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Abstract

The presence of two photon exchange in ep elastic scattering and in the crossed pro-
cesses (p+p <> (T +{~, L = eor p) is discussed in terms of three complex amplitudes
which are functions of two kinematical variables, the momentum transfer squared
¢? and the polarization of the virtual photon, e. Model independent expressions of
the differential cross section and of polarization observables are derived. Particular
attention is devoted to the extraction of hadron electromagnetic form factors which
becomes much more difficult in presence of two photon exchange, and to the relevant
experimental observables which could give evidence for such mechanism.

1 Introduction

Electron hadron scattering is considered to be the best way to study the hadron structure.
The underlying mechanism in elastic (and inelastic) scattering is one photon exchange
which can be exactly calculated in quantum electrodynamics (QED), at least for the
lepton vertex. In this respect the electromagnetic probes are traditionally preferred to the
hadronic beams for the investigation of nucleons and light nuclei [1]. Radiative corrections,
firstly calculated by Schwinger [2], should be taken precisely into account, and are very
important, in particular for the experimental determination of the differential cross section
of ep scattering.

Due to the steep decreasing of the electromagnetic form factors (FFs) when the mo-
mentum transfer squared, Q?, increases, another mechanism, the two photon (TPE) ex-
change mechanism, where Q? is equally shared between the two photons, can become
important. This fact was already indicated in the seventies [3], but it was never experi-
mentally observed. Numerous tests of the validity of the one photon mechanism have been
done in the past, using different methods: test of the linearity of the Rosenbluth formula
for the differential cross section, comparison of the e*p and e p-cross sections, attempts
to measure various T-odd polarization observables, but no effect was visible beyond the
precision of the experimental data. Only recently, measurements of the asymmetry in the
scattering of transversely polarized electrons on unpolarized protons found values different
from zero, contrary to what is expected in the Born approximation [5],

Note that the TPE exchange should appear at smaller @Q? for heavier targets: d,
SHe, ‘He, because the corresponding FFs decrease faster with Q% in comparison with
protons. In [4] the possible effects of TPE have been estimated from the precise data on
the structure function A(Q?), obtained at JLab in electron deuteron elastic scattering,
up to Q* = 6 GeV? [6]. The possibility of a 2 contribution has not been excluded by
this analysis, starting from Q% = 1 GeV?, and the necessity of dedicated experiments



was pointed out. From this kind of considerations, one would expect to observe the TPE
contribution in eN-scattering at larger momentum transfer, for Q2 ~ 10 GeV?2. In Refs.
[12], on the line of the ed-analysis [4], we proved that general properties of the hadron
electromagnetic interaction, such as the C-invariance and the crossing symmetry, give
rigorous prescriptions for different observables for the elastic scattering of electrons and
positrons by nucleons. Model independent prescriptions are very helpful in identifying
possible manifestations of the TPE exchange mechanism.

Recent developments in the field of hadron electromagnetic FFs are due to the very
precise and surprising data obtained at the Jefferson Laboratory (JLab), in €4+p — e+ p
elastic scattering [7], based on the polarization transfer method [8], which show that
the electric and magnetic distributions in the proton are different, contrary to what was
previously assumed.

The present data show a discrepancy between the (Q%-dependence of the ratio R =
tpyGEp/ Gy of the electric to the magnetic proton FFs (u,=2.79 is the proton magnetic
moment), whether derived with the standard Rosenbluth separation [9] or with the po-
larization method.

An important point is the calculation of radiative corrections. These corrections are
large (in absolute value) for the differential cross section [10], in particular for high res-
olution experiments, whereas they are negligible for the ratio P;/Pr of longitudinal to
transverse polarization of the proton emitted in the elastic collision of polarized electrons
with an unpolarized proton target.

A careful experimental and theoretical analysis of this problem is necessary, including
the investigation of the TPE contribution. We present a model independent strategy to
extract electromagnetic nucleon FFs and to determine the TPE contribution, on the basis
of a general analysis of polarization phenomena in elastic e N-scattering [12] and in the
crossed channels [13, 14]. We discuss also the possibility to solve this problem, having
a positron beam. We show that the measurement of the differential cross section and of
the components of the proton polarization in e”p and e*p elastic scattering (in identical
kinematical conditions) is the most direct way to access the nucleon FFs and the TPE
contribution. In absence of positron beam, an alternative way is the measurements of a
larger set of polarization observables in e~ p-scattering.

In the time-like (TL) region of momentum transfer, investigated with annihilation
processes, FFs are complex functions of Q2. They can be determined through an angular
distribution measurement, at fixed energy. This is, in principle, easier than the Rosenbluth
separation, where each measurement corresponds to a fixed )2, and requires changing the
initial energy and the scattering angle. Due to the available beam intensity, the statistics
has not been sufficient up to now, for the individual extraction of both FFs, and the data
are presented under the assumption |Gg| = |G| or |Gg| = 0.

The reaction j+p — T + (7, £ = e or p was firstly considered in Ref. [15] in the
case of unpolarized particles. As in the space-like (SL) region, the TPE can also become
important in TL region if the nucleon FFs decrease rapidly with ¢?. Moreover, as the
2+ amplitude is expected to be mostly imaginary, it will contribute in TL region, where
FFs are complex. The general case of polarized initial particles (antiproton beam or/and
proton target) in j+p — et +e~ has been firstly investigated in Ref. [16], with particular
attention to the determination of the phases of FFs, and more recently in Ref. [17].

In this talk we present general expressions for polarization observables and indicate



model independent methods to extract nucleon electromagnetic FFs in presence of TPE.
The parametrization of the 27y term can be done in tensor or axial forms. It is possible to
show that the expressions for the observables are exactly the same, whether for generalized
FFs, for example, they depend on the parametrization used.

2 Scattering channel

The starting point of our analysis is the following general parametrization of the spin
structure of the matrix element for elastic e* N-scattering, according to the formalism of
[18]:

e? Oy .

M = @U(h)%u(kl)ﬂ(pﬂ Ai(s, Q) — As(s, Q°) ;rg +As(s, Q) KP, | ulpr), (1)
where K = (ki + k2)/2, P = (p1 + p2)/2, A1 — A3 are the corresponding invariant
amplitudes, k; (p1) and ky (p2) are the four-momenta of the initial and final electron
(nucleon), m is the nucleon mass, ¢ = k; — ky, Q* = —¢* > 0. In case of one-photon
exchange

A1(87Q2) - Fl(Q2)a A2(S;Q2) — FZ(Q2), ./43 — 0.

F} and F5 are the Dirac and Pauli nucleon electromagnetic FFs, which are real functions
of the variable Q2 - in the SL region of momentum transfer.

Taking into account the identity of the initial and final states and the T-invariance
of the electromagnetic interaction, the processes et N — eTN, in which four parti-
cles with spin 1/2 participate, are characterized by six independent products of four-
spinors, describing the initial and final fermions. The corresponding (model independent)
parametrization of the matrix element can be done in many different but equivalent forms,
in terms of six invariant complex amplitudes, A;(s, Q?), i = 1 — 6, which are functions
of two independent variables, and s = (k; + p1)? is the square of the total energy of the
colliding particles.

In principle, another set of variables can be considered: e and Q?, which is equivalent
to s and Q% e ' = 1+2(1+7) tan?(A./2), where 6, is the electron scattering angle in the
laboratory (Lab) system, 7 = Q*/(4m?). The variables ¢ and Q? are well adapted to the
description of the properties of one photon exchange for elastic e/N-scattering, because,
in this case, only the Q*-dependence of FFs has a dynamical origin, whereas the linear
e-dependence of the differential cross section is a trivial consequence of the one photon
mechanism. On the other hand, the variables s and ()? are better suited to the analysis
of the implications from crossing symmetry.

The conservation of the lepton helicity, which is a general property of QED at high
energies, reduces the number of invariant amplitudes for elastic e N-scattering, from six
to three.

In the general case (with multiphoton exchanges) the situation is more complicated,
because the amplitudes A;(s, Q?), i = 1 — 3, are complex functions of two independent
variables, s and (Q%; moreover, their connection with the nucleon electromagnetic FFs,
F;(@Q?%), is non-trivial, because these amplitudes depend on many quantities, as, for ex-
ample, the FFs of the A-excitation - through the amplitudes of the virtual Compton



scattering. Electron and positron scattering are no more described by the same set of
amplitudes.

In this framework, the simple and transparent phenomenology of electron-hadron
physics does not hold anymore, and in particular, it would be very difficult to extract
information on the internal structure of a hadron in terms of electromagnetic FF's, which
are real functions of one variable, from electron scattering experiments.

We use the following notations (the sign —(+) indicates electron(positron) sctattering:

GP@Q%e) = AP — AT (Q%0),
G Q%) = AP + A7 (@),

considering CNJ(ETEVI(QQ, €) as generalized FFs, so that

GI(@Q%€) = FGpar(Q%) + AGEa(Q%¢). (2)

with Gp(Q%) = F(Q?) — TFy(Q?), Gu(Q?) = F1(Q%) + F(Q?).

Both reactions e + N — eT + N are fully described by eight different real quantities:
two real FFs Gg(Q?), which are functions of one variable only, and three functions:
AGER(Q?% €),AGn(Q% €),A3(Q? ¢), which are, generally, complex functions of two vari-
ables, Q% and e. Therefore, these eight real functions completely determine six complex
amplitudes A?)(QZ, €) for e + N — eT + N, therefore there are very special connections

of 12 real functions ReAZG)(QZ, €) and ImAﬁ)(QZ, €), with 8 real functions:
AD(@Q% ) = AT(Q ) = 2F(Q7), i=1,2 (3)

SO:

Im[ A (@ 6) — A(Q% )] =0, i =1,2 (4)

in the whole region of SL momentum transfer.
Note that the C-invariance and the crossing symmetry require that the e-dependence

of the six above quoted functions occurs through the argument: z = \/(1 +¢€)/(1—e),
with the following symmetry properties, with respect to the change v — —ux:

AGE’M(Q2, —1‘) = —AGE,M(Q2,$), A3(Q2, —I.E) = A3(Q2,$). (5)

These expressions contain the physics of the nucleon electromagnetic structure, taking
into account the 1y @ 2v-interference contribution. In this case, the complete experiment
for eN-elastic scattering requires six additional functions, depending on two kinematical
variables, instead of two real functions of a single variable Q2. So, if previously the
measurement of the differential cross section, with unpolarized particles in initial and
final states, was in principle sufficient (through the Rosenbluth fit, linear in the variable
€), now measurements with electrons and positrons in the same kinematical conditions
are necessary.

The FFs Gpy(Q?) and Gy (Q?) and the 2v-amplitudes, AGg 1 (Q?, €) are the same
for eTp and e~ p elastic scattering. This allows to connect the difference of the differential
cross sections for eTp-interaction with the deviations from the e-linearity of the Rosenbluth
plot.



The e-dependence of the interference contribution to the differential cross section of
eTp elastic scattering is very particular. Any approximation of this term by a linear
function in the variable € is in contradiction with C-invariance and crossing symmetry of
the electromagnetic interaction.

In absence of positron beam two other possibilities to measure G 1(Q?) can be sug-
gested, using only an electron beam.

One possibility is the measurement of T-odd polarization observables, such as P,
D,y(Ae), and Dy, (Xe) (i.e., the components of the depolarization tensor, in the scattering
of longitudinally polarized electrons by a polarized target, with the measurement of the
final proton polarization). All these observables, which vanish in the Born approximation
for eN-scattering, are of the order of o and should be measured with corresponding
accuracy.

Another possible way requires the measurement of five T-even polarization observables
(five quadratic combinations of three complex amplitudes), as do/d<., P, (or A,), and
the Dy, Dy, and D,, components of the depolarization tensor (for unpolarized electron
scattering).

3 Annihilation channel

The analysis of annihilation channel follow the same steps as for elastic scattering. There-
fore we focus here on some interesting polarization observables. Complete formulas
and derivation can be found in [13, 14]. The differential cross section of the reaction
et +e~ — N + N, for the case of unpolarized particles, has the form

doy, o?f
=—D

with
1
D= (1 + COS2 9)(‘GMN‘2 + 2R6GMNAG*MN) + ; SiIl2 9(‘GEN|2+

4
+2ReGpnAGYy) — ;\/T(T — 1) cosReG yn Ay, (7)

where # is the angle between the momenta of the electron and the detected antinucleon
and [ is the nucleon velocity in CMS. Note that Eq. (6) was obtained neglecting the
terms of the order of a? compared to the dominant (Born approximation) terms. In the
one photon exchange limit the expression (6) coincides with the result obtained for the
differential cross section in Ref. [19]. The TPE contribution brings three new terms of
the order of a compared to the Born contribution.

At the threshold of the reaction, ¢> = 4m?, the equality Gy = Gy = Gy holds and
Eq. (7) reduces to

D = D" = |Gx|? + ReGn(AGH, y + AG%y) + cos? 0ReG x (AGH vy — AGhEy)-

Symmetry properties of the amplitudes with respect to the cos — — cosf transfor-
mation can be derived from C' invariance :

AGyn en(cosl) = —AGy N en(—cosf), Ay(cosf) = Ax(—cos¥). (8)



If the experiment does not distinguish the nucleon from the antinucleon, then the following
sum of the differential cross sections is measured:

d d d
d(gr = d&al (cosf) + %(— cosf),
which does not depend on the TPE terms. Moreover, the total cross section is also

independent of the TPE terms:

47 2B

Ut(q2) =5

3 (Gt + 5G] )

On the other hand, the relative contribution of TPE mechanism is enhanced in the fol-
lowing angular asymmetry

U(q2a 90) - U(q27 ™= 90)
U(q27 90) + U(q27 ™= 9[]),

with o(¢?,6p) = [i° 99 (¢%,0)dQ, o(¢*, 7 — bp) = [T_4, 92 (¢?,0)dS2. Using the symmetry
relations (8) one obtains the following expression

A(q27 90) =

(10)

A(q?, 0y) = / dcos@l(1+cos 0) ReG rin (2)AGH, 5 (¢, cosh)

sm 2p

* 2 *
ReGpy(q 2)AGEN(q2, costl) — ;\/T(T — l)cosﬁReGMN(q2)AN(q2, cosf)|, (11)

withd = 1% [(4 + xo + 23)|[Gun|*+ £(2 — x0 — :z:%)|GEN2], xg = cosb.

The TPE contributions can be removed considering the sum of the quantities o(q?, ;)
and o(q?, ™ — 0):

2
o
Y(q?, 00) = o(¢*, 0) + o(¢*, ™ — 6p) = q—Zﬁd. (12)

always neglecting the terms of the order of o with respect to the leading ones.

Note that, unlike elastic electron—nucleon scattering in the Born approximation, the
hadronic tensor in the TL region contains a symmetric part even in the Born approxima-
tion due to the complexity of the nucleon FFs. Taking into account the TPE contribution
leads to antisymmetric terms in this tensor, which induce non—zero polarization of the
outgoing antinucleon P, (the initial state is unpolarized):

2sinb
Py = \/FD{COSQ [ImGMNG*EN+Im(GMNAG*EN_GENAG*MN)] —

= 1)1mGENA}‘V}- (13)

T

In the one—photon—exchange (Born) approximation this expression coincides with the
result of Ref. [19]. P, is determined by the polarization component which is perpendicular



to the reaction plane and, being T—odd quantity, does not vanish even in the one-photon—
exchange approximation due to the complexity of the nucleon FFs in the TL region.
This is principal difference with the elastic electron-—nucleon scattering. In the Born
approximation this polarization becomes equal to zero at the scattering angle # = 90°
(as well at = 0° and 180"). The presence of TPE leads to a non-zero value of the
polarization at this angle, which is expected to be of the order of a. The measurement
of this polarization at # = 90° contains information about TPE and its behavior as a
function of ¢2.

In the threshold region this polarization vanishes, in the Born approximation due to
the relation Ggy = Gyn . TPE induces a non zero polarization. The effect of TPE for
the polarization at an arbitrary scattering angle is expected to increase as ¢? increases,
as the 2y amplitudes decrease more slowly with ¢? in comparison with the nucleon FFs.

4 Conclusions

The general symmetry properties of electromagnetic interaction, such as the C-invariance,
the crossing symmetry and the lepton helicity conservation in QED, allow to obtain
rigorous results concerning two-photon exchange contributions for elastic e N-scattering
and to analyze the effects of this mechanism in eN-phenomenology [12]. We analyzed
above different possible strategies in the determination of the nucleon electromagnetic
FFs, Gp(Q?%) and Gy (Q?), through the measurement of different polarization observables
in elastic e* N scattering, of T-even and T-odd nature, in presence of TPE.

There are in principle three different ways , to determine the physical nucleon FFs,
Gr.m(Q?). The proposed methods are, all, relatively complicated but allow to go beyond
the description in terms of ’'generalized’ FFs, which are functions of two kinematical
variables, Q? and ¢ and are not directly related to the nucleon electromagnetic structure.

The formally simplest way needs the parallel study of positron and electron scattering,
in the same kinematical conditions. We showed that the two-photon contribution cancels
in the sum of the differential cross sections, do(=) /dQ, + do*) /dQ,. A linear e-fit of this
quantity allows to extract Gp(Q?) and Gy/(Q?), through a generalized Rosenbluth sepa-
ration. At higher Q?, due to the small contribution of Gx(Q?), the polarization transfer
method should be used, which requires the measurement of the P, and P,-components of
the final nucleon polarization -with longitudinally polarized electron and positron beams.
This can be in principle realized at the HERA e® ring, with a polarized jet proton target.

In absence of a positron beam one has to measure 3 T-odd polarization observables,
such as P, D,,().), and D,,(\.) which are of the order of a or five T-even polarization
observables, as do/d)., P, (or A;), and Dy, Dy, and D,,.

Complete expressions and properties can be found in Refs. [12] for the scattering
channel and in Refs. [13, 14] for the annihilation channels.

Therefore, in presence of TPE, the extraction of the nucleon electromagnetic FF's
is still possible, but requires more complicated experiments, with a very high level of
precision. Only in this way it will be possible to investigate the nucleon structure, at
large momentum transfer, keeping the elegant formalism of QED, traditionally used for
this aim.

This work was initiated in collaboration with Prof. M. P. Rekalo. Thanks are due to
G.I. Gakh for careful reading of the manuscript and valuable discussions.
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