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Abstract
In this note we prove that the contribution of the box diagram calculated for electron muon
elastic scattering can be considered an upper limit to electron proton scattering. As an exact QED
calculation can be performed, this statement is useful for constraining model calculations involving

the proton structure.
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The problem of the two photon exchange amplitude (TPE) contribution to elastic
electron-proton scattering amplitude has been widely discussed in the past. This amplitude
has in principle a complexe nature. Experimentally its real part can be obtained from elec-
tron proton and positron proton scattering in the same kinematical conditions. A similar in-
formation in the annihilation channel (electron-positron annihilation into proton-antiproton
and in the reversal process) can be obtained from the measurement of forward-backward
asymmetry of the angular distribution of the emitted hadron in the reaction center of mass
(CMS) system.

Recently, a lot of attention was devoted to the two photon exchange amplitude (TPE)
exchange amplitude in electron proton elastic scattering as a possible solution to a discrep-
ancy between polarized and unpolarized measurements devoted to the determination of the
proton form factors [1]. The theoretical description of TPE amplitude is strongly model
dependent, as it involves the modelisation of the proton and of its excited states.

However, it is still possible to derive rigorous results and predict exact properties of
the two photon box. Model independent statements based on symmetry properties of the
strong and electromagnetic interaction have been suggested in in Ref. [2, 3]. It has been
proved that, due to C-parity conservation, the amplitude for e + e~ — p + p, taking into
account the interference between one and two photon exchange, should be an odd function
of cosf, where 6 is the angle of the emitted proton in the CMS of the reaction. This is
equivalent, in the scattering channel, to destroy the linearity of the Rosenbluth fit, i.e., the
(reduced) differential cross section as a function of € = [1 + 2(1 + 7) tan?(6./2)]~", where
0, is the electron scattering angle, for a fixed value of the momentum transfer squared, Q2
between the incident and the outgoing electron. This property must be satisfied by all model
calculations.

A second possibility is to do an exact calculation of the box diagram, which is possible for
electron electron and electron muon scattering, and in the crossed channel (i.e., replacing
the proton with a lepton) [4]. The electron can be considered as a massless, point-like
proton. The muon can be considered a structureless proton. Even if such calculation can
not be considered a realistic model for the interaction on proton, the interest of a pure
QED calculation is that the results can be considered as an upper limit for any calculation
involving protons.

The purpose of this note is to prove that, modelling the proton by a Q? decreasing form



factor, must lead to a smaller contribution of the box diagram, compared to the QED case.
We will prove this for the imaginary part of the box diagram, and the validity for the full
amplitude can be inferred through dispersion relations.

Let us consider the cases where the target is a proton (Fig. la) and a muon (Fig. 1b)

with the following convention for the particle four momenta:

e(p1) +p(p) — e@)) +p@") — e@)) +p@) (1)

where ¢; and ¢y are the momenta carried by the virtual photons,

e(p1) + u(p) — e(pr — k) + p(p + k) — e(p)) + p(p') (2)

where k, and ¢ — k are the momenta carried by the virtual photons.
The following kinematical relations hold in the center of mass frame:
prtp=pi+p.a=pi—pi, Py +p =p{ +0" a1 =p1 =P, 2 =p{ — 11,
Qf = —af = —(p1 — p{)* = 2(0)*(1 — c1),
Q3 = —a5 = —(p — 1) = 2(0)*(1 - c2),
Q*=—¢*=~(p — p{)* =2(p)*(1 - o),
where ¢; = cosf; , co = cosby, c = cosf, and 6, :ﬁ/l\ﬁ'l’, ) :]5’7\25'1, and 6 :yﬁ.

The contribution to the Feynman amplitude corresponding to the diagram of Fig. 1a can
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where A is a fictitous photon mass and dI" is the phase volume of the loop intermediate state.

be written as

Taking into account the fact that the intermediate particles are on shell, one can write for

the proton case:
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dO! is the solid angle of the electron in the intermediate state, which can be expressed as a
function of the angles defined above as:
2dQ1dQ;
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a0} = Dy = 2(QF + Q)RPQ3 - 2°QQ% - (QF - QAR - (@R (6)

with the relation Q2 = 2p? = (s — M?)?/(2s). The positivity of the function D defines the
solid angle kinematically available for the reaction.
Therefore one can write the contributions corresponding to the 'QED’ diagram in Fig.

1b as:
_ 1 / dQ1dQ3 (7)
V8s ) VDi(QF + N?)(Q5 + )\?)

Introducing a generalized form factor for the proton, one finds for the ’QCD’ diagram of

Mla

Fig. 1a:
1 dQIdQ3F (Q7)F(Q3) (8)
V8s ) VDi(Q% 4+ A2)(Q2 + \?)

Therefore the condition F(Q3)F(Q3) < 1 is equivalent to the statement that the value of the

My,

electron-muon scattering amplitude can be considered an upper estimation of the amplitude
for electron-proton scattering.
Nucleon form factors are functions which are rapidly decreasing with Q2. The Pauli and

Dirac form factors, F| and Fj, are related to the Sachs form factors by :

TGy (Q%) + Gp(Q?) CGu(Q*)-Ge(@Q) Q.
T4+1  B(Q) = r+1 ’T_4M2’ (9)

F(Q%) =

with the following normalization: F;(0) =1, F5(0) = pu,—1 = 1.79, where p, is the magnetic
moment of the proton in units of Born magneton.

Let us consider the dipole approximation as a good approximation at least for the mag-
netic proton form factor GG;, although it has been shown that the electric form factor Gg
deviates from the dipole form. In any case, any parametrization closer to the data will give

even lower values as compared to the dipole form. In this approximation, we have:

(Tpp +1)Gp(Q?) . oy (1 — 1)Gp(Q?)
T+1 » B(Q7) = T+1

, Gp(Q%) = [1 4+ Q*(GeV)?/0.71)?
(10)
In Fig. 2 we show F}(Q?) (dashed line), F5(Q?) (dotted line) and the product F;(Q?)F»(Q?)

FP(Q*) =

(solid line), which are smaller than unity practically overall the Q? range. The product

Fi1(Q%) Fy(Q3) is shown in Fig. 3 as a bidimensional plot, and in Fig 4, as a projection on



the Q7 axis for Q3 = 0.05 GeV? (solid line), Q3 = 1.2 GeV? (dashed line), Q% = 2 GeV?
(dotted line).

One can see that the condition F(Q?)F(Q3) < 1 is satisfied, starting from very low values
of @Q*. Let us stress that F}(Q?) is normalized to 1 and it decreases with Q?, being therefore
smaller than unity; in the expression of the hadronic current, Fy(Q?) is multiplied by g,,,
which lowers its contribution at small Q?, whereas at larger (% it does not compensate the
steep Q% behavior of this form factor, as expected from quark counting rules [6].

Therefore all model calculations for ep elastic scattering as [5] should result in smaller

contribution of the two photon amplitude, as compared to QED calculations [4].
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FIG. 1: Feynman Box Diagram (a) for ep and (b) for ey scattering.
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FIG. 2: Form factors as a function of Q%: Fy(Q?) (solid line), F»(Q?) (dashed line).



FIG. 3: Bidimensional plot of Fy(Q?%)F;(Q3) as function of Q? and Q3.
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FIG. 4: Projection on Fi(Q?)F;(Q2%) on the @? axis for Q3 = 0.05 GeV? (solid line), Q3 = 1.2
GeV? (dashed line), Q3 = 2 GeV? (dotted line).



