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Abstract 
 
A comprehensive theoretical model is proposed to explain the functioning of fission chambers operated in 
current mode, even in very high neutron fluxes.  The calibration curves are calculated as a function of basic 
physical parameters as fission rate, gas pressure and geometry of the chambers. The output current at saturation 
is precisely calculated, as well as the maximum voltage to be applied in order to avoid avalanche phenomena. 
The electric field distortion due to the space charge phenomena is also estimated. Within this model, the 
characteristic responses of fission chambers are correctly reproduced, in agreement with the experience 
feedback obtained at the ILL/Grenoble High-Flux Reactor.  
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1. Introduction 
 
Fission ionization chambers are widely used as neutron monitors in irradiating environments 
such as nuclear reactors, accelerators and medical facilities. They can be used in pulse mode, 
where each electronic pulse induced by a nuclear fission is counted event by event. 
Nevertheless, in high neutron fluxes (above 1014 n.cm-2.s-1), the pulse pile-up induced by the 
high fission rate requires a current mode acquisition, where each single event is not anymore 
individualised.  
In order to carry out on-line measurements of transmutation rates of actinides at the Mini-Inca 
and Megapie installations [1-6], we have recently developedb sub-miniature cylindrical fission 
chambers designed to stand high temperatures and neutron fluxes up to several 1015 n.cm-2.s-1. 
Beside their use for nuclear waste transmutation studies, these detectors are useful tools for 
in-core neutron flux diagnostics of Generation-IV nuclear systems.  
After several experiments in high neutron fluxes of about 1015 n.cm-2.s-1, we have observed 
that the responses of the chambers as a function of the applied voltage, namely the calibration 
curves, are perturbed. The shapes of the calibration curves differ significantly from those 
obtained during irradiation in neutron fluxes one order of magnitude lower. We have 
experimentally noticed that the pressure of the filling gas and the geometries of electrodes 
have a strong influence on the responses of the detectors, with differences that are accentuated 
in high-intensity neutron fluxes. 
In order to have a clear understanding of the observed phenomena, we have developed an 
analytical model to study and predict the evolution of the calibration curves as a function of 
different physical parameters, as gas pressure, gas composition, applied voltage, during 
various conditions of irradiation, from low to high intensity neutron fluxes. 
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This approach is described in the present paper. In the first part, the basic equations used to 
model the functioning of fission chambers in current mode are detailed. In a second part, this 
theoretical framework is applied to the calculation of the calibration curves. 
 
2. Modelling of fission chambers 
 
Cylindrical fission chambers are made of two coaxial electrodes (anode and cathode) 
separated by a filling gas, as shown in figure 5. The anode is usually coated with a fissile 
element. Under irradiation, neutrons induce fission reactions inside the deposit and high 
energy fission products (about 90 MeV/each on average for 235U) are emitted in opposite 
directions. Thus, one is absorbed in the anode while the second crosses the inter-electrode 
space, ionizing the filling gas on its path and consequently generating a high number of 
electron-ion pairs. When a voltage is applied, an electric field is generated between the two 
electrodes, involving a migration of charges. The collected charges are responsible for the 
creation of an electric current. The layout of this current according to the voltage applied 
gives a characteristic curve, know as the calibration curve. 
 
In the following, we will consider a standard cylindrical fission chamber with a 98.5 % pure 
235U deposit (as CFUT-C3c chambers used in the framework of the Mini-Inca and Megapie 
projects, see figure 5). 
 
2. 1. Calculation of the charge pair density created by the fission products 
 
In this section, we will evaluate the density N of electron-ion pairs created per unit of time by 
the fission products in the inter-electrode space. To simplify our calculations, we note Nfst, the 
number of fission products released per second and per unit of area at the anode. In cylindrical 
geometry, one can obtain 
 

hR
N f

fst
12π

τ
= , (2.1) 

 
where h is the length of the deposit which partially covers the anode (see figure 1 for the 
notations). R1 is the anode radius. τf is the fission rate, i.e. the number of fissions that take 
place inside the deposit per unit of time. Let us also note X(d), the average number of pairs 
created by a fission product per unit of length travelled in the gas. X depends on the distance d 
covered by the fission product in the inter-electrode space. A first approximation consists in 
supposing that all the fission products leave the anode with a purely radial speed v. In 
cylindrical coordinates, v can be written vr ur + vθ uθ + vz uz. Consequently, this assumption 
fixes to zero the components vθ and vz. Within this simplified framework, one can obtain an 
expression for N that depends only on the r coordinate and that can be written 
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with r’  = r – R1. 
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A second approach, developed by Poujade et Lebrun [7], consists in assuming that all fission 
products leave the deposit perpendicularly to the anode axis. The velocity component vz is 
thus fixed to zero and the authors have shown that N depends once more only on r and can be 
written 
 

∫








−
−+

−
=

r
R

r
R

fst d
rRRr

RrR
rX

N
rN

1

1

arccos

arccos 1
2
1

2
11

)cos(2

))cos((
)'()( θ

θ
θ

π
, (2.3) 

 

with )cos(2' 1
22

1 θrRrRr −+= . 

 

 
 

Fig. 1. Scheme of an anode and its deposit. 
 
If the distance d covered by a fission product is small as compared to its mean free path, X(d) 
remains about constant all along the trajectory. Thus we have X(d) � X0. Within this 
framework, the (2.3) integral can be calculated and we have obtained the following expression 
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We can verify that 
 







 →

 →

→

+∞→

0

10

1
)(

2
)(

XNrN
r

RXN
rN

fstRr

fst

r π . (2.5) 

 
The first two approaches started from approximations and led to simple expressions for N(r). 
In order to calculate it precisely, let Nft be the number of fission products ejected per second 
by an infinitesimal surface element dS of the anode. Nft can be written in cylindrical 
coordinates 
 

''1 θddzRNN fstft = , (2.6) 
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where (R1,θ',z') are the cylindrical coordinates of dS. The number of electron-ion pairs created 
per second, per surface element dS, in the infinitesimal volume dτ surrounding the point 
P(r,θ,z) in the gas is given by 
 

π2
')'(2 Ω= d

drrXNNd ft , (2.7) 

 
where dΩ is the solid angle corresponding to the volume dτ seen from the element dS. r'  is the 
distance between the point P and the element dS. In spherical coordinates, we can write 
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and d2N thus becomes 
 

π
ψϕϕ

2

')sin()'(
2

dddrrXN
Nd ft= . (2.9) 

 
We obtain the density of pairs dN created around the point P by the element dS by dividing 
d2N by dτ 
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To obtain N(r,z), the density of pairs created by the fission products per unit of time, we have 
only to integrate (2.12) expression over the surface of the anode,  
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If we assume X(r’ ) ≈ X0, we can get out the parameter X from the integral and write finally 
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We have drawn on figures 2 and 3 the function F calculated for h = 1 cm and R1 = 1.25 mm. 
 

 
 
Fig. 2. Comparison between the exact formula of F, the 1/r approximation and the Poujade expression (R1 = 1.25 
mm, h = 1 cm). 
 

 
 
Fig. 3. Evolution of F(r,z) with r inside the deposit zone for various z (R1 = 1.25 mm, h = 1 cm). 
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Fig. 4. Evolution of F(r,z) with z for various r (R1 = 1.25 mm, h = 1 cm). 
 
We remark on figure 2 that the approximated expressions lead to a consequent undervaluation 
of the number of created pairs. On figures 3 and 4, we notice that F(r,z) remains close to 
F(r,0) in the deposit zone and falls brutally beyond. Consequently, we can modify the F 
expression to eliminate the z component 
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where zmin and zmax are the limits in z of the inter-electrode space. Then, we assume that 
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Fig. 5. Scheme of a CFUT-C3 class chamber. 
 
For a CFUT-C3 chamber, zmin and zmax are respectively equal to -1.045 cm and 0.71 cm. We 
thus obtain the following evolutions of <F> (r,z) and F(r), drawn on figures 6, 7 and 8. 
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Fig. 6. Evolution of F(r,z) and <F> (r,z) with z (R1 = 1.25 mm, h = 1 cm). 
 

 
 
Fig. 7. Evolution of F(r,0) and F(r) with r (R1 = 1.25 mm, h = 1 cm). 
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Fig. 8. Evolution of F(r) with r for various R1 radiuses (h = 1 cm). 
 
We verify using (2.16) expression that 
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Thus, as it will be shown in section 3.1.2, the error induced by (2.17) approximation on the 
current at saturation is null. 

 
2. 2. Coefficient X0 

 
The X0 coefficient (see section 2.1) represents the number of electron-ion pairs created by a 
fission product per unit of length travelled in the inter-electrode space. Using SRIM software 
[8], we have calculated for Argon: 
 

-1
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when the chamber is filled at ambient temperature (T = 300 K). P is the gas pressure given in 
bar. This result is close to the value recommended by the ICRU report [9] which is worth 
2.108×P[bar] pairs.m-1. The SRIM calculations have been conducted by averaging the loss 
energy in the gas over the complete distribution of 235U fission products. We have also 
assumed that the average energy W necessary for a fission product to create a pair is 26.4 eV. 
In experiments, one can indeed find [9] 
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Let us note now Ei the first ionization energy of the gas (15.75 eV for Argon), η the number 
of electrons produced and ηex the number of excited Argon atoms (noted Ar*) created by the 
fission products. One can obtain for the rare gases [9] 
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We can notice that there is on average one excited atom for two electrons produced in Argon. 
In addition, Behle et al [10] give several threshold energies for some Ar + e- reactions (table 
1). 
 

Reactions Threshold energy [eV] 
excitation 13,25 

Ar + e- ����+ + 2e- 15,75 
Ar+ + e- ����+* + e- 19,22 
Ar+ + e- ����2+ + 2e- 34,98 

   
Tab. 1. Threshold energies for some Ar + e- reactions. 
 
To create Ar2+ ions, we remark that high energies are required. As a consequence, their 
number will be much lower than Ar+ ions and we can neglect them.  
Finally, the ICRU report [9] presents the evolution of the W coefficient of some gases after 
addition of several pollutants. In particular, the addition of Krypton, water or air in Argon 
involves a diminution of its W coefficient. For Helium at a pressure of one bar, the addition of 
1 ‰ of Xenon, Argon, Krypton or CO2 involves an increase in X0 of a factor 1.4 to 1.5. A 
concentration of 0.00249 % of Argon in the same Helium induces a 4 eV reduction in its W 
coefficient, while a 0.0985 % Argon pollution is accompanied by a 15 eV fall of W. This non-
negligible increase of the number of pairs created in presence of quantities, even small, of 
pollutants is a phenomenon known as the Jesse effect. 
 
2. 3. Basic charge transport equations 
 
The transport of electric charges inside the chamber obeys some basic equations. Let us note 
ρe and ρa, the electric densities respectively associated with electrons and Argon ions. Let us 
introduce also <ve>  and <va> , the average drift velocities of electrons and ions. The charge 
conservation equations lead to the following system 
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The tSOURCE and tLOSS terms are the creation and disappearance terms. They represent the 
densities of electric charges which are created and destroyed per unit of time in gas. Their 
expressions will be detailed in the following sections.  
In current mode, the chambers work in a stationary state. The temporal derivatives of (2.22) 
system thus vanish and it remains 
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In a cylindrical fission chamber, anode and cathode are two coaxial cylinders (see figure 5) of 
respective radiuses R1 and R2. We apply a voltage ∆V between anode and cathode. This 
difference of electric potential generates an electric field E that obeys Maxwell-Gauss 
equation and is written 
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In cylindrical geometry, if we suppose that the densities ρe and ρa depend only on the radial 
coordinate, noted r (see section 2.1), one can then write 
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The electric field E is directed towards cathode. Consequently, ions migrate towards cathode 
while electrons move towards anode. As a consequence, we have 
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and we obtain the following system 
 










−=
∂
∂

−=
∂
∂−

a
LOSS

a
SOURCEaa

e
LOSS

e
SOURCEee

ttvr
rr

ttvr
rr

ρ

ρ

1

1

, (2.27) 

 
where ve and va are respectively the average radial projections of the speed of electrons and 
Argon ions.  
During this study, we will only consider Ar+ ions (see section 2.2). The (2.27) system is thus 
reduced to 2 equations (instead of one equation for electrons and one per species of Arn+ 
ions). Moreover, the absolute values of the creation and loss terms for electrons and Ar+ ions 
become equal, the disappearance of a negative charge (one electron) involving the 
disappearance of a positive charge (one Ar+ ion). Now, if we note 
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the (2.27) system can be rewritten 
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This system allows us to calculate the densities ne(r) and na(r) of electrons and ions in gas. 
The TS and TL terms correspond here to the densities of electron-ion pairs respectively created 
and destroyed per unit of time in inter-electrode space.  
The current I delivered by the chamber can be written 
 

∫∫ +−=
S

aaee dSvenvenI ).( . (2.30) 

 
We can check that the current I is a constant of the (2.29) system. In cylindrical geometry, the 
(2.30) expression can be rewritten in the following way 
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The electrodes are connected to an electric supply network. Thus, we have in stationary state 
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and expression (2.31) leads to 
 

)()(2)()(2 222111 RvRnheRRvRnheRI aaee ππ == . (2.33) 

 
To conclude this part, we simply note that the coupled resolution of the (2.25) and (2.29) 
systems give the functions ne(r), na(r) and E(r) according to the voltage applied to the 
electrodes. Thus, using (2.31) or (2.33) expressions, we are now able to calculate the current I 
as a function of the voltage ∆V, i.e. to draw the entire calibration curve. 
  
2. 4. Creation and loss terms 

 
The TS and TL terms appearing in system (2.29) are respectively called the source and loss 
terms. They represent the densities of charge pairs created or destroyed per unit of time inside 
the chamber. 
 
2. 4. 1. Source terms 
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The TS term is mainly the sum of two contributions. First, a term TS

(1) due to the ionization of 
the gas by the fission products. TS

(1) is equal to N and has been calculated in detail in section 
2.1. Secondly, a term TS

(2) resulting from secondary ionizations due to electrons which have 
acquired enough kinetic energy in the electric field. The TS

(2) term is usually written 
 

( )
eeS vnT α=2 , (2.34) 

 
where α is the Townsend first ionization coefficient. When the variations of the electric field 
E are weak over an electron mean free path, α is only related to E and there are many 
theoretical or semi-empirical formulas which allow its calculation on limited intervals. We 
will retain in particular the Townsend formula 
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where P is the pressure of the filling gas. This formula is in rather good agreement with 
experimental results and has a physical justification. The coefficients A and B can indeed be 
calculated according to parameters like the mean free path l0 of an electron in gas or the 
average fraction of energy lost by an electron during a collision with an atom (or a molecule) 
of gas. Zastawny [11] carried out a compilation of the values taken by A and B for many pure 
and mixed gases. Most of the semi-empirical expressions of α are proposed for low gas 
pressures. We have consequently used the BOLSIG software [12] to obtain estimates at 
atmospheric pressures (see figure 9). 
 

 
 
Fig. 9. Ratios of the ionization coefficient α over pressure P, calculated using BOLSIG software for various pure 
and mixed gases. 
 
Lakshminarasimha et al [13] give also experimental values of α on a large range of E for 
several gases, in particular Argon. 
 
2. 4. 2. Loss terms 
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The TL term is mainly due to the recombination of electrons with ions. These processes of 
capture proceed in three steps, classified by size scale 

 
•  initial: the ejected electron recombines with the ion from which it comes from. Onsager 

[14] proposed a formula giving the fraction of pairs escaping from this initial 
recombination according to the electric field. This mode of recombination plays only at 
high pressures (10 to 100 atmospheres). 

•  columnar: the pairs can then recombine inside the ionized tracks left by the fission 
products in gas. These tracks have indeed high densities of charges. 

•  voluminal: the most general process. The electrons migrate in gas under the effect of the 
electric field and can recombine with any ion they meet. 

 
For pressures close to the atmosphere, the dominating process is the voluminal recombination. 
The TL term can thus be written as follows 
 

aeL nknT = , (2.36) 

 
where k is generally called the “recombination coefficient”. The estimation of the coefficient 
k is difficult and it exists only very few data. Langevin (1903) gives a theoretical expression 
of k 
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as µe (the mobility of electrons) is much higher than µa (the mobility of ions). This expression 
is valid when the mean free path l0 is small in front of a characteristic distance a0 given by 
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where εr is equal to 1.00056 at a pressure of 0.1 MPa [15]. Shinsaka et al [16] have thereafter 
shown, for Argon at a temperature T of 300 K and a pressure P close to 100 bar, that 
 

thkk -3
exp 10 8.8= . (2.39) 

 
By assuming that the coefficient k varies in P1/2 [17], we have then a coarse estimate of k at 
lower pressures 

 

th kPk  10 8.8 -4= . (2.40) 

 
For reduced electric fields E/P higher than 2.0 105 V.m-1.bar-1, µe is about 3. 10-2 m2.V-1.s-1 at 
a pressure of one bar (see section 2.7.1). We have thus a first estimate of k at one bar: k ≈ 5.6 
10-12 m3.s-1.  
Biondi [18] measures also k ≈ 8.8 10-13 m3.s-1 at P = 0.018 bar and T = 300 K for Argon. For 
Neon, he obtained k ≈ 3.4 10-13 m3.s-1 at P = 0.03 bar and T = 300 K. By applying the law in 
P1/2, we obtain a second estimate of k at one bar: k ≈ 6.5 10-12 m3/s. This result is close to the 
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value extrapolated from the results of Shinsaka [16]. For Neon, we obtain at one bar: k ≈ 2. 
10-12 m3.s-1. 
 
2. 5. Discussion on the shape of a calibration curve 
 
In cylindrical geometry, the current I obeys (2.31) equation. The densities ne and na are given 
by the system (2.29) with the boundary conditions (2.32). Using the expressions of the 
creation and loss terms, we finally write 
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This system can be integrated and we obtain 
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Equation (2.42) can be dissociated in three contributions 
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Fig. 10. Recombination, saturation and avalanche modes in a calibration curve. 
 
The I1 contribution is constant with the voltage ∆V applied and corresponds to the intensity 
delivered in a zone that we commonly call the “saturation plateau” (see figure 10).  
Now, if one reduces the voltage applied at the electrodes, the electric field E will decrease and 
the charges will consequently circulate more and more slowly, accumulating in the filling gas. 
The densities ne and na will thus increase and the recombination term I2, which is negative, 
will take importance. As a consequence, the output current I will drop gradually below the 
saturation current I1. This particular mode is called the “recombination mode” and we can 
indeed observe it at low voltages, on the left of the saturation zone (see figure 10).  
In the same way, when the voltage increases, the electric field E is gradually reinforced. The 
first ionization coefficient α(Ε), up to now quasi zero, will increase slowly, until reaching a 
threshold (E ���. 105 V.m-1 for Argon at one bar) where its growth accelerates brutally (see 
figure 9). Consequently, the I3 contribution and the total current I will increase quickly. This 
fast increase is called the “avalanche mode” and frames on the right the saturation zone on a 
calibration curve (see figure 10).  
A calibration curve thus results from a compromise between three modes, recombination, 
saturation and avalanche, whose key parameters will be studied in detail in this article. 
 
2. 6. Space charges and distortion of the electric field 
 
The equations which control the electric field inside a cylindrical chamber are written 
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The first equation can be easily integrated and we obtain 
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We can demonstrate then that 
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In absence of electric charges, we note that 
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and we find the usual unperturbed expression of the electric field 
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The presence of electric charges inside the chamber induces a distortion of the electric field, 
which does not vary any more as 1/r. We observe in particular, starting from equation (2.46), 
that an increase of the ion density na involves a reduction of the field at anode. The space 
charges phenomenon appears of crucial importance at high fission rates. We will have the 
opportunity to reconsider in detail this perturbation in the continuation of this study. 
 
2. 7. Drift velocities of electrons and ions 
 
The propagation of the electric charges in the filling gas is governed by the (2.29) system. 
Taking into account the diffusion processes, we can write 
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µe and µa are respectively the electronic and ionic mobilities. De and Da are the radial 
diffusion coefficients of electrons and ions. These four parameters vary with the electric field, 
in particular for low values of E. 
 
2. 7. 1. Electronic and ionic mobilities 
 
The electronic mobility µe can be evaluated roughly using Lorentz formula 
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where me is the electron mass, e the elementary electric charge, n the density of neutral 
gaseous atoms and σ the cross section of momentum transfer. For our calculations, we have 
however used BOLSIG simulations. The results are drawn on figures 11 and 12 and lead for 
Argon to the following adjustment 
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The velocity Ve is given in m.s-1, the electric field E in V.m-1 and the pressure P in bar. 
 

 
 
Fig. 11. Velocity Ve of electrons in Argon, calculated using BOLSIG software. 
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Fig. 12. Mobility of electrons in various pure and mixed gases, calculated using BOLSIG software. 
 
Concerning the mobility µa of Ar+ ions in Argon, experimental data [19] are presented on 
figure 13. The following formula is obtained 
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where Va is given in m.s-1. n is the density of Argon atoms. This adjustment is valid until E/n 
= 2. 10-18 V.m2. 
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Fig. 13. Velocity Va of Ar+ ions in Argon. 
 
Hornbeck [20] also proposes data for He+, Ar+ and Ne+ ions in their respective gases. 
 
2. 7. 2. Electronic and ionic diffusion 
 
Lakshminarasimha et al [13] give several experimental values for the ratio eeD µ/⊥ , where 

⊥
eD  is the coefficient of diffusion perpendicular to the drift direction of electrons. They have 

shown that this ratio is about constant and is worth 7 Volt for E/n values lower than 1000 Td. 
The losses associated with this diffusion mode will not be taken into account in this study.  
Concerning the diffusion of the charges in the direction of their drift, few experimental or 
theoretical data exist. Robertson et al [21] propose some values for the Argon ions, however 
they remain theoretical, Da being too small to be measured accurately. Nevertheless, the 
coefficients De and Da can be evaluated thanks to the Einstein formulas 
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Ions are heavy and collide frequently with the neutral atoms. Thus, it is commonly admitted 
that the ionic temperature Ta is constant, close to the temperature T of the gas. The electronic 
temperature Te can be calculated using BOLSIG software (see figure 14). We obtain for 
example 
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for Argon at a pressure of one bar, a temperature T of 300 K and an electric field E of 106 
V.m-1. 
 

 
 
Fig. 14. Electronic temperature Te in Argon as a function of the electric field E, calculated using BOLSIG 
software. 
 
3. Application to sub-miniature cylindrical fission chambers 
 
Figure 15 shows two experimental calibration curves obtained with a CFUT-C3 chamber at 
ILL for two neutron fluxes. At ordinary fission rates (���	9 f/s), the calibration curves present 
a saturation zone, where the current I delivered by the fission chamber varies little with the 
voltage ∆V applied to the electrodes. The Isat current obtained at the saturation plateau is 
called the “saturation current”. But, at high fission rates (higher than 5.109 f/s), we observe a 
deformation of the saturation plateau which ends to vanish completely. Consequently, the Isat 
current can not be evaluated any more with accuracy. 
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Fig. 15. Experimental calibration curves obtained with a CFUT-C3 fission chamber at ILL/Grenoble High-Flux 
Reactor. The saturation plateau is deformed at high fission rates and the corresponding saturation current can not 
be determined unambiguously.  
 
In this section, we will gradually apply the theoretical framework described in the previous 
pages in order to calculate and to study the calibration curves of sub-miniature cylindrical 
fission chambers irradiated in neutron fluxes varying from low to high intensities. 
 
3. 1. Current and charge densities at the saturation zone 
 
At ordinary fission rates, the Isat current is one of the crucial information delivered by a fission 
chamber operating in current mode. We will consequently present in this section the influence 
on the Isat value of several parameters such as the length of the Uranium deposit or the 
radiuses of the electrodes. 
 
3. 1. 1. Saturation current, 1/r approximation of N(r) and associated error 
 
At the saturation plateau, the recombination and avalanche terms are negligibled. We can thus 
write 
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Expressions (2.17) and (2.42) then enable us to calculate the saturation current 
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d In fact, the correct formulation would be rather that “the plateau exists because the recombination and 
avalanche processes are negligible”. 
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If we approach N(r) by the 1/r expression given by (2.2), we obtain 
 

)()(2 1201210 RReXRRNRheXI ffstsat −=−= τπ . (3.3) 

 
This common approximation induces directly an error on the saturation current that we want 
to estimate. We note ε, the error factor given by 
 

( )rNI

rN/rI

sat

sat

 of expressionexact  using calculated 

)( ofion approximat 1 for the calculated 
=ε . (3.4) 

 
We can evaluate ε for various couples {R1, R2} (see table 2). 
 

 R2 [mm] 
R1 [mm] 1 1,25 1,5 1,75 2 

1  0,43 0,48 0,52 0,55 
1,25   0,41 0,47 0,51 
1,5    0,4 0,46 
1,75     0,39 

 
Tab. 2. Values of ε for various {R1,R2} couples. h = 1 cm. 
 
We consequently notice that the error made on Isat by the 1/r approximation is important 
(almost a factor 2) for fission chambers of millimetre sizes. It decreases gradually when the 
cathode radius R2 increases. 
 
3. 1. 2. Evolution of Isat current with h, the deposit length 
 
We want to estimate in this paragraph the impact on the saturation current of a modification 
of the deposit length h. Exceptionally, we will use for this study the exact expression of 
N(r,z), the density of pairs created by the fission products per second. This density is given by 
the (2.14) equation. At saturation, the recombination and avalanche phenomena are secondary 
and all the primary charges created are collected. We can thus write 
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where Ω is the inter-electrode volume. Using (2.18) result, we consequently verify that the 
error on Isat due to (2.17) approximation is null. Expression (3.5) can be rewritten in the 
following way 
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It can thus be broken up into two contributions: I = I1 + I2, given by 
 

( )








+−=

−=

),2/,,,()2/,,,,(
2

)2/,2/,,,(
2

max21min21
0

2

21
0

1

zhRRhGhzRRhG
eX

I

hhRRhG
eX

I

f

f

π
τ
π
τ

. (3.8) 

 
The I1 and I2 contributions are respectively the currents created inside and outside the deposit 
zone. For a CFUT-C3 chamber, we have R1 = 1.25 mm, R2 = 1.75 mm, zmin = -1.045 cm and 
zmax = 0.71 cm. While varying h, we obtain the figures 16 and 17. 
 

 
 
Fig. 16. Ratios in percentage of the I2 current created outside the deposit zone over the total current Isat, as a 
function of the deposit length h (zmin = -1.045 cm, zmax = 0.71 cm, R1 = 1.25 mm, R2 = 1.75 mm). 
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Fig. 17. Evolution of the factor G with the deposit length h (zmin = -1.045 cm, zmax = 0.71 cm, R1 = 1.25 mm, R2 = 
1.75 mm). 
 
First, we observe that the fraction of current created outside the deposit zone is weak for usual 
lengths h, close to 1 cm, as the I2/I ratio is 6.8 %. Secondly, the total current delivered by the 
chamber varies very little with the size h of the deposit. Between h = 1 mm and h = 1 cm, the 
variation on Isat is lower than 1 %. 
 
3. 1. 3. Evolution of the saturation current with the radiuses of electrodes 
 
Figures 18 to 21 present the evolution of the G factor, introduced in the previous paragraph 
and given by equation (3.7), as a function of the R1 and R2 radiuses of anode and cathode. 
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Fig. 18. Abacus of G values for various {R1,R2} couples (h = 1 cm, zmin = -1.045 cm, zmax = 0.71 cm). 
 

 
 
Fig. 19. Evolution of the factor G with the inter-electrode volume V = (zmax - zmin)(R2

2 - R1
2) (h = 1 cm, zmin = -

1.045 cm, zmax = 0.71 cm). 
 

 
 
Fig. 20. Evolution of the factor G with the inter-electrode gap d = (R2 - R1) (h = 1 cm, zmin = -1.045 cm, zmax = 
0.71 cm). 
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Fig. 21. Evolution of the factor G with the anode radius R1 (R2 = 1.75 mm, h = 1 cm, zmin = -1.045 cm, zmax = 
0.71 cm). 
 
We notice that, contrary to intuition, G is not proportional with the volume of the inter-
electrode zone, which is proportional to (R2

2 - R1
2), but rather with the inter-electrode gap, i.e. 

with (R2 - R1). 
 
3. 1. 4. Comparison between theoretical and experimental values of Isat 

 
For a standard CFUT-C3 class chamber, the factor G is 6.685 mm (see figure 18). Using the 
value X0 = 1.8 108×P[bar] pairs.m-1 (see section 2.2), we have consequently 
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During the past three years, we have irradiated at several occasions CFUT-C3 fission 
chambers in the High Flux Reactor (HFR) of Laue Langevin Institute (ILL) [1,6]. The Argon 
pressures inside the chambers ranged between 0.9 and 1.16 bar, the neutron fluxes between 
6.1013 and 1.1015 n.cm-2.s-1 and the 235U deposit masses between 4 and 40 µg. The ratios of the 
calculated currents over the experimental ones are plotted on figure 22. 
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Fig. 22. Ratios of the theoretical currents over the experimental ones as a function of the fission rate. The 
experimental values have been obtained at the operating point of the calibration curves (see section 3.3.1). 
 
We observe an overall good agreement between experimental data and theoretical calculations 
for fission rates lower than 5.109 f/s.  
 
3. 2. Distortion of the electric field at saturation 
 
In cylindrical geometry, the electric field obeys equation (2.45). In absence of electric 
charges, E is reduced to expression (2.48). As a consequence, we can rewrite E as the sum of 
two contributions 
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We can estimate the densities ne and na at saturation using (3.1) system 
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By re-injecting these expressions in (3.11) equations, we obtain 
 



























−


−







−




∆
=

∫ ∫∫

∫ ∫∫
2

1

2

1

1

2

1

)(
1

)(
1

ln              

)(
1

)(
1

ln

2

1

2

0chargesithout  R

R

R

r
e

r

R
a

r

R

R

r
e

r

R
a

w
drdrrrN

v
drrrN

vr
R

drdrrrN
v

drrrN
vR

R

V

e

E

E

ε
δ

. (3.13) 

 
At the first order, when the perturbations due to the space charges are not too important and 
by neglecting the diffusion processes, the electronic and ionic drift velocities are given by 
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In the following calculations, the µe and µa mobilities will obey (2.51) and (2.52) expressions.  
In addition, as (see equations (2.1) and (2.17)) 
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we can note that fE

E τδ ∝ . (3.16).  

 
The higher the fission rate, the more the perturbations due to the space charges become 
important.  
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Fig. 23. Distortion of the electric field as a function of the radial distance r for several voltages ∆V (the filling 
gas is Argon at a pressure of 1 bar, R1 = 1.25 mm, R2 = 1.75 mm, h = 1 cm, τf = 109 f/s). 
 

 
 
Fig. 24. Distortion of the electric field as a function of the radial distance r for several voltages ∆V (the filling 
gas is Argon at a pressure of 1 bar, R1 = 1.5 mm, R2 = 1.75 mm, h = 1 cm, τf = 109 f/s). 
 
We notice on figures 23 and 24 that the space charges induce a diminution of the electric field 
at anode and an increase at cathode. This field distortion effect is reinforced when the voltage 
decreases. Indeed, at low voltages, the electric charges move slowly. Consequently, their 
collection times increase and they accumulate in gas, perturbing the electric field.  
We also observe that the distortion is maximal at cathode: (δE/E)max = (δE/E) (r = R2), and 
falls quickly when the inter-electrode gap decreases. 
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Fig. 25. Maximal distortion of the electric field as a function of the voltage ∆V (the filling gas is Argon at a 
pressure of 1 bar, R2 = 1.75 mm, h = 1 cm, τf = 109 f/s). 
 

 
 
Fig. 26. Maximal distortion of the electric field as a function of pressure P (R2 = 1.75 mm, h = 1 cm, ∆V = 200 
V, τf = 109 f/s). 
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Fig. 27. Maximal distortion of the electric field as a function of the inter-electrode gap d (the filling gas is Argon 
at a pressure of 1 bar, R2 = 1.75 mm, h = 1 cm, ∆V = 200 V, τf = 109 f/s). 
 
Figures 25, 26 and 27 show respectively that 
 

•  (δE/E)max varies in 1/∆V2. 
•  (δE/E)max varies in P2. This result, whose simplicity was unexpected, is mainly 

due to the quasi-linear dependences in P of N, 1/µe and 1/µa. 
•  (δE/E)max varies like d15/4 at fixed R1 radius for d � 1 mm. This dependence 

shows us that a reduction of a factor 2 on the gap d involves a reduction of a 
factor 13 on the space charges. It confirms the results shown in figures 23 and 
24. 

 
Consequently, using (3.16) expression, we can write 
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where the factor K is deduced from figures 23 and 24. We obtain K = 3.1 107 V2.s.bar-2.m-15/4 
for R1 = 1.25 mm and K = 2.7 107 V2.s.bar-2.m-15/4 for R1 = 1.5 mm.  
We are now able to calculate the maximum fission rate that should not be exceeded in order to 
avoid space charge perturbations. We consider that the space charge effect is negligible if   
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Using formula (3.17), this condition is equivalent to 
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For a standard CFUT-C3 class chamber, R1 = 1.25 mm and R2 = 1.75 mm. At P = 1 bar, we 
obtain thus 
 

•  τf ≤ 4. 107 f/s for ∆V = 100 V. 
•  τf ≤ 1.5 108 f/s for ∆V = 200 V. 
•  τf ≤ 3.5 108 f/s for ∆V = 300 V. 

 
For a CFUT-C6 class chamber, R1 = 1.5 mm, R2 = 1.75 mm and we have at P = 1 bar 
 

•  τf ≤ 6.2 108 f/s for ∆V = 100 V. 
•  τf ≤ 2.5 109 f/s for ∆V = 200 V. 
•  τf ≤ 5.6 109 f/s for ∆V = 300 V. 

 
Consequently, operating fission chambers with reduced gaps is an excellent mean to avoid 
space charge perturbations. 
 
3. 3. Simplified calculations of calibration curves 

 
When the inter-electrode gap is small compared to R2, we can model the operation of a fission 
chamber with a system of equations in plane geometry. If we neglect the diffusion processes 
and the space charges phenomena, this system can be written 
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The saturation current obtained with this approximation is given by 
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The S.N factor is averaged over the inter-electrode volume and we have 
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Thus, it can be checked that the saturation current obtained with (3.21) approximation is equal 
to the exact expression (3.2). The (3.20) system can be solved analytically and we obtain 
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C1 and C2 are two functions of E that obey the following system 
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The (3.23) equation then enables us to calculate the current I delivered by the chamber 
according to the voltage ∆V applied to electrodes 
 

)(
2

1
12

1 Rrn
RR

VheR
I ee =

−
∆

= µπ
, (3.25) 

 
For R1 = 1.25 mm, R2 = 1.75 mm, h = 1 cm, zmin = -1.045 cm, zmax = 0.71 cm, k = 5.0 10-11 
m3.s-1, P = 1 bar, X0 = 2.108 pairs.m-1 and τf = 1.5 109 f/s, we obtain for instance the 
calibration curve I = f(∆V) drawn on figure 28. 
 

 
 

 
Fig. 28. Calibration curve calculated with (3.20) system. The filling gas is Argon. α is evaluated using 
Townsend formula. 
 
The mobilities µe(E) and µa(E) are given by (2.51) and (2.52) expressions. The coefficient 
α(E) is given by the (2.35) Townsend formula with Zastawny coefficients [11] 



 34 

 







×−=

×=

[bar]
5

[bar]
5

10  7.54

10  011.2

PB

PA
. (3.26) 

 
This formula is simplistic and does not reproduce precisely the experimental data for weak 
electric field. As a consequence, we expect a poor quality description of the beginning of the 
avalanche. Nevertheless, we notice on figure 28 that the shape of the calibration curves is 
correctly reproduced by the model, with a clear saturation zone framed by the recombination 
mode on the left and the avalanche mode on the right. With (3.23) and (3.25) expressions, we 
can now study the deformation of a calibration curve according to parameters such as the gas 
pressure, the fission rate or the inter-electrode gap. 
 
3. 3. 1. Evolution of the shape of a calibration curve with the recombination coefficient k 
 
When the coefficient k decreases, we observe on figure 29 an increase in the size and quality 
of the saturation plateau. 
 

 
 
Fig. 29. Theoretical calibration curves for various coefficients k (the filling gas is Argon at a pressure of 1 bar, 
R1 = 1.25 mm, R2 = 1.75 mm, τf = 1.5 109 f/s, X0 = 2.108 pairs.m-1. α is evaluated using Townsend formula). 
 
On figures 30 and 31, we have plotted the evolution of Vmin, V0, Vmax and I0 as a function of 
the recombination coefficient k. V0 is the voltage obtained at the inflection point of the 
calibration curve and I0 the corresponding current. V0 and I0 are respectively called the 
“operating point” and “operating current”. Vmin and Vmax are the voltages at the first and last 
point of the saturation plateau, respectively. They are defined for Imin = 0.98 I0 and Imax = 1.02 
I0. 
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Fig. 30. Evolution of Vmin, V0 and Vmax with coefficient k (the filling gas is Argon at a pressure of 1 bar, R1 = 1.25 
mm, R2 = 1.75 mm, τf = 1.5 109 f/s, X0 = 2.108 pairs.m-1. α is evaluated using Townsend formula). 
 

 
 
Fig. 31. Evolution of I0 with coefficient k (the filling gas is Argon at a pressure of 1 bar, R1 = 1.25 mm, R2 = 1.75 
mm, τf = 1.5 109 f/s, X0 = 2.108 pairs.m-1. α is evaluated using Townsend formula). 
 
First, we notice that the Vmax voltage and the I0 current are almost independent of k on two 
orders of magnitude. This result is not surprising, as the recombination processes are 
negligible at saturation (see section 2.5 or 3.1). Secondly, when the coefficient k increases, the 
size of the saturation plateau, given by the difference between Vmax and Vmin, is reduced. 
Indeed, when k becomes important, the recombination processes remain non-negligible even 
at high voltages and the transition with the saturation mode is consequently delayed. 
 
3. 3. 2. Evolution of the shape of a calibration curve with the fission rate 
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As shown on figures 32 and 33, when the fission rate increases, the saturation plateau 
gradually disappears and the transition between the recombination and the avalanche modes is 
less and less visible. The saturation plateau is progressively replaced by a mixing of 
recombination and secondary charge production. This behaviour is observed experimentally 
as already mentioned in figure 15. 
 

 

 
 
Fig. 32a and 32b. Progressive deformation of the calibration curves at high fission rates (the filling gas is Argon 
at a pressure of 1 bar, R1 = 1.25 mm, R2 = 1.75 mm, k = 5 10-11 m3/s, X0 = 2.108 pairs.m-1. α is evaluated using 
Townsend formula). 
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Fig. 33. Derivatives of the calibration curves for different fission rates (the filling gas is Argon at a pressure of 1 
bar, R1 = 1.25 mm, R2 = 1.75 mm, k = 5 10-11 m3/s, X0 = 2.108 pairs.m-1. α is evaluated using Townsend formula). 
 
In addition, we notice on figure 34 that the operating current I0 does not vary any more 
linearly with τf at high fission rates. This major perturbation is primarily due to the 
reinforcement of the recombination term knena, the charge densities increasing with τf. 
Nevertheless, a reduction of the inter-electrode volume must induce a decrease in the number 
of charges present in the filling gas. As a consequence, we expect that the deviation from the 
standard linear law will be reduced when the inter-electrode gap d decreases. This conclusion 
is verified on figure 35. 
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Fig. 34. Evolution of the operating current I0 with the fission rate τf for two anode radiuses R1 (the filling gas is 
Argon at a pressure of 1 bar, R2 = 1.75 mm, k = 5. 10-11 m3/s, X0 = 2.108 pairs.m-1. α is evaluated using 
Townsend formula). 
 

 
  

Fig. 35. Deviation in percentage from the standard linear law as a function of the fission rate. I th would have 
been the current expected if the linear law was true (the filling gas is Argon at a pressure of 1 bar, R2 = 1.75 mm, 
k = 5. 10-11 m3/s, X0 = 2.108 pairs.m-1. α is evaluated using Townsend formula). 
 
3. 3. 3. Evolution of the shape of a calibration curve with the gas pressure 
 
When the filling gas pressure P increases, the electric charges move slower and the number of 
secondary ionizations is consequently reduced. To achieve avalanche, it is necessary to 
transmit more kinetic energy to electrons. An increase in P will thus induce a shift of 
avalanche towards higher voltages, as illustrated on figure 36. 
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Fig. 36. Theoretical calibration curves for various gas pressures P (the filling gas is Argon, R1 = 1.25 mm, R2 = 
1.75 mm, τf = 1.5 109 f/s, X0 = 2.108×P[bar] pairs.m-1. α is evaluated using Townsend formula). 
 
The density N of electron-ion pairs created per second by the fission products increases 
linearly with the pressure P (via the X0 coefficient). Moreover, the Isat current is independent 
of the mobilities and of the first ionization coefficient. Consequently, as we can notice on 
figure 37, I0 is a quasi-linear function of P for pressures close to the atmosphere. 
 

 
 
Fig. 37. Evolution of I0 with the pressure P (the filling gas is Argon, R1 = 1.25 mm, R2 = 1.75 mm, τf = 1.5 109 
f/s, X0 = 2.108×P[bar] pairs.m-1. α is evaluated using Townsend formula). 
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Starting from now, we will vary the pressure P while adapting the fission rate τf in order to 
maintain the saturation current Isat constant. In agreement with (3.9) equation, fixing Isat is 
equivalent to fix the product P×τf. 
 

 
 

Fig. 38. Theoretical calibration curves for various gas pressures P. The fission rate is adjusted in order to 
maintain the saturation current constant (the filling gas is Argon, R1 = 1.25 mm, R2 = 1.75 mm, X0 = 2.108×P[bar] 
pairs.m-1. α is evaluated using Townsend formula). 
 
We notice then on figure 38 that an increase in P induces a dilation of the calibration curves. 
In particular, the size of the saturation mode is increased (see figure 39). As a consequence, 
working at high pressures facilitates the measurement of the saturation current, and thus the 
experimental determination of the fission rate. But we have to remember that the space 
charges perturbations also increase with the pressure as P2 (see chapter 3.2). 
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Fig. 39. Evolution of Vmin, V0 and Vmax with the pressure P (the filling gas is Argon, R1 = 1.25 mm, R2 = 1.75 
mm, τf = 1.5 109 f/s, X0 = 2.108×P[bar] pairs.m-1. α is evaluated using Townsend formula). 
 
3. 3. 4. Evolution of the shape of a calibration curve with R1, the anode radius 
  
At fixed cathode radius, an increase in R1 induces a reinforcement of the electric field E, in 
accordance with (2.48) expression. The charge velocities will consequently grow and 
electrons will induce earlier secondary ionizations. Thus, the avalanche mode will start at 
lower voltages, as illustrated on figure 40. We notice however that this drawback is 
compensated by an increase in quality of the saturation plateau. Indeed, its slope progressively 
decreases when the inter-electrode gap d is reduced, allowing a more precise determination of 
the saturation current.  
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Fig. 40. Theoretical calibration curves for various anode radiuses R1 (the filling gas is Argon at a pressure of 1 
bar, R2 = 1.75 mm, τf = 1.5 109 f/s, X0 = 2.108 pairs.m-1. α is evaluated using Townsend formula). 
 
The operating current I0 remains close to Isat for common fission rates (inferior to 5.109 f/s for 
a CFUT-C3 chamber). Consequently, its sensitivity to R1 and R2 radii is conform to the results 
obtained in section 3.1. 
 
3. 4. Calculation of the maximum voltage that should not be exceeded to avoid avalanche 
 
In this section, we will evaluate for various pure and mixed gases the maximum voltage Vm 
that should not be exceeded to avoid avalanche. At the end of saturation, i.e. at the beginning 
of avalanche, the recombination processes are negligible. Consequently, the (3.20) system 
becomes 
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We thus obtain  
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and the output current I is given by 
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To estimate Vm, we assume the condition 
 

satm IVI  05.1)( = , (3.30) 

 
This condition results in the following equation on Em 
 

( )
( )12

)(

05.1
)(

112

RR
E

e

m

ERR m

−=−−

α

α

. (3.31) 

 
This equality can be solved and leads to a condition on the first ionization coefficient α 
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For R1 = 1.25 mm and R2 = 1.75 mm, we have 
 

-1m 6.193)( ≈mEα . (3.33) 

 
Using BOLSIG simulations presented figure 9, we have solved (3.33) equation for several 
gases. Results are presented in table 3. 
 

Gas Em [106 V.m-1] 
Helium 0.289 
Neon 0.289 
Argon 0.502 

Ar + 1 ‰ Xe 0.464 
Ar + 1 % Xe 0.319 

 
Tab. 3. Electric fields at the beginning of avalanche in a standard CFUT-C3 chamber for various gases. 
 
With the (3.27) expression of the electric field, we finally obtain 
 

Gas Vm [Volt] 
Helium 140 
Neon 140 
Argon 250 

Ar + 1 ‰ Xe 230 
Ar + 1 % Xe 160 

 
Tab. 4. Voltage at the beginning of avalanche in a standard CFUT-C3 chamber for various gases 
 
First, we observe on table 4 that a Neon or Helium chamber cannot work at high voltages, as 
avalanche appears too early. Secondly, we notice that the addition of contaminants with low 
ionization potentials involves a shift of avalanche towards lower voltages, as the secondary 
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ionization processes are facilitated. In particular, a Xenon contamination can have 
catastrophic consequences on the size of the saturation plateau. It is thus important to 
remember that this gas is one of the most abundant fission products of 235U. For instance, with 
a 4 µg 235U deposit in a 1015 n.cm-2.s-1 thermal neutron flux, the Xenon contamination of 
Argon can reach, after 40 days of irradiation, about 0.1 % in a standard CFUT-C3 chamber at 
a pressure of one bar. The Xenon effect is illustrated on the experimental calibration curves 
presented in figure 41, where we observe a shift of avalanche towards lower voltages in the 
course of irradiation 
 

 
 
Fig. 41. Evolution of the shapes of experimental calibration curves during irradiation at ILL/Grenoble High-Flux 
Reactor in a 1015 n.cm-2.s-1 thermal neutron flux (CFUT-C3 chamber with a 98.5 % pure 235U deposit). 
 
 
4. Conclusion 
 
In this article, we have proposed an overview of the physical processes that take place inside 
fission chambers working in current mode. We have also developed an analytical model 
allowing the calculation of their characteristic responses according to parameters such as the 
gas pressure or the fission rate. The shapes of these characteristic curves have been correctly 
reproduced and their evolution corresponds to the experience feedback accumulated during 5 
years at ILL\Grenoble High Flux Reactor. The calculation of the electron-ion pairs density 
created in the filling gas by the fission products was carried out. As a consequence, the 
prediction of the current delivered at saturation was achieved with precision. In addition, the 
space charge perturbations have been quantified and the calculation of the maximum voltage 
that should not be exceeded to avoid avalanche has been conducted. We predict in particular a 
shift of avalanche towards lower voltages when contaminants such as Xenon (a fission 
product of Uranium 235) are present in Argon gas. This perturbation is verified during 
experiments and complicates notably the post-irradiation analysis. Finally, we have noticed on 
several occasions that a reduction of the inter-electrode gap facilitates the measurements in 
high neutron fluxes while limiting the perturbations usually associated with high fission rates 
(space charges perturbations, deformation of the curves, disappearance of the plateau, etc.). 
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The theoretical developments presented throughout this article will be completed by a 
numerical study and a computer code, currently under development.  
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