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Abstract

Two kinds of asymmetry arise from the interference of the Born amplitude and the box-type
amplitude corresponding to two virtual photons exchange, namely charge-odd and single spin asym-
metries. In case of unpolarized particles the charge-odd correlation is calculated. It can be mea-
sured in a combination of electron muon and positron muon experiments. The forward-backward
asymmetry is the corresponding quantity which can be measured for the crossed processes. In the
case of a polarized muon the single spin asymmetry for annihilation and scattering channels has
been calculated. The additional structure function arising from the interference is shown to suffer

from infrared divergencies. The background due to electroweak interaction is discussed.

PACS numbers:



I. INTRODUCTION

The motivation of this work is to give an accurate description of the process eu —
efi(y) e — pp(7y) in frame of QED, in order to provide a basis for the comparison with
experimental data. High precision experiments on the processes e — 77 and eé — pp are
planned in future ¢ — 7 facilities. Moreover, the possibility of colliding e beam facilities has
been discussed in framewok of programs on verification of Standard Model (SM) prediction.

Charge-odd and backward-forward asymmetries appear naturally from the interference
of one and two photon exchange amplitudes in frame of QED and SM due to Zj-boson
exchange in Born approximation. But at the energy range reachable at ¢ — 7 factories, the
relevant contribution of SM type is [1]:
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which is quite small compared to QED effects.
The accuracy of results given below is determined by
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and the contribution of higher orders of QED /7 &~ 0.5%. Moreover we assume that all the
velocities of the final heavy particles are finite in the annihilation as well as in the scattering
channels. This is the reason why Coulomb factors are neglected.

Our paper is organized as follows. The annihilation channel and the scattering channel
ee — up are considered, In Secs. II and III respectively. In Sec. IV we take into account the
soft, photon emission and construct charge-odd and forward-backward asymmetries. Explicit
form for additional structure G5 for annihilation channel is given in Sec. V. In Sec. VI the

one-spin asymmetries are investigated. The results are summarized in the Conclusions.

II. PROCESS e +e™ — ut +pu (v)

At first, we consider the process of creation of p*u~ pairs in electron-positron annihila-
tion:

e (py) +e(po) = 1wt (gy) + 1 (qo). (3)



The cross-section in the Born approximation, can be written as:

dop o’ 2 2 9
= —B(2— 4
with s = (py +p )2 =4E?% 3> =1-— %, E is the electron beam energy in center of mass

reference frame (implied for this process below), m, m, are the masses of muon and electron,
¢ =cosf, and 0 is the angle of x_-meson emission to the electron beam direction.
The interference of the Born amplitude

dra

Mp = Tv(m)WU(p—)fL(Q—)W}(q+),

with the box-type amplitude Mp, results in parity violating contributions to the differential
cross section, i. e. the ones, changing the sign at 8 — 7 —#,. As a consequence of charge-odd

correlations we can construct:

do(0) — do(m — 0)
dop(0) @)

Here we take into account as well the emission of an additional soft real photon with energy

A(0,AE) =

not exceeding some small value AFE| so that A(f, AF) is free from the infrared singularities.
Part of the results presented here were previously derived in a paper by one of us (E. A.
K.) in Ref. [2], and partially published in [3].
There are two box-type Feynman amplitudes (Fig. 1). We calculate only one of them,

the uncrossed diagram (Fig. 1a) with matrix element

o2 [ Ak a(e)To(gy) X 0(py) Zu(p-)
M =iot [ )
(A) = (k_A)Q_mzv (Q) = (k_Q)2_m27 (P:I:) = (k:FP)Q_)‘Qa (6)

with A-”"photon” mass and

T =valk = Q+m)ys, Z=5(k — A)ya,

1 1 1
A=3ps=p), Q=35 —a), P=5ps+p) (7)

We will assume
nﬂziu—5%~s~—¢~—w (8)

The explicit form of kinematical variables used below is:

1 1
A?=-P= -, Q=—7s8% o=0Q=7(u—1),
S

u=(p-—q4)’ = —Z(l +8°+2pc), t=(p —q ) =—701+5 =28  (9)
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FIG. 1: Feynman diagrams for two-photon exchange in ee — pup process: box diagram (a) and

crossed box diagram (b).

The contribution to the cross section of the amplitude arising from the crossed Feynman

diagram (Fig. 1b), M, can be obtained from M, by the crossing relation
dog(s,t)  doy(s,u)
aQ, dQ,
which has the form
do,(s,t)  pa?
dQ,  2ms?

Re[R(s,t)],

with

d*k 1 1
R0 = [ m@EE

The scalar, vector and tensor loop momentum integrals are defined as:

Ak 1k, kuk,
Bididw = | P

Using symmetry properties, the vector and tensor integrals can be written as:
Jy=Jn A+ Jg-Qu,
Juw = Koguw + KpP,P, + KgQ"Q" + KaA LA, + K (QuA, + QuA,).

The quantity R(s,t) can be expressed as a function of polynomials P; as:

R:P1J+P2JA+P3JQ+P4K0+P5KA+PGKQ+P7KP—|—P8KI,

. . 1 A
Tr((G-+m)T (G —m) ) x 7T (p+ Zp-u)

(10)

(11)

(12)

(13)

(16)

where the explicit form of polynomials is given in Appendix A. Using the explicit expression

for the coefficients Ja, ..., K, (See Appendix B) we obtain
R(s,t) = 4(0 — A*)(20 — m*)F + 16(0 — A?)(0” + (A?)? — m>A?)J
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+4[(A%)? — 3A%0 + 207 — mPo]Fy + 4[2(A?)? — 2A%0 + 207 — m?A?|Fa
+4[(A*)? + A%0 + m*A%|Gq + 4[—(A%)? + 0% — 2m°A’|Hy, (17)

with the quantities F'+ H given in Appendix B. Finally the charge-odd part of differential

cross section has the form

<d05z¢rt(87 t)) ﬁpann
odd

dQ,  2rs

b

1 1
pann _ E[R(S,t) . R(S,u)] _ (2 B 52 + 5202) In (1 i_ §Z> In % + D?/”n(18)

Dy = (126" + %) lHBQlHBC <1n1+ﬁc+lni>

1 1—fc S
_1+52—2Bc<ln 2 HHW)]

1. ,1—=08c 1 ,1+pc . (14 8%+ 28¢ . (14 B%—28c
B +L12< 2(1+ fo) >+Ll2< 2(1 — Be) )]
m? 1 — Bc 1+ Be (14 B%+28c (14 8% —28c
— ?[IHZ 5 —ln2 5 +2L12 <W>—2L12 (W)],

where ¢(5) = sFy, Fg is given in Appendix B and
[ d
Liy (2) = — / a1 - 2) (19)

T
0

is the Spence function. The quantity D*" — D" suffers from infrared divergences, which

will be compensated taking into account the soft photons contribution (see below).

III. SCATTERING CHANNEL
Let us consider now the elastic electron muon scattering

e(p1) + pu(p) — e(p)) + (@)

which is the crossed process of (3). The Born cross section is the same for the scattering
of electrons and positrons on the same target. Taking the experimental data from the

scattering of electron and positron on the same target, one can measure the difference of the



corresponding cross-sections which is sensitive to the interference of the one and two photon
exchange amplitudes.

The Born cross sectin of electron scattering on muon at rest can be written in the form:

doil'  o?(s* 4+ u® + 2tm?)
0 - DT ., S=2pp=2mE,
—1
t = _2p1p117 u:_2pp,1:_8(p )7 S+t+u:07
p
2F 0.
u = —2pp'1—%,2p:1+ﬁsin2§, (20)

where f, is the scattering angle. The charge-odd contribution to the cross section of

ep—elastic scattering is:

do;t, o’
vir _ Re (D*¢
( d2, )odd 2mm?p? “(P,

1 2 —U =t
D* = <[D(s,t) = D(u, )] = 5[s* +u +2tm*| ln—In 5 + Dy, (21)

with
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’ ’ In2  In-%
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with the help of the following relation:

ﬁ [WZ +In(47) Inx + Lip (—2v/72) — Lis (%)] ;o (23)

mQFQ = —

where

V1

= VItT+yT and T = —t/(4m?).
Vi+r =1

IV. SOFT PHOTON EMISSION

In this section the emission of soft real photons in the Lab reference frame for ey scattering

is calculated. Following Ref. [4], the odd part of cross section

soft 3 ! /
do :_&.Q/M o pm (PP (24)
dO'() 472 w pllk plk p,k pk So, w<Ae




must be calculated in the special reference frame Sy, where the sum of the three-momenta of
the incident and of the recoil muon is zero zZ = E+;5' = 0. Really, in this frame, the on-mass
shell condition of the scattered muon §[(z — k)?> — m?], 2 = p; + p — p} does not, depend on
the direction of the emitted photon. The photon energy can be determined as the difference
of the energy of the scattered electron and the corresponding value for the elastic case: the
maximum value of the photon energy Ae in the Sy frame is related with the energy of the

scattered electron, detected in the Lab frame AFE as (see [4], Appendix C),
Ae = pAE. (25)

The calculation of the soft photon integral with w < Ae can be performed using t’Hooft and
M. Veltman approach (see [5], Section 7). We find

dosoft o (2pAE)? .
© - x {2“”’1“ [T] * f}
1
e = —2Li, (1 - p—x> + 2L, (1 - g) : (26)

which is in agreement with Ref. [4].

The charge asymmetry for e scattering has the form:

doe r=e n(m) — qgetretut) dotirt 4 dosoft) o (2pAFE)?
__ el L - = —|E—2Ilnpln ,
doe e uly) 4 doeTr—retu(r) dQeBﬂ 71' —tw
—_ t2D'zs;zgrt sc
== fe 2 4 2tm? Ds"ft] . (27)

The function = is shown in Fig. 2 as a function of cos §, for given E/m .
The odd contributions to the differential cross section for the process e +e~ — put +pu~,

due to soft photon emission, has the form:

I o dSk p- p q q-
dagoe—mu(v)o —do <__>2/_<_ + +>< + _ . (28
( ft )odd O\ 42 w p-k  pik) \ark  q-k So.w<Ae 2

Again, the integration must be performed in the special frame S°, where p, +p_ — ¢, =

g_ +k = 0. In this frame we have

(- +k)? =m® = 2(E_ +w)w ~ 2mw = (py +p- —qy)" —m® =4E(E —¢),

E—¢e, = %Ae. (29)



2( E,cos 6)

FIG. 2: E(s,cosf) for E = 5m (dashed line) and E = 10m, m is muon mass.

In the elastic case E — 511 = 0 and the photon energy in the Lab system is

AE=¢ — ¢, = %As. (30)

The t’Hooft-Veltman procedure for soft photon emission contribution leads to:

doso/t  doy 2 ll <4EAE>21 1+ Be
= n

ann _ =70 277 pann 1
Q 40 r N g TS ] (1)

mA

with

pamn lLi2< —26(1 + ¢) >+ 1Li2 (( 26(1 — ¢) )

2 P\(1-p)(1—Bc)) 2 14 B)(1 - Be)
1 =280-0) \ 1. (_ 28(1+0)
2“((1—5)(1%@) 2L2<(1+5>(1+5c>>‘ (32)

The total contribution (virtual and soft) is free from infrared singularities and has the form

1+ e 2AF
In (

3
dognn _ O‘_B(Q — B2+ )T, YT =2 ) + ®(s,cos0),

do 21s 1—pc m

ann Dg}nn
®(s,cos0) = D" — Gyl (33)

The quantity ®(s,cosf) is presented in Fig. 3.

The relevant asymmetry can be constructed from (5)

4
A="2r (34)

T



d( s,cos 0)

= cos 6

FIG. 3: ®(s,cos6), for s = 10m? (dashed line) and s = 20m?, m is muon mass.

V. DERIVATION OF THE ADDITIONAL STRUCTURE: ANNIHILATION
CHANNEL

Let us start from the following form of the matrix element for the process e*(p,) +

e (p-) = ut(q+) + 1 (g-) in presence of 27 exchange:
ia? - Gy - T
M = —0(p+)yuulp-) x u(q-) <Gm — b+ 4;G3AQH> v(g+), (35)

where the amplitudes GG; are complex functions of the two kinematical variables s, and t.

To calculate the structure G from the 2y amplitude (see Eq. (6)), both Feynman dia-
grams (Figs. la and 1b) must be taken into account. Similarly to Sec. II, only one of them
can be calculated explicitly (the uncrossed one), whereas the other can be obtained from
this one by appropriate replacements.

To extract the structure G5 we multiply Eq. (35) subsequently by

u(p-)vav(py) x v(gy)maulg-),
(p-)Qu(p+) x B(g4)ulq-), (36)
(p-)Qu(p+) x v(gs+)Au(q-),

I~

I

and perform the summation on fermions spin states.

Solving the algebraical set of equations we find

a __ 1 a an2 .2 2 2 a 2 2
Gi = m{(SB + A%B%sin” 0)(1 — 5% cos® 0) — 4C 56080[2—5 (1+ cos 0)]},



1

GY = FrenTa {B(1 = 3%)(A"Bsin?0 — 8C" cos ) + 4B [2 — f*(1 + cos” )] } (37)
Gy = m [—A“BQ sin? @ cos @ — 8B% cos  + 43C(1 + cos? 9)] ,
with
. rd'k 1 1o 1 .
At = /Zﬂ'—2 (A)(Q) (P+)(P_) ;Tr(p-l-zp—f)/)\) X ZTT [(q— + m)T(q-l- - m)f)/)\] )
. rd'k 1 mo oA 1o X
B = [ MO EIE 207 < {Trl@ +mT (@ —m)],  (39)
. d*k 1 R | . ) A
The explicit value for GY is:
. 2 1
G3 = 53(17;902)2 {§GQ(1 - 62)53(1 - BC)
+ %HQ52(1 —c?) [c(—3 +58%) — B — BCQ]
+ Fac[l—45% + 26" + #5%(3 — 46%) — 26¢(1 - 26%)] (39)
+ Fop [—02 + fe <—% —4B%c* + 202> + 5° (—% +28%c* + SCQH

— 2JsB%(1 — *)(1 — %) (1 — Be)
+ Fe [1 + B2 — 2B — 4B + Be(—3 + 487 + 28 + 5%2)]} :
The contributions from the crossed Feynman diagram can be obtained from Eqs. 39 by:
(A%, B®, C%) yossea = —[A%, B, C%(cos @ — — cos 0)|uncrossed- (40)

As one can see, in the quantities GG;, G5, and (3 infrared divergencies are present. For
clearness, let us show explicitly the cancellation of infrared divergencies of the box (as in
form of Eq. 35) - Born interference with soft photon contribution. The infrared divergent

parts of GGf can be written in the form:

Gl = s I o) [1 — 262+ 614 214 ) — (1 - )|
= mu ) i
2
Gilir = G /(1= 0) [2= 45+ 280 + (1= ) = (1= )5
4 2
Gl = gag =gy (1= BO)=2)(1 = ) (41)

The expression for J is given in Eq. (B1). The interference of the uncrossed photon box

amplitude with the Born one can be written in the form:

s . m?—t
G+ (2= B+ NG + Gl = ) = —4(2 = B+ ) In o n T

e

(42)
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Here we can see that the infrared divergent contribution is proportional to the Born elemnt
square. this fact can be used to eliminate the infrared dipendence of G, G5, and Gj

structures by taking into account soft photon emission.

VI. ONE SPIN ASYMMETRY

Let us consider now the process of electron interaction with a heavy lepton. The target
spin asymmetry for heavy fermions production process e™(py)+e~(p_) — p(qs) +5(q_) (in
CMS frame) is defined as

do! — do* e
ot dot (@) B (43)

where @ is the proton polarization vector, i = (¢_ x p_) /|¢_ x p_| is the unit vector nor-
mal to the scattering plane, do' is the cross section of processes with proton polarization
vector @, dot is the cross section of processes with proton polarization vector —@. Thus the
denominator of the left hand side in Eq. (43) is the unpolarized cross section of process
et +e” =0t + 1.

The difference of cross sections in (43) is originated by the s-channel discontinuity of

interference of the Born-amplitude with TPE amplitude
dO’Jr — dO’J’ ~ Re Z (A;astz’c . ATPE + Aelastic . A;PE) . (44)

Using the density matrix of final proton u(p)u(p) = (p + M)(1 — ~ys5a) one gets
(47a)® (27i)

Re Z (A;rlastic ’ ATPE' + Aelastic ’ A;PE) =32 e RG(Y),
dk 1 1 .
Y:/,_ % =T [pyep4# (k — A) 4] x 45
Q@ <1 (- 4) 7] (45)
1

x T [(p = M) (—50) v (0" + M) 7 (k= Q + M) 3]

Performing the loop-momenta integration the right hand side of Eq. (45) can be expressed

in terms of basic integrals (see Appendix B)
Re(Y) =4M(a,A,Q, P)Im (Fg — Gg+ Hg) , (46)

where (a, A, Q, P) = "% a,A,Q,P, = (\/s/2)3(dii)Bsinf. Using the expressions listed in
Appendix B we have:

2
fm(FQ—GQﬂLHQ):glb(ﬁ):S%Q(l 56 lnitg_2>- (47)
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FIG. 4: Asymmetry R, for the case of lepton pair creation for energies s = 15 GeV? (dashed line)
and s = 20 GeV? (solid line).

Thus, after standard algebra, the following expression for spin asymmetry can be obtained

for the processes et + e~ — (T + (~

R, — 2o M B¥(B)sind (48)

Vs 2 — [2sin?
and it is shown in Fig. 4, as a function of # at several values of s.
Such considerations apply to the scattering channel when the initial lepton is polarized.

Similarly to (47) one finds

™

_ 49
s+ M? (49)

Ims (FQ—GQ—FHQ) = —

(note that the s-channel imaginary part vanishes for the crossed photon diagram amplitude).

The contribution of the polarization vector appears in the same combination

ME?

(0.0,Q.P) = S(0.p.p1.0) = "2 sin (i) (50)

The single spin asymmetry for the process e™ + (e +1¢ (the initial lepton is polarized)

has the form:

do! — do* e
ot dot @) (51)

12
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FIG. 5: Asymmetry T;, in case of scattering on 7 lepton for E =3 GeV (dashed line) and E = 10

GeV (solid line), F is the energy of the electron.

with

(0% 82 €

T,=-2 % 4
2]\/[25—1—]\/[2( 7) p(1+27tan2%)

6
sin 0 tan® 7 (52)

This quantity is shown in Fig. 5 for the case of structureless proton as a function of 6, for
two values of s. The asymmetry decreases when the c.m.s. energy growth, so on experiment

it is useful to measure the asymmetry near the treshold of heavy lepton production.

VII. CONCLUSIONS

We calculated QED radiative corrections to the differential cross-section of the processes
et +e — pt+u (v), et +pu— et + pu(y), arising from the interference between the Born
and the box-type amplitudes. The relevant part of soft photon emission contribution, which
eliminates the infrared singularities, was also considered.

Angular asymmetry, charge asymmetry as well as target spin asymmetry were calcu-
lated. These quantities are free from infrared and electron mass singularities. Numerical
applications show that these observables are large enough to be measured (see Figs. 2-5).

The parametrization (35) for the contribution to the matrix element arising from box-type

diagrams in terms of three additional functions G;(s,t), i = 1,2, 3 suffers from infrared di-

13



vergencies, which can be eliminated by taking into account soft photon emission expressed in

terms of structures G, Go, G'3. This procedure results in replacing In(m/\) with In(AE)/m.

VIII. APPENDIX A: TRACE CALCULATION.

The explicit expressions for the polynomials P; are:

Py

= 8{—(A%3 - A%? +20% +[(A?)? — 2A%0]m?},

= 16[(A%*)%0 — o + A’om?],

= 8({2(A%)%0 — 20% + m?[(A%)? + 2A%0 — 0?] + A?m*},

= 8[5(A%)? — 6A%0 + 50° — 5A’m?],

= 8[(A%)° = 2(A%)%0 + A%(0® — m?A?)],

= 8{(A%)? — 2(A%)%0 + A%0? + m?[—(A?)? — 2A% + 20°] — 2A%m*},

= 8[—(A%)? +2(A2)% — A%02 + (A?2)’m7],

= 8{—(A?)? 4 (A?)%0 — 3A%0% 4 30° — m?[(A?)? + 3A%0]}. (53)

IX. APPENDIX B: USEFUL INTEGRALS.

In the calculation of eu scattering we use the following set of scalar integrals with three

and four denominators [2].

Fa =

Fo =

—_i/Lzl n?
) (A)(Py)(P-) s

—i / d*k
T ) (Q)(Py)(P-)

111 ,1-8 1 ,1+0 1+ 1-5
— |=In* —F — Sl  — 2 4 Liy [ —5 ) — Lip [ —F
5B l2n > 2" 2 * 2( 2 > 2( > )|
—_Z/ d'k _G_—_Z/ d's 1 lln2m2—t
w2 ) (A)Q)(Py) m S (A)Q)P)  2(m? —1t) m?
m? —t m? m? 1, ,m? ) t
<21n — +lnﬁz>lnﬁ—§ln @—QLQ <_m2—t>l’
1 m? —t 2 s
—sJ — :—2(m2_)[<21n m2 +1H—2>IHW
2 2
| m2 +§l —g+2L12<—m2_t>],



—1

= @@ g | ) hs] e

The terms proportional to mZ/s, mZ/m’, were neglected. Notations follow Ref. (7).

J =

The vector integrals with three denominators are:

e

Ha= m21_t <_ln%z - m2t+tln m;; t) ’

HP:H+m21_t (m%mlnm;;t), (55)
%/—(A)I(C;i?zP) — GAA, G = é (—21nmiz + % In? % + %2> :

Four denominator vector and tensor integrals were defined in (13). The relevant coefficients

are:
Ta = %[(FJFFA)U—Q?(FJFFQ)],
Jg = 21d[(F+FQ)a—A2(F+FA)] F:%SJ—G, d=AQ? — o
Ky = —%[U(F—G+HP+HA+HQ)+HA(U—A2)—HQ(U—Q2)

+2P2JA(A2 —20) + A’Ga — QG — 2p2Q2JQ},

Kn = —— {Q2 (G —F — Hp — 3Hs + 6P J5) (56)
20d
HN¢+#wm—wmrcm—¢wmnﬂh—%ﬁ
1 1.1
Kp = 55 [2U(HA —2P*J5 + Hy+ 5F = 5G) + Q*(Hq — 2P*Jq — Go)
_AZ(HA - 2P2JA - GA)],
KQ = 21d|: AQUAP+2A AA"—(O' —2A2Q )AQ:|
g
1
Kx: 2d(O'Ap+QAQ—2AAA)

where we used

Ap = Ha+2A%J0—Ga, Ag = Ho+2A%Jo—Gq, Ap = F—G+Hp+3Ha+6A%]a. (57)
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