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We study the effect of the splitting of neutron and proton effective masses with isospin asymmetry
on the properties of the Skyrme energy density functional. We discuss the ability of the latter to
predict observable of infinite matter and finite nuclei, paying particular attention to controlling the
agreement with ab-initio predictions of the spin-isospin content of the nuclear equation of state, as
well as diagnosing the onset of finite size instabilities, which we find to be of critical importance.
We show that these various constraints cannot be simultaneously fulfilled by the standard Skyrme
force, calling at least for an extension of its P-wave part.
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I. INTRODUCTION

In the study of medium to heavy mass nuclei, nuclear
Energy Density Functional (EDF) approaches, based on
self-consistent Hartree-Fock (HF) methods and their ex-
tensions, constitute the theoretical tool of choice [1].
Thanks to the development of better energy functionals
and to the increase of computer resources, nuclear EDF is
on the edge of becoming a predictive theory for all nuclei
but the lightest. This is not only true for ground state
properties, such as binding energies, radii or multipoles
of the density, but also for low-energy spectroscopy and
decay probabilities [1].

However, the accuracy and predictive power needed
for unknown regions of the nuclear chart still leave a lot
of room for improvement. The phenomenological nature
of Skyrme functionals makes their ability to faithfully
predict observable or phenomena not linked with those
used for their construction quite weak. Indeed, the lim-
ited number of adjustable parameters (compared to the
wealth of nuclear observable to be matched) turns fit-
ting a Skyrme functional into an overconstrained prob-
lem (which, of course, does not prevent some parts of it
from being underconstrained).

As a direct consequence, many properties of existing
parameterizations are biased to the fitting procedure and
the limited analytical form of the Skyrme force, rather
than to physical reasoning. A well-known example is the
equation of state (EOS) of Pure Neutron Matter (PNM),
which is sometimes subject to a pathological collapse at
high density when not explicitly constrained. This is
problematic insofar as one of the major challenges of con-
temporary nuclear theory is to predict properties of very
isospin asymmetric nuclear systems, i.e. neutron rich nu-
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clei and matter in neutron stars. Experimental data be-
ing unavailable in this domain of isospin, one has started
relying on ab-initio theoretical results to constrain isovec-
tor properties of the functional. It has led to the con-
struction of the “Saclay-Lyon” SLy series of parameteri-
zations [2, 3] by fitting (among other quantities) a theo-
retical equation of state of neutron matter.

Isovector features of the nuclear EOS are crucial for
a good understanding of neutron stars, exotic nuclear
collisions produced at radioactive beam facilities and to
describe the structure of exotic nuclei. For instance, the
density dependence of the volume symmetry energy de-
termines the proton fraction in β equilibrium in neutron
stars, which ultimately drives the cooling rate and neu-
trino emission [4]. The high-density part of the symmetry
energy, which happens to be strongly model dependent,
also influences significantly the isospin diffusion in heavy-
ion collisions [5]. Finally, the low-density part of the sym-
metry energy is correlated with the size of neutron skins
in finite nuclei [6].

Beyond global isospin-dependent properties of the
EOS, the isovector part of nucleon-dependent quantities
may influence the behavior of the above mentioned sys-
tems. Thus, collision observable depend on the momen-
tum dependence of the mean-field, in particular on its
isovector component [7, 8]. Also, some properties of neu-
tron stars require a precise knowledge of isoscalar and
isovector nucleon effective masses [9, 10]. The latter,
which drives the splitting of neutron and proton effec-

tive masses with neutron/proton asymmetry, will serve
as a starting point for our study. Indeed, a lot of efforts
has recently been devoted to the microscopic characteri-
zation of neutron and proton effective masses in infinite
Asymmetric Nuclear Matter (ANM) [11–18]. Either in
ANM or in nuclei, the two species acquire different effec-
tive masses. This property is quantified by the difference
∆m∗(I) = m∗

n(I)−m∗
p(I), where I = (ρn−ρp)/(ρn +ρp)

is the isospin asymmetry while ρn and ρp denote neutron
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and proton densities, respectively. Note that the differ-
ent effective masses m∗ discussed in the text always refer
in fact to the ratio m∗/m, where m is the bare nucleon
mass. The latter is taken to be the same for neutrons
and protons.

This effective-mass splitting, though, is only one of a
wealth of observable which can be subject to comparison
between ab-initio predictions and EDF models. In this
work we present results of a classical yet long unused
test: the separation of infinite Symmetric Nuclear Mat-
ter (SNM) potential energy per particle into spin-isospin
channels.

We shall also pay particular attention to controlling
instabilities (i.e. non-physical spontaneous breaking of
spin, isospin and/or spatial symmetries), and correlate
∆m∗(I) with vector properties of the functional. We
thus investigate the behaviour of the latter with respect
to the breaking of time-reversal invariance and the onset
of spin polarization, looking for an overall consistency
check of its spin-isospin content. Indeed, such proper-
ties will become more and more important as one at-
tempts to use full-fledged Skyrme functionals to study
odd-mass nuclei, calculate rotational properties through
self-consistent cranking calculations, or use more general
dynamical methods.

This paper is organized as follows: in section II we
present the set of Skyrme parameterizations used in this
study and examine basic properties of nuclear matter and
finite nuclei. From then, in section III we perform a
more detailed study of the spin-isospin content of the
functionals and of their stability against finite-size spin
and isospin perturbations using response functions in the
Random Phase Approximation (RPA).

II. CONSTRAINING THE ISOVECTOR
EFFECTIVE MASS

The nucleon effective mass m∗ is a key property char-
acterizing the propagation of (quasi)nucleons through the
nuclear medium [19]. It is a reminder of the non-locality
and energy dependence of the nucleon self-energy Σ(k, ε),
themselves originating from the finite range and non-
locality in time and space of the nucleon-nucleon inter-
action. Mean-field-like theories of finite nuclei or infinite
matter assume an on-shell propagation of the nucleons.
The effective mass associated with such an on-shell prop-
agation does not take into account the fragmentation
of the single-particle strength and thus, a limited part
of the effects associated with the energy dependence of
Σ(k, ε). Finally, the total energy is calculated by con-
sidering the quasi-holes (particles) to have spectroscopic
factors of 1. In this context, either microscopic [20] or
making use of phenomenological interactions or EDF [1],
mean-field methods do not correspond to a naive Hartree-
Fock theory and always amount to renormalizing a cer-
tain class of correlations into the effective vertex. How-
ever, the energy dependence of the self-energy arising

from the correlations only influences the position of the
quasi-particle peak energy. Also, the philosophy of stan-
dard EDF methods is to leave room for improvement
through further inclusions of correlations. This can
be done by performing (Quasiparticle)-Random-Phase-
Approximation (QRPA) calculations [21, 22] or by em-
ploying the Generator Coordinate Method (GCM) on top
of symmetry-restored mean-field states [23].

Thus, the effective mass adjusted at the mean-field
level is by no means supposed to generate single-particle
spectra exactly matching experimental data extracted
from neighboring odd-mass nuclei. In particular, the
coupling of single-particle motions to surface vibrations
in closed-shell nuclei is known to increase the density
of states at the Fermi surface and thus the effective
mass [24]. A mean-field isoscalar effective mass m∗

s ly-
ing in the interval 0.7/0.8 in SNM, is able to account
for a good reproduction of both isoscalar quadrupole
giant resonances data in doubly closed-shell nuclei [25]
and of single-particle spectra in neighboring ones once
particle-vibrations coupling has been properly included.
When the latter coupling is taken into account, the effec-
tive mass becomes greater than one for states near the
Fermi surface. Certainly, a lot remains to be done to un-
derstand these features microscopically in more involved
cases. This is not only true for mid-shell nuclei where the
coupling to both rotational and vibrational states can be
important, but also for exotic nuclei where the coupling
to the continuum becomes crucial and where shape co-
existence and/or large amplitude motion appear more
systematically.

In very exotic systems, the isovector behaviour of m∗
p

and m∗
n should play an important role. However, so far,

no experimental data from finite nuclei has allowed a de-
termination of the effective mass splitting as a function of
neutron richness. In this context, ab-initio calculations
of ANM are of great help. Non-relativistic Brueckner-
Hartree-Fock (BHF) calculations, with or without three-
body force, and, with or without rearrangement terms
in the self-energy, predicted ∆m∗(I) to be such that
m∗

n ≥ m∗
p in neutron-rich matter, that is, for I ≥ 0.

Such a conclusion was also reached by calculating the
energy dependence of the symmetry potential (the Lane
potential [26]) within a phenomenological formalism [7].
The latter result was confirmed by microscopic Dirac-
Brueckner-Hartree-Fock (DBHF) calculations [27]. The
situation regarding the prediction of the effective mass
splitting was complexified due to an apparent contra-
diction between results obtained from BHF [11, 13] and
DBHF calculations [15]. However, the situation was fi-
nally clarified in Ref. [18] where the importance of the
energy dependence of the self-energy and the need to
compare the non-relativistic effective mass with the vec-
tor effective mass in the relativistic framework [28] were
pointed out.

Thus, the sign of the splitting is rather solidly pre-
dicted. However, its amplitude is subject to a much
greater uncertainty. Starting from that observation, the
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goal of the present section is to study the impact of the
effective-mass splitting on properties of exotic nuclei pre-
dicted by Skyrme-Hartree-Fock calculations. As far as
the effective-mass splitting is concerned, one expects con-
sequences onto structure properties of neutron-rich nu-
clei. As a relatively large asymmetry may be necessary
to reveal the influence of the splitting, data from nuclei
not yet studied experimentally should provide crucial in-
formation in that respect. As the effective mass gov-
erns the density of states at the Fermi surface (together
with the spin-orbit and the tensor forces), the amplitude
of the splitting may influence properties such as masses
and single particle properties of exotic nuclei, the evo-
lution of isotopic shifts across neutron rich closed-shell
nuclei or shell corrections in superheavy nuclei around
the (N = 184, Z = 120) island of stability [29–32]. Also,
neutron and proton correlations beyond the mean-field
should develop rather differently depending on the direc-
tion and amplitude of the effective-mass splitting. This
could be true for static and dynamical pairing correla-
tions as well as for the coupling to vibrational and rota-
tional states. Finally, the effective mass splitting should
leave its fingerprint onto the characteristics of isovector
vibrational states of different sorts in neutron rich nu-
clei [33].

A. Fitting protocol

Trying to keep a coherence in the way we construct
Skyrme functionals, we take the fitting protocol used to
define the SLy forces [2, 3] as a basis for the present work.
Also, we pay attention to the fact that any improved or
complexified functional includes all features validated by
the SLy ones.

The SLy functionals were derived from an effective
interaction, that is, time-odd components of the func-
tional are eventually linked to time-even ones. How-
ever, some terms in the functional given by Eqs. A6a-A6d
were dropped for some of the parameterizations. For in-
stance, time-odd terms of the form sq · 4sq′ have not
been considered when calculating odd nuclei [34] or ro-
tational states [35]. Also, J2 contributions to the energy
functional associated with momentum-dependent terms
in the central Skyrme force have been omitted for some
of the SLy parameterizations, as it has been the case for
most of the Skyrme functionals so far [1]. Rigorously,
omitting terms is inconsistent with the idea of deriving
a functional from an interaction. In any case, the latter
approach is only used for simplicity until proper adjust-
ment or derivation of time-odd terms is feasible. We refer
the reader to Refs. [1–3] for a more extensive discussion
on the subject. We presently take the SLy5 parameter-
ization as a starting point. Thus, the two-body part of
the center of mass correction is omitted whereas the J2

terms are fully kept. The spin-orbit term is the standard
one, with a single parameter adjusted on the splitting of
the 3p neutron level in 208Pb.

Within this general scheme, we have built a series of
three new Skyrme forces, denoted hereafter f−, f0 and
f+. The departures from the SLy protocol considered
presently are (i) a better control of spin-isospin instabil-
ities via Landau parameters (ii) the use of two density-
dependent zero-range terms [36] (iii) a constraint on the
isovector effective mass, such that, in neutron-rich sys-
tems, m∗

n < m∗
p for f−, m∗

n = m∗
p for f0 and m∗

n > m∗
p

for f+.
With two density dependent terms, the compressibil-

ity and the isoscalar effective mass are no longer bound
together and can be chosen independently. However,
this is not directly used here and an isoscalar effective
mass of m∗

s = 0.7, close to the SLy5 value, is chosen for
the three parameterizations f−, f0, f+. The additional
freedom brought about by the second density-dependent
term is only used to adjust more easily the high-density
part of the PNM EOS (see below). In the end, the only
parameter subject to variation between f−, f0 and f+ is
the isovector effective mass m∗

v which, m∗
s being constant,

drives the splitting ∆m∗(I).
In the present work, we use the SLy5 force as a ref-

erence, and include a comparison with the recently pro-
posed LNS parameterization [37] which was also built to
match the splitting of effective masses and the neutron
matter EOS predicted by BHF calculations. The SkP
force [38], initially built for the study of pairing effects,
will be used for a special purpose in the discussion about
instabilities.

B. Elementary properties of studied forces

As we focus on the behaviour of effective masses m∗
q

with isospin asymmetry, we recall that these quantities
are related to the dependence of the energy density func-
tional, Eqs. A6a–A6d, on kinetic densities τq , as

~2

2m∗
q(I)

=
∂H

∂τq
=

~2

2m
+ Cτ

0 ρ + qI Cτ
1 ρ

m

m∗
q(I)

≡
m

m∗
s

+ qI

(

m

m∗
s

−
m

m∗
v

)

(1)

where q = +1,−1 respectively for neutrons and protons
(for the definition of Cτ

t coefficients, see appendix A).
The splitting of effective masses, quantified by

∆m∗(I)

m
=

m∗
n(I)

m
−

m∗
p(I)

m
, (2)

is governed by the isoscalar and isovector effective masses

m

m∗
s

= 1 + 2m
~2 Cτ

0 ρ ≡ 1 + κs, (3a)

m

m∗
v

= 1 + 2m
~2 (Cτ

0 − Cτ
1 ) ρ ≡ 1 + κv. (3b)

We use the usual convention for the isovector effective
mass, which stems from its definition through the en-
hancement factor κv of the Thomas-Reiche-Kuhn sum
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rule [39]. However, m∗
v and κv are not isovector quanti-

ties in the sense of isovector couplings of the functional.

In the following, we shall discuss the value of ∆m∗(I)
at I = 1, which we note ∆m∗ in the following, for the
sake of brevity.

∆m∗

m
=

2(κv − κs)

(1 + κs)2 − (κv − κs)2
, (4)

such that ∆m∗ > 0 for κv > κs, or equivalently m∗
v < m∗

s ,
or Cτ

1 < 0.

Table I: Infinite nuclear matter properties of the Skyrme
forces quoted in the text. The quantities ρsat and E/A de-
note the density and energy per particle at saturation in SNM.
The symmetry energy and the compressibility (for symmetric
matter) are respectively 32 MeV and 230 MeV for SLy5 and
all fx forces. In the case where m∗

s ∼ 0.7, κs ∼ 0.43, so we
have ∆m∗ > 0 if κv & 0.43.

Force ρsat E/A m∗

s κv m∗

v ∆m∗

SLy5 0.161 -15.987 0.697 0.25 0.800 -0.182

f− 0.162 -16.029 0.700 0.15 0.870 -0.284

f0 0.162 -16.035 0.700 0.43 0.700 0.001

f+ 0.162 -16.036 0.700 0.60 0.625 0.170

LNS 0.175 -15.320 0.825 0.38 0.727 0.227

SkP 0.170 -16.590 1.030 0.32 0.760 0.418

Bulk properties of fx parameterizations are displayed
in Table I. We note that, while the position of the sat-
uration point varies little between our forces (SLy5 and
fx), this consistency is lost in the case of LNS and SkP.
These properties depend on the observable used in the fit-
ting procedure. In the case of LNS, the saturation point
relates to an Extended Brueckner-Hartree-Fock (EBHF)
calculation [40], predicting values of (E/A)sat and ρsat

which are larger than empirical ones. A similar but lesser
trend is observed for SkP. In this case it seems to be cor-
related with the choice of effective masses and their inter-
play with other parameters of the force. Indeed, binding
energies computed with SkP compare satisfactorily with
experimental ones, while LNS suffers in this respect from
the lack of readjustment of the saturation point on nu-
clear data. As it has been shown in Ref. [41], nuclear
binding energies are highly sensitive to the choice of the
energy at saturation, which is therefore constrained to a
very tight interval if one wants to reproduce such quanti-
ties. This constraint is especially tight compared to the
uncertainty of ab-initio predictions. Despite the fit of

surface properties (C∆ρ
0 parameter) on a set of nuclear

data, the accuracy of binding energies predicted by LNS
is of the order of 5%, to be compared with less than 1%
for SLy5.

C. Properties of the nuclear matter EOS

It is interesting to note that SLy parameterizations
were fitted to PNM EOS with the idea of improving
isospin properties of the functionals. One consequence
was to generate functionals with ∆m∗ < 0, in opposition
to ab-initio predictions. On the other hand, older func-
tionals such as SIII [42] and SkM∗ [43], which were not
fitted to PNM, had ∆m∗ > 0. The same exact situation
happens for the Gogny force [44]. Thus, improving global
isovector properties (EOS) seems to deteriorate those re-
lated to single-particle states (m∗

v) with currently used
functionals. This can be better understood by examin-
ing the expressions for SNM and PNM EOS:

E

A
(ρ0, I = 0) =

3

5

~2

2m

(

3π2

2

)2/3

ρ
2/3
0 + Cρ

0 (ρ0) ρ0

+ Cτ
0

3

5

(

3π2

2

)2/3

ρ
5/3
0 , (5a)

E

A
(ρ0, I = 1) =

3

5

~2

2m

(

3π2
)2/3

ρ
2/3
0

+ [Cρ
0 (ρ0) + Cρ

1 (ρ0)]ρ0

+ [Cτ
0 + Cτ

1 ]
3

5

(

3π2
)2/3

ρ
5/3
0 , (5b)

where ρ0 is the scalar-isoscalar density.
If Cρ

t (ρ0) coefficients only contain one low power of the
density (∝ ρ1/6), the latter influences low-density parts
of the EOS more than high-density ones. The effective
mass term then determines the high-density part of the
EOS. In SNM, this translates into the well-known rela-
tion between m∗

s and the incompressibility K∞ [2, 3]. In
the case of PNM, the EOS above ρsat is then mostly fixed
by the term proportional to Cτ

0 +Cτ
1 in Eq. (5b), and any

attempt to use the density dependence to counteract its
effects, results in a very strong constraint on the latter.
This in turn degrades the behaviour of the functional at
and below saturation density and the fit to properties of
finite nuclei. We recall at this point that the condition
∆m∗ > 0 corresponds to Cτ

1 < 0, which drives the high-
density PNM EOS down and explains why usual Skyrme
functionals predict either a collapse of the PNM EOS if
∆m∗ > 0, or, like the SLy functionals fitted to PNS EOS,
the wrong sign of the effective mass splitting in neutron
rich matter.

If Cρ
t (ρ0) coefficients contain an additional density de-

pendence with a higher power, the previous discussion
does not apply: using two density-dependent terms in

the functional (∝ ρ
1/3
0 ; ρ

2/3
0 ) [36] allowed us to construct

(f−, f0, f+) with a good fit to PNM EOS, a free choice
of effective masses and satisfactory nuclear properties.

The previous discussion already shows the type of
problems and information arising from our attempt to
improve on the fitting protocol of SLy functionals by us-
ing more inputs from ab-initio calculations. Now, Fig. 1
shows SNM and PNM EOS as obtained from (f−, f0,
f+, SLy5) and as predicted by Variational Chain Sum-
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mation (VCS) methods [45]. At this point, one can see
that the four forces (f−, f0, f+, SLy5) reproduce both
microscopic EOS with the same accuracy. However, it
remains to be seen whether or not this translates into
identical global spin-isospin properties and into similar
nuclear structure properties.
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Figure 1: SNM and PNM EOS as given by Skyrme functionals
presently discussed (see text), compared with VCS results by
Akmal et al. [45].

D. Effects on properties of nuclei

We now study the effects of the variation of the isovec-
tor effective mass on selected properties of spherical nu-
clei. We start with HF single-particle energies, then bind-
ing energies, ending with a short sum-rule based analysis
of isovector giant resonances.

For computations of open-shell nuclei, we use, in the
particle-particle channel, a zero-range interaction with a
density dependent (mixed surface and volume) form fac-
tor defined as:

Vpair(R, r) = V0 δ(r)

[

1 −
ρ(R)

2ρsat

]

, (6)

where R = (r1 + r2)/2 and r = r2 − r1. The local
HFB equations are renormalized following the procedure
developped in Ref. [46].

The strength V0 is adjusted to the mean pairing gaps
of six semi-magic nuclei (neutron gaps in 120Sn, 198Pb,
212Pb and proton gaps in 92Mo, 144Sm and 212Rn). In
this procedure we compute theoretical spectral gaps de-
fined as ∆th = Tr(h̃ρ̃)/Tr(ρ̃), where h̃ is the pairing field
and ρ̃ the pairing density [38], and adjust each of them
upon an experimental gap extracted through a five point
difference formula from masses of neighboring nuclei, as
suggested in Ref. [47].

1. Single-particle energies

Effective masses are known to control the average den-
sity of single-particle states. It is thus interesting to check
to what extent such statement applies to neutron-rich nu-
clei when varying m∗

v.
Single-particle energies in 132Sn and 208Pb are plot-

ted on Fig. 2. The general trend followed by neutron
states with increasing ∆m∗ (from force f− to f+) cor-
responds to an increase of the density of neutron states:
they tend to come closer to εF; notable exceptions being
both neutron 1i levels in 208Pb. The opposite behaviour
is observed in proton levels, which spread away from εF

with increasing ∆m∗ (except for the proton 1h11/2 level).
However, these trends are rather marginal, which can be
linked with the moderate bulk asymmetry of these nuclei
(I = (N − Z)/A = 0.24 for 132Sn and 0.21 for 208Pb).
This moderate asymmetry means that the isovector term
in the definition of the effective mass (Eq. (1)) is weakly
probed.
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Figure 2: Single-particle energies [MeV] in 132Sn and 208Pb
computed with indicated forces. Thick lines indicate the
Fermi level εF .

Let us therefore examine similar spectra for more
neutron-rich nuclei, i.e. 78Ni (I = 0.28, experimentally
observed [48]) and 156Sn (I = 0.36). The 156Sn nucleus is
used as an example of an extremely asymmetric system,
even beyond the reach of planned radioactive beam facil-
ities [49]. We observe on the lower right panel of Fig. 3
that the effect of ∆m∗ on proton single-particle energies
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at Z = 50 is more pronounced in 156Sn than it was in
132Sn. The modification of level densities appears quite
clearly in 78Ni also, while neutron levels around εF in
156Sn are shifted in a slightly more disordered way.
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Figure 3: Same as Fig. 2 in 78Ni and 156Sn.

High-`/low-n orbitals (n, ` being respectively the prin-
cipal and orbital quantum numbers) are in fact more sen-
sitive to variations of the spin-orbit field than to ∆m∗ be-
cause of their spatial localization near the surface of the
nucleus. The spin-orbit field is modified between func-
tionals by the interplay between J2-term coefficients and
effective mass parameters, since these both depend on the
same non-local terms of the Skyrme force. The spin-orbit
force (ρ∇ · J terms in the EDF), which is subject to a
slight readjustment, does affect the spectra as well. We
observed, overall, a marginal increase of the spin-orbit
field strength when going from f− to f+. This implies
that while the global effect of modifying the level density
is quite clearly observed when we alter the effective mass
parameters, details of the spectroscopy are at least as
sensitive to the terms connected to the spin-orbit field.

2. Pairing gaps

As an example, neutron spectral gaps are plotted on
Fig. 4 for Sn and Pb series, up to the drip line, against
experimental gaps extracted through five-point mass for-
mulas [34, 47]. The slight change in the level den-
sity translates into a modification of the pairing gaps:

a higher neutron effective mass (f+) corresponds to a
denser spectrum and higher gaps. The effect, which in-
creases with asymmetry, remains however very small, be-
cause of the limited alteration of single-particle levels
seen on Figs. 2 and 3.
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Figure 4: Neutron spectral gaps computed in Sn (bottom)
and Pb (top) series with f−, f0, f+, as a function of asymme-

try. Experimental ∆(5) gaps extracted from masses [50] are
plotted with error bars.

In the end, the effect is negligible and would be over-
whelmed by any other modification of the particle-hole
part of the functional. For example the spin-orbit force,
acting on the detailed level scheme, could alter the shape
of gaps. The pairing functional itself is a subject of cur-
rent debate regarding its density dependence, regulariza-
tion scheme and finite-range corrections [51], while the
HFB formalism can itself be improved (particle number
projection) as well as the mere choice of observable to
be compared (definition of theoretical an experimental
gaps), although our choice has been proven to be possibly
the most sound for extracting pure pairing effects [47].

3. Binding energies

Let us now study the effect of the aforementioned vari-
ation of level densities and pairing gaps on binding en-
ergies. On Fig. 5 we show the binding energy residuals
Eth − Eexp for Sn and Pb isotopes and N = 50 and
N = 82 isotones. The evolution of Eth −Eexp along such
series is usually plagued by an underbinding of open-shell
nuclei with respect to closed-shell ones which translates
into an arch shape of E-residual curves. Although the
variation of m∗

v seems to impact the arches, again, the
effect is negligible compared to the absolute value of de-
viations from experiment, except in the N = 82 series
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where open-shell nuclei tend to be more underbound in
the case of f+.
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Figure 5: Binding energy residuals computed with forces f−,
f0 and f+ for semi-magic series of nuclei, as indicated.

4. Isovector giant resonances

The isovector effective mass is usually defined from the
energy-weighted sum rule m1 (the TRK sum rule [39]) of
the isovector giant dipole resonance (IVGDR):

m1(E1 ; T = 1) =
~2

2m

NZ

A
(1 + κv) =

~2

2m

NZ

A

m

m∗
v

, (7)

which exhibits its link with the strength distribution of
isovector collective modes. We perform here a schematic
study of dynamical properties of f−, f0, f+ by means of
results derived in Ref. [52]. Thanks to RPA sum rules
similar to Eq. (7), it is possible to fit an accurate param-
eterization of the energy E1 = m1/m−1 of isovector giant
resonances in a given nucleus as a function of Skyrme pa-
rameters. Results for GDR (L = 1) and isovector giant
monopole (IVGMR, L = 0) modes in 208Pb are shown
in Table II, compared to experimental energies (respec-
tively from Refs. [53] and [54] and corrected, as suggested
in [52], for the shift due to the spreading of the strength
by damping effects – 2 MeV for GMR, 1 MeV for GDR).

While f− predicts both energies lower than experimen-
tal ones, values for f0 and f+ are compatible with exper-
iment for the L = 0 mode, and only f+ approaches the
experimental value for the L = 1 mode. This suggests
that values of κv corresponding to a positive value of
∆m∗ (equal to or higher than 0.43 in our case) better
describe isovector dynamics than lower values.

Table II: E1 energies of 208Pb isovector giant resonances com-
puted thanks to a sum-rule parameterization (see text), com-
pared to experimental energy centroids. Experimental uncer-
tainties are as indicated. We infer from figures in Ref. [52]
the accuracy of theoretical energies computed with the fits in
that reference, with respect to full RPA calculations, to be of
the order of 1 MeV.

κv E1(L = 0, T = 1) E1(L = 1, T = 1)

f− 0.15 24.55 12.68

f0 0.43 26.43 13.60

f+ 0.60 27.25 14.01

exp. centroid 26.3 ± 1.1 14.3 ± 0.1

As a summary, the effect of the splitting of neutron and
proton effective masses with isospin asymmetry on single-
particle energies, pairing gaps and binding energies, is
noticeable and consistent, yet limited and thus hardly
meaningful when compared to the overall (in)accuracy
of the predictions made by current nuclear EDF. In fact,
the main reason for not seeing a dramatic modification
of EDF predictions when altering ∆m∗ is the limited
amount of strongly asymmetric nuclear matter at high
enough density in the ground state of nuclei with realis-
tic isospin. This makes the effect of the isovector effective
mass rather marginal. Giant isovector resonances are cer-
tainly more fruitful to seek for an effect of a modification
of ∆m∗. Indeed, a sum-rule-based analysis of isovector
collective modes allows a slightly more clear-cut conclu-
sion, with a tendency to favor ∆m∗ & 0. The conclu-
sion of the phenomenological study done in this section
is that, while no observable listed here strongly ask for
∆m∗ > 0, there is no reason to omit this constraint in
future functionals, since, as already stated, ab-initio pre-
dictions for the sign of ∆m∗ are solid. There remains to
check the intrinsic consistency of the functional in terms
of other ab-initio inputs and stability criteria.

III. FURTHER STUDY OF INFINITE MATTER

A. Separation of the EOS into (S, T ) channels

1. Introduction

In this section, we discuss the contributions to the
potential energy of SNM from the four two-body spin-
isospin (S, T ) channels. We compare our results with
those predicted by BHF calculations [55] using AV18 [56]
two-body interaction and a three-body force constructed
from meson exchange theory [57, 58].

Using projectors on spin singlet and triplet states, re-
spectively

P̂S=0 =
1

2
(1 − P̂σ), P̂S=1 =

1

2
(1 + P̂σ), (8)

where P̂σ is the spin-exchange operator, and similar ex-
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pressions for isospin projectors P̂T using the isospin ex-
change operator P̂τ , yields the potential energy in each
(S, T ) channel

EST
pot =

1

2

∑

kl

〈

kl
∣

∣

∣
V P̂SP̂T

∣

∣

∣
kl
〉

ρkkρll, (9)

where the sum on k, l runs over all HF single-particle
eigenstates whereas ρkk designates the diagonal one-
body density matrix. The notation |kl〉 denotes a non-

normalized but antisymmetrized two-body state. In or-
der to compare different many-body approaches (ab-
initio or EDF), we use the “potential energy” which refers
to the total binding energy from which is subtracted the
kinetic energy of the non-interacting particle system.

Note that due to the zero-range character of the
Skyrme force, together with at most second-order deriva-
tive terms, only L = 0, 1 partial waves occur explicitly
whereas higher partial waves contribute to ab-initio EOS.
We find, for SNM,

E00
pot

A
=

3

160
t2(1 − x2)

(

3π2

2

)2/3

ρ
5/3
0 , (10a)

E10
pot

A
=

3

16

2
∑

i=0

t0i(1 + x0i)ρ
1+i/3
0 +

9

160
t1(1 + x1)

(

3π2

2

)2/3

ρ
5/3
0 , (10b)

E01
pot

A
=

3

16

2
∑

i=0

t0i(1 − x0i)ρ
1+i/3
0 +

9

160
t1(1 − x1)

(

3π2

2

)2/3

ρ
5/3
0 , (10c)

E11
pot

A
=

27

160
t2(1 + x2)

(

3π2

2

)2/3

ρ
5/3
0 , (10d)

where (ti, xi) are usual coefficients of the Skyrme EDF,
whereas (t0i, x0i) characterize the density-independent
zero-range term and the two density-dependent ones, fol-
lowing the parameterization of equation (A1).

The coefficients occurring in Eqs. (10a)–(10d) stem
from the antisymmetrization condition (−)L+S+T = −1,
the relative angular momentum L being even for t0i and
t1 (k2) terms and odd for t2 (k′ ·k) terms. The expression
of the potential energy in channels (S, T ) = (0, 0) and
(1, 1) is very simple since only the t2 term contributes.

2. Force vs. functional

Previous statements, however, apply only to the case
where the EDF is computed as the expectation value of
an (antisymmetrized) effective force. In the more general
case, it is still possible to define (S, T ) channels starting
from any Hartree-like functional. Indeed, the functional
can always be expressed in terms of an effective non-
antisymmetrized vertex and one can still plug a projector
in the calculation of its matrix elements. In the pure
functional case, there is however no more clear definition
of partial waves, and spin-isospin channels emerge from
the balance between coefficients of (iso)scalar/(iso)vector
couplings (see appendix B for a more detailed discussion).

As long as there are not enough input to constrain all

degrees of freedom of a general functional, the “force”
approach remains as an acceptable path, and hence shall
be used in the following.

3. Results

Results are plotted against BHF predictions on Fig. 6.
First, one can observe that results are rather scattered.
Second, the main source of binding, from (S, T ) = (0, 1)
and (1, 0) channels, is not well described and the detailed
saturation mechanism is not captured. It is clear that,
even though all four forces reproduce perfectly PNM and
SNM EOS, they do not have the same spin-isospin con-
tent, and that the latter is in general rather poor. Thus,
fitting the global EOS is an important element but it
does not mean that spin-isospin properties of the func-
tional are fixed once and for all. One needs to do more
and fitting ab-initio predictions of E

(S,T )
pot seems to be a

good idea in the near future. However, one needs to make
sure that the theoretical uncertainty of the data used is
smaller than the expected accuracy of the fit to them.
This calls for predictions from other ab-initio methods
using the same two-body plus three-body Hamiltonian.
Then, those ab-initio calculations should be repeated us-
ing different sets of two-body plus three-body Hamilto-
nians in order to provide a theoretical error bar on those
predictions.

The most obvious discrepancy appears in (0, 0) and
(1, 1) channels where Skyrme and BHF data have oppo-
site signs above saturation density. The SLy5 parameter
set shows a particular behavior in channel (1, 1) due to
the choice of x2 = −1 to prevent ferromagnetic instabili-
ties in PNM. Note that these two channels are taken care
of, in the Skyrme functional, by the density-independent
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Figure 6: Energy per particle in each (S, T ) channel for SNM,
as a function of density. Crosses refer to the BHF calcula-
tions [55].

P -wave term only. The upper-right panel of Fig. 6 points
out the tendency of Skyrme parameterizations to be at-
tractive in polarized PNM, and hence to cause a collapse
of its EOS at high density. At lower densities, BHF data
show a distinctive behavior, being slightly attractive be-
low ρsat and repulsive above. This feature cannot be
matched by the standard Skyrme functional which ex-
hibits a monotonous behavior as a function of density in
this channel, regardless of the value of (t2, x2).

It is also worth noticing that the failure in channel
(1, 1) becomes more and more prominent as one makes
∆m∗ closer to the ab-initio predictions (force f+). The
effective masses being governed by the momentum depen-
dent terms of the force, it is not a surprise that the mod-
ification of the former impacts channels (0, 0) and (1, 1).
What changes in the coefficients entering Eqs. (10a-10d)
stems only from the variation of m∗

v and the associated
rearrangement of parameters in the functional, most no-

tably the C∆ρ
0,1 coefficients closely related to surface and

surface-symmetry energies. The relatively tight require-
ments on the latter imply that the four parameters of the
non-local terms in the standard Skyrme energy functional
would be dramatically overconstrained if we were to add
the (S, T )-channel decomposition in the fitting data.

In the end, the rather poor properties of the functional
in channels (0, 0) and (1, 1), the degradation of the latter
as the effective mass splitting is improved, the idea of us-
ing ab-initio (S, T ) contributions in the fit, call, at least,
for a refinement of the odd-L term in the sense either of a
density dependence or of a higher-order derivative term.
The latter being prone to numerical instabilities and in-
terpretation problems, a density-dependent k′ · k term
remains as one of the next potential enhancements to be
brought to the Skyrme EDF (density-dependent deriva-
tive terms have been considered already, but with a focus

on even-L terms of the form t4(k
2 + k′2)ρβ

0 [59]). Phe-
nomenological constraints on gradient terms are mainly

related to the surface of nuclei, i.e. low-density regions.
One can expect that, to first order, BHF data in channel
(S, T ) = (1, 1) can be matched with an extended func-
tional while retaining a good agreement with other (ex-
perimental) data. It is less clear in the channel (0, 0) but
further exploration of the extended parameter space may
bring Skyrme and BHF data in better agreement.

B. RPA linear response functions and the
diagnosis of instabilities

We attempt here to study general stability conditions
of SNM with respect to finite size density, spin, isospin
and spin-isospin perturbations. Our basic ingredient is
the RPA response function [60] derived analytically in
Ref. [61] for the central part of the Skyrme interac-
tion. Recent work was done to incorporate the effect
of the spin-orbit part which was found to be quite negli-
gible [62], and will be omitted in the present work. One
starts by defining a one-body perturbing operator

Q(α) = e−iωt
∑

a

eiq·ra Θ(α)
a , (11)

where a indexes particles in the system. The one-body

spin-isospin operators Θ
(α)
a are defined as

Θss
a = 1a, Θvs

a = σa, Θsv
a = ~τa, Θvv

a = σa~τa, (12)

where we use the denomination of (iso-)scalar (s) and
(iso-)vector (v) channels in order to distinguish the un-
coupled spin-isospin channels from the coupled two-body
(S, T ) channels discussed in the previous section. In
Eq. (12) and the following, the first (second) subscripts
denotes the spin (isospin). We then study the response
to each type of perturbation separately through the re-

sponse functions :

χ(α)(ω,q) =
1

Ω

∑

n

|〈n|Q(α)|0〉|2

×

(

1

ω − En0 + iη
−

1

ω + En0 − iη

)

, (13)

at the RPA level, where Ω stands for a normalisation vol-
ume and |n〉 is an excited state of the system, En0 being
the corresponding energy. Since the central residual in-
teraction does not couple the channels defined through
Eq. (12) in SNM, we can indeed consider each channel
separately.

The response function χ(α) can be seen as the propa-
gator of the collective perturbation, i.e. the positions of
its poles in the (q, ω) plane yield the dispersion relation
of the mode. In this formalism, the onset of an unstable
mode is marked by the occurrence of a pole in χ(α) at
ω = 0, corresponding to zero excitation energy. Such a
pole marks the transition between stable (χ(α) < 0) and
unstable (χ(α) > 0) domains. Unstable modes of infi-
nite wavelength (q = 0) are those traditionally discussed
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in the context of Landau parameters. A pole at finite
q characterizes a system which is unstable with respect
to the appearance of a spatial oscillation of a given type
(density, spin, isospin or spin-isospin) with a given wave-
length λ = 2π/q.

The evaluation of response functions calls for the resid-
ual interaction Vp−h, defined as the second-order func-
tional derivative of the energy with respect to the den-
sity matrix. Its momentum-space matrix elements can
be written, using total momentum conservation, as [61]:

Vp−h(q1,q2,q) = 〈q1 q2 + q| Vp−h |q1 + q q2〉, (14)

= Ŵ1(q) + Ŵ2(q) (q1 − q2)
2, (15)

with

Ŵ1(q) =
1

4
[ W ss

1 (q) + W vs
1 (q) σ1 · σ2 + W sv

1 (q) ~τ1 ◦ ~τ2

+ W vv
1 (q) σ1 · σ2 ~τ1 ◦ ~τ2 ], (16)

and a similar expression for Ŵ2. We find:

W ss
1 (q)

4
= 2Cρ,0

0 +

2
∑

i=1

Cρ,i
0

(i + 6)(i + 3)

9
ρ

i/3
0 − 2C∆ρ

0 q2, (17a)

W vs
1 (q)

4
= 2Cs,0

0 + 2

2
∑

i=1

Cs,i
0 ρ

i/3
0 − 2C∆s

0 q2, (17b)

W sv
1 (q)

4
= 2Cρ,0

1 + 2

2
∑

i=1

Cρ,i
1 ρ

i/3
0 − 2C∆ρ

1 q2, (17c)

W vv
1 (q)

4
= 2Cs,0

1 + 2

2
∑

i=1

Cs,i
1 ρ

i/3
0 − 2C∆s

1 q2, (17d)

W ss
2 (q)

4
= Cτ

0 , (18a)

W vs
2 (q)

4
= CsT

0 , (18b)

W sv
2 (q)

4
= Cτ

1 , (18c)

W vv
2 (q)

4
= CsT

1 . (18d)

With the above expression for the residual interaction, the response function reads as

χ(α) (ω,q) = 4Π0



 1 − W
(α)
1 Π0 − 2W

(α)
2 k2

F

(

q2 −
ν2

1 −
m∗k3

F

3π2 W
(α)
2

)

Π0 (19)

+ 2W
(α)
2 k2

F(2q2 Π0 − Π2) + (W
(α)
2 k2

F)2
(

Π2
2 − Π0Π4 + 4q2ν2Π2

0 −
2m∗kF

3π2
q2Π0

)





−1

,

where q = q/2kF, ν = ωm∗
s/qkF and Π0,2,4 are general-

ized Lindhard functions, see Ref. [61].
As already said, the limit q → 0, corresponds to per-

turbations of infinite wavelength, keeping the system ho-
mogeneous. There, the residual interaction is uniquely
determined by Landau parameters Fl, F

′

l , Gl, G
′

l, with
l = 0, 1, and well known stability conditions are obtained
under the form [63]:

1 +
Xl

2l + 1
> 0, (20)

where Xl represents any of the Landau parameters. We
have used this criterion in the fit of our forces fx, ensur-
ing that no spin or spin-isospin instability would occur
below 2ρsat. We observe that, from the point of view
of Landau parameters, the most critical channel is the

vector-isovector one, with associated instabilities at den-
sities as low as 2ρsat (see the upper-right panel of Fig. 9).
This behaviour is linked to the attractive character of
the functional in channel (S, T ) = (1, 1) which gives rise
to a collapse of spin-polarized PNM, and accordingly, a
vanishing spin-isospin symmetry energy. Therefore, bet-
ter reproducing the decomposition into (S, T ) channels
of EOS obtained from ab-initio methods is not only a
matter of microscopic motivation, but also a necessity to
avoid unwanted instabilities.

Beyond infinite wavelength instabilities, we also aim at
demonstrating that a more general treatment is needed to
fully describe and control unstable modes which arise in
the Skyrme EDF framework. Thus, contributions to the
residual interaction coming from functional terms of the
form ρ∆ρ are zero for q = 0, whereas such tertermsms
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Table III: Values of the C∆ρ
1 coefficient, in MeV fm5.

f− SLy5 f0 f+ LNS SkP

∆m∗ -0.284 -0.182 0.001 0.170 0.227 0.418

C∆ρ
1 5.4 16.7 21.4 29.4 33.75 35.0

drive finite-size instabilities.
Indeed, we have observed that existing (SkP) or new

parameterizations built with a high value of κv in order
to reproduce the microscopic splitting of effective masses,
tend to spatially separate protons from neutrons in spher-
ical mean-field calculations, where enough iterations lead
to states with strongly oscillating densities and a diverg-
ing energy. Following a preliminary phenomenological

reasoning, we could relate this effect to the C∆ρ
1 ~ρ1 · ∆~ρ1

term in the functional, as this term can energetically fa-
vor strong oscillations of the isovector density ~ρ1 which
arise in the case of such a spatial n-p separation. More-
over, Eqs. (17a-18d) show that such a term can yield an
attractive contribution to the residual interaction in the
case of a short-wavelength (high q) perturbation. We
found empirically that parameter sets for which this in-

stability arises are characterized by a high value of C∆ρ
1 ,

that is C∆ρ
1 & 30. As seen from Table III, this parame-

ter is strongly correlated with the effective mass splitting
∆m∗ in such a way that a positive splitting, as required
by ab-initio predictions, leads to instabilities.

Whereas we were obviously unable to provide a fully
converged (and hence physically meaningful), clearly un-
stable force to illustrate the previous statements, we
found that certain forces available in the literature
present the aforementioned behaviour. For example, con-
vergence problems have arisen (and have already been
pointed out in another study [64]) for the SkP parameter
set [38]. The nature of the instabilities discussed here
is illustrated on the lower panels of Fig. 7, where neu-
tron and proton densities are plotted at various stages
of execution of a self-consistent iterative procedure with
SkP in 56Ni. We see that strong, opposing oscillations
of neutron and proton densities are formed, and steadily
increase with iterations. Such a behaviour happens after
a seemingly converged situation.

The study of the linear response function in the scalar-
isovector channel allows us to provide a more quantitative
ground to the previous observation. By plotting criti-
cal densities (lowest density of occurrence of a pole in
χ(α)(ω = 0, q)) for a given q on Fig. 8, we see that these
critical densities can be very close to ρsat for q ≈ 2.5 to
3 fm−1. This is the case for SkP, which displays the low-
est scalar-isovector critical density of all forces studied in
this paper. Accordingly, it is the most prone to a lack of
convergence in HF calculations.

The link between response functions and convergence
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Figure 7: Neutron and proton densities in central regions of
56Ni (bottom) and 40Ca (top) plotted for a fully converged
computation using the SLy5 force (solid line; relative varia-
tion of energy between iterations less than 10−14) and along
a series of iterations done with SkP (bottom) and LNS (top).
Number of iterations as indicated in key. In both cases the
collapse happens after a nearly-converged situation (∼ 10−9

relative energy variation), which can easily be mistaken for a
true ground state.
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ω = 0, q > 2kF .

problems can indeed be understood by classifying them
by their magnitude: in case of a stable but very soft
mode, lack of convergence arises from the existence of a
continuum of quasi-degenerate mean-field states, among
which no minimization or self-consistency algorithm shall
be able to decisively find an energy minimum without a
considerable amount of iterations. If the soft mode be-
comes unstable, it causes a divergence of the energy and
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of other observable such as the densities. We see in the
agreement between the RPA study of SNM and the obser-
vation of unstable HF calculations of nuclei a qualitative
validation of our Local Density Approximation (LDA)-
based treatment of instabilities: soft or unstable modes
occurring in INM happen for the same parameter sets in
finite nuclei.

The large number of iterations needed for the diver-
gence to occur on Fig. 7 is a consequence of the limiting
case embodied by SkP, such that the existence of a def-
inite instability is highly dependent on finite size effects
(choice of the nucleus) and discretization details in the
numerical procedure. If SkP is a limiting case, LNS also
displays a low critical density in the scalar-isovector chan-
nel (Fig. 8). In this case, we observed proton-neutron
separation in 40Ca and for small mesh steps (0.1 fm)
only (see Fig. 7), while it is more frequent with SkP. Our
force f+, with a critical density just slightly higher than
LNS, successfully passed the test of computing a series
of 134 spherical nuclei. This again demonstrates that
testing finite-size instabilities through response functions
constitutes an accurate tool, the critical density (and its
proximity to ρsat) being a good measure of the gravity
of the problems one might encounter in finite nuclei. Al-
though the actual occurrence of instabilities is subject to
details of the numerical treatment, it is now clear that
their origin can be traced back to the choice of parame-
ters in the functional itself.

Nevertheless, even if a functional does not display clear
instabilities but only spurious soft collective modes, con-
vergence difficulties shall arise in mean-field calculations
while such a mode will translate into a non-physical
low-lying spectrum in a beyond-mean-field framework.
This can then yield excessive correlation energies if one
systematically includes correlations in the ground state
e.g. in (Q)RPA or GCM methods. One should thus make
sure that no spurious (even remotely) soft mode occurs
at saturation density in order to prevent such problems.

Having demonstrated the importance of finite-size in-
stabilities, let us go back to discussing our original set of
forces and perform a generalization to other spin-isospin
channels.

Critical densities are plotted on Fig. 9 for the four
channels defined in Eq. (12). The upper-left panel shows
that, while no unstable mode occurs at q = 0 thanks
to fitting PNM EOS to relatively high density, scalar-
isovector instabilities may happen little above ρsat for
q ≈ 2.5 to 3 fm−1. In addition, there is a clear trend
for lowering the critical density when ∆m∗ is increased,
in agreement with the preliminary phenomenological rea-

soning on C∆ρ
1 .

Spin channels have been taken care of during the fit
thanks to Landau parameters, which describe the resid-
ual interaction at q = 0. The result can be seen on the
right panels of Fig. 9, where the critical densities of in-
stability are plotted for spin-flip modes (isoscalar and
isovector). As previously stated, the most dangerous
q = 0 instability is found in the vector-isovector chan-
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Figure 9: Same as Fig. 8, for all spin-isospin channels. The
lower-left panel shows the region of spinodal instabilities be-
low ρsat. The domain of q covered in this case determines the
size of structures formed, while the region between 0.1 and
0.16 fm−1 appears as metastable.

nel. By looking at the upper-right panel of Fig. 9 one
can see that the critical density is even lower (1.5ρsat) at
q = 3 fm−1 than at q = 0, a domain not covered by the
criterion of Eq. (20).

An even more prominent finite-size effect can be ob-
served in the isoscalar spin-flip channel (lower-right panel
of Fig. 9) where, while no instability occurs at q = 0 as
in the case of most Skyrme forces, finite-size instabilities
occur at low density, even below ρsat ! These instabil-
ities are linked to the C∆s

0 s0 · ∆s0 term which makes
the vector-isoscalar Vp−h attractive at large q whereas
it is repulsive at q = 0. Values of C∆s

0 , indeed, are as
high as 45.85 and 47.32 for SLy5 and f−, respectively.
As a consequence, one can expect divergences in calcu-
lations of odd or rotating nuclei with the latter forces
if the aforementioned terms are included. In this case,
though, increasing ∆m∗ pushes the critical density far-
ther from ρsat: f0 and f+ functionals are thus the only
ones to be free from instabilities at ρsat, without being
totally satisfactory either.

The previous discussion is valid if the full time-odd
functional is taken into account. This must be stressed
since s0 · ∆s0 terms, which drive the most critical,
finite-size instabilities, have never been included in self-
consistent mean field calculations to date. However,
RPA calculations are commonly performed by computing
the residual interaction matrices directly from the an-
tisymmetrized force (plus rearrangement terms), which
amounts to implicitly including the contribution to Vp−h

from all terms in the functional [65].
The latter findings finalize the picture of a competi-

tion between spin and isospin instabilities. All in all,
the strong interplay between the various quantities linked
to the four parameters of the non-local terms in the
Skyrme force does not seem to allow for a fully satis-
factory compromise between stability criteria and ab-
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initio constraints on ∆m∗. Again, we see that the non-
local part of the Skyrme force is too simplistic to control
all relevant properties. An extension with density- and
momentum-dependent terms, allowing the fine-tuning of
the functional at various densities, combined with the
formal checks advocated in this paper, could prove to sig-
nificantly improve the predictive power of Skyrme EDF.

IV. CONCLUSION

We have built a series of Skyrme energy density func-
tionals to study the effect of a variation of the split-
ting of neutron and proton effective masses with isospin
asymmetry on properties of this mean-field-based model.
Thanks to the use of a second density-dependent term
in the underlying effective force, we could cover a wide
range of effective mass splittings (∆m∗) with a satisfac-
tory fit to nuclear properties. Indeed, nuclear observable
predicted by our functionals f−, f0 and f+ show a re-
markable similarity, pointing out that spectra, pairing
gaps and masses of bound nuclei are weakly sensitive to
∆m∗, mostly due to their relatively low isospin asymme-
try. Although observable were affected in a noticeable
and consistent way, no clear improvement was seen when
altering ∆m∗ either way.

Beyond this phenomenological study, we have com-
pared the splitting of the equation of state of symmet-
ric infinite matter into spin-isospin channels provided by
our functionals and by ab-initio Brueckner-Hartree-Fock
calculations. Such a comparison showed an obvious dis-
crepancy in (S, T ) = (0, 0) and (1, 1) channels, where
energies predicted by Skyrme functionals and by BHF
calculations have opposite signs. The inconsistency in
(S, T ) = (1, 1) channel, where the Skyrme functional is
attractive, translates into a collapse of polarized neutron
matter EOS, related to the onset of spin-isospin instabili-
ties at quite low density (2ρsat). In this channel, ab-initio
predictions cannot be matched (in the Skyrme “force”
approach) without an extension of the P-wave term. We
also identified finite-size isospin instabilities caused by
strong isovector gradient terms, which prevent the con-
vergence of mean-field calculations. We were able to pro-
vide a firm and quantitative basis to these observations
through an analysis of finite-size instabilities by use of
RPA linear response functions in SNM. The latter showed
that finite-size effects in the analysis of instabilities tend
to always dominate.

The present study leads us to propose the systematic
inclusion of consistency checks with ab-initio predictions
of spin-isospin properties in the construction of our future
functionals, as well as a systematic diagnosis of finite-size
instabilities.
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Appendix A: SKYRME ENERGY FUNCTIONAL

We take the particle-hole part of the functional as given
by the expectation value of a Skyrme effective force in-
cluding two density-dependent terms:

V (R, r) =

2
∑

i=0

t0i

(

1 + x0iP̂σ

)

δ(r) [ρ0 (R)]
i/3

+
1

2
t1

(

1 + x1P̂σ

)

[

δ(r) k2 + k′2 δ(r)
]

+ t2

(

1 + x2P̂σ

)

k′ · δ(r) k

+ iW0 [σ1 + σ2]k
′ × δ(r) k, (A1)

with the usual notations

R = (r1 + r2) /2, (A2a)

r = r1 − r2, (A2b)

k =
1

2i
(∇1 − ∇2) , (A2c)

k′ = C.C. of k acting on the left, (A2d)

σ = σ1 + σ2, (A2e)

P̂σ =
1

2
(1 + σ1 · σ2) . (A2f)

The total binding energy of a nuclear system can be
written as a functional of a local energy density

E =

∫

d3r H(r), (A3)

H =
~2

2m
τ0 + HSkyrme + HCoul., (A4)

HSkyrme = Heven
0 + Heven

1 + Hodd
0 + Hodd

1 , (A5)

where the superscripts in the last equation indicate the
behaviour with respect to time reversal of densities oc-
curring in each term, while subscripts indicate the rank
of the densities in isospin space. The corresponding ex-
pressions are
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Heven
0 = Cρ

0 ρ2
0 + C∆ρ

0 ρ0∆ ρ0 + Cτ
0 ρ0 τ0 + CJ

0 J
2
0 + C∇J

0 ρ0∇ · J0, (A6a)

Heven
1 = Cρ

1 ~ρ 2
1 + C∆ρ

1 ~ρ1 · ∆~ρ1 + Cτ
1 ~ρ1 · ~τ1 + CJ

1
~J 2

1 + C∇J
1 ~ρ1 · ∇ · ~J1, (A6b)

Hodd
0 = Cs

0 s2
0 + C∆s

0 s0 · ∆s0 + CsT
0 s0 ·T0 + C∇s

0 (∇ · s0)
2 + Cj

0 j20 + C∇j
0 s0 · (∇ × j0), (A6c)

Hodd
1 = Cs

1 ~s 2
1 + C∆s

1 ~s1 · ∆~s1 + CsT
1 ~s1 · ~T1 + C∇s

1 (∇ ·~s1)
2 + Cj

1
~j 2
1 + C∇j

1 ~s1 · (∇ ×~j1). (A6d)

Bold letters denote vector densities and arrows denote
isovector densities. Neutron and proton densities (q =
+1 for neutrons, q = −1 for protons) are thus given by

ρq (r) =
1

2
(ρ0 + q ρ1,3) ,

τq (r) =
1

2
(τ0 + q τ1,3) ,

Jq (r) =
1

2
(J0 + q J1,3) , (A7)

with similar expressions for time-odd densities. The spin-
current vector Jt is built from the antisymmetric part of
tensor Jt.

Let us give the expressions, in terms of Skyrme force
parameters, of the coupling constants entering the HFB
calculations which are altered by the addition of a second
density-dependent term

Cρ
0 =

2
∑

i=0

Cρ,i
0 ρ

i/3
0 =

2
∑

i=0

3

8
t0i ρ

i/3
0 , (A8a)

Cρ
1 =

2
∑

i=0

Cρ,i
1 ρ

i/3
0

=

2
∑

i=0

−
1

8
t0i (1 + 2x0i) ρ

i/3
0 , (A8b)

as well as the constants related, respectively, to isoscalar
and isovector effective masses,

Cτ
0 =

1

16
[ 3t1 + t2(5 + 4x2) ] , (A9a)

Cτ
1 =

1

16
[ −t1(1 − 2x1) + t2(1 + 2x2) ] , (A9b)

and constants multiplying gradient terms discussed in
sec. III B,

C∆ρ
0 =

1

64
[ −9t1 + t2(5 + 4x2) ] , (A10a)

C∆ρ
1 =

1

64
[ 3t1(1 + 2x1) + t2(1 + 2x2) ] , (A10b)

C∆s
0 =

1

64
[ 3t1(1 − 2x1) + t2(1 + 2x2) ] , (A10c)

C∆s
1 =

1

64
[ 3t1 + t2 ] . (A10d)

The expressions of all other coupling constants are given
in Ref. [1]. Some of the above constants are linked

through the gauge invariance of the functional, related to
the Galilean invariance of the underlying effective force:

Cj
t = −Cτ

t , CJ
t = −CsT

t , C∇j
t = C∇J

t . (A11)

The densities used above can be written as functionals
of the density matrix expressed in coordinate space, i.e.

ρ̂(xσq,x′σ′q′) =
∑

k

〈k|x′σ′q′〉〈xσq|k〉 ρkk , (A12)

as

ρ0(r) =

∫

d3xd3x′
∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

× ρ̂(xσq,x′σ′q′), (A13a)

∆ρ0(r) =

∫

d3xd3x′
∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

× (∇′2+ 2∇
′ · ∇ + ∇

2) ρ̂(xσq,x′σ′q′), (A13b)

τ0(r) =

∫

d3xd3x′
∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

× ∇
′ · ∇ ρ̂(xσq,x′σ′q′), (A13c)

J0(r) =

∫

d3xd3x′
∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q

×
1

2i
(∇ − ∇

′) ⊗ σσ′σ ρ̂(xσq,x′σ′q′), (A13d)

j0(r) =

∫

d3xd3x′
∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

×
1

2i
(∇ − ∇

′) ρ̂(xσq,x′σ′q′), (A13e)

where σ, σ′ are indices referring to spin, q and q′ refer
to isospin, ∇ is the gradient operator acting on the co-
ordinate x, ∇

′ being the same acting on x′. Isovector
and other time-odd densities can be expressed by replac-
ing, respectively, δq′q by ~τq′q and δσ′σ by σσ′σ where
appropriate.

Appendix B: SEPARATION OF THE ENERGY
INTO SPIN-ISOSPIN CHANNELS

When the EDF is defined as the expectation value of
an effective Hamiltonian, separating it into spin-isospin
channels is straightforward, as in Eq. (9). However, one
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can extend this definition to the case of any Hartree-like
functional: let us start by recalling that in the case of
the Skyrme force, the direct and exchange terms have
the same analytical structure; one thus usually uses the
expressions

Epot =
1

2

∑

kl

〈

kl
∣

∣VSkyrme

∣

∣ kl
〉

ρkk ρll, (B1)

∣

∣kl
〉

= |kl 〉 − |lk 〉 = (1 − P̂rP̂σP̂τ ) |kl 〉 , (B2)

where the last expression uses the position, spin and
isospin exchange operators to define an antisymmetrized
and non-normalized two-body state. One then writes
down the antisymmetrized form of Eq. (A1) and the EDF
by using the definition of densities entering Eqs. (A6a)-
(A6d).

Leaving the antisymmetrized Hamiltonian framework,

it is always possible to define the potential part of the
functional as the direct term of the expectation value of
a certain operator, as in

Epot =
∑

kl

〈 kl |VEDF| kl 〉 ρkk ρll, (B3)

recalling that VEDF = VSkyrme(1− P̂rP̂σP̂τ ) in the Hamil-
tonian case. One then defines the energy per channel as

EST
EDF =

∑

kl

〈

kl
∣

∣

∣
VEDF P̂S P̂T

∣

∣

∣
kl
〉

ρkk ρll, (B4)

which, with the definitions (A6a)-(A6d) for coupling con-
stants, yields (retaining only terms acting in infinite mat-
ter)

EST
pot =

∫

d3r HST (r) (B5)

HST =
[

Cρ
0 + (4S − 3)Cs

0 + (4T − 3)Cρ
1 + (4S − 3)(4T − 3)Cs

1

]

×
1

16

[

(2S + 1)(2T + 1)ρ2
0 + (2S − 1)(2T + 1)s2

0 + (2S + 1)(2T − 1)~ρ 2
1 + (2S − 1)(2T − 1)~s 2

1

]

+
[

Cτ
0 + (4S − 3)CsT

0 + (4T − 3)Cτ
1 + (4S − 3)(4T − 3)CsT

1

]

×
1

16

[

(2S + 1)(2T + 1)ρ0τ0 + (2S − 1)(2T + 1)s0 ·T0

+ (2S + 1)(2T − 1)~ρ1~τ1 + (2S − 1)(2T − 1)~s1 · ~T1

]

. (B6)

Appendix C: PARTICLE-HOLE RESIDUAL
INTERACTION

With the definition of densities given in Eqs. (A13b)-
(A13e) the particle-hole residual interaction is obtained
through

〈x′

1σ
′

1q
′

1,x
′

2σ
′

2q
′

2|Vp−h|x1σ1q1,x2σ2q2〉

=
δ2E

δρ(x1σ1q1,x′
1σ

′
1q

′
1) δρ(x2σ2q2,x′

2σ
′
2q

′
2)

, (C1)

which, for the central, spin-scalar, isoscalar part of the
functional, i. e.

Hsv = Cρ
0 (ρ0) ρ2

0 + C∆ρ
0 ρ0∆ ρ0 + Cτ

0 (ρ0 τ0 − j20),

(C2)

(the generalization to the full central part, omitted here
for the sake of brevity, being straightforward), reads

Vp−h = 2Cρ,0
0 +

2
∑

i=1

Cρ,i
0

(

i

3
+ 2

)(

i

3
+ 1

)

ρ
i/3
0

+Cτ
0

(

∇
′

1 · ∇1 + ∇
′

2 · ∇2

+
1

2
(∇′

1 − ∇1) · (∇
′

2 − ∇2)
)

+C∆ρ
0

(

(∇′2
1 + 2∇

′

1 · ∇1 + ∇
2
1)

+(∇′2
2 + 2∇

′

2 · ∇2 + ∇
2
2)
)

. (C3)

When computing the momentum-space matrix element,
Eq. (14), one makes the substitutions ∇1 = i(q1 + q),
∇2 = iq2, ∇

′

1 = −iq1 and ∇
′

2 = −i(q2+q) (with ~ = 1),
which yields expressions (17a)-(18d).
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