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Curvelet analysis of asteroseismic data
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ABSTRACT

Context. The detection and identification of oscillation modes (imts of their£, m and successiva) is a great challenge for present and
future asteroseismic space missions. The “peak tagginghisnportant step in the analysis of these data to providemasbns of stellar
oscillation mode parameters, i.e., frequencies, rotattes, and further studies on the stellar structure.

Aims. To increase the signal-to-noise ratio of the asteroseispéctra computed from time series representative of MOSITGoRoT
observations (30- and 150-day observations).

Methods. We apply the curvelet transform — a recent image processtigtque which looks for curved patterns — to echelle diagrhuilt
using asteroseismic power spectra. In this diagram the&gmguencies appear as smooth continuous ridges. To testathod we use Monte
Carlo simulations of several sun-like stars witlffelient combinations of rotation rates, rotation-axis imefion and signal-to-noise ratios.
Results. The filtered diagrams enhance the contrast between thesriofghe modes and the background allowing a better taggirtgeof
modes and a better extraction of some stellar parametersteMarlo simulations have also shown that the region wheaydesican be
detected is enlarged at lower and higher frequencies cadparthe raw spectra. Even more, the extraction of the meatiawal splitting
from modes at low frequency can be done more easily than tséngw spectrum.

Key words. Stars: oscillations — Methods: data analysis — Techniguesge processing

1. Introduction and ground-based velocity networks must be used to provide

observations of stellar oscillations without these limdas.

Helioseismology — the study of solar (_)scillations —isa POWjith the current MOST and WIRE satellites and the future
ful p_robe of the_structure and Qynam|cs of the Sgn which h%'i)RO'Is mission asteroseismology is blooming. However, we
provided great improvements in our understanding of ste”@’till have to deal — in the case of solar-like oscillations ithw
evolution and structure (Turck-Chieze et al. 1993; Chrisen- : : : :

. ! very small signal-to-noise ratio (hereaftgfN) observations
Dalsgaard 2002, and references therein). Those succesdes o y d ( M)

) L ) s a consequence of the weakness of the luminosity vargation
the community to apply seismic techniques to OtherSta'ey’mpMoreover stars cannot be spatially resolved yet. Only glob
ing the doors to asteroseismology, the study of stellarl-os ’

Bscillation modes can be observed. In addition, we canna ha

lations. These oscillations have already been observed frgccess to the rotation rates and the rotation-axis in@inaep-

ground and space. The ground-based observations aredim : :
by the day-night cycle, which introduces aliases in the pbs g?ately. Without knowing these two key stellar properttas,

. but all Doopl loci Th?agging of the modes in terms of their propertiés) and suc-
\éatlons, q(tjadOSV io us_(tah ﬁic?gp e[ ve Olt_:tltytm((aja?ur?melntslyk cessiven may be extremely dicult. In fact, the main problem
ave provided data wi ient quality 1o detect Solar-like , t4ce will not be to fit the peaks (“peak-bagging”) but topro

oscillations (see Bouchy & Carrier 2003; Bedding & Kjeldseo- e a qood description of the model to be fitted after havi
2003, and references therein). To reduce the aliases,-mulltfj g 'PH I ving p

site campaigns have been carried out but they are too short to

have a good frequency resolution. Space photometry missiort Microvariability and Oscillations of STars (Matthews 1998
2 Wide-field Infra Red Explorer (Buzasi et al. 2000)
Send offprint requests to: P. Lambert 3 Convection Rotation and planetary Transits (Baglin et@01)
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the correct labels on the modes (“peak tagging”). To do this,
has been proposed to use the echelle diagram where the mq
follow ridges depending on the stellar properties. To invpro
the SN ratio Bedding et al. (2004) proposed to filter this dia
gram by a vertical smoothing. However the smoothing worl
well only when the ridges are quasi-vertical which means £800 2820 254°V(HHZ)256° 2880 2800
very gooda priori knowledge of the large fference and is

restricted to the asymptotic part of the spectrum. We prepos
here to follow a similar approach but using new mathematical > 3 4
denoising techniques better suited to the study of cundegbs.

At the end of the last decade, the application of mathemat- g
ical transforms based on wavelets to analyze astrononmeal i 4000 £
ages has been widely developed. The first wavelet algorithms; { ‘ ‘ i ‘
were well adapted to treat images with isotropic elementsS 3000
However, this description presented a limitation in thetegn g
of astrophysics, where objects such as filaments or spital-st g
tures exhibit a highly anisotropic character (in shape aate3. 1000 E
New transforms, the ridgelet (Candés 1998) and curvelastr E ‘ ‘ ‘ ‘ ‘ ‘
forms (Candés & Donoho 1999; Starck et al. 2002), were then 0 =040 60~ 80 100 120
developed to dealfBciently with such objects. Astrophysical v modulo 13516 piz
222,::;3?2?;:?&35 a?_e(gtggggz)g(;g;ltso tgﬁg{;gg?ﬂ?:;:mrﬁg. 1. Portion of the theoretical spectrum (top) and echelle @iagr

. | h . h . ) ottom) for a sun spinning ten times faster than the Sun aed s
tational arcs, the Saturn rings or the CMB (Cosmic Microwa der an angle of 30 This is the ideal power spectrum used in the

PSD (a.u.}

(o)}

5000 E

2000 F

Background) map. simulations described in Sect. 5.
In this paper we suggest to use the curvelet transform to

analyze asteroseismic observations (more precisely ¢liarst 1

echelle diagrams), in order to improve the “peak tagging” oo = 27¢

the oscillation modes and even the resultant “peak baggifg” 1

cs(Ry) Tout dcg dr

illustrate the application of this denoising techniquehia as- 2 ( R —f d__)

. . . . TTVn.e * I rr
teroseismic case, we have performed Monte Carlo simukation ' "
of ideal asteroseismic data contaminated kffedént levels of Cs iS the internal stellar sound speedis a phase-shift term
stochastic noise. We start in Sect. 2 by a quick reminderef tAndy is a function which allows to take into account the grav-
properties of stellar oscillation modes in the solar-lisseand itational potential in the central region (Lopes & Turcki€te
the construction of the echelle diagram. In Sect. 3 we intced 1994). From the asymptotic approach, we can extract general
multiscale transforms, in particular the ridgelet and tiivelet Properties of modes and better understand the physicsridde
transforms. In Sect. 4, the simulated data of a star with an #3 the frequencies behavior. The large frequency spacieg, d
cillation spectrum similar to the Sun but withfidirent rotation fined asAvy, = vni1e — vne, tends asymptotically tavo, re-
axis inclinations and rotation rates, are presented. Ih Sace lated to the mass and radius of the star; the small frequency
discuss the results obtained in the simulations. spacingd+2v = vne — vn-1+2, CAN be approximated to first
order by (4 + 6)Avo/(4n%vny) fOR* de-dr This variable is re-
lated to the derivative of the sound speed and enhances-the ef
fect coming from the central regions, providing constrsiom
Only low-degree stellar oscillation modes can be detectgtk age of the star. Finally the secondfelience is defined as
and observed with the present generation of instrumen®s. Wy = vp,1, — 2v, + v_1,. Its variations provide information
asymptotic theory of oscillation modes ¢> ¢) is then ad- about the extent of the convective zone (Monteiro et al. 2000
equate and can be used to study them. First order (TassBallot et al. 2004b) or the helium abundance in the stellar en
1980) and second order developments (Vorontsov 1991; Lopesope (Basu et al. 2004).
& Turck-Chieze 1994; Roxburgh & Vorontsov 2000a,b) have Under the rotationféects the azimuthal orden (—£ < m<
been made to describe solar and stellar oscillations. Indke ¢) is needed to characterize the oscillation spectrum. lathe
of solar-like stars, where p-modes predominate, the frecjge gular velocityQ is uniform (Ledoux 1951), the mode frequen-
can be developed as: cies are asymptotically approximated by:

4 1 AVO
Ve ® Avo(n + > + 2 + a(v)) + prC

2. Properties of solar-like oscillations

((é’ +1/2)°A+ lp) (1) Vnem ™ Vae mQ/2r = vpe + MOV 2)

where §v is the rotational splitting. Equation 2 shows that

in this expressiof andn are respectively the degree and thghodes are (2+ 1)-times degenerated among the azimuthal or-

radial order of the modes and der: a single peak in the spectrum becomes a multiplet. tts co
fot (ly responding structure depends on the rotation rate, thmacl

Te = j; Cs tion axis of the star and its stochastic excitation. Therslita

in
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mode lifetimes (a few days) are expected to be much shorter
than the length of the future space observations (a few nspnth
In consequence, the relative amplitude ratios inside aimult -
plet will only depend, in average, on the inclination angida |
the spacing between thesdfdrent m-components (Gizon &
Solanki 2003). Thus if the f@ierent m-components of a multi-
plet can be identified and tagged with the correctr, they
can provide a good estimation of both the rotation-axisiincl
nationi and the rotational splittingv, allowing a better mode
parameter extraction through the fitting of the spectra. dhe
fect of the stochastic excitation on an isolated mode coeld b
minimized by computing the average of these parameters o
several modes (see for example the n-collapsogramme;tBall
et al. 2004a).

Equation 1 shows that the eveh=£ 0,2) and odd{ = 1, 3)

modes have respectively _aImOSt the Sam(_e frequency, oy Sﬁe 2. Examples of 2D wavelets (top panels) and ridgelets (bottom
arated by the small spacing,.v. In addition, they are sep- hanels). The top right wavelet has a greater scale parathetethis

arated regularly in frequency by the large spacing,. This on the left. The bottom right ridgelet hasfidirent orientation and
property allows us to build the so-called echelle diagrame¢G width than the left one.

etal. 1983), which is currently used to identify modes fdaso

like oscillations. Itis a 2D representation of the powercdpen

where this one is folded onto itself in units of the large spgc  Sis. In order to solve this problem two new mathematicaldran
In such representation the modes appear as almost locally yerms, namely the ridgelet transform and the curvelet trans
tical ridges (see Fig. 1). The echelle diagram is a poweofull t form, were introduced.

for the “peak tagging” since assigning the correctf) values
to the peaks is easier when the multiplet structure is wehid
fied in this diagram. The successivealues are obtained from
each individual horizontal line. The ridgelet transform was developed to process images in-
cluding ridges elements (Candes 1998). It provides a sepre
tation of perfectly straight edges. Given a functibfx, x2),

the representation of this latter is the superpositionefents

3.1. The Wavelet Transform of the forma Y2y ((x; cosd + X, sind — b)/a), wherey is a

wavelet,a > 0 a scale parametds,a location parameter and

The wa\{elet transform provides a fr.amework for decomposig%n orientation parameter. The ridgelet is constant aloresli
images into their elementary constituents across scalee—byxl CoSO + X, 5in@ = const, and transverse to these ridges it is

o e s 30 gale. ThUS, contary o a Urique wavlel ransio, e
; 'imag ' #%gelet has two supplementary characteristics: a leragthal
nal is defined as: to this of the image and an orientation, allowing the analg$i
an image in every direction and so exhibiting the edge struc-
1 L(X=Db y=Db ture. Fig. 2 (bottom panels) shows two examples of ridgelets
W(a, bi, bj) = 751] Fooyw (T’ T)dXdy () The problem is that in the nature edges are typically curved
rather than straight so ridgelets alone cannot yieldfinient
whereW(a, b) are the wavelet cdicients of the functiorf (X), representation.
¥(X)* is the conjugate of the analyzing wavelat> 0 is the
scale parameter artgis the position parameter. The continu-
ous wavelet transform is the sum over all the positions of tte3- 1he Curvelet transform
signal f(x, y) multiplied by the scaled anq shifted versions of 3 1 Description
the wavelety((x — by)/a, (y — b;)/a) (cf. Fig. 2, top panels).
This process produces wavelet fii@ents that are a function Ridgelets can be adapted to represent objects with cungesed
of scale and position. using an appropriate multiscale localization: at #isiently
However, the classical wavelet transform only addressfine scale a curved edges can be considered as almost straight
portion of the whole range of interesting phenomena: igtro Candés & Donoho (1999) developed the curvelet transform us
features at all scales and locations. One of the drawbadke ofing ridgelets in this localized manner. Fig. 3 shows tHEedent
two-dimensional wavelet transform is that it does not aghiesteps of the curvelet analysis of an image:
an dficient analysis of images which present high anisotropy.
For instance, the wavelet transform does nbtently approx- 1. Image decomposition into subbands: as a set of wavelets
imate 2D edges, since a large number of large waveletieoe  bands through a 2D isotropic wavelet transform. Each band
cients, scale after scale, are required, makifigodilt its analy- corresponds to a fierent scale.

3.2. The Ridgelet transform

3. Multiscale Transforms
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4. Simulation of data

To characterize the curvelet denoising technique applic¢ie
Ridgelet asteroseismic data, we have simulated typical solar-lisen
Transform vations varying diterent parametersyIS ratios, observational
lengths, rotation-axis inclinations, rotation rates.iththis ap-
proach we know the input parameters in advance and we can
evaluate the quality of the results given by the curvelelyeis
and its limits.
In the simulations shown in this paper, we use the oscilla-
“frequency”  tion spectrum of a star similar to the Sun but seen under dif-
ferent conditions. generate the oscillation spectrsotdr-like
stars Different rotation-axis inclinations € 50° and 90) and
! ; rotation rates@ = Qg, 5Q@, and 1@y) have been consid-
e g ered. An ideal power spectrum were constructed first. Ordy th
Fig. 3. Sketch illustrating the curvelet transform applied to aage. modes’ < 3,n = 12-25 were simulated. The mode parameters
The image is decomposed into subbands followed by a spatial p- frequenciesy), amplitudes 4) and widths ) — were ob-
titioning of each subband. The ridgelet transform is agpte each tained from the analysis of GOLF (Global Oscillations at Low
block. The finest details correspond to the highest fregaenc Frequency) data (Garcia et al. 2004). The amplitudes ware ¢
rected to take into account theff@dirence between intensity and
velocity observations. Modes were simulated with symmetri
2. Smooth partitioning: each subband is partitioned intal Lorentzian profiles as the asymmetry is expected to be at
squares — blocks —, whose size is appropriate to each sctie.level of the noise. Following the method described imrffie
The finest is the scale, the smaller are the blocks. Fraillon et al. (1998), a multiplicative noise y& with 2 d.o.f.
3. Ridgelet analysis: it's applied to each square. statistics, has been introduced to reproduce the stocleasti-
tation of such modes (see also Anderson et al. 1990) STNe
The implementation of the curvelet transforfiess an ex- ratio of the “resultant” raw power spectrum was defined as the
act reconstruction and a low computational complexity.eLiknaximum of the bell-shaped p-mode power (i.e. the highest
ridgelets, curvelets occur at all scales, locations andneri Simulated p mode) divided by the noise dispersion. The sim-
tations. Moreover contrary to ridgelets, which have a giva#ated background is flat assuming that it has been preyiousl
length (the image size) and a variable width, the curveleveh fitted and removed as it is usually done for the Sun (Harvey
also a variable length (the block size) and consequentlyia va985)-
able anisotropy. The finest the scale is, the more sensititrest Several Monte Carlo simulations have been performed for
curvature the analysis is. As a consequence, curved singulgach ideal spectrum. Realis&N, with values ranging from

ties can be well approximated with very few ¢oeents. 5 to 15, have been used to cover a wide range of situations
(compatible with what it is expected, (see Baglin et al. 2001

In each realization of the Monte Carlo simulation the same
3.3.2. DenOiSing images: f|lter|ng curvelet coefficients level of noise has been random|y added to the Correspond_
ing ideal spectra. Therefore all the realizations, in a mgive
Monte Carlo simulation, have the sar8¢N ratio. The simu-
lated spectra have been computed for two resolutisn@38
and~ 0.077 uHz, corresponding respectively to 30-day and
%SO—day observations. The first are representative of MAST o
servations and the short CORoT runs while the latter areeof th
same length than the long CoRoT runs.

Simulations of other stars, like some potential main CoRoT
(4) targets, with diferent masses, ages and, in consequence, inter-

nal structures have been made. The results have already been
Commonlyg j; is significant if the probability that the curveletPresented and discussed during the CoROT workshops #8 and
codficientis due to noise is small, i.e., if the curvelet@iment #9 obtaining the same qualitative results. For the sakeaoity)
is greater than a given threshold. A basic problem remates: they are not shown here.
choice of the threshold. Usually, this threshold is takenatq
to koj, whereo; is the noise standard deviation at the sgale
andk is a constant taken equal to 5 in our filterings.

Simple thresholding of the curvelet dfieients is very Once the spectra have been computed, the echelle diagrams ca
competitive (Starck et al. 2002) with “state of the art” techbe built with a fixed folding frequency. This one correspotuds
niques based on wavelets, including thresholding of degichathe mean large frequency spacitng, identified either by com-
or undecimated wavelet transforms. puting the FFT, the autocorrelation of the spectra or angroth

Angle

To remove noise a simple thresholding of the curvelefitoe
cients has been applied to select only significantfoments.
One possible thresholding of a noisy image consists innggtti
to 0 all non-significant curvelet ciicientsc ), i, j andl re-
spectively the indexes of the line, row and scale: it is the s
called hard-thresholding:

&= 1 if ¢ j; is significant
M= 0 if ¢ jy is not significant

5. Discussion
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Fig. 4. Effect of the curvelet denoising on the mode visibility ®MN = 5. Each picture shows 120 realizations out of the 500 donauin o
Monte Carlo simulation. Each horizontal line correspormia single realization. The top panel is the raw spectra ambattom is the curvelet
filtered one.

technique (see for example Régulo & Roca Cortés 2002). Téed tagged. Although the filtering gives enhanced denoised d
denoising based on the curvelet transform is then applitdto grams and unfolded spectra, it does not contribute significa
echelle diagrams. It is important to note that artifacts mpy to the mode identification.
pear in the filtered spectra at frequenaigsyp+kAvg, with k an In the lowerS/N cases, however, the situation isfdrent.
integer, when random small structures appear in the eatiele Figure 4 shows some of the results of the Monte Carlo sim-
grams. However, their appearance and position stronglgrp ulation for S/N=5. The upper panel corresponds to 120 real-
on the folding frequency and are very sensitive to its valugations among the 500 computed for the raw spectra in the
Therefore they can be easily identified. The artifacts carebe frequency range 2450-29281z. Each horizontal line corre-
duced (in contrast to the regions containing signal) bydig sponds to a single realization. Some patterns can hardly be
echelle diagrams with slightly fierent folding frequencies andseen. The lower panel represents the same spectra aftgr appl
averaging the resultant filtered spectra. ing the curvelet filtering. A series of vertical ridges clgaap-

In order to present the results of data analysis using tpears. From the left to the right on the panels, they can be ide
curvelet denoising method, we have selected the case ot a sified as the { = 2; m = +1), thef = 0 (blended with the = 2;
like star seen with an inclination angle- 50° and with arota- m = +2 ) and the { = 1; m = -1,0,+1). The improvement
tion Q = 10Qg. A portion of the ideal spectra constructed foof the contrast is important in all the realizations andwaido
this star can be seen in Fig. 1 (top panel). Monte Carlo simdistinguish the dferent components of a mode, making easier
lations were then performed, giving rise tdtdrent sets (each the identification and the tagging.
one with 500 realizations) of raw spectra witHfdrentS/N The identification is harder when looking at each individ-
ratios. The echelle diagrams were constructed using anigldiual spectrum and requires the use of the echelle diagrant Fig
frequency of 135.1@Hz, obtained by computing the FFT ofshows an example of raw (left) and filtered (right) 150-day ob
the raw spectrum. servation power spectra (top and middle panels) and the cor-
responding echelle diagrams (bottom panels) f@/H = 5
realization. Input frequencies are indicated by the shashed
lines above the spectra. The mode peaks can hardly be distin-
In those cases, with a higdyN (typically 15), the mode struc- guished in the raw spectrum and can easily be confused with
ture is clearly visible in each raw spectrum and also on theise. For the range 2780-29261z, only a strong peak at
echelle diagram. The filerent ridges can be easily identified900 uHz can be considered not to be noise. In the region

5.1. Peak tagging
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Fig.5. Raw (left) and filtered (right) power spectra (top and midoeels) and echelle diagrams (bottom panels) 8/ = 5 realization.
The short dashed lines in the power spectra represent tlitiopas the theoretical frequencies. From left to righte tihree first equidistant
lines indicate the components= —1,0, 1 of £ = 1 modes, the two next indicate the strongest componerts-&f (m = —1 and 1), and the the
last indicateg = 0. In this case only two components of the: 1 and thef = 0 mode are slightly visible in the raw diagram. On the curvele
filtered one, the threé= 1 components appear as well as the 0 and the componenta = +1 of thef = 2 modes.

3060-318QuHz the peaks are visible and we can attempt taclination angle, according to their relative amplitudgios.
identify the/=1 and¢=0 modes but it is still unclear. On theWe have selected the extraction of one parameter: the mean
contrary, on the corresponding parts of the filtered spagtrurotational splitting of the=1 mode at low frequency (2540—
the structures of thé=1 mode with three components, the0 2550 uHz), to quantify the improvement of the curvelet fil-
mode and even the strongest components of#fmode are tering. This region is particularly interesting because lihe
visible. The raw echelle diagram gives no extra informatien width is still small and the modes, when they are visible, can
cause of the very weak ridges and low contrast with the badle easily identified. Thus, in a sample of 100 realizations of
ground. The weakest components can hardly be detected trelMonte Carlo simulation, we have obtained in 90 of them
no tagging can be done. The curvelet filtering provides a cambetter estimation of this parameter in the filtered spettra
trast enhancement of the ridges on the echelle diagram. THact, in the raw spectra it was very exceptional to obtain@dgo
three almost equidistant strong ridges appear on the leftresult. With the filtered spectra a mean rotational spittirf
the diagram and one strong ridge with two weaker ones @fv) = 4.05+ 0.30 uHz was found, which is very close to the
the right. The corresponding patterns can be seen on the dittual splitting included in the ideal specta) = 4.0 uHz. In
tered spectrum corresponding well to the theoretical feequ addition, specific methods can be applied to improve theextr
cies. Since the modés= 3 are not visible, and according totion of these parameters by usingfdrent strategies of spectra
the amplitude of the strongest peak on the left, we can stiggfting as the ones developed by Gizon & Solanki (2003) or
that the three strongest peaks correspond#c=al multiplet Ballot et al. (2006). In the case of the 30-day observatitires,
and the other ones to tife= 2 and¢ = 0 modes. curvelet filtered echelle diagram is still very noisy andaed
o o . not help in recognizing the ridges. However the correspond-
Consequently, when the tagging is done it is also easierty jenoised power spectrum is much better despite the lower
have a first estimation of both the mean rotational splitind  o5o|ution (5 times less than in the long runs), even for kmal
the rotation-axis inclination, since the visibility of theulti- S/N ratios (~ 5). The modeg = 0,2 and¢ = 1 can be distin-
pletis increased. From the spacing between the componbntalﬂshed’ at the maximum power, while it is not obvious to do

the mode/ = 1, a first estimation of the mean rotational splits i, the raw spectra. Therefore, we consider that a 30-day ru
ting of the star can be done, as well as an estimation of the
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is the minimum length needed to have reliable results wigh tkered ones. As expected, the error bars on the fitted fregesenc
curvelet denoising technique. computed by Hessian-matrix inversion, are overestimated.

Garcia et al. (2006) analyzed the first available MOST pub- Figure 6 shows the ierence between the mean fitted fre-
lic Procyon A data (32-day observation) using the curvel@tienciesv, ) and the theoretical frequencieg of the simu-
technique. Previous analysis by Matthews et al. (2004) drfed star discussed in the previous sect®#N = 5). The error
not reveal the presence of any p-mode structure in this sf&r's correspond to the dispersiof(in ). For eacl¥, the error
Therefore, due to its tiny/8l ratio the results of the curveletbars of the filtered spectra are smaller than those of the raw
denoising should be taken with care. Nevertheless, an sxc&igectra. In addition, the range where modes can be detected,
of power seems to appear in the region where it is expected &agged and fitted is extended. While théelience(vn) — vin
taking the 15 most prominent peaks in this region, many areifnonly flat in the central region of the raw power spectrum
agreement, inside the error bars, with previous tagged mod@.g- for¢ = 0, in the rangen = 18-22), it extends at higher
using ground-based velocity observations. and lower frequencies (e.g. fér= 0, the range is extended to

n = 16-23) in the filtered one.

5.2. Extraction of p-mode parameters .
6. Conclusions

Once the mode identification and tagging are done, the extr.?%
tion of .the mode_ parameter§ can be performed. To "Iuslt.r%tgrvelet transform to echelle diagrams improves the ifieati
how this extraction can be improved by using the den0|s?O

n — “peak tagging” — of stellar acoustic modes. In observa
spectrum we have extracted the central frequency of the snoge ! . .
. . . . tions with aS/N ratio as small as 5 we are still able to recover
in both the raw and the filtered spectra. To determine this

rameter, modes have been fitted by Lorentzian profiles USlﬁe mode pattern and extract reliable asteroseismic irdbom

n .
a maximume-likelihood estimator in the classical way: adjs#c |ngooth small:and long runs (30-day and 150-day observations

pairs of even( = 0 and = 2) modes are fitted together Whilerespectively). Below this/8l and with shorter observations, the

¢ = 1is fitted alone, due to the small amplitudestot: 3 method diciency is reduced drastically. The rotational split-

modes. For each multiplet, the fitted parameters are the ctéﬂ.gs and the rotation-axis inclination can be better estid

tral frequencyvs, the amplitudehy, the linewidthis,, and lsing the filtered spectrum. In paruf:ular, Monte Carlo simu
: . ST - lations showed that a better extraction of the mean rotation

the background. The amplitude ratios inside the multiplets_. . .
splitting from modes at low frequency can be done in 90 out of

qnql the rota}tlon_lel spllttlngs have be_en fixed t-hanks o the Ph00 realizations using the filtered spectra. The uncegtant

liminary estimation done in the previous section (cf. 5ThHe . -~ . .

fitting procedure provides for each adjusted paramiétan as- the extracted rotational splitting of a typical sun-likarsseen
with an inclination anglé = 50° and with a rotatiof2 = 10Q¢

sociated erroo-(X) computed by Hessian-matrix inversion. .
5 . o is very small,~0.30uHz. These parameters can then be used
The raw spectra follow g° with 2 d.o.f. statistics, whereasy, paye 4 set of guessesapriori values to perform individual
the filtered spectra haye?@z with & higher d.o.f. statistics s of the spectra. We have also shown that the range of the
(close to a Gaussian distribution depending on the numberQfq ;ency extraction can be extended at higher and lower fre
filtlered codficients). According to Appourchaux (2003), it isyencies using the filtered spectra. Finally, simulatiohthe
possible to fit spectra following &* with more than 2 d.o.f. gpqt ryn observations have demonstrated that this method ¢

statistics with a classical procedure developed fof &ith 2 55 he applied to lower resolution spectra with good result
d.o.f. statistics: parameters are correctly fitted, but poted

errors have to be adaptedposteriori. However in our case, Acknowledgements. P. Lambert thanks Dr. D. Neuman for useful dis-
due to filtering, points of filtred spectra are correlated f\l@@e cussions.
estimated that one point is correlated withO neighbouring
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their mean computed erro¢s(vn)) and the dispersion of fre- SP-559: SOHO 14 Helio- and Asteroseismology: Towards a
guency distributionr*(vn) (the real error). We have verified Golden Future, 309
thato*(Vne) ~ (o(¥n)) for fits performed on the raw spectraBallot, J., Turck-Chiéze, S., & Garcia, R. A. 2004b, A&A 3!
and we havert(vn,) < (o(¥n,)) for fits performed on the fil- 1051

e application of a noise reduction technique based on the
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Fig. 6. Differences between the mean fitted frequen¢iggs) and the input frequencies,, for ¢ = 0,1,2, for the raw (dashed line with
triangles) and filtered (full line with diamonds) spect&N = 5, 150-day observation). The error bars correspond to gpediorno*(v,,) of
the frequency distribution. For clarity the values for thevrcase are shifted by 20Hz towards the right.
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