charge form factor data. The solid and dashed lines correspond to the fits

for the two different solutions for the data (solid and empty circles).
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FIG. 3: Fit to deuteron magnetic form factor data.
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FIG. 4: Fit to deuteron quadrupole form factor data. Notations as in Fig. 2.
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FIG. 5: Illustration of the quality of the suggested fit on the experimental observables A, B and

t20, calculated with parametrization I (solid line) and II (dashed line).
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FIG. 6: Different contributions to the structure function A, according to Parametrization I (thin

lines) and II (thick lines). The term related to Gc, Gq, and Gm, are shown as dashed, dotted, and

dash-dotted lines, repectively.
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