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Abstract

We challenge the hadrogenesis conjecture by a study of radiative and isospin-
violating strong decays of charmed mesons with strangeness. The scalar D¥,(2317)*
and the axial vector D¥* (2460)* states are generated by coupled-channel dynam-
ics based on the leading order chiral Lagrangian. The effect of chiral corrections is
investigated. We show that taking into account large-N. relations implies a measur-
able signal for an exotic axial vector state in the n D* invariant mass distribution.
The one-loop contribution to the electromagnetic decay amplitudes of scalar and
axial-vector states is calculated using the chiral Lagrangian, where the role of light
vector meson degrees of freedom is explored. We confront our results with measured
branching ratios. Once the light vector mesons are considered a natural explanation
of all radiative decay parameters is achieved.
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1 Introduction

The observation [I2] of two narrow, with positive parity, strange charmed
mesons at mass lower than expected in quark models [3[4] may provide new in-
sight into the way hadrons are generated. The properties of these two mesons,
the scalar D?,(2317)* and the axial vector D7, (2460)*, appear indeed sensitive
to strong interaction symmetries as well as to the degrees of freedom build-
ing up hadronic excitations [5J6]. The purpose of this paper is to study the

%(2317) and DZ,(2460) meson decays in the hadrogenesis conjecture. Ear-
lier work [7I8[9] showed that such states exist and can be produced at their
observed masses. This approach for heavy-light mesons exploits both heavy-
quark and spontaneously broken chiral symmetries and generates open-charm
mesons with strangeness through relativistic coupled-channel dynamics. For
the D*(2317)% and DZ*,(2460)" mesons considered in this work, the calcu-
lation involves the nDf, K°D* and K*D° channels coupled further to the
7°DF channel through isospin mixing parameters.

We display in Figure 1 the Df-meson spectrum as presently known [T0JTT].
The spin and parity of the Df-mesons are well-established for the ground
state and for the DZ;(2460)*. The spin and parity of the other states need
confirmation. We have quoted their most probable values.
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Fig. 1. The Df-meson spectrum with the most probable spin-parity assignments
together with the radiative transitions on which there is experimental information
[LIO/TT]. The arrows without number indicate that there are experimental constraints
on these decays but no absolute branching ratios. The dashed line shows the DK
threshold.

The D#(2112)* and D?,(2317)* mesons lie below the DK threshold and are
therefore expected to be very narrow states. They can decay either electro-
magnetically or into the isospin-violating D)% 70 channel. The closeness of
the D?,(2317)* meson to the DK threshold has lead to suggest that it could be
a DK molecule or alternatively a state involving large sea-quark effects [56].

The D#*(2112)* has a width I' < 1.9 MeV and decays dominantly by a radiative
transition to the ground state with a probability of (94.2 + 0.7) % [10]. Its
decay probability to the Dyr° channel is therefore (5.8 4+ 0.7) %, i.e. about
16 times smaller than to the radiative channel.

The most stringent upper limit obtained for the D?,(2317)* width is [' <
3.8 MeV [12]. The D#,(2317)* was first observed through its decay into the
D,(1968)* 7° channel [1]. Its radiative decay to the D4(1968)* has never been
seen. The present upper limits available on the ratio of the radiative to pionic
decay widths of the D%;(2317)* to the ground state and to the D*(2112)* are
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T'[D%,(2317) — D,(1968) 4]
T [D7,(2317) — D,(1968) 7]

< 0.05 (1)

and

T'[D*(2317) — D*(2112)]
T [D%(2317) — D,(1968) 7]

< 0.059. (2)

The D, (2460)*-meson is located above the DK threshold but appears never-
theless very narrow: its total width was found to be less than 3.5 MeV [12].
Constraints on its radiative decays to the D4(1968)*, to the D*(2112)* and
to the D%,(2317)* are as follows [10],

I'[D*,(2460) — D,(1968) ]

— 0.31+0.

D7, (2460) — Dr(2112) 70 ot = 006, 3)
T'[D?,(2460) — D*(2112)]

s s 1 4
D, (2460) — Dr(2112) 70 ~ 10 )
T'[D*,(2460) — D% (2317)]

: : 22,
D7, (2460) — Dr(2112) 70 ~ © (5)

An absolute measurement of the decay probability of the D? (2460)~ to the
D4(1968)~ 7 channel gave recently (16 &+ 7)% [12]. The same data also provided
the branching fraction B(D(2460)~ — D?(2112)"7%) = (56 + 22)%. The
ratio is in agreement with the value quoted in (). The D*,(2536) is also very
narrow (I' < 2.3 MeV). The only information available on its radiative decay
scheme is the ratio

I [D%(2536) — Dr(2112)4]
I [D5(2536) — D*0(2007) K]

< 0.42. (6)

Finally the total width of the D¥,(2573) is measured to be 15+5-4 MeV [10]
but nothing is known about its radiative decay widths.

We restrict our calculations to the radiative and isospin-violating 7° decays
of the D%,(2317)" and DZ,(2460)" states on which there are fragmentary but
significant data. In view of the uncertainties in the measured widths, our main
concern will be to check the ability of the hadrogenesis conjecture to provide a



consistent picture of the main features of the decay scheme. We aim at identify-
ing the important contributions to the dynamics of these decays, determining
characteristic ranges for the parameters involved and making predictions able
to test further the structure of the Ds-mesons and the specific conjecture on
which this work relies.

This paper is organized as follows. Section 2 is devoted to the calculation of
the strong isospin-violating decay of the D%;(2317)" and D¥(2460)* mesons
respectively. Our picture involves the isospin-violating mixing of the %D,
channel with both the nD, and KD channels. We present first a calculation
based on the leading order chiral Lagrangian. To obtain gauge-invariant ex-
pressions, we describe massive vector fields in terms of antisymmetric tensors
and show how the results obtained earlier [89] in the vector field represen-
tation can be recovered in such a description. We introduce chiral correction
terms to the leading order interactions, to take into account s- and u-channel
D-meson exchange processes on the one hand and local two-body counter
terms on the other hand. Section 3 deals with the coupling of the electromag-
netic field to the hadrons. In a first step we gauge the hadronic interactions
introduced in Section 2 which can contribute to the electromagnetic decays of
the D%(2317)" and D¥,(2460)" mesons. Based on chiral power counting we
consider additional gauge-invariant interaction terms which play a significant
role in electromagnetic processes. We include interaction vertices probed when
considering the light vector mesons as explicit degrees of freedom. We com-
ment on the values of the parameters associated with these terms in relation
to QCD symmetries and discuss the renormalization of the ultraviolet singu-
larities. The explicit expressions of the electromagnetic decays are derived in
Section 4 for the scalar state D%,(2317) and in Section 5 for the axial vector
state D¥;(2460). Our numerical results are presented in Section 6 and com-
pared to the available data. We discuss the role of the different contributions
and the constraints expected on the range of values for the coupling constants
of specific interaction terms. We conclude in Section 7. We relegate lengthy
derivations in seven appendices (A-G).



2 Isospin violation and strong decays

We describe the D?,(2317) and D? (2460) mesons in the coupled-channel
framework of Ref. [8/9]. This approach is based on the scattering of Goldstone
bosons off heavy-light 0~ and 1~ mesons. The corresponding fields interact as
dictated by the chiral SU(3) Lagrangian. The D};(2317) and D?,(2460) reso-
nances appear as poles in the s-wave scattering amplitudes. This description
involves isospin-breaking effects arising from the difference between the up
and dawn quark masses which lead to isospin-violating strong decay ampli-
tudes for the processes D*,(2317) — 7 D, and D7 (2460) — 7° D,. To arrive
at gauge-invariant expressions, the massive 1~ open charm fields appearing
in the Lagrangian are represented in terms of antisymmetric tensor fields and
the derivation of Ref. [89] is reformulated accordingly. We discuss chiral cor-
rections which were shown to contribute to the masses of the D;(2317) and
D?,(2460) states and play a significant role in the hadronic widths of these
mesons.

2.1 Scalar states

We compute first the decay amplitude D?,(2317) — 7° D,. The open-charm
D7,(2317) state is dynamically generated as a direct consequence of the lead-
ing order chiral interaction [§]9]. We recall the relevant terms of the chiral
Lagrangian density at leading order:

L= tr(0,) (0"®) — L tr o @+ (3,D)(0D) ~ DM D
1

+57 {(0"D) [®,(9,9)]- D — D [,(9,9)]- (2" D)}, (7)

where ® and D are pseudoscalar octet and triplet fields. We use the notation
D = D', In the particle representation the Goldstone and ground state open-
charm meson fields are

'+ En V2rt o V2KY
b = \/571'_ —7T0+%77 \/éKO ) D:(Dov_DJ’_vD:)' (8)
_ 0 2
V2K V2K —5"
The Weinberg-Tomozawa term in (7)), which is proportional to f~2, is obtained

by chirally gauging the kinetic term of the D-mesons. The parameter f ~
fr = 924 MeV in (@) is known from the weak decay of the charged pions



approximatively. It predicts the leading s-wave interaction of the Goldstone
bosons with the open-charm meson fields. A precise determination of f requires
a chiral SU(3) extrapolation of some data set. In [13] the value f ~ 90 MeV
was obtained from a detailed study of pion- and kaon-nucleon scattering data.
We will use f =90 MeV throughout this work.

The ground-state D-meson mass matrix is denoted by My-. The mass term of
the Goldstone bosons is proportional to the quark-mass matrix

m, 0 O
1 2
0 0 ms,

At leading order the latter can be expressed in terms of the pion and kaon
masses as indicated in ().

If we admit isospin breaking effects, i.e. m, # my, there is a term in ()
proportional to (m, —mgq) 7° 7, inducing 7° 7 mixing. A unitary transformation
is required such that the transformed fields 7 and 7 with

0

7 = 70

0

cose — 17 sine, 1N =T7" sine+ 17 cos €, (10)

decouple. The Lagrangian density (), when written in terms of the new fields,
does not show a 7°# term if and only if

sin(2€) Mg — My,
3 . 11
cos(2¢€) \/_Qms — My — My (11)

According to [14] the ratio of quark masses relevant in (Il) takes the value

Mg — My 1
= , (12)
ms — (my, +mg)/2  43.7+£2.7
which implies
e =0.010 £ 0.001, (13)

for the mixing angle.

Heavy-light meson resonances with quantum numbers JZ =0% manifest them-
selves as poles in the s-wave scattering amplitude, T'(s). We consider the four
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Fig. 2. Diagrams contributing to the s-wave scattering amplitude.

isospin states (K D, I|, (r Dy, 1| and (n Dy, 0|. In the presence of isospin mix-
ing all channels couple. The mixing of the two isospin sectors is of order e. We
introduce the four states as follows

(1| = (7° D} | = cose (7" Dy, 1] +sine (n Dy, 0],

(2| =(n Df| = cose(nDs,O\ sine (7° Dy, 1],

(3] = (K°D*| = +75 ((K D,0] - (K D, 1)),

(4] = (KTD°| = =55 ((K D,0| + (K D, 1)), (14)

where we apply the phase convention introduced in [8[9]. The Weinberg-
Tomozawa interaction (7)) implies a scattering amplitude of the simple form

819

T(s) = [1 - V(s) J(s)]  V(s). (15)

This equation is shown diagrammatically in Figure 2l The matrix of loop
functions, J(s), is diagonal and given by [S9]

J(s) = I(s) = I (i),
1 Pem 5= 2pem \/g s+ 2pcm\/g
(8)2167r2<\/§ <ln<1_—m2+M2 >_ln<1_7m2—|—M2 ))
1m?2+M?> m?—M? m?
< 5 >1n<M2>—|—1>—I—I(O), (16)

2 m? — M?

where /s = \/ M? +p2, + \/m2 + p2,,. Each diagonal element depends on
the masses of the light (Goldstone) and heavy (open charm) mesons m and M
which constitute the associated coupled-channel state. The matching scale gy,
in (@) should be identified with the ground-state mass of the Dy meson, i.e.
=~ 1968 MeV. For a properly chosen matching scale s- and u-channel uni-
tarized scattering amplitudes may be smoothly matched around the matching
scale as to define a full scattering amplitude that is crossing symmetric by
construction [7)g].

The coupled-channel interaction kernel V;;(s) in (I3]) is determined by the
leading order chiral SU(3) Lagrangian (),



0" (o _ Cij
VWT,ij(S) = 8f]2
~ M2 —m2
x(33—M2—M2—m2—m2—%(M2—m2)), (17)

where (m, M) and (m, M) are the masses of initial and final mesons. The
matrix of coefficients C', whose elements characterize the interaction strength
in a given channel, is clearly defined with respect to our particular convention
for the coupled-channel states.

As a consequence of (I4) the 4x4 matrix C;; can be expressed in terms of the
mixing angle € and the isospin zero Ci(jo ) and isospin one Ci(jl) coupling matrices
of [8]. For the channels of positive strangeness considered in Eq. (I4]), we have

Cy = Cég) sin? e + Cﬁ) cos? € Cp = (C’ég) — C’ﬁ)) sin € cos €

_ 0 2 (1) 32 _ 1 () (1)
Coy = C5y cos”“ e+ (7 sin“e Ci3 = 7 C1y sine — cos e C;
Coy = % (coseCfg) + sineCS)) Cs3 = % (Cﬁ]) + C’%))
Cuy = \_/—% Cfg) sin € 4 C’g) oS e) Coy = \_/—% (Cfg) CoS € — C’g) sin e)

_ 0 1 0 1
Cy =3 (C&) - 02(2)) Cu=3 (Cﬁ) + 052))
0 1 0 0 1 1

C£1) =2= 20&2) sz) = \/3 052) = C}I) = 02(2) =0. (18)

Given the coupled-channel scattering amplitude (IZ]) with the effective inter-
action (I7) it is straightforward to determine the mass and width of possible
resonances. The Weinberg-Tomozawa interaction is strongly attractive in the
isospin strangeness (/,S) = (0, 1) sector, leading to the formation of a scalar
resonance of mass My+. The latter manifests itself as a pole in the scattering
amplitude which factorizes close to the pole at s = M2,

29; Mg, g;

Tij(s) ~ — . ,
(8) S — M&L +ZFO+ M0+

with the coupling constants g; and the width parameter I'g+.

The numerical results obtained at leading order which we present now should
be viewed as qualitative. At the end of the section a more quantitative study
where we consider chiral corrections systematically will be given.

Using an effective parameter f.rr = 95.5 MeV in (1) we can reproduce the
empirical mass of 2317.6 MeV at leading order for the 0" state. The coupling
constants are



dnD;, = 195, grop, = 0056,
JKop+ = 2.25, J+po = —2.25. (20)

Isospin breaking effects in the KD coupling constants are found to be negligi-
ble, i.e. gxop+ >~ —gx+po holds quite accurately. It is therefore meaningful to
work with the isospin coupling constants

¢ = V2 grop+ ~ 3.18, 9 = g,p, ~1.95. (21)

Note that the flavor SU(3) limit suggests v/3 gfgz) = gﬁ?z;), a result quite
compatible with the values given in (20, 2I]). The total 07 width comes at 76
keV using € = 0.010. It is pointed out that our result for the width parameter
of the DZ,(2317) is an order of magnitude larger than the one given in [15]
based on the same interaction.

To trace the origin of this difference, it is useful to understand the physics
underlying the value obtained for g,op . We have

2 Pem
- ‘gﬂ'ODs

223.7MeV ~ 76 keV . (22)
47

FD:O (2317)—79Ds — |g7r0DS

At linear order the relevant coupling constant picks up two terms,

Ggrop, = Egn) +egln) ~ 0.056. (23)
The contribution proportional to g,gODt) is unambiguously determined by the an-
gle €. This is a direct consequence of the 7° —n mixing as defined in ([IQ). If the
coupled-channel dynamics was evaluated with degenerate kaon and D-meson
masses (mx+ = myo and Mp+ = Mpo), the coupling constant g,op, would
be determined fully by the mixing angle e and the coupling constant g,p,.
However, when the physical masses are used, there is an additional contribu-
tion induced by the mass difference between the neutral and charged kaons
(mg+ # myo) and between the neutral and charged D-mesons (Mp+ # Mpo).
Like the 7% mixing phenomenon, it couples the two isospin sectors. This effect
in chiral coupled-channel dynamics is analogous to the mixing phenomenon
induced by the exchange of vector K*- and D*-mesons in the molecular picture
of Ref. [16/17]. The contribution to g,op, must be proportional to gxp and to
the mass differences of neutral and charged mesons, i.e.

€=¢ + 6, € ~ (Mmg+ —mgo) , € ~ (Mp+ — Mpo), (24)

where the proportionality factors depend on the details of the coupled-channel
dynamics. It measures the isospin one transition amplitude KD — 7 Dy. Us-
ing the leading order chiral interaction we predict that é ~ 0.012 in (24)) is

10



of similar size as € ~ 0.010, i.e. it is a significant contribution to the width.
The value is obtained from the coupled-channel dynamics by computing the
coupling constant gop, and gxp using physical masses for the mesons but
imposing € = 0. It is interesting to observe that the effect is somewhat domi-
nated by the isospin breaking induced by Mp+ # Mpo. We derive ¢, ~ 0.004
and € ~ 0.008 in (24]).

We note that the mass differences mg+ — mgo and Mp+ — Mpo have a con-
tribution that is proportional to e [14]. In our coupled-channel computation
we use the known empirical masses, which include contributions from electro-
magnetic interactions. It is interesting to observe that if we put e = 0 in (8]
but keep the isospin violation in the kaon and D-meson masses we arrive at
a width of 33 keV, a value significantly larger than the value in [I5J19]. If we
set € = 0 we would obtain a width of 8.9 keV only, in good agreement with
the 8.7 keV obtained for example in [I5]. The importance of isospin breaking
effects in the kaon and D-meson masses in generating the strong widths of the
D?,(2317) and D? (2460) mesons was missed in [I5JI9] but recently pointed
out in [16/17]. It should be emphasized that a precise prediction for the width
suffers from an uncertainty in the coupling constants g,p, and gxp. In [9] it
was demonstrated that chiral correction terms may change these couplings
and lead to the values g,p, ~ 3.7 and gxp ~ 3.7. From this result we con-
clude that the width of 76 keV quoted above defines most likely a lower limit.
Inserting the coupling constants of [9] into (2223) one predicts a width that
may yet be significantly larger. We will return to this issue in the final part of
this section.

2.2 Auxial vector states and tensor fields

We turn now to the strong decay of the axial vector meson D%, (2460) — 7° D,.

It is important to study scalar and axial vector mesons in the open-charm
sector on equal footing. The properties of spin 0 and spin 1 mesons are indeed
closely related by the heavy-quark symmetry of QCD [20[2122/2324]. Rather
than applying a multiplet formalism, where for instance scalar and vector fields
are grouped together in one field, we use the more conventional representation
in terms of scalar and vector fields directly. The latter amounts to a partial
summation scheme, the fields being defined away from the heavy-quark limit.
Due to the semi-heavy character of the charm mass the heavy-quark expansion
is not always well-converging in the open-charm sector. How to go beyond the
heavy-quark is an important issue.

Since we aim at predicting electromagnetic decay amplitudes, we have to con-
struct gauge invariant expressions. Our Lagrangian involves massive scalar

11



and vector D-meson fields. We are faced with a serious complication, namely,
the mixing of scalar and vector modes. It is a quite cumbersome enterprize to
arrive at gauge invariant expressions in the presence of such mixing phenom-
ena [25/26127]. This is a known and non-trivial complication of the standard
model where the Higgs boson may mix with the longitudinal component of
the Z boson [2§]. A solution to this problem is to represent the 1~ open-charm
mesons in terms of antisymmetric tensor fields [2930J3132]. The massive spin
1 field is proportional to the divergence of the antisymmetric tensor.

To proceed with this particular representation we have to demonstrate first
that the results of [§], which were obtained using the conventional vector field
representation, can be recovered with the tensor field representation. This will
readily be achieved.

We start with the Lagrangian density,

_ 1 _
L=—(0,D"")(0"D,qa) + 3 D' M}~ D,
1

= 57 {0Dua) [2,(0,2)]- D = D [0, (0,9)]- 0, D")} - (25)
involving the kinetic term and its associated Weinberg-Tomozawa interaction.
In (25) we use the antisymmetric triplet fields D,, = —D,,, and Duv = wa
with D, = (D}, =D}, D{ ,,) describing the heavy-quark multiplet partners
of the field D introduced in (§). Since the tensor field representation is not
frequently applied in the literature we will be more detailed in the presentation.
The key objects we will need in this work are the propagator of the tensor

field and its associated wave function. The propagator takes the form

B i 4 6—ik-(m—y)
017 Dyule) Das() 1) = ~37 [ 55

M2 ) 2n) k2 — ME tie

X (M12* - k2) Gua v + Gua kV kﬁ — 9uB ku kfa — (,U > V)] . (26)
The wave function

{
M-

> T )\ )\ _ pupu 27
Yol p A e(p,A) = =g + 52 (27)
=1 M-

(01D (0) |D(p, A)) = € (p; A) =

[pﬂ EV(p, )‘> — Dv Eu(pv A)} )

is expressed most economically in terms of the conventional wave function,
€.(p, A), of a vector field in the vector representation.
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Given the interaction (25) we need to derive the on-shell scattering amplitude.
This is achieved by an appropriate modification of the technique developed
in [7]. Assuming the vector representation of spin one fields the scattering
process of Goldstone bosons off vector mesons was studied. The on-shell part
of the scattering amplitude takes the simple form,

Toy el = ZM U (s) VP (@, ¢ w) (28)

where the projectors y;;iP )(q, q; w) were constructed to carry well-defined total
angular momentum J and parity P. The projectors are polynomials in the
initial and final 4-momenta of the Goldstone bosons, g, and g,, as well as the
total 4-momentum w, with w? = s. Only the sector with J” = 17 is relevant
for the present work. We recall the appropriate projector

3wt w”
a+) _ 2 _ gl

y,ul/ _2( w2 g ) (29)
The merit of the projectors is their property of solving the Bethe-Salpeter
coupled-channel equation analytically for the case of quasi-local interactions.
The partial-wave amplitudes MP)(s) are Lorentz invariant. They can be

computed in terms of an effective interaction V/F)(s) and loop functions
JUP)(s), with

-1

MUP)(s) = [1= VP (s) JUP)(s)]  VIP)(s),

JUP(s) = NUP(s) {I(s) = 1G23,)} (30)
where the factors N/7)(s) reflect the presence of spin and angular momentum.
The latter, if multiplied with an appropriate factor s”, are polynomials in s
and the masses of the intermediate states. The universal integral I(s) was
introduced already in (I6). The specification of the matching scale p; was

discussed in [§]. In the strangeness sector we identify ), = 2012 MeV with
the mass of the vector-meson ground state.

We seek a set of tensor projectors, yﬁ‘jf;’"ﬁ(q, q;w), with properties analogous
to those of yf;;” )(q, q;w). They are readily defined in terms of the previously
established ones

JP _ _
YOG aiw) = 1 5, VPG, ¢;w) ps — L5, Y@, 45w) pa
_ _ JP)
— 15, VNG, q;w0) py + 2 5. VI (@ ¢ w) pa (31)

where p, = w, — g, and p, = w, — q,. By construction it holds

13



e (p) VLG, ¢ w) P (p) = /2 p* € (5) VI (@, g w) (), (32)

where we make use of the explicit representation of the wave function (27]).
From the identity (32]) we can read off the relation we are after. The scattering
amplitude takes the form

on—she JP
o Z MYP) () V@, g w) (33)

where the invariant partial-wave amplitudes are given by an equation of the
form ([B0). The only modification compared to the expressions of 7] are a
rescaling of the loop functions by the factor M?. The relevant normalization
factor reads

3 2
§M2+p0m, VE = M2 4 2 m 4 2, (34)

NP (5) = 5

It is left to derive the effective interaction V;g-lﬂ (s) as implied by (25]). We use a
convention for the coupled-channel states analogous to (I4]). A straightforward
application of [7] leads to the result

M2+ M? _ o) (M? — M?)
1 0
Virty(s) = S Vw9 ~ g 0 M) Ca o (39)

in terms of the matrix VV([?;)Z-]-(S) and the Cj; coefficients already specified in
([2IY). In [B3) the parameters M and M denote the masses of open-charm
vector meson of the initial and final state respectively. Like in ([I7) the masses
m and m stand for the masses of the initial and final Goldstone bosons.

We point out that in the particular limit M = M we recover the expressions
obtained before in [§], i.e. the invariant amplitude M%) (s) is identical to that
of [8] within a factor 2 M?/3. This observation implies in particular that the
predictions for the axial-vector spectrum be consistent with the expectation of
the heavy-quark symmetry, as was emphasized in [8]. The D (2460) state is
generated dynamically. The scattering amplitude develops a pole at s = M2,
Close to the pole it has the form:

_ _2 2gz M1+gJ
SMM s — M2 +iTys My

(36)

with the coupling constants g; and the width parameter I';+. The normaliza-
tion of the coupling constants, g;, is such that in the heavy-quark limit they

14



are identical to those of ([IJ]). The values discussed in the following can be
compared directly to those given in [9].

Using an effective parameter f.rr = 97.1 MeV in (B8] we can reproduce the
empirical mass of 2459 MeV for the 17 state at leading order. The coupling
constants are

gnD; ~ 1.95 s gﬂ-OD: ~ 0.049 s
gKODi >~ 225, gK+D8 ~ —2.25. (37)

in this case. Again isospin breaking effects in the coupling constants are found
negligible. For a quantitative study that considers chiral correction terms we
refer to the end of this section.

It is worth emphasizing that the values (B7) are identical (or very similar for
gfj)})) to those given in (20). An approximate degeneracy is expected from
heavsy—quark symmetry. The total width comes at 55 keV using ¢ = 0.010. We
point out that our result for the width parameter is five times larger larger
than the one claimed in [33] based on the same interaction. The source of the
conflicting results lies again in the neglect of isospin breaking effects in the

kaon and D-meson masses.
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2.3  Chiral correction terms

In this section we sharpen our prediction for the hadronic decay widths of the
D?,(2317) and D7, (2460) mesons. Following [9] we construct chiral correction
terms to the leading order interactions ([, 23] adjusting to the notations and
conventions used in the present work. We take into account the chiral correc-
tion terms to the effective interactions V) (s) and V1) (s) relevant at chiral
order Qi. There will be two types of contributions for s-wave scattering. On
the one hand we include s- and u-channel exchanges of the D-meson ground
states based on the leading order vertices involving a Goldstone boson and
two D-mesons. On the other hand local 2-body counter terms (breaking chi-
ral symmetry and chiral symmetric respectively) will be constructed. These
different contributions are represented diagrammatically in Figure

We identify the leading order 3-point vertices involving the Goldstone bosons

£=i% { Dy (0®9) (2" D) - (2" D) (0®) Dy }

N i_f} ¢ LD,y (0®) (7 Drg) + (07 Drg) (02®) Dyu) b (38)

that are responsible for the s- and u-channel exchange contributions. The
vertices (B8) will play a decisive role when computing the radiative decay
widths of the D};(2317) and D}, (2460) states. As detailed in Appendix A the
decay of the charged D* mesons implies

lgp| = 0.57 4 0.07, (39)

using f = 90 MeV. The parameter gp in (B8]) can not be extracted from em-
pirical data directly. An accurate evaluation within unquenched QCD lattice
simulations would be highly desirable. However, the size of the latter parame-

>~
\.><:/\/

Fig. 3. Chiral correction terms from s- and u-channel exchange processes of the
D-meson (left) and local 2-body counter terms (right).
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22 0 0 0 4 | =2 | 2 1 0 0
Table 1

The coefficients C'/-%) that characterize the interaction of Goldstone bosons with
heavy-meson fields as introduced in ({4l [I8]) for given isospin (I) and strangeness

(S).

ter can be estimated applying the heavy-quark symmetry of QCD. As detailed
in Appendix B one expects

gp = gpr, (40)
at leading order.

The coupling constant gp contributes to the effective interaction V") (s) and
V(") (s) via s- and u-channel exchange processes of the D meson ground states.
We derive the relevant contributions applying the on-shell reduction scheme
of [7]. In the scalar sector only the u-channel exchange of the J” = 1~ con-
tributes. In contrast to [9] the s-channel process of the 1~ state does not
contribute here. This is a consequence of the tensor field representation of the
spin-one field. We derive

V.(s) = gb fg‘fg (s — M2 +m?) (s — M2+ m?)

1 _ _ _
Ce /_:cq Q) pi- — (m*—=q-p)(m* —p-q)
J 2 M2+ M2 —p2 —s+2q-q

Y

g = ¢m2 + P2 /M2 + PRy — Do Pemn @

q
B - s — M? +m? _ _ s — M2+ m?
TP="Tat e D= gt
i T A T+ T e, )

where (m, M) and (m, M) are the masses of initial and final mesons. The
parameter pq- =~ 2059 MeV is taken to be the average of the vector D-meson

17



masses. The coefficients C’ h are recalled from [9] in Table [ for the channels
relevant for the formation and decay of the D%,(2317).

As already noted in [9] the influence of the u-channel process is of very minor
importance for the formation of the D%,(2317). At f = 90 MeV and gp = 0 we
obtain a mass of 2304 MeV which is pulled down by 1 MeV only if we switch
on gp = 0.57.

The situation is different for the axial-vector state D7, (2460). In this case there
are three processes contributing. The s-channel exchange of the 1~ state, and
the u-channel exchanges of the 0~ and 1~ charmed mesons. Consider first the
two u-channel contributions. After some tedious algebra we obtain:

1
Vu(if)z( /Zx A1 1+ )+ﬁcmpcmgj(1_x2)A5}’
—1
_g—P o 4 2 . 2 9 — 4
A1_16M2M2M%{ (M +(3:u1* U)M +,u17u)M

+((u—=3p3) M + (3~ (25 — u) —u®) M?

+m? (M? + 132) (M? —u) + 2 pi- su) M?
+m? (M2 = m? =) (M2 + u3-) M2 + i} (M? + u))
+ui- (M? +u) ((M2 —u)m2—|—u(—M2+25+u))},

2 2 2 2 2 2
g - M=+ M*+u)p;-\ M=+ M —s—u
A5:7Pz+9?’<1+( 2‘2) 1) 2 2 ’
U — Ho- M>M 8;“17 (u - :ur)
u=M+M?—-5s+2G-q, (42)

where we apply the kinematics of ([@Il). We use po- = 1918 MeV as the average
mass of the 0~ charmed mesons. The influence of the u-channel exchange
interaction (42)) on the formation of the D (2460) state is somewhat more
important than it is in the scalar sector. For f = 90 MeV and gp = gp = 0 we
obtain 2441 MeV, a mass which is pushed up by 5 MeV upon incorporation
of [A2)) with gp = gp = 0.57. The effect is dominated largely by the exchange
of the 17 state.

We turn to the s-channel exchange. In contrast to [9] which was based on the
vector-field representation of the spin-one D mesons, there is a contribution
from the s-channel exchange of the 1~ state within the tensor-field approach.
This reflects the fact that the Green’s function (26]) contains a non-propagating
1% component. It is analogous to the non-propagating 0™ component of a con-
ventional Green’s function for a 1~ particle as implied by the Proca formalism.
We derive
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1+) 29p Co—en T2 2 2 2
V;_Ch(s):?),uf, e (S—M +m)(s—M +m), (43)

where the coefficients C’s( o are recalled from [9] in Table [l The combined
effect of (42)) and (43)) yields a resonance mass of 2433 MeV for f = 90 MeV
and gp = gp = 0.57. Clearly, further correction terms are needed in order to
reproduce quantitatively the masses of the D¥,(2317) and D7, (2460) states.

We turn to the local 2-body interaction terms, considering the chiral symmetry
breaking and the chiral symmetric terms successively [9]. At chiral order Qi
the following terms break chiral symmetry explicitly,

Ex—SB = —201 DXOD — (400 — 201) (DD) tl"Xo
2 Co — —
+f7DDtr (®x0 @) + 4—sz{<1>, {®.x0}} D
+¢1 Dag Xo D + (26 — ¢1) (Dap D) tr X
2 Co — Cl Aaf 51 nas
2f2 Da,@D tr ((I)XO(I)) _S—fQDaﬁ {(bv{@vXO}}D ) (44>
where the matrix xo was introduced already in ([@). The parameters ¢; and ¢
are determined by the empirical mass differences of the J* = 0~ and J¥ = 1~
charmed mesons. According to [9] we have

1~ 044, G~ 0.47 . (45)

The parameters ¢y and ¢y could in principle be determined by unquenched
lattice QCD simulation upon studying the pion- and kaon-mass dependence
of the D-meson ground states. So far they are unknown. We construct the
effective interaction

2
+ S m
VX(O—S)B(S) f2 (CQ CW 0 + C(I )) + 2 f—é{ (C() CK,O + OK,l) s
2
Vitdn(s) = gpap Vasss()| .+ (46)

where the dots represent higher order terms that we neglect. The coefficients
Cfr{(’)s), Cfr{is), Cgf ) and Cgf ) are recalled in Table I

The order—Qi terms that are chiral symmetric and contribute to s-wave scat-
tering are

202+03

Lor = 7 D Dtr ((9,9) (0"®)) — —5 D (9,®) (9"®) D

f2
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Do D tr ((aucb) (8“<I>)) + 20—;’;2 Dog (0,®) (0"®) D (47)

2¢y +c3
2 f?

They imply the effective s-wave interactions

V(/(w(;];)(s) = (02& + 3 &) (s— M? +ﬁ12) (s — M? +m2),

s f? s f?
+ 2 +
Vor () = gopap Ver (8) + -+ (48)

where the dots represent higher order terms that we neglect. The coefficients
Cél’s) and Cg(,I’S) are given in Table [[I All together the effective interactions
VO (s) and V) (s) receive the following contributions

V(S) = VWT(S) + Vu_ch(S) + ‘/;—ch(s) + VX_SB(S) + VCT(S) s (49)

where the various terms are detailed in (7 B3], B, 42, B3] 46, E8). Clearly,
the number of unknown parameters, cgo3 and ¢p23 appears large at first. A
free fit to the masses of the D?;(2317) and D7 (2460) states only would not
be significant.

Additional constraints from QCD should be used. According to [9] the param-
eters ¢; and ¢; are degenerate in the heavy-quark mass limit, i.e. we expect

Ci ™~ G, (50)

It is reassuring that the values for ¢; and ¢ given in ([H]) are quite compatible
with the expectation of the heavy-quark symmetry relations (B0). We consider
further constraints from QCD as they arise in the limit of large number of
colors N, [34]. For that purpose the representation (A1) is advantageous over
the one used in [9]. Since at leading order in a 1/N, expansion single-flavour
trace interactions are dominant, we anticipate the relations

. C3

“a s G ——. (51)

2a Co = —

~ _a

Co = Dl Co = o
In the combined heavy-quark and large- N, limit with (51l B0) we are left with
one free parameter only. We may vary ¢z = ¢3. The optimal value c3 = ¢3 = 1.2
together with ¢y, ¢ as dictated by ({@3), gp = gp = 0.57 and f = 90 MeV
predicts 2330 MeV and 2449 MeV for the D%,(2317) and D? (2460) states

respectively.

Since for the determination of the widths parameters it is important to re-
produce the masses accurately we allow for small variations of the parameters
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0+ 1+

(1,0 (0,1) 1

+
0y | o
Mg [MeV] 2317.6 | 2317.6 | 2410.5 || 2459.2 | 2459.2 2568

I(1.9) 001 | Y%

I’ [MeV] 0.14 0.25 2.18 0.14 0.25 18

g1 327 | 327 | 024 | 297 | 297 | <0.05

92| 250 | 250 | 1.37 | 242 | 242 | 14

|gs] - - 2.12 - - 2.5
€ 0.01 | 0.02 0 001 | 0.02 0

Table 2

Masses, widths and coupling constants for dynamically generated 0" and 17 states.
The coupling constants g; are given in the isospin basis (see [9]). We use f = 90
MeV, gp = gp = 0.57, c3 = 1.0, ¢3 = 1.4. The remaining parameters are implied by

the relations ({5 B, B0).

around the heavy-quark scenario but leaving the large-N, relations (GII) un-
touched. A precise reproduction of the scalar and axial-vector states is achieved
with ¢3 = 1.0 and ¢3 = 1.4. Detailed results are collected in Table 2l For given
mixing angle € = 0.01 the decay widths of the D?,(2317) and D?,(2460) come
at 140 keV, values significantly larger than the leading order estimates dis-

cussed above. The effect is, in part, a consequence of somewhat larger coupling

constants g,(zD =2.50 and g, D*) = 2.42 than given in Table [2 The sensitivity

to the mixing angle € is 1llustrated by the 3rd and 6th row where the results
with € = 0.02 are given. Though the isospin coupling constants are basically
unchanged the decay width is almost doubled with 250 keV.

We briefly comment on the previous results of [9]. In that work a different sce-
nario was investigated. Applying the conventional vector-field representation
of the 1~ charmed mesons, it was assumed that the axial-vector resonance
D7(2420) was a member of the exotic sextet, predicted at leading order by
chiral coupled-channel dynamics [§[9]. The crucial question is whether chiral
correction terms reduce the weak attraction predicted at leading order or pos-
sibly enhance it. In [9] chiral correction terms were tuned in such a way as to
pull down the exotic axial state with (I, S) = (3,0) to match the properties
of the D7(2420). The invariant 7D and 7D* mass distributions as measured
by the BELLE collaboration [35] were used as an additional constraint. It was
argued that the scalar heavy-quark partner of the exotic axial state decou-
ples from the mD channel, and therefore is not seen in the data. Based on
the large-N. relations, that were not considered in [9], we would deem this
scenario unlikely. In order to compare to the large-/N. scenario advocated in
the present work we included in Table 2] the rows 4 and 7, which give the
characteristics of the exotic (3,0) states. Like in [9] the scalar state is quite
narrow with a mass below the 7D threshold. We obtain a mass and width of
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Fig. 4. Mass spectra of the (3,0)-resonances as seen in the m D(1867)-channel (Lh.
panel J¥ = 07) and 7 D*(2008)-channel (r.h. panel J© = 1%). The solid lines
show the theoretical mass distributions. The data are taken from [35] as obtained
from the B — 7 D(1867) and B — m D*(2008) decays. The histograms indicate the
contribution from the J = 2 resonances D3(2460) as given in [35].

2411 MeV and 2.2 MeV respectively. As seen from the coupling constants in
Table 2 the state couples most strongly to the nD and K Dy channels.

In Figure @ we confront the imaginary part of the 7D — wD amplitude
with the invariant 7D mass distribution measured by the BELLE collabora-
tion [35]. The empirical distribution is dominated by the broad (3,0) state,
a member of the triplet to which the D¥,(2317) belongs, as well as the ten-
sor state D3(2460), the contribution of which is illustrated by the histograms.
The possible presence of a narrow (%, 0) state is not excluded by the present
data. It is interesting to observe that the exotic state leads to a dip in the
mass distribution rather than a peak. This is a consequence of the nearby nD
channel that couples strongly to that state. We note that, with the exception
of a strong cusp effect at the K'D threshold in the (0, —1) sector, there is no
further strong signal of any sextet state in this scenario.

A striking prediction of the large- N, scenario is a clear measurable signal of
the exotic axial state in the nD* invariant mass distribution. The exotic axial
state at mass 2568 MeV lies above the nD* threshold giving it a width of
about 18 MeV. In Figuredl we confront the imaginary part of the 7 D* — 7w D*
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amplitude with the invariant 7 D* mass distribution measured by the BELLE
collaboration [35]. The empirical distributions shows two axial and one ten-
sor states. The contribution of the tensor state state is illustrated by the
histograms. In conventional approaches the tensor state D3(2460) is grouped
together with the D7 (2420) state to form a heavy-quark multiplet. Within the
hadrogenesis conjecture we would expect to generate that multiplet dynami-
cally via coupled-channel effects once the light vector mesons are considered
as additional and explicit degrees of freedom. The theoretical amplitude of the
present work describes only the broad state, which has a width of about 300
MeV. In contrast to the 7D distribution shown in the left panel of Figure [
we do not predict any significant signal in the 7D* distribution that one may
use to discover the exotic axial state. This reflects a coupling constant of that
state to the wD* channel that is almost compatible with zero. Nonetheless,
we deem the exotic axial state to be easily discovered by ongoing experiments
once the invariant nD* mass distribution is analyzed. The discovery of the
scalar state, in contrast, would require a measurement of the 7D invariant
mass with an energy resolution of a few MeV as may be possible with the
PANDA experiment at FAIR.

We close this section with the remark that very similar results are obtained

applying the vector-field representation once the parameters are chosen in
accordance with the expectation of large-N. QCD [36].
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3 Electromagnetic interactions

In order to compute the radiative decay of the scalar and axial-vector states
generated in the last section we need to couple the photon field to hadronic
fields. In doing so we have to ensure consistency with the U(1) gauge symmetry
of electromagnetic interactions. We consider first electromagnetic interactions
in the framework defined by the hadronic interactions of the previous section.
We complete this scheme by additional hadronic and electromagnetic inter-
action terms which are relevant when considering the light vector mesons as
additional explicit degrees of freedom. They are expected to be responsible for
the formation of tensor states within the hadrogenesis approach. Even though
we do not consider the effect of light vector mesons in the coupled-channel
part of this work, we do explore it in the radiative decay properties of the
scalar and axial vector D} states.

Eqgs. ([ 25 B8) are restricted to hadronic interactions and do not include terms
linear in the photon field which are implied by the minimal gauge principle.
They are easily constructed using the gauge covariant derivatives

0,8 +iclQ A, 0,D+ieDQ A,, (52)

with e = |e| and the charge matrices are defined as

20 0 000
Q=10-10 |, Q=(010]- (53)
00 —% 001

The kinetic terms in (7l) and (23]) imply the couplings

Lom =i g Artr ((0,2)[Q, ®)-) + ieA* (DQ(9, D) — (9, D) Q' D)
—ieA, D, Q (0°Dg,) +ieA, (0.D*)Q D,, . (54)

The gauging of 4-point vertices, such as the Weinberg-Tomozawa terms in (7))
and (25)) or the chiral correction terms (47), does not lead to any vertex that
will be of relevance in this work. It would not contribute to the radiative decay
processes.

We point out that, given the interactions (@, 25l B4]) only, the electromagnetic
decay amplitudes 07 — 41~ and 17 — 07,1~ are zero identically. These
decay processes probe 3-point hadronic vertices introduced in (B8]). The impor-
tance of these terms in determining decays contrasts with the minor role they
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play for the formation of the D?;(2317) and D, (2460) states. The gauging of
the interaction (38) yields the terms

Lom == "3 {Dw[Q, ¥ 4, (9 D) ~ (9" D) [, 9] 4 Dy
+ % ID,, (0"®) A* Q' D+ A’DQ (9"®) D,,,}

+1i % (hval {DW (Q,®] Ay (07 D-p) + (07 D,p) [Q, P] A DW}

0
Af

Eul/ocﬁ {D/u/ (aaq)) AT Q/D'rﬁ — A" DTB Q/ (aaq)) Duy} . (55)

It is important to realize that further interactions, that are gauge invariant
separately, are possible and, in fact, will play an important role in this work.
Note that the terms (B3] are part of the gauge invariant vertex that is asso-
ciated a leading chiral power @), . This illustrates the fact that the standard
counting scheme require the photon field A, to be counted as order @),. Like
in section 2 we incorporate chiral correction terms.

We construct the leading order correction terms that involve the electromag-
netic field strength tensor F),, ~ Qi. There are two relevant terms involving
one Goldstone boson field. According to the heavy-quark symmetry such terms
must involve the charge matrix @), of the light quarks. Terms that are pro-
portional to the charge of the charm quark are suppressed in the heavy-quark
mass limit. We write

Lom =7 F {D,0[(0,9),Q)(9°D) = (9°D) [(8,2), Q) Dy}

~
—1 4;7;%/ F/w EJTMB {DJT [(8V®)> Q] (aaDaﬁ)
+(0°Dap) [(9®), Q] Dor)}, (56)

where heavy-quark symmetry predicts the relation (see Appendix B)

Ep = €Ep. (57)

According to standard counting rules the vertices (B6]) carry the leading chiral
power Qf’(. It should be emphasized, however, that the counting rules depend
on a naturalness assumption, i.e. that the dimension full parameters of the
effective Lagrangian density scale with appropriate power of the chiral sym-
metry breaking scale 47 f ~ 1131 MeV, or more pragmatically with the mass
my of the lightest degree of freedom that is integrated out. This is the rational
behind the particular representation of the vertex ([BS]) in terms of the dimen-
sion less parameters ep and €p. Based on this assumption one would expect
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lep| ~ e =~ 0.303. Unfortunately, at present there is no empirical estimate
available for the size of the parameters ep and ép. The parameter ep is deter-
mined by the three-body decay processes D} — vy, Dy or Dy — ym_ D,

We anticipate from the numerical result section that the magnitude of the
parameter ep is somewhat larger than expected from the naive naturalness
assumption if we omit the light vector mesons as explicit degrees of freedom.
Such a phenomenon is not unusual in effective field theories, though asking
for a physical explanation. Typically one would promote such a counter term
to carry a formal counting power that takes this into account. Thus one may
assign the vertex (B0 the order Qi. On a formal level that would justify
to consider the effect of (BO) while neglecting additional hadronic vertices of
chiral order Q;”(, such as the SU(3) flavor breaking effects in the coupling of the
Goldstone bosons to the D mesons (see (B8)). A more physical resolution would
be to incorporate additional degrees of freedom, the most prominent ones the
light vector mesons. Once they are incorporated one would expect the required
magnitude for ep to reduce significantly. We take this as additional motivation
to explore the role played by the light vector mesons in the radiative decays of
scalar and axial-vector molecules. We return to this issue once we completed
the collection of chiral correction terms of order Qi.

Additional chiral correction terms of chiral order Qi describe anomalous pro-
cesses. A photon hitting a pseudo-scalar charmed meson may convert the latter
into its heavy-quark partner, a charmed vector meson. In the absence of such
processes the decay amplitude D?,(2460) — v D%,(2317) would vanish identi-
cally, given the hadronic interactions of section 2. The leading order anomalous
vertex is readily identified

1

Lom, = F™ €03 {(0:D™) (ec + ¢ Q) (9° D)

+(0°D)(ec +eq Q) (0-D7)}. (58)

The vertices (B8) carry the leading chiral power QF (see [38139/40]). This
should be compared to the leading chiral power ), of the last four terms
in (B4)). As worked out in Appendix A the radiative decay properties of the
charmed vector mesons suggest

o =0.9140.10, ec = 0.13+0.05, (59)

where we use My = 2000 MeV. The values (59)) together with (B9) reproduce
the empirical branching ratios of the D* — D_+« and D§ — Dy decays.
As detailed in Appendix A the empirical constraints on the D — Dy~ and
D} — D, my suggest the somewhat smaller value eg ~ 0.52.
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It should be emphasized that the anomalous interaction (G8]) by itself is at
odds with the heavy-quark symmetry of QCD. Heavy-quark symmetry relates
the interactions of pseudo-scalar and vector D mesons. Additional terms are
required that will parameterize the magnetic moments of the charmed vector
mesons. We write

i v let ~ ~ B
Lom = 3 P (9°Doy) (¢ Q' — 20 + 20 Q) (0Da) . (60)
In order to provide a physical interpretation for the parameters é- and ég we
derive expressions for the magnetic moments of the charmed vector mesons.
Following the original works by Jones and Kyriakopoulos [29/30J31] we obtain

Mp. Mp-
NDO—QJ\Zé(éC_géQ)’ MD+_2]\Z‘+2/,(60+%€Q)’
ey QMJ\Z% (éc+%éQ), (61)

where we recognize that at present there is no empirically information on the
magnetic moments available. Note that the term proportional to @’ in (G0)
cancels a corresponding contribution which is implied by minimally gaug-
ing the kinetic term (54]). This construction proves convenient when working
out the consequences of the heavy-quark symmetry. The term defines a finite
renormalization of the parameters éc and €g. It is instructive to interpret the
result (GI]) in terms of the constituent quark model. The contribution from ec
reflects the magnetic moment of the charm quark. Therefore it is SU(3) flavor
blind. This reflects the fact that in the heavy-quark mass limit the parameter
ec approaches a constant. In contrast the term proportional to eg models the
contribution of the magnetic moment of the light quark: it is flavor depen-
dent, being proportional to the charge matrix of the light quarks, @,. In the
heavy-quark mass limit the parameter the parameter eq scales linear in the
charm quark mass. As recalled in Appendix B one expects the relations

€Q = éQ ) €c = éCa (62)

at leading order.
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3.1  Light vector mesons

We turn to the interaction vertices that are probed when considering the light
vector mesons as explicit degrees of freedom. While doing so we one may
be worried whether one leaves the path of rigorous effective field theory: a
well defined chiral power counting scheme for the light vector mesons is not
established. We advocate a pragmatic argument as to justify the consideration
of light vector mesons as relevant physical degrees of freedom in effective field
theories. Rather than relying on the strict chiral counting we apply large- N,
arguments as a justification that the effect of multiple loop effects involving
light vector mesons must be suppressed as compared to the leading one-loop
diagrams.

Consider the anomalous process where a pion hit by an energetic photon may
be transformed into a p meson. Such a process is analogous to (B8)) and it is
an important contribution to the three-body decay process D} — p, Dy —
v 1y Dy, but will also affect the radiative decays of the scalar and axial vector
molecules. The relevant anomaly vertex derived for the flavor SU(3) sector of
QCD reads

€A

'Cem:
T 8 fmy

F™ € tr((0°®) [Q, 0,V ), (63)

where we use the representation

p?w + W;w \/ip:z/ \/ﬁKju
V/“/ - \/ép;y _p?w + % \/éKBV : (64)
V3Ks, 2K V2o

The particular form (G3) follows at leading order in a chiral expansion applying
the external field method. From the radiative decays of the light vector mesons
considered in Appendix A one derives conflicting values for the parameter e 4 of
[G3). A quantitative description requires the inclusion of SU(3) flavor breaking
effects. However, since for this work the three processes Kj — Koy, Ki —
K.~ and ¢ — n7y are relevant only, we may use coupling constants as dictated
by the latter processes.

G EM) — 0,119 4+ 0,006, ey T = 0,090 + 0.004,
ey 7)) = 0.053 £ 0.001, (65)

where we use f = 90 MeV and my = 776 MeV.
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It is observed that the anomaly vertex (G3]) can contribute to the radiative
decay processes of the D mesons only in the presence of additional hadronic
3-point vertices. The light vector meson that is created by the photon must be
absorbed by the heavy meson. An appropriate effective interaction is readily
constructed:

L=i g—f {D (8.V°") (8,D) — (9,D) (8.V**) D}
~i 2 (DM (Vi) (0° D) ~ (0% Da) (0°Va) D )
+ jjc 7 {(DaD) Vi (0" Drg) + (7 Drp) Vi (9aD)}
+ig 5 (07 D) V™ (9° D)
+5 femg{DW (9,V™%)(9°D) + (D) (9,V™") D"}, (66)

where we assume additional terms that are implied by the covariant derivatives
(52)). The particular form of ([G6) was guided by the requirement that (GG))
together with (B8)) has a well defined flavor SU(4) limit. We complement ([G6))
by further electromagnetic interactions that are analogous to (B6l). We write

L=

5 fmv P {D[0.V™), Q1(9,D) ~ (9,D) [(0.V™), Q] D}

5oz ¢ {Dur [(02V™), Q1 (0:077) = (0:0°7) (0™, Q) Dy }

—q 4jiTn%/ F™ €405 {(9°D) [V, 7, Q] (9,D™)
+(0, D) [v,7, Q1 (" D)}

F " (0 Day) V7, Q1(9” D)

2f

f’jjjv F (0,D) {Vyu Q} (9° D)

+ F" (0.D°7) {Viw, Q} (0" D). (67)

)
fmi
We remark that the hadronic vertices (B8] [66]) should also have some impact on
the formation of the molecules as discussed in section 2 based on the leading
orders coupled-channel interaction. Note that the influence of the parameter
gp and gp was studied already in [9] and also in section 2.2. of this work.
Its effects was found to be of rather minor importance. This results confirms

the expectation that the latter interactions are of subleading order in a chiral
expansion. Nevertheless, this issue deserves further detailed studies, in par-
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ticular the role played by additional inelastic channels that involve the light
vector mesons should be worked out. We anticipate that the latter channels
are responsible for the formation of tensor molecules with angular momentum
J = 2. We will return to this issue in the subsequent section when discussing
the radiative decay of scalar and axial-vector molecules.

The various parameters in (60 [67]) are correlated by the heavy-quark symme-
try of QCD. As detailed in Appendix B one expects

gv = gv, gT:gT7
6V:év, 6T:éT, eE:éE. (68)

at leading order. The size of gy and gy can be estimated by the phenomeno-
logical assumption of universally coupled light vector mesons. If supplemented
by the KSFR relation we identify

- gf +1
gy = gy = —— ~ =40. 71 69
e (69)
with the universal vector-coupling constant |g| ~ 6 [37]. Note that the phase
of the coupling constant gy is not determined by this assumption.

The estimate of the size of the coupling constant gr and gg is more difficult.
While lacking QCD lattice simulations we may use a flavor SU(4) ansatz,
admittedly a rather rough and questionable tool. In order to do so we introduce
flavor SU(4) multiplet fields

V0 0 V2D
+

Vv =
[16]
0 0 V2DMJ [
P 0 0 V2D
@[16] - + 5 (70)
00 V2D .

in terms of the SU(3) multiplet fields ®, D and V,,,D,,. We construct a
minimal SU(4) invariant Lagrangian density that comprises the interaction
terms introduced in (B8] [60]):

Lsy) = 7 €ap tr (0" Ppg)) {Vﬁlé] (8TV[T156]) (0- V[16]>V[16]}

4f

ig ig
+ 77t QaVi) Ve 95Vilg) — 575 tr (3.2ne) Vi (9, 2a)(TL)

The ansatz (1)) suggests the identification
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gr =9e = gp = g1, gv =9gr = g2, gv =gp =gs. (72)

The result (72)) deserves and requires some discussion. We observe that ac-
cording to (A0 [68]) the coupling constants g; with ¢ = 1,2,3 in (7)) should
approach a universal value in the heavy-quark mass limit. This would im-
ply, for instance, that the parameters gp and gy should approach a common
value. If confronted with the values ([B9) and(G9) this appears consistent with
an uncertainty of less than 20%. However, the result (72)) would predict also
a common value for gp and gr. We point out that this implication is trou-
blesome: whereas gp approaches a finite value, the parameter gr must vanish
in the heavy-quark mass limit. This is an immediate consequence of the fact
that the QCD action is linear in the charm quark mass. Note that, while the
term proportional to gp involves one derivative on a heavy field, the term pro-
portional to gr involves two. From this discussion it should be evident that
we must not use the relations ([2) as they stand. From ([2) we take seri-
ous the predicted phase relations for the coupling constants, i.e. we assume
all coupling constants to take positive values. In addition, for the unknown
parameter gr we would anticipate the range

gr < 9gg < gv , (73)

a conjecture consistent with the expected scaling behavior at large charm-
quark masses. The estimate of the remaining parameters gr ~ gr is most
uncertain. From ([2) we would expect the range

my
0< < — , 74
_gT_MVgP ( )

with my = 776 MeV and My = 2000 MeV the typical masses of a light and
heavy vector mesons.
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3.2 Radiative decay of molecules

In Figure [§l we analyze the various decay processes of a given molecule graph-
ically. At first we consider only contributions that are linear in the hadronic
three-point vertices. In this case the central building block is the sum of the
bubble diagrams defining the effective propagator of the resonance state. It
is drawn with a double line. The corresponding formal expression at leading
order are (I8) or ([B0) for the scalar and axial-vector molecule respectively.
Solid lines represent the propagation of the pseudo-scalar or vector mesons,
where the thin lines stand for the light mesons and the thick lines for the
heavy mesons. The wavy line is the photon.

In Figure@l we depict additional diagrams that, at first sight, should be relevant
for the radiative decay width of scalar and axial-vector molecules. The figure
shows contributions where the photon couples to the resonance line directly.
Here we do not resolve the structure of the latter vertex, since it will not be
relevant. The diagrams vanish identically. This is an immediate consequence
of using the tensor-field representation of the spin-one particles in this work.
Consider for instance the decay of a scalar molecule, where the final state
carries J© = 17 quantum numbers. All diagrams in Figure [ factorize into
two contributions. Since the left part is contracted with the anti-symmetric
wave function of the 17 state it vanishes identically. This follows, since this
contribution carries the two indices o and 3 but depends on one 4-momentum
only, the 4-momentum of the final state. Thus it must by symmetric in the
indices o and (8 and therefore vanishes if contracted with the wave function.
Analogous arguments hold for the decay modes of axial-vector molecules.

As a striking consequence of our discussion we conclude that the radiative
decay process of a scalar and axial-vector molecule is determined fully by an
effective hadronic resonance vertex. The detailed structure of the resonance

N N

1) 2)

3

3) 4)

Ty N,

Fig. 5. Diagrams contributing to the decay amplitude of a scalar or axial-vector
molecule.
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Fig. 6. Additional diagrams that are irrelevant for the decay width of scalar and
axial-vector molecules.

propagator is not probed. It is emphasized that this is a consequence of us-
ing a tensor-field representation of the spin-one particles in this work. The
application of the more traditional vector-field representation would require
a detailed study of the resonance propagator. In general this would be quite
cumbersome. In particular, enforcing gauge invariance is highly non-trivial.
Our observation implies that even in the presence of the additional coupled-
channel interactions (B8 [66), the formal evaluation of the diagrams in Figure
is unchanged.

Thus it is useful to introduce flavor triplet fields, R and R,,, that interpo-
late the scalar and axial-vector molecules. All what is needed are the coupling
strengths of the molecules to the hadronic final states. We introduce the ef-
fective coupling constants, gr and gg, by

Cr=—-21(9,D)(0"®) R+ R(9"®)(9,D)}
i 98D (0,8) (7 R,,) - (07 Rry) (0°0) D) (75)

where we suppress additional terms linear in the photon field that are required
by gauge invariance. It should be emphasized that we may write down further
terms in (73) involving the electromagnetic field strength tensor, F},,, that are
gauge invariant separately. Like the parameters gz and gr the structure and
size of such terms had to be extracted form a coupled-channel computation.
However, as will become clear in the subsequent section the role of such terms
is very minor. Within the given renormalization scheme such contributions
vanish identically for the particular choice where the matching scale, 1, and
the mass of the hadronic final state degenerate. This is almost the case.

For on-shell conditions the first vertex of (73) is equivalent to a vertex of the
generic form D ® R as is implied by the projector technique of section 2.1.
This follows from the rewrite

2(0,D) (0"®) R — D ® (0"9,R) — (0"0,D)® R— D (0"9,®)R.  (76)
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Though in general the two vertices would give different results in one loop
diagrams, within our renormalization scheme to be discussed in the next sub-
section the vertices are equivalent. The decay amplitudes implied coincide up
to terms that may be generated by effective molecule vertices that involve the
field strength tensor F),,. As argued above such terms vanish identically for
the particular choice where the matching scale ), is identified with the mass
of the hadronic final state. An analogous argument shows the equivalence of
the second vertex of () with the generic form (9, D7) ® (9° Rg,) implied in
section 2.2.

At leading order the magnitude of the parameters gr and g are determined by
the coupling constants as extracted from the pole structure of the scattering
amplitude (see (19 B4l)). We identify

o — 42 f Mo+ 40D = 46 f Mo+ 40
MR~ ME — i P T M — Mg, —m P
i 4+/2 f Mp- av) _  4V6fMp, 40 (77)
f M12+ - M/%* - m%{ o M12+ - ME); - m% s
As detailed in Appendix B heavy-quark symmetry predicts
9r =GR, (78)

at leading order. While ([78)) is realized quite accurately, the SU(3) flavor break-
ing effects in the coupling constant gr and g are sizeable with the values given
in Table @l The relation (78) is satisfied at the 10 % level

. (1+4) (1)
95~ 0.986 LKD" ~ 0.989 1% (79)
9R 9Kk D nDs

In contrast, the SU(3) relation

gr = 0.720 gi¢H) ~ 1710 g\57, gr = 0.710 giip) ~ 1.691 g}, (80)

are violated at the 95% level. The values for g ~ 4.28 as derived from 7D,
channel with f = 90 MeV is almost a factor two larger than the one obtained
from KD channel.

Before turning to the renormalization issue we discuss further resonance ver-
tices involving light vector mesons. The latter arise necessarily in a coupled-
channel computation once any of the parameters gv, gy, g7, gr or gg is non-
vanishing. Though we are not presenting results of such a computation we
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study here the relevance of light vector meson in radiative decay processes of
scalar and axial-vector molecules. We introduce the effective resonance vertices

Lr = S5 {R(07V,0) (0uD") + (0,D™) (07Vou) B}
4198 {(@"Ru) (0.V™) D= D (0.V™) ("R}
= 50 R (07Ve) Dag + Doy (07Ve) ("R} (81)

where the parameters gy, gy and gy are unknown at this stage. Again addi-
tional terms linear in the photon field that are required by gauge invariance are
assumed. We emphasize that the three parameters degenerate in the heavy-
quark limit. As worked out in Appendix B it holds

90 = Ju = JH » (82)

in this case. Note that for the axial-vector molecules additional vertices that
are not on-shell equivalent to those of (8I) may be constructed. Such terms
are suppressed by their d-wave phase-space behavior. The presence of the
vertices (RI) leads to additional diagrams contributing to the radiative decay
amplitudes of scalar and axial-vector molecules. Note that such diagrams are
part of Figure [ given the association of the solid lines as representing the
propagation of either pseudo-scalar or vector mesons.
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3.8  Renormalization

We finally turn to the renormalization issue. It is noted that the decay di-
agrams are ultraviolet diverging. Applying the Passareno-Veltman reduction
[41], which is rigourously justified within dimensional regularization, the inte-
grals of Figure Bl may be expressed in terms of a set of scalar integrals of the
form

_ d*l
f=i [ Gy Sel0). Sall) =

o= =i [ e Ss0S0+0), =i [ S0 80+,

4

Jabc = +Z /% Sa(l) Sb<l + Q) Sc(l +p) )

- d*l
T = '/—SalSl 5)S.(1+p) 83
=41 [ Gy 8ol Si(L+5) S.(1 1) (83)
where we focus on the physical limit with space-time dimension four. In our
convention the 4-momentum p,, characterizes the decaying molecule, g, is the
4-momentum of the photon and p, = p, — ¢, is the 4-momentum of the
hadronic final state.

Divergent structures arise only from the tadpole integral I, and the two-
propagator integrals I, and I,. Since the combinations

Ib_[a
m2 —m3’

Iab - jab7 Iab (84>

are finite as space-time dimension approaches four, one may take the viewpoint
that all divergent structures are caused by the tadpole integral I, (see also

A2]).

It is essential to realize that any divergent contribution can not be renormal-
ized by simply adding a counter vertex where the photon coupled directly to

Fig. 7. Examples of counter loop contributions that renormalize the decay amplitude
of molecules.
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the resonance. Since the resonance is formed by coupled-channel dynamics
its radiative decays amplitude must be renormalized by a loop subtraction
mechanism similar to the one introduced in [43]. This is illustrated in Fig-
ure [l Typically the counter terms needed are appropriate 5-point vertices as
exemplified in Figure[7] by an solid square. A contribution to the radiative de-
cay amplitude is generated by contracting two identical lines giving rise to a
tadpole-type contribution. The latter have to cancel the tadpole contributions
from Figure @ as discussed above.

There is yet a further crucial observation we should discuss. In Figure B the
integral arising from the second and fourth diagrams have a structure similar
to the loop functions that build up the resonance state (see e.g. Figure ().
Therefore the renormalization of the coupled-channel dynamics and the one
of the radiative-decay amplitude are related necessarily. Since the coupled-
channel dynamics involves an infinite number of Feynman diagrams one has
to leave the well trotted path of perturbative renormalization, i.e. infinite sets
of counter terms present in effective field theories have to be activated at each
order. We emphasize that one should carefully discriminate two issues. First,
the renormalization scale independence of a scattering amplitude and second,
a possible scheme dependence of how the infinite number of diagrams are
treated. We point out that the application of the on-shell reduction formalism
developed in [43[13/7], as is implied by the unique existence of an algebra of
covariant projectors, one may consider as a scheme dependence. The additional
ingredient, the requirement of a smooth matching of scattering amplitudes
unitarized in different channels, we consider again as a scheme dependence. It
is an economical, though not unique, procedure to build crossing symmetry
into the scheme. From this point of view the matching parameter pi,; in (I3, B0)
reflects a scheme dependence. It should not be confused with a renormalization
scale dependence.

As a consequence of the on-shell reduction formalism our coupled-channel
dynamics is based on, at a leading order computation neither the effective
potential V' /) (s) nor the loop functions J/F)(s) gain any contribution from
a tadpole-type loop integral, I,. If the leading order two-body interaction
would be used as the driving force of a Bethe-Salpeter equation, plenty of
tadpole contributions would arise [I37]. As was discussed in great detail in
[T3/7] the contribution of reduced tadpoles can be trusted only at a level where
one computes one-loop corrections to the Bethe-Salpeter interaction kernel,
i.e. two-particle irreducible diagrams. While for the latter conventional power-
counting arguments are applicable, they are’nt for the reducible contributions,
i.e. the ones summed by the unitarization.

Closing our chain of arguments, we arrive at the result that reduced tadpole

contributions in the decay amplitude should be dropped in our leading orders
computation. In addition a finite renormalization is applied to the integral,
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Ip. 1t is identified with the expression introduced in (I@), with

[ab:[(Pz)—I(M?w% ma:Ma my =m, (85)

and the matching scale, s, as used in the coupled-channel computation.
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4 Decay amplitude of scalar molecules

We derive expressions for the radiative decay amplitude of the DZ,(2317).
Given the transition amplitude, Mgfi‘,yl,, we derive the partial-decay width
Lo+ —~1-- Due to gauge invariance the transition tensor is characterized by one

scalar number dy+_.,1-. We write:

EL(Q7 )‘Q> Elﬁ(ﬁv )‘15) ]M()aﬁ“u

tomy 1
5
_ o o) ¢
= 1= €0, M) ehs (8. 00) {9 (0 @) — "¢} (86)

where €, (g, \;) and e,5(p, A5) denote the wave functions of the outgoing photon
and vector meson. The decaying resonance has momentum p,, = p, + ¢g,. The
partial-decay width is readily established

3
_ ‘d0+—>’yl’|2 <M02+ - M12> ’ (87)

2 Mo+

with M7 = p* and MZ. = p?. It is worth pointing out that the decay param-
eter can be obtained by the simple projection formula

_ Pula | - 1 rafu
dovyr = ot o = 2 g, s
0 ’yl (p' q) le { I (p' q) ﬁ 0+ ’yl ( )

The result (B8] follows since the decay amplitude is transverse with respect to
the photon momentum and anti-symmetric in the indices « <= (. This implies
that the off-shell amplitude, psz M*** is orthogonal to qu and p,, ie. it is
characterized by two parameters only. With (88]) we project onto the relevant
component.

There are 5 classes of contributions we have to consider. They are depicted
in Figure [l All terms have the topology of a one-loop Feynman diagram. A
given contribution is either proportional to the coupling constant gr or gg.
In the former and latter case the thin and thick lines in Figure [ that are
attached to the resonance vertex stand for the propagation of pseudo-scalar
and vector mesons respectively. The outgoing line is a vector D} meson.

It is convenient to group together diagrams that are gauge invariant separately.
We discuss the various contributions that are proportional to the coupling con-
stant gr in some detail. There are two types of gauge invariant combinations
that are proportional to e gp/ f. We form two corresponding transverse tensors
AYPH(p, p) and B*#(p, p), where the latter and former receive contributions
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from class 1),2) and 2),3) of Figure Bl respectively. The tensors A“>#(p, p) and
B4 (p,p) describe the processes where the photon couples to the charge of
the light and heavy pseudo-scalar meson. We introduce:

AP 00) = i [ S S0+

<{Su(l+q) (g+2D)"p" (p+ 1) + g"* (p+ 1)},

B , d*l
B (h.p) =+ [ (5 Sull) Sio + 1)
<{S(B+1) (B+p+20)" D" (B+1)"+ g1}, (89)
with
1
Sa(p) = o (90)

We note that for technical simplicity the tensors (89) are constructed with an
effective molecule vertex of the generic form D ® R as implied by the on-shell
reduction technique applied in the coupled-channel computation of section 2.1.
This is the reason why class 4) contributions are not entering the expressions

).

There remain the contributions that are implied by interactions involving the
electromagnetic field strength tensor F),,. They are proportional to the anoma-
lous coupling strengths e, eq, ec of (63 BE)) or the parameter ep of (56]). The
terms proportional to ep/(f m?) probe the class 2) of Figure [ only. Their
effect is encoded into the transverse tensor A% (p, p), with

TS0+ {la D - o0 (o)

The further tensors C*%#(p,p) and C***(p, p) describe the processes where
the Goldstone boson, which emits the photon, is converted into a light vec-
tor meson as included in class 1). They are proportional to the parameter
combinations e gr/f? and e g/ f? respectively. We introduce

Agprpp) =i |

Bt ) d*l
Cov(p,p) = —i /W Sa(l) Se(p+1)
x2q,lo €™ p* (p+ 1)? 66’7"ﬁﬁ SgF’T(l +q),

40



Col ) = =i [ Gyt Su0) Slo+1)

X2y ly €7 (p+ 1) ST+ 0) (92)

where

St (p) = pa ST () ps »
1 1

S/u/,ozﬁ - m2_ 2 o v
w7 (p) mgp—z_m%“[( 2= D) Gua Gup

+guapz/pﬁ — 9uB Pv Pa — (,u — V)‘| 5
SEP(p) = pa Sg™% (p) Sat (p) = Se (p) ps - (93)

Processes that are analogous to the anomalous ones described by the tensors
([@2) are driven by the parameters e and ec. In this case the photon is emitted
by a pseudo-scalar D-meson, which is converted into a vector D-meson. The
contribution is included in class 3) of Figure[ll We introduce a corresponding
loop tensor

b ; d*l
Dy (p,p) = +i /W

%2, (14 )y € {17 ST (B +1) — P17 625" ST (p+1) |-

Sa(l) Se(p +1) (94)

We emphasize that each of the tensor integrals introduced in (89 @1 ©2] [O4))
is gauge invariant separately, i.e if contracted with g, it vanishes identically.
This was checked by explicit calculations.

Collecting all contributions from the K'D and n Dy channels we arrive at the
following decay amplitude

.2 raf, egp 0 afif — af (=
PMEE - = == e (AR (p) + B (0. p)
€p 0+) gaBu/~ egr (0 aB g~
oz b AR (P.p) =2 2 ! B! (5.p)
|4

€A 0 ~ af3, _ ~af, —
TR Py RGE {QT Ci#p(D,p) + 98 CKBK%D(]?,P)}

‘u 0 q Tl ~aB
VB fmy W) {ar o0 (5. p) + g Coli (5.p)}
gr__ (2 3ec—eq,04) pasu (-
e s 6 . Do, (op)

hier) DY p(B.p)} (95)

660 + €Q
44— =
6
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where exact isospin symmetry is assumed with the coupling constant

M .M2
.(rgj:r) _\/7M0+9KD = 2 f KQR;

M2 _M2 _m2
(0+ me gnDs = 2\/§D} L gg. (96)

The values for the coupling constants g%) and gfgz) are given in Table 2

Note that the tensors introduced in (89, @Il 02, O4]) are not anti-symmetric
in the indices o < [ as of notational convenience. While deriving the decay
parameter do+_.1+ according to (8G) the wave-function projects onto the rel-
evant component, the application of the projection formula (88) requires an
explicit anti-symmetrization.

The contributions of the ¢ D and K*D channels to the decay parameter as
well as explicit results for the Passareno-Veltman reduction of the tensor inte-
grals of (@f)) are detailed in Appendix D. Such contributions are proportional
to gg.
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5 Decay amplitudes of axial-vector molecules

We derive expressions for the radiative decay amplitudes of the D? (2640).
There are three types of processes we have to study. The first two are char-
acterized by a photon and a pseudo-scalar or scalar particle, the third by a
photon and a vector particle in the final state.

5.1 The process 17 — v 0~

Given the transition amplitude, M{‘f‘_ﬁwo,, we derive the partial-decay width

I'1+_+0-. It is determined by one scalar number, di+_, ,o-. We write:

eh(q. A) M50 e (p,),)

8
= d1+_>«/07 EL(q, )\q> {gua (ﬁ ' q> _ﬁu qa} \2/9? Eaﬁ(pa AP)’ (97)
which implies
R (R VIR VAN
1T=70 127 2 M+ ’
1 Py a }

At = ————— 2 G — —2 MHP 98
T T (peg) Mis {g“ o))" %)

with p? = (p — ¢)* = MZ and p? = M?.. Like in (B8) we exploit the fact that
the decay amplitude is anti-symmetric in « < f3.

There are 5 classes of contributions we have to consider. They are depicted
in Figure B Any given diagram is proportional to either one of the three
coupling constants ggr, gy or gg. In the first case the thin and thick lines in
Figure[Blthat are attached to the resonance vertex stand for the propagation of
Goldstone bosons and vector D-mesons. In the second case the role of thin and
thick lines is interchanged in the sense that the thin lines correspond to light
vector mesons, whereas the thick lines describe heavy pseudo-scalar mesons.
In the third case both lines stand for vector mesons. The outgoing line is a
pseudo-scalar Dg-meson always.

It is convenient to group together diagrams that are gauge invariant separately.
We discuss the various contributions in some detail and start with diagrams
that are proportional to the coupling constant gr. There are two types of
gauge invariant combinations that are proportional to e gp/f. We form two
corresponding transverse tensors A%“?(p, p) and B**%(p, p), where the latter
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and former receive contributions from class 1),2),4) and 2),3),4) of Figure
respectively. The tensors A»“?(p,p) and B**?(p,p) describe the processes
where the photon couples to the charge of the light and heavy meson. We
introduce:

af CrodY 5 .
A 0) =+ [ s 0 {0+ 570+
95 S (D +1) 9" + Sall + q) 553 S (p+ 1) (¢ + 2z)“p“} ,

d*l . 5
b — o . —& = 3,8 «
B ) =+ [ Gy S {0 S0+ D S04 )

+0a SEP B +1) S, S+ 1) p — 1S (p+1)p°
55 S (B + 1) p° + B Sfﬁ(ﬁﬂ)g““}, (99)

where we apply the notations (@0, @3). For technical simplicity the tensors
[@9)) are constructed with an effective molecule vertex of the generic form
(0, D7) ® (0° Rs,) as is implied by the projector technique of section 2.2.
Within the given framework the latter is equivalent to the one introduced in
([3) that is proportional to gg.

There remain the contributions that are implied by interactions involving the
electromagnetic field strength tensor F),,. They are proportional to the anoma-
lous coupling strengths e, ég, éc of (63 BE)) or the parameter ep of (56]). The
terms proportional to ep/(f m?,) probe the class 2) of Figure [ only. Their
effect is encoded into the transverse tensor A»*%(p, p), with

. Cdd o X
ALOB (5 p) = +i /WSQ(Z){(l-q)g“o—l“qa}pBSbﬁ P(p +1) p(100)

The further tensors C**%(p, p) and C**?(p, p) describe the processes where
the Goldstone boson, which emits the photon, is converted into a light vec-
tor meson as included in class 1). They are proportional to the parameter
combinations e4 gr/f? and eq gg/f? respectively. We introduce

aB/— . d4l 3 QoT,& & @
e’ (p, p) :—FQZ/WSa(l)pBSb g+ SP(p+1)p

X EJT&B Euydﬁ“ qu lﬁ )

d*l PR
=S (D) P S g+ 1) ST (p+ 1) p°

ol (B, p) = —2i /W
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X €5rap e“ydg g’ 1°. (101)

The terms proportional to éc, éqg are described by the tensor D**A(p,p). In
the convention of Figure [l they correspond to contributions of class 3), which
probe the anomalous magnetic moments of the vector D-mesons. We introduce

o . d4l — Q — T o
D (p,p) = +i /Wsam {pa S+ a8 (p+1)p

e ST+ ) ar S + W}. (102)

We emphasize that each of the tensor integrals introduced in (Q9HI02) is gauge
invariant separately, i.e if contracted with g, it vanishes identically. This was
checked by explicit calculations.

All terms implied by the K D* and n D} channels are collected. We arrive at
the decay amplitude

o egP Q Q
ML, - = == i { AR () + BEB (5. p)}

P
P B Al (p,p) — —= I U2 Bred(p, p)

_fm%, KD+ Axp=\P \/— f nD* PnDx
€A (14) A8 =
48 f2 my KD { KK D ( ) KK*D ( )}

€A 1 N N
TBLR hon? {Gr Clists. (b p) + gr Clisty. (b, p) }

_gp {lBéC—FéQ—Be
fME Y3 3

6e —3Je o
C hih: DR (B.p)} (103)

1 ,Q
hfyz;r* D;L;D*ﬁ( P)

where

R \/_gKD)* <_>M12+_M2* mi

hyp- = Mp- 2 f M2, 9r;

1+
hyn? = V257 oo, ME: — Mp, — Jr (104)
77D Mp; 2 \/gf M12+

The values for the coupling constants g%}r)) and gélDt) are given in Table 2

We repeat that the application of the projection formula (@8) requires an
anti-symmetrization of the tensors (Q9HI0Z]).

We turn to the contributions implied by the channels involving the K* or ¢
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meson. Such terms are proportional to the coupling constants gy or gy intro-
duced in (8T]). While the terms proportional to gy are deferred to Appendix E
we detail the ones proportional to gg here. The former encode the physics of
the K*D* and ¢ D* channels. Appendix E provides in addition explicit results
for the Passareno-Veltman reduction of the tensor integrals (Q9HI02] [03]).

The evaluation of terms proportional to gy is analogous to the ones propor-
tional to ggr. Formally the role of light and heavy intermediate lines in Figure
is interchanged. Thus the tensor integrals formed in (Q9HIOZ) will occur in
the desired result. Additional tensors are required to describe the implications
of ey # 0 or eg # 0 as introduced in (G7). The latter give rise to contributions
of class 2) in Figure il They are analogous to the contributions proportional
to ep in (I03). We form the gauge invariant tensors B**%(p, p) and B**%(p, p)
with

off o . .
Bt 5,p) = =i [ =2 Sa0) S0+ D p

(2m)*
x((-q)g" = 1"¢- = (p-a) 9" +P"¢r)
B 5p) = =21 [ o 8,0) 00 S50+ 02 (-1 (105)
ab ) (27T)4 a T ~b

We collect the contributions of the K*D and ¢ D, channels to the decay am-
plitude

o €gv JH | suab (-~ By By~
M, = I {A5(p,p) + BB (0. p) + A5 (5.p) }
eV IH  Huab, - CEJH  Huab, - 2¢p0H spef, -
(ec +¢q/6) gn
4 f2 M
(ec —eq/3) gu
8 f2 M¢

{98 CHB k- (9 p) + G0 O3 (,p) |

{92 CHDs(P.p) + 31 C5- 5 (P.1) | (106)

in terms of the tensor integrals of (QOHIOT] [M0F). Note that there is no term
involving the tensor (I02). This follows since we neglect the effect of anomalous
magnetic moment of the light vector mesons.
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5.2 The process 17 — 0T

Given the transition amplitude, M{‘ff7 o+» we derive the partial-decay width
['1+ 4 0+. It is determined by one scalar number, d;+_, o+. We write:

€L(qa Ag) M{L’aﬁ Eaﬁ(pv Ap)

—~0t
t pro o p’ af
= dir—yor €,(q, Ng) Gr €7 5o D N (2, Ap) 5 (107)

which implies

N (e S VA VA
1T=70 127 2 M+ ’
—1
di+ ot = ——————q" €proa D’ P M 108
N R VA ’ (108)

with p*> = (p — ¢)* = M2, and p* = M2 . Like in (B8 08) we exploit the fact
that the decay amplitude is anti-symmetric in a0 <= (3.

There are 4 classes of contributions we have to consider. They are depicted in
Figure B Like in Figure [l the solid lines stand for the propagation of pseudo-
scalar or vector mesons. The thick ones are used for the heavy mesons, the thin
for the light mesons. The solid and dashed double lines describe the molecule
of the initial and final state respectively. Any given diagram is proportional
to either one of the four products of coupling constants gr gr, 9r 9, 9 gr, OT
gr G- We discuss the four possibilities case by case.

In the first two cases, with terms that are proportional to gr gr or gr gy, the
thin and thick lines in Figure[§ that are attached to the final molecule vertex
stand for the propagation of pseudo-scalar light and heavy mesons. There is
only one generic tensor, A’fr’f‘lfc(ﬁ, p), describing these processes. They are of

:

Fig. 8. Diagrams contributing to the process 17 — 0%,
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class 1) or 3) in the convention of Figure[8 The contributions probe anomalous
electromagnetic vertices being proportional to e4 or ec, eg. We introduce

d*l

Gy S S+ +p)” S+ p) p°

(109)

Ai’igc(P p) = _22(]7' e’ op /

We turn the terms proportional to gy gr. In this case there is a class 1)
contribution only, with thick lines describing the propagation of vector mesons.
The thin line changes its character from a pseudo-scalar to vector line at the
photon vertex. The contributions are proportional to the anomalous coupling
constant e4. We introduce the corresponding gauge invariant tensor

d*l

g S D S U+ ) S+ ),

(110)

Di"zfc(p p) _2 Z qV GMV oT gl%:‘i /

There remain the contributions proportional to gy gg. There are two types of
gauge invariant combinations. We form two corresponding transverse tensors
B%P (5, p) and C**?(p, p), where the latter and former receive Contributions
from class 2),3),4) and 1),2).4) of FigureR respectively. The tensors B’ (p, p)
and C’J’i’o‘ﬁ (p, p) describe the processes where the photon couples to the charge
of the heavy and light meson. We introduce the gauge invariant tensors

a 3 d4l - o aB .
B (p.p) = &Bfgpp / 2n) SPo(1) {g“ S+ p)

+ PS4 )+ ge b {SEE (B D) S (p 4 1)
Sp“”(p—l—l)S“‘ﬁijl }
(111)

dl s
) a0 a QPMUT —
Ol (bp) = +iey;” g / @) SEP(l) {p Sy (1 + p)
+9" Sy (L +p) + 0 5" (1 +p)
g (S DS+ 0 4 P4 D S5+ D).
We emphasize that each of the tensor integrals introduced in (109 I10] I11])

is gauge invariant separately, i.e if contracted with g, it vanishes identically.
This was checked by explicit calculations.

Collecting all terms we arrive at the decay amplitude
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_ecteq/6, 00,0 yuas

M ko Ak pp+ (P, p)

1t —~0+ 2 KD
2 M2

ec — eQ/B o+ 1+ NeY _
2 M2 h1(7Ds) h1(7D;) A/—T—,nﬁDsD; (p, p)
\%

L SR (0F) qpep = a*) Huap _
+ 6/3 f2my {gH hap. A+,Dsn¢(p’p) + g1 hyyp, DY 4nps (p,p)}

eA - o+ a _ 1+ a B
Uy {9 D A% Drre-(0,9) + g higp) DL xcp (D) }
QH g e - e — Q _
e {BYSh. (5, p) + BLSE e (1) + C 3 (B,p) }
gu gu (ec +eq/6 uap _ ec —€Q/3 uap -
+ 2 f2 { 9 M‘2/ 1+, DD*K* (p,p) + W +7DSD;¢(p,p)}(112)

where the coupling constants hxp and h,p, are specified in (@6, 104]) in
terms of the values collected in Table 2l Appendix F provides the results
of a Passareno-Veltman reduction of the tensor integrals (T09HITI]).
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5.8 The process 17 — vy 1~

We turn to the third radiative decay mode of an axial-vector molecule. It is
described by a rank-five transition tensor, Mffi{aﬁ The decay amplitude has
a slightly more complicated structure than the ones studied in (8@l [0T). A
detailed analysis reveals that it is characterized by two scalar decay parame-
ters. The latter reflect the fact that the decay may go via a s-wave or a d-wave

transition. We write

—ip’ € 5(p, Ap)

(@ Ag) €55, \g) MYPT ea(p, Ap) = €l (4, Ag) >

« (67 ,3
rao | ) “Po @ o 0Do \ | PP eas(p, Np)
X g, € iy - +di7_, <g0— )} .
{ == (gp) (q¢-p) VP2

(113)
In order to verify that there are indeed only two independent decay parameters

it is useful to recall the identity:

Jor€apys = Gar€opvys + 9pr€acvs + Gyr€aposd + 9sr€apyo - (114)

For the decay width we derive

1 2
F . o ]_ d:([+)_>fylf ? d:([+)—>'\{1* ? M12+ - M127 ’ (115>
P T an || Mo M;- 2 M+ ’

with p? = MZ and p? = M . Due to the identity ({14 it is quite cumbersome
to extract the two decay parameters from a given amplitude. Fortunately, this
task can be streamlined considerably by the projection identities:

(1) . —1 16 M1+ o T _ aB,m,03

d1+_>-y 1- — M17 (M12+ _ M12,)3 P q €srauDs M1+_lf-ylf qda Ppg »
, 16 M- o 2B

d( ) 3P 4 €orpalalg le—lf-ylﬁ* bg

Vet T M (M — M)
(116)

which are a consequence of the anti-symmetry and transversality of the decay
amplitude.

There are 5 classes of contributions we have to consider. They are depicted in
Figure[l Any given diagram is proportional to either one of the three coupling
constants gr, gy or gy. In the first case the thin and thick lines in Figure[d] that
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are attached to the resonance vertex stand for the propagation of Goldstone
bosons and vector D-mesons. In the second case the role of thin and thick
lines is interchanged in the sense that the thin lines correspond to light vector
mesons, whereas the thick lines describe heavy pseudo-scalar mesons. In the
third case both lines stand for vector mesons. The outgoing line is a vector
D?-meson always.

It is convenient to group together diagrams that are gauge invariant separately.
We discuss the various contributions in some detail and start with diagrams
that are proportional to the coupling constant gr. There are two types of
gauge invariant combinations that are proportional to egp/f. We form two

corresponding transverse tensors AZ7**?(p, p) and Bo‘ﬁ 1285 p), where the
latter and former receive contributions from class 1), 2) 4),5) and 2),3),4),5)

of Figure [l respectively. The tensors AY &0 (p,p) and Baﬁ 1285 p) describe
the processes where the photon couples to the charge of the light and heavy
meson. We introduce:

AT ) = i [ s e [ e s
(2m)*
1757 (1) 9" + (1+ )" Sall +0) Sy (0 +1) (g + 20) p°]
+ e, 075 L) S+ D F e [ = g5t ST (4 1) p
+, g ST (p+ D) ™ + 07, S (B + 1) g
F5 (4 @)y Saull +0) ST+ 1) (q+21)“p0‘}},
(117)
B (p.p) = —i /d—HSa(l) {Eaﬁm [+ 1St (0 +1)p°
(2m)!
+17S (P + 1) g + 1S (B + 1) p”
ST B+ 1) S+ 1) + STEE + 1) S o+ 1)}
+e S S D P F e [+ 1,0 ST (p+ 1) p°
+ L S (P4 1) g + 1,07 ST (P + 1) p”

1,5 {sm<p+1>sw<p+1>+S“W<p+1>ssﬁ<p+1>}pa}}.

Note that in the tensors Aiﬁ 1B and Biﬁ 120 there are contributions where
the photon couples to the final vector particle. In the convention of Figure
this is a diagram of class 5). They give rise to terms proportional to Sy Praf (p),
where we identify m2 = p*. Such contributions are not at odds with parity
conservation. This follows since the tensor field carries spin one quanta with
both parities. Analogous terms where the photon couples to the initial vector
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meson do not arise due to parity conservation. Since the resonance field couples
always with (0,R™), only the parity P = +1 component is accessed.

There remain the contributions that are implied by interactions involving the
electromagnetic field strength tensor F),,. They are proportional to the anoma-
lous coupling strengths e, eq, ec of (63 BE)) or the parameter ép of (B56]). The
terms proportional to ép/(fmi,) probe the class 2) of Figure [ only. Their

Ai/87/’b7a/67(

effect is encoded into the transverse tensor D, p), with

af,ua » d'l a o po) gr
AL o) =i [ s S0 (= )9 570+ )

;eUTm3Qﬂqp—-a-q)g%)p“5$“ﬁuw+l)}pa

(118)
44 .

Baﬁ Maﬁ(p p> +i / W Sa(l) {Eaﬁa.r [lg qR{Sgﬂ(p + l) Sg‘ﬁ(p + l)

— S @D S+ D} %] = e [loa s { ST B+ 1) S (0 + 1)

— ST B+ 1) S (p + 1) }pa}}

The further tensors C¥**%(p, p) and CP#28(j p) describe the processes
where the Goldstone boson, which emits the photon, is converted into a light
vector meson as included in class 1). They are proportional to the parameter
combinations e gy /f? and e4 gr/ f? respectively. We introduce

P, p, & d'l v T ao
CEL ) =421 [ s Sl S0+ ) 5P+

+ P grw S (l+Q)5§ﬁ’ﬁ(1+p)pa},
(119)

4

Q (e} d’l v T =
Cazfz“’ ﬁ( p) = +2i /Wsa(l) q e TP
X grn S5 (14 q) ST (1 + p) p°

Processes that are analogous to the anomalous ones described by the ten-
sors (II9) are driven by the parameters eg and ec. In this case the photon
is emitted by a pseudo-scalar D-meson, which is converted into a vector D-
meson. The contribution is included in class 3) of Figure Bl We introduce a
corresponding loop tensor
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af,u,o — . d4l .
DI (p,p) = +2i / 3yt Se() S0+ 7)

2m)*
X197 qr € L, (1+ D)7 SP°(1+p) p*. (120)

We emphasize that each of the tensor integrals introduced in (17, I8 119,
[[20)) is gauge invariant separately, i.e if contracted with g, it vanishes identi-
cally. This was checked by explicit calculations.

All together we arrive at the decay amplitude

-2 rafB egP _
—i MyPet = 22 i) LAY (5.p) + BES (6.p) )

Af
ép ~af 0B 2 €gp 1) paduas
+4fm%/ hKD* AT (p,p) + 3 af hyp: BSps (D, p)
gp 2 3éct+eéqg—3e. (14) napuas
+4fM‘2/{\/§ 3 nD% nD¥* (pp)

6 éc — éQ 3e (1 & Q
3 hKJ[r)* B.Kﬁfifi ﬁ(I%P)}

ea 1+) aB.po Bal,

B m hg{D* { VC—irBKMK*B[)*(Z9 p) + gr CKﬁK’iDg(p,p)}
€A aBaf, A

B mhfw* {Gv CLo52 (5.p) + g7 Cope™ (5.p) }

gp 2 3ec—eq , (1+) haBuas
B fM‘2/ {ﬁ 6 hnD* DnDuD* (p>p)
6ec+ e 1 aB.a
+ TQ hich- D Kﬁz)‘f)*ﬁ(p,P)}- (121)

We turn to the contributions implied by the coupling constants gy and gy
introduced in (8I]). While the terms proportional to gy are deferred to Ap-
pendix G we detail the ones proportional to gy here. The former are expected
to be more relevant than the latter due to phase space. Appendix G provides
in addition explicit results for the Passareno-Veltman reduction of the tensor

integrals (II7HI20] 122).

The evaluation of terms proportional to gy is analogous to the ones propor-
tional to gg. Formally the role of light and heavy intermediate lines in Figure
is interchanged. Thus the tensor integrals formed in (II7HI20) will occur in
the desired result. Additional tensors are required to describe the implications
of ér # 0 as introduced in (@1). The latter give rise to contributions of class
2) in Figure [l They are analogous to the contributions proportional to ép in
([II2). We form the gauge-invariant tensor B“?(p, p) with
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BB . d4l _& 3 oT
Ba ﬁ(p,p)zﬂ/wsa(l)p e o ST (p + 1)

(g q" = 9" ") p*. (122)
The contributions proportional to gy are

. af,u,a 6(9E+§T>§H af,pu,af /- aB,maf/ —
—i Ml = — 3z {AVE2 (b p) + BEEE (bop)}

€ — g g aB, a8 [ — af,maf /-
-8 g0 I { gt 5 p) + B 5.p)
8 f2 ) y
_ ergH
4 f2mi,
€§H ~ aB, o/ — ~ af, B (=
=57 {om+90) AT 0.0) + (90— 50) ATEE (0.0)]
(ec +eq/6) gu
1f202
+(gv — 97) Ciﬁbuboi%* (P, P)}
(ec —eq/3) gu

B (p, p)

{(@v + 9r) CT 855 (5,p) + 23v CHB2 (5. )

g WGy ) CUBELBp) + 20y Ol (o)
+(Gv — g7) CVBne,(5,p) |
€ g ap, a8 — € g aB,pm,af [ —
L DR (5p) + Gyt D (o). (123)
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6 Numerical results

In this section we confront the results of the previous four sections with the
empirical information on the radiative and strong decays of the scalar and
axial-vector D, mesons.

Our predictions of 140 keV from the isospin violating processes D?,(2317)* —
D,(1968)* 7 is compatible with the empirical bound I' < 3.8 MeV [12]. The
present upper limit on the ratio of the radiative to pionic decay width is [10]

T [D%(2317)% — D*(2112)% 4]

< 0.059 124
I'[D%(2317)* — D,(1968)* 79 (124)

It is convenient to translate the bound (I24)) into one for the decay constant
do+—~1- as introduced in (7). Given our prediction for the isospin violating
7o decay width of 140 keV (see Table 2]) we obtain

g —1-| < 0.117GeV! (125)

The total width of the D?;(2460)* meson is less than 3.5 MeV [12]. Our predic-
tions of 140 keV from the isospin violating process D? (2460) — D?(2112) 7°
is compatible with the latter bound. Constraints on its radiative decays to the
D,(1968)%, to the D*(2112)* and to the D*,(2317)* are as follows [10],

I'[D*,(2460) — D,(1968) ]

— 0.31 4+ 0.06 126
T [D%,(2460) — Dr(2112) 7 ’ (126)
T [D*(2460) — D*(2112)A]
s s 1 12
D7, (2460) — Dr(2112) 70 ~ 10 (127)
T [Dr, (24 D7y (231

T [D,(2460) — D*(2112) 7]

s

Given our prediction for the isospin-violating decay process we derive the
implications of (126], 027, 028)) on the decay constants dy+_,,o-, di+_~o+ and

dgi’z_)wl, as introduced in (O] 108 I13]). It holds

o | = 01385012 GeV dye— | < 0.665GeV
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[ e |a? [ < (0.30)". (129)

An additional constraint follows from the absolute measurement of the decay
probability of the D%, (2460)~ to the D(1968)~ v channel with (16 £ 7)% [12].
We observe that the central value is incompatible with (126] 27 I28)). The
one sigma lower bound of 9 % suggests a minimal branching

T [D7,(2460) — D*(2112)4]

0.12 130
T [D:,(2460) — D:(2112) 7] ~ (130)
which implies
) 2 2| 4(2) 2 2
|+ (64 |d [ > (0.34)7 (131)

It is instructive to confront the constraints on the decay parameters (125 129)
with the prediction of heavy-quark symmetry. We confirm the leading order
results of [19], which imply the relations

M. dys—yr- = Medys_o- =dy)_ - =d? =d, (132)

with M. ~ My a typical mass of a charmed meson. In the heavy-quark mass
limit the parameter d scales linear in the charm quark mass. We observe that
(I29) suggests the range 0.25 < |d| < 0.30 for M, = My = 2000 MeV, which

10 x d0+_>717[GeV_1]

KD | +2.371gp +3.036ep  —2.252(ec +eq/6)Gp —(6.095Gp 4+ 0.950 gg) ea

nDs || +6.822gp ~1.018 (ec — eq/3)Gp —(14.93 7 + 3.575g5) ea

10 X dy+ - [GeV ]

KD | +1.641gp +2.920ep  +2.272(éc —é0/6) gp  +(0.500 Gr + 0.501 ) e

nDs || +3.445 gp +1.222 (60 + é0/3) gp  +(3.149gr + 0.883 gp) ea

10 X dy+ o+ [GeV™!]

KD +2.104 (ec + eq/6)
nDs +0.891 (ec — eq/3)
Table 3

Decay constants that are implied by (@3] [[03] [T2]). We use the coupling constants
of Table 2 together with f = 90 MeV, my = 776 MeV, My = 2000 MeV.
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is barely compatible with the bound (I25). This naive estimate favors a decay
parameter do+_.1- that is not much smaller than the bound of (I23).

We proceed and analyze the decay parameters as they arise in the hadrogenesis
conjecture. The Various contributions from the KD and nDg channels are
detailed in Tables [BH4] which we discuss successively from left to right. Large
terms, proportional to gp or gp are implied by the processes where the photon
couples to the charge of either the K+ or a charm meson. Given the empirical
value gp ~ 0.57 the decay parameters would meet the constraints (125, 129))
within about 40% with the exception of dﬁ)—w - =~ 0.52, which is twice as large
as the heavy-quark relations ([I32]) suggest. We stress that performing a formal
expansion of the full expressions for the decay parameter in the inverse charm-
quark mass leads results that are compatible with the expectation from the
heavy-quark symmetry. It is interesting to observe that the KD channel does
produce decay parameters that significantly distort the pattern that arises
in the limit of infinitely heavy charm quarks (I32). Such breaking pattern
are even larger in the nD; channel. From Tables we conclude that the
contribution form the latter channel is in fact much larger than the ones
from the KD channel. This is an immediate consequence that for the nD,
channel there is a single contribution only, which is not balanced by a second
contribution of opposite sign as is for the KD channel. In the KD channel
there are two contributions of opposite sign, where the photon couples either
to the charge of the K or the D¥.

Adding up the two contributions from the KD and n D, channels we would
arrive at decay parameters that are much too large, for instance we would

10 x diY_ -
KD || +5.147Gp + 7.347ép  +0.221 (ec +eq/6)gp  +(8.544gp — 1.458 Gy ) ex
+3.214 (6¢ — é/6) p
nD, || +11.92p —0.227 (e —eq/3) gp +(26.85g7 —5.914 3y ) e4
+1.756 (éc +€q/3) gp

10 x di?__ -

KD || +2.799Gp + 6.305ép +2.153 (cc +eq/6)gp  —(8.802gp — 13355y ) ea
+0.0650 (éc: — é0/6) jp

nDs || +8.852 gp +0.489 (ec —eq/3)gp  —(21.62g7 —3.469gy ) ea
+0.080 (¢ + é/3) p

Table 4
Decay constants that are implied by (I2I]). We use the coupling constants of Table
together with f = 90 MeV, my = 776 MeV, My = 2000 MeV.
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I) IT) I11) V)

do+ 1~ [GeVT] || 40.069 +0.035 —0.003 +0.073
di+_yo-[GeVT] || =0.148  —0.130 —0.120 —0.139
dy+ o+ [GeVTY] 0 +0.04  4+0.04  +0.04

d) - ~0.1290  —0.097 —0.105 —0.090
- —0.282 —0.251 —0.251 —0.251

Table 5

Decay constants that are implied by ep = ép = —1.50 and gy = gg = gg = 0.
The values used for eq, ec = éc and eqg = € are discussed in the text. The four
scenarios are characterized by I) eq =0 and eg =ec =0, 1I) eq =0, III) e4 > 0
and IV) eq < 0. We use f =90 MeV, my = 776 MeV, My = 2000 MeV.

obtain dﬁ)q,ﬂ, ~ 1.74. We emphasize that the significant role played by the
1Dy is predicted by chiral coupled-channel dynamics. We note that our results
differ significantly from the recent computations [T6JI7/I8]. Identical results
should not be expected since the latter works use a coupling vertex of the
Goldstone bosons to the D mesons that is incompatible with the constraints

set by chiral symmetry.

We conclude the decay parameters as they arise in the hadrogenesis conjec-
ture must be subject to a cancellation mechanism between the terms ~ gp and
~ ep. Indeed, a crucial role is played by the unknown parameters ep ~ ép
introduced in (B6), the contributions of which to the decay parameters are
given by the second terms in Tables B4l The latter parameterize gauge in-
variant 4 point vertices, which describe the process where a D-meson emits
a photon and a charged Goldstone boson simultaneously. Such interactions
must be taken into account in effective field theories. The parameter ep can
be varied to achieve consistency with (I25], [29). We discuss first the scenario
for vanishing anomalous processes with ec g = 0 = éc and e4 = 0 in Ta-
bled3Hdl While from the process 17 — v 0~ we derive two possible ranges with
—0.57 < ep < —0.49 or —1.50 < ep < —1.42 the process 17 — v 1~ suggests
—1.54 < ép < —0.84 for gp = gp = 0.57. Finally from the scalar decay we de-
duce —2.08 < ep < —1.37. It appears that with ep = ep ~ —1.50 we arrive at
an acceptable scenario, given the assumption of section 3 that the chiral power
assigned to the ep vertex is promoted from order Qi to order Qi. The various
decay parameters implied are collected in the second column of Table B We
observe that this scenario, though compatible with the constraints (125 I29)),
is characterized by decay parameters in striking disagreement with (I32]). The
decay parameters dy+_.,1- and dy+_. - would have different magnitudes.

We turn to the anomalous contributions proportional to ec, e or €c, €g, the

contributions of which to the decay parameters are given by the second last
terms in Tables BH4l In the absence of the light vector mesons as explicit
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degrees of freedom, the latter parameters control the process 17 — ~07.
According to Appendix A, which analyzes the radiative decay pattern of the
D meson ground states, we should use the universal value ec =~ 0.13, but
discriminate the value for ep depending on the channel. While e ~ 0.91
is requested in the KD channel, the somewhat smaller value eg ~ 0.52 is
needed in the nD, channel. Given the coupling constants of Table Pl we predict
di+ o+ = 0.04 GeV™', a result compatible with the bound of ([I29). Again
we use ep = ép = —1.50, the implications of which are displayed in the
third column of Table [l It is interesting to observe that the decay parameter
do+—~1- 1s reduced significantly as compared to the one given in the 2nd
column.

We continue with a discussion of effects induced by the presence of light vector
mesons as explicit degrees of freedom. Even in the case where the latter do not
couple directly to the scalar and axial-vector molecules with gy = gy = gy =
0, they have an influence on their radiative decays through the anomalous
vertex introduced in (G3) that is proportional to e4. The various contributions
to the decay parameters are included in Tables BH4l According to Appendix A,
which studies radiative decays of light vector mesons, the parameter e 4 shows
significant flavor SU(3) breaking. In order to take this into account we use

W) — @7 10,053,

(K D) _ g i1k _ (K=K g 148 (133)

in the nDy and K D channels respectively. In (I33)) we apply the values for e4
as given in ([63]), but recapitulate that the phase of the parameter e 4 is not de-
termined by experiment. Note that the K, Dy and Ky D, channels contribute
to the decay amplitudes with opposite signs. The contribution of the Ky Dy
channel is twice as large as the one induced by K Dy. As is evident form
Tables the terms proportional to e4 probe the hadronic parameters gr, gg
and g7, gy. The phases and the size of the latter parameters were estimated
in section 3 from the assumption of universally coupled light vector mesons,
together with the ansatz of a combined heavy-quark and flavor SU(4) sym-
metry. We take the values gy ~ 0.71, gp = gp and g7 = gr = 0.5my gp/My
with gp = 0.57 in the following discussion. Clearly, these assumptions suffer
from some ambiguity.

Like before we use ep = €p = —1.50. The results for the decay parameter
are shown in the fourth column of Table Bl While a for e4 > 0 a small and
negative decay parameter is predicted for the scalar molecule, a positive and
much larger value is predicted for the choice e4 < 0.
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6.1 Role of light vector mesons

We continue with the discussion of the role played by light vector mesons.
Non-zero coupling strength of the scalar and axial-vector molecules to the
K*D* and ¢ D7 are implied for finite values of the coupling constants gy and
gr- Heavy-quark symmetry anticipates gy = gy at leading order. Moreover
it demands the relevance of the additional channels K*D and ¢ Dy for the
axial-vector molecules. The strength of the latter is parameterized by gy with
Jg = gy = g in the heavy-quark mass limit. We consider first the decay
process 17 — v 0", for which we obtain the contributions

10 % dysy0+[GeVT] = gy gy [1.187 — 0.377]
— G gu |5-363 (e + eq/6) +5.607 (ec — eg/3) |
+el (0429 gy + 9244 G| + 7 [1.704 gy +13.62 3], (134)

where we discriminate the contributions from channels involving the D and D
mesons. While the value 1.187 in (I34)) determines the contribution form the
¢ D? channel, the value 0.377 corresponds to the K*D* channel. Similarly the
contribution proportional to e + eg/6 predicts the influence of the K*D —
K*D* transition and ec — eg/3 the one of ¢ Dy — ¢ D?. Taking the empirical
values for ey, eq and ec as discussed above we may use (I34) to constrain
the parameters gy, gy and gy using (I29). Assuming the heavy-quark mass
scenario with degenerate coupling constants gy = gy = gy we derive the
conditions

— 105 < gy < 2.18, —2.18 < g < 10.5, (135)

for the positive and negative e scenarios respectively. The result (I3H), un-
fortunately, does not provide a strong constraint on the size of the parameter
gu. If it were as large as |gy| ~ 10, we certainly had to question the coupled-
channel computation of section 2, which assumed that the role played by
the light vector mesons is of very minor importance for the formation of the
D*,(2317) and DZ,(2460) molecules.

In Tables the various contributions from channels involving light vector
mesons to the remaining decay parameters are detailed. Besides the hadronic
parameters together with ep and €p encountered already in Tabled3Hd] the
further parameters er, ér, ey, €y and eg, ép are involved. The latter are in-
troduced in (7). They describe the gauge invariant process where a D-meson
while attached to a light vector meson emits a photon. Clearly, it is not pos-
sible to determine the latter by the constraints (125, [29) only.
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10 x do+ 1~ [GeVT]

K*D* | +10.66 gr +2.976 Gy +1.758 er + 2.343ép — 2.765 &y
~gp || —27.78¢eq gp +(ec + eo/6) (3.408 Gr + 0.611 gg)
+(éc — E0/6) (2.283 Gr + 0.653 Gy
¢ D: | +29.69gr +8369G,  +3.091ég

~gn || —60.24e4 Gp +(ec —eo/3) (1.383 Gr + 0.322 )
+(Ec + E0/3) (1.278 Gr + 0.592 jy)

10 x dl+—>'y()* [GeV‘l]

K*D | +0.852 gy 4+6.902er — 6.127 ey

~ JH : +(ec +eq/6) (6.777 g + 1.337 g)
6 Dy | —2.902 gy 16.462¢ep

~dp +(ec — eq/3) (3.548 Gr + 0.847 gp)
K*D* || +9.798 gr + 1.603 gg +3.338er

~gp: || —9.070e4 gp +1.568 (ec + eq/6) gv

—(Ec — €0 /6) (2.705 Gr + 0.547 gip)

¢ D} +16.92 gr + 3.807 g
~ gy : || —15.44de4 gp +1.072 (ec —eq/3) gv
—(éc +60/3) (LATS G + 0.359 g1

Table 6

Decay constants that are implied by (67, [[06l [I78]). The various contributions have
to be multiplied by either g, gm or gy as indicated in the first column. We use
f =90 MeV, my = 776 MeV, My = 2000 MeV.

To achieve a qualitative understanding we proceed with the assumption that
all parameters are correlated as dictated by the heavy-quark mass limit, i.e.
ep = ép,ey = ey etc. In this case there remain five unknown parameters
gu,ep,ey,er and eg. Given the constraints (125, [29]) only, one may expect
to learn little. However, this is not quite so. For given values of gy and ep
one can always adjust the values for ey, er and eg such as to reproduce given
values of the decay parameters dy+_-1- as well as the partial decay widths
of the process 17 — ~07, 17 — ~ 17 as given in (28 [29). Like before the
values gy ~ 0.71, gp = gp and gr = gr = 0.5my gp/My with gp = 0.57 are
assumed in the following.

We point out, that the requirement the parameters ey, er and eg to be real, as
implied by charge symmetry conjugation, defines stringent conditions on the
allowed ranges of gy and ep. Note that the latter are determined by quadratic
equations, the solution of which involves a square root. Only if the argument
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dy_

K*D || +1.024§7 + 015295 +0.618 &7

~ G || +2.049¢e4 gp —(ec + eq/6) (2.930 g + 0.483 Gy

¢ Dy | +2.674G7 + 0.597 g

~ g : | +5.714e4gp —(ec —eq/3) (1.505 g7 + 0.147 gy )

K*D* || +1.065 g7 + 0.569 gy +0.528 e — 0.979 ey + 1.069 e

~ g || —5.914e4 Gp —(ec + € /6) (0.209 g + 0.037 g
+(éc — €0/6) (0.439 g7 + 0.002 )

¢ D || +2.597gr +0.746 gv  +1.328¢eg

~gm | —10.99¢4 Gp —(ec — eq/3) (0.047 gy + 0.011 gg)
+(8c + E0/3) (0.260 g7 + 0.058 Gy )

)

K*D | +0.683 30 +0.091g5  +0.521 &7

~Gn | —6.998e4 gp +(ec + eo/6) (1.567 g7 — 0.202 Gy)

¢ Dy | +2.276 1 + 0.504 g

~ G| —13.99e4 gp +(ec — eo/3) (0.793 g7 — 0.190 Gy )

K*D* || +1512g7 +0.446 Gy +0.669 e — 0.907éy + 0.881 &5

~ g || +1.435e4 Gp +(ec + eq/6) (0.247 r + 0.044 g)
—(éc — € /6) (0.886 g — 0.037 Gy/)

¢ D | +2.820 97 +0587Gy +1.041¢ép

~ g || +2.858 ¢4 Gp +(ec — eq/3) (0.157 r + 0.037 g&)
—(éc +éq/3) (0.443 g1 — 0.014 Gy )

Table 7

Decay constants that are implied by (123 [[91]). The various contributions have to
be multiplied by either gy or gy as indicated in the first column. We use f = 90
MeV, my = 776 MeV, My = 2000 MeV.

of that square root is positive the determined parameters ey, er and ep will
be real numbers. We arrive at the condition that for given value of ep, the
parameter gy has to be confined in a small interval

crit,— crit,+

ap T <gm <gp"T. (136)

We discriminate the two scenarios with positive or negative values of the
parameter ey, for which we derive
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I) 1)
do+ 1~ [GeVT] || +0.057  +0.104
di+_nyo-[GeVT1] | —0.139  —0.140
di+ o+ [GeVT!] || —0.043  +0.091
dy_ - +0.303  +0.278

) +0.202  +0.071

Table 8

Decay constants that are implied by ep = ey = epr =eg =0 and ép = ey = ép =
ép = 0. Inset I) we use e4 > 0 with gy = gy = gy = —0.46. Set II) assumes e4 < 0
and gg = gy = gy = —0.25. We use f = 90 MeV, my = 776 MeV, My = 2000
MeV.

g5 =~ —0.390 + 1.332 dg+ 1 [GeV ] — 0.242ep £+ 0.131,
gy =~ ~0.285 4 0.751 do+y1- [GeVT'] = 0.137Tep 0074, (137)

in respective order. We checked the stability of this result against reasonable
variations of the parameters gy, gr and gg. In (I31) we allow the decay pa-
rameter do+_.1- to take any value. The result (I37) is amazing since for any
reasonable range of ep it requires the coupling constant gy to be quite small,
typically |gg| < 0.5. This justifies in retrospect the coupled-channel computa-
tion of section 2, which assumed that the light vector mesons are not relevant
for the formation of the scalar and axial-vector D, molecules.

Nevertheless, the light vector mesons may change the radiative decay param-
eters significantly. This is not surprising since the latter are subject to subtle
cancellations. As illustrated in Table [§ we arrive at a remarkably consistent
picture. We obtain values for all decay parameters that are compatible with
the empirical constraints using vanishing values for all gauge-invariant counter
terms ep = ey = er = eg =0 and ép = éy = ér = ég = 0. In such a scenario
there is one free parameter only gy = gy = gy which can be dialed to recover
all empirical constraint. The results for the positive and negative e4 scenarios
are collected in Table 8 It is interesting to observe that we predict a negative
decay constant for the 1t — v 0~ decay contradicting the naive expectation of
heavy-quark symmetry. We emphasize that this follows even though perform-
ing a formal expansion of the full expressions for the decay parameter in the
inverse charm-quark mass leads results that are compatible with the expecta-
tion from the heavy-quark symmetry. Such an expansion assumes for instance
mg <K M., which is not realized too well in nature. Our results provide a phys-
ical explanation, why we had to promote the counter terms proportional to ep
and €ép to carry chiral order Qi rather than the expected power Qi. Once the
light vector mesons are accepted as important physical degrees of freedoms,
the naturalness assumption for the residual size of ep and €p appears to be
justified.
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We emphasize that at present it appears not possible to predict precise values
for the decay parameters. The results of Table [ should be viewed as possible
and natural scenarios. Precise unquenched lattice QCD simulations for the
hadronic coupling constants of the Goldstone bosons and light vector mesons
to the D mesons would be highly desirable.
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7  Summary

Based on the chiral Lagrangian properties of scalar and axial-vector meson
molecules with open-charm content were studied. Chiral correction terms were
incorporated systematically in the coupled-channel dynamics, where we relied
on constraints from large-N. QCD and the heavy-quark symmetry. We fo-
cused on the D;(2317) and D7, (2460) states, for which their isospin violating
hadronic and electromagnetic decay widths were computed. In order to estab-
lish manifestly gauge invariant results for the electromagnetic decay parame-
ters the spin-one particles were represented in terms of anti-symmetric tensor
fields, rather than the more conventional vector fields. The role of explicit light
vector mesons in the radiative decays was investigated.

The main findings of this work are

- The hadronic isospin-violating decay widths of the D%,(2317) and D?,(2460)
states are predicted to be 140 keV. Chiral correction terms are important
contributions to the decay widths.

- The invariant 7 D* invariant mass distribution shows a signal of a member
of an exotic axial-vector sextet at mass 2568 MeV and width 18 MeV.
While that state decouples from the wD* spectrum its heavy-quark partner
defines a narrow dip at mass 2410 MeV and width 2 MeV in the 7 D mass
distribution.

- The radiative decay parameters of the D%,(2317) — ~ D} and D7 (2460) —
v Ds, v D} and D, (2460) — ~ D%,(2317) were computed in the hadrogenesis
conjecture. We find that the nD; and n D} channels contribute significantly.
The results are compatible with all empirical constraints once one gauge-
invariant contact term is considered to be more important than expected
from a naive naturalness assumption. The decay parameters are subject to
a cancellation mechanism, which makes a prediction of their precise values
impossible at the moment.

- Upon considering light vector mesons as explicit degrees of freedom, radia-
tive decay parameters that are compatible with the empirical constraints,
can be obtained without envoking subleading contact terms. We predict that
the D?,(2317) and D?,(2460) have small coupling strength to the K*D* and
¢ D} channels. Nevertheless, such channels play a decisive role in the radia-
tive decay processes.
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Appendix A

The modulus of the coupling constant gp can be determined from the hadronic
D meson decay processes with

Tt —pyr, = (0.677 £0.005) x (96 + 22) keV
Tt —py m = (0.307 £0.005) x (96 + 22) keV, (138)

where we take the latest values from the Particle Data Group [44]. We derive

r _ lorl gom — 38.30 MeV

DY —Dimo — 24 f2 ) Gem = . ev,

r _ lorl Gon — 39.60 MeV

Di—>D07r+ - ]_27T f2 ) QCm - . € )
|gP|2 qgm

— FDS—>Do7r0 = Y. f2 ~ 42 keV, Qem = 43.12 MGV,
2 3
Tpsp o = € 9| dom o @77keV,  gun = 4787TMeV,  (139)

187 f

with the my — 7 mixing angle € ~ 0.01 introduced in ({III). It follows

lgp| = 0.57 4 0.07, (140)
where we use f = 90 MeV.

The modulus of the coupling constant eg and e can be determined from the
D* — D_~, Dj — Dy~ and D} — D, decays with

Tpsp, = (96 £ 22) keV x (0.016 =+ 0.004)

= (1.54+0.8) keV, (141)
T pg—por = (Upz—po~ + 42keV) x (0.381 & 0.029)

= (26.0£3)keV,
Ipep,y = (Tp:ep,~ + € TTkeV) x (0.942 + 0.007)

= ¢? (1328 £ 180) keV,

where we recalled the latest values from [44]. The total decay width of the D}
and D7 are estimated from the known branching of 61.94+2.9% and 5.8 +0.7%
into the my Dy and 7y D, channels respectively. Note that the sum of the branch-
ing fraction of radiative decay and the my decay add up to 61.9438.1=100 and
94.24-5.8=100 per cent in both cases. In (I42) we make use of the result (I39).
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We derive

M2 eo—3e
M} (2eo +3eq)?
Fpi—por = 475( AT C) @ Gom = 13716 MeV
M3, — 3en)2
Tpsoap,y = —28 (g =3¢c)” Gom = 138.91 MeV . (142)

ar oaE Temo

The D} — D,v and Dy — Dyy decay imply

leg — 3ec| ~ 05370135 12eq + 3ec| ~ 220170131,

— eg = 0.91£0.10, ec =0.13£0.05, (143)

where we use My = 2000 MeV. Note that a value of ¢ ~ 0.01 would then
overestimate the D — D,y decay rate by an order of magnitude. The central
values of ([43) would imply a width of 1.9 keV, which should be compared
to €2 x 1328 4= 180 keV ~ 0.133 £ 0.018 keV. One may take this is a signal of
SU(3) breaking effects in e or the need of an increased value of €. At € = 0.01
and ec = 0.13 an effective eg ~ 0.52 would reproduce the empirical width.

The modulus of the coupling constant, ey, is determined from the radiative
decay of the light vector mesons. For this work relevant are the three processes
K; — Koy, K — Kyiv and ¢ — 7y only. The decay widths are readily
derived from the interaction (G3])

s ‘QAP mKi mKi
RimFar = o s 1dd 7 m? f2 mKi
r |6A|2 mK* mKo
Ko =Koy = o0 % 367 m2 f2 mK*

r leal? B
PN T 24 Bdmmd f2 md) ’

(144)

where we use f = 90 MeV and my = 776 MeV. The empirical decay widths
of the Particle Data Group [44] imply conflicting values for e4. We obtain

Tk koy = (116 £ 10)keV,  —  |ea] = 0.119 £ 0.006,
Pirir = (50 = 5)keV, lea| = 0.090 = 0.004,

|
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Ty_ny = (5538 £ 1.68)keV, —  |ea| =0.0534+0.001. (145)
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Appendix B

In order to work out the implications of the heavy-quark symmetry of QCD
it is useful to introduce auxiliary fields, Py(x) and P{(z). We write

D(l’) _ e—i(v-x) M. P_,.(l’) + e—i—i (v-x) Mc P_(l’),

DM () = jet(ve) Me {v” PY(x) —v" Pi(x) + !

Mc
4 etivm) Me {v“ PY(x) —v” P! (z) — ML (O“Pf - 8”Pf)} (146)

(onPy — Py}

with a 4-velocity normalized by v? = 1. The mass parameter, M., is an av-
eraged value of the pseudo-scalar and vector charmed-meson ground-state
masses. This implies that the fields Py(x) and PL(z) are varying slowly in
space and time. As a consequence time and spatial derivatives of the fields
0, Py are small compared to M.v, P. In the limit of large mass M, — oo
the former terms can be neglected. Note that the fields Py and P/ annihilate
quanta with charm content +1.

We rewrite the interaction terms introduced in (B8] b6l G6) in terms of the
auxiliary fields, where we focus on the 'plus’ components. It holds

£—i %M (p (040) P - P00 B} +1 2 Jf” 0, €0 P, (9,) Ps

f
Mc D g Mc D
_ P 0.V P v 7 P (0 P
grM? _ 5\, or M v
i, e P {Ps Vi P— PV, Ps} +i 3 VR
ep M. _ ., - 7
+ L= P R0,2), AP - P0,2), A7)
s .
6Pf Fuvr € P, [(0,9), Q] Ps
4o (147)

where the ellipses stand for additional terms involving derivatives of the soft
fields P = P, and P* = P{. The negative components P_ and P" are also
omitted in (I47). In the course of deriving (I4T) we made use of the equation
of motion for the auxiliary field P{(x). It holds

0o D™ — 0”0y D" + M? DM = 0 o

{0 -0)F2M.i(v-0)}Pl=0 & FiMov,Pl+09,Pl=0, (148)
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which teaches us that any term v, P* is suppressed in the heavy-quark mass
limit. From (I47)) we conclude that the coupling constants gpy and gpy must
approach a finite value in the limit of infinite charm-quark mass. This is a
consequence of the linear quark-mass dependence of the QCD action. The
same argument requires the coupling constants gr and gr to scale with 1/M..
The fact that there is no term proportional to gg displayed in (I47) signals
the fact that the corresponding interaction term is at least subleading in the
heavy-quark mass expansion. Note that this observation is compatible with a
possible finite and non-zero value of the asymptotic value of gz approached in
the heavy-quark mass limit.

In the limit of infinite quark mass, the fields Py and PY may be combined
into an appropriate multiplet field. This reflects the fact that in this limit
the 17 and 0~ fields are related by a spin flip of the charm quark. The later
does not cost any energy. Therefore the properties of pseudo-scalar and vector
states should be closely related. We follow here the formalism developed in
[2002112212324] and introduce the multiplet field, H, with respect to the P,
and P{ fields, as follows

H:%(H—gé) (Pl + 95 Py)

H=70H" o= (Pl,7"+Plivs) 5 (1+9),
Plv, =0, v? =1, (149)

N —

in terms of which the interaction should be composed. For latter convenience
we introduced a resonance doublet-field S in (I49). According to [?] a transfor-
mation under the heavy-quark spin symmetry group SU,(2), the elements of
which being characterized by the 4-vector ¢ with 6-v = 0, the field transforms
as follows:

H — 6_iSa6aH, H_)'VO (6—i5’a6°‘ H)T'VO — He-i-iSaG“’
1
S = 5’}/5 W’,}/a] ) SIV Y0 =" SOH [¢7SO¢]— =0. (150)

Under a Lorentz transformation, characterized by the antisymmetric tensor
Wy, the spinor part of the fields transform as

H — i [ =St

Y

[V ] - (151)

Y

H N €iS“VWMVH6_iS“VWHV

1
SHV:Z

It follows that only combinations of the form where Dirac matrices are right
of the field H or left to the field H are invariant under the spin group SU,(2).
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It is straight forward to construct those terms that can be matched to the
structures detailed in (I47). We introduce

£ ==L (11 00) v, 1)+ 22 P (15, (0, 9), Q) 1)

I (1 vy ) i 2 (1, [0V, Q) )
+ f8—T tr (HV" gy, H) —i % tr B (H [V, Qo H),
./;E Ja (H {V;w Q} H) (152)

where we note that the field H is a three-dimensional row in flavor space, each
of its components consisting of a 4 dimensional Dirac matrix. Note

Y5 Y Vo Ya V8 = —4 1 €uag (153)

in our convention. Matching the expressions (IZ7[I59) we obtain

gPMcngMc:fP ePMc:éPMc:fP
f f ’ fmi o fmy 7
gVMC:§VMC:fV eVMc:éVMc:fv
f f ’ fmi o fmi ’
gr MZ — gr M7 ep M?  ép M7
= = Jr, = = Jr,
S S S S
(&5 M2 éE M2
e _ M _ s 154
7 7 B (154)
We turn to the terms (58, 60). Applying the ansatz (146) we derive
i v, o D D
Ee.m,ziF“ v EMVaﬁ{Pﬁ (6c+6QQ)P—P(€c+€QQ) Pﬁ}
+iF" P, (—éc+éQQ) Pt -+ (155)

where we identify M. = My for convenience. Like in (IZT), we drop in (I55)
additional irrelevant terms. The interaction terms displayed in (I55) are read-

ily reproduced using the heavy-quark multiplet field H. We follow [39/40] and
write

Lem. 4 Fu,,trHQUWH+ 1 Fu,,traw,HH (156)
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where the term proportional to e respects the heavy-quark symmetry, but
the term ec breaks it. Thus we expect |eg| > |ec|, since the parameter ec
should vanish in the heavy-quark limit. The requirement that (I55) and (I50)
agree yields the desired relations

éc = €c, éQ =€Q - (157)
Note that the empirical values (I43)) confirm the expectation |eg| > |ec|.

Finally we provide an analysis of the effective resonance interaction terms (75
BI]). Assuming a decomposition for the resonance fields R and R,, analogous
to (I40) we introduce a resonance multiplet field

§=5 (1+9) (B + R,

S=a08T = (Rt B (1+6), @ Ri=0, (159

where the field S transforms like the field H under a spin rotation (see [I50).
At leading order in a heavy-quark mass expansion the interaction terms (75
BT)) are described by

L= ZH tr (S, (0 V™) H + Hn, (9,V™)5)
L (S99 (090) H 4 H 3, (0°9) S) (159)

which implies the identifications

gRMc _ gRMc _
f f

IR,
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Appendix C

All tensor integrals will be decomposed into scalar objects of the form

=i [ G 808040, Ta=—i [ S S8+,
Jabc = +Z / (2d—ﬂ_l)4 Sa(l) Sb(l + Q) Sc(l +p) )
Tue=+i | % Sull) Sy(1 +9) Sl + 7). (161)

Note that we introduce the two integrals J,. and Jy,. even though they are
related to each other by Jupe = Jupe. We use this redundancy for a consistency
check of the numerical simulation. The integrals I,, and I, are ultraviolet
diverging. In fact we encountered those integrals before in ([I@]). We recall the
explicit representation

L(s) = — (ﬁ <ln <1 _ ST 2Pa v 2p““/§> “In (1 _SE 2Py 2pabﬁ>>

T 1672\ /s mi + m? mi + m?
Lmi+m2 mi—m2 m?
- a_ ) (22 ) £ 1) 41,00,
+<2m§—m§ 2s " m2 1)+ 1w(0)

i (mijmb) (5 — (ma —my)*) . (162)

Pay =
where the logarithmic divergence sits in the subtraction term 7,,(0). The dif-

ference I,(s) — I(0), as given in ([I62) is finite. According to the discussion
of section 3.3 we specify the renormalized expressions

]ab - [ab(p2) - Iab(,u?\/[) 3 I_ab - ]ab(pz) - Iab(:u?\/[) ) (163)
with the matching scale 1iy;.

The integrals Ju. and Jy. are finite. They may be evaluated in terms of their
dispersion-integral representations

T ds ffc) s - T ds fl_c) s
Tope = / - p+m ’ Tope = / - 'Of() . (164)
T S—p°—ie€ T S—p —1i¢€
(ma+mc)2 (ma+mc)2

with the spectral densities
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() (5) — Ve 108 (e + /P2 ?) 108 (/e — 1K)

Pabe - 877-\/5 2 pgc k2 ’

2 m; —m; F p* ’ 2 2 2
_ c a 1
My abe = —DPac T 3 k™ — my ,

2V/s
9\ 2
k?;(%) ts—2p%, s =mEepi o miepl,  (165)

Note that we wrote the logarithm in a manner to ensure a smooth spectral
density. It is crucial to impose the dispersion-integral representation in terms
of the proper variables, i.e. keep ¢* = 0 and p? = (p — ¢)? fixed. This implies
that the spectral densities have an implicit dependence on p* = p? — 2p - g.
It is useful to provide an alternative representation of the integrals J,. and

Jape, derived via an application of Feynman’s parametrization. It holds:

T — / Ofzy — 25] Olz1 — 23] O21 — 29]d2; d2o/(1672)
o m2—z21p?) (L—z1)+2im24+2(1—21)20(p-q) + 2043,

T = / Olzg — 23] O[z1 — 21| O[1 — 21 — 2] d21 dzp/(1672)
e (m2—z21p?)(1—21)+21m24+22122(p-q) + 2243

(166)

where we used ¢*> = 0 and pf, = mj — m2. Depending on the values of the
various mass parameters either (I64) or (IG0) may be more economical in a
numerical simulation. For instance, if p? > (m, + m.)? the representation is
advantageous, the integrals being complex.

We performed numerical checks using (I64)) or (I66]) that the identity Jup. =

Jepe 18 indeed satisfied.
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Appendix D

We provide explicit expressions for the contributions of the ¢ D} and K*D*
channels to the decay amplitude (8@). The latter are linear in the resonance
coupling constant gy as introduced in (81]). It holds

« 6.gH « - « « _
ZMof_lfyr { TEf(ﬁ)*( p)+ gv (E ﬁu(p p+E ﬁqb%)*( p))}

2 f2 i
4]27]\43 e —c+ %Q] {gr S (9. )
+av (E55t (0:p) + E%h.(0.0)) }

{9r St po(5,p) + v (ER2H.(5p) + B2 p(5,p)) |

_l_

€9JH
+2f

gH ~ E . e_Q Aaﬁ“u, _
T 2 f2 M2 { C€CT57 % } {QT EL 5 p+(D:p)
+iv (B (,0) + B2t 5 (5,D)) }
€qgu af, _ af, _
- 22 {QT E_?D‘iK*(p,p) + gy (ED* (p,p) + EfD‘iK*(p,p))}
gH [ ~ o0, — a3, _
T2 fme {6TE Bk (D) + év (EDEI?*(RP) + E+,BD%K*(]97P))}
Jrmy
€E gH SaBi [~ a
+ 3 FZm? {Eagz’é*(p,p) +2 B30 (P, p)}
(ec +eq/6) g =8, 0B -
102 {90 FR%0-(0.0) + 98 Fi5 0. (,p) |

8fzcjwz {r F55h: (0:0) + 98 Fip!p: (0.0) }

€A gp9n af, _ af,
W{FDI/;K( )+F*§K*(Pp)}

_6A gP 9gn af,p = af,u _
_36f3mV {FD*n¢ ( )+F *ne (p7p>}7 (167)

with

o Crodi . _
B ) = =i [ Gy e SO { S0 0 4 7041

+0r { S (P + 1) SEP(p+ 1) + S (P +1) Sy (p + l)}} ,

By - o odl o o oo
E (p.p) = —i /WSGJP( ){ Sy (B +1) + g" Sy (p + 1)
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and

and

and

+5° giw { S5 (P + 1) SE™(p+ 1) + S (p +1) Sy (p + l)}} ,

N , d*l 565 o o
E+ﬁag(p>p) = —1 /ngpgaa Saﬁ7p(l) {p Sb“up(p“‘ l)
+p* ST (p4-1) + 9™ Sy (p + 1)

7 i (S0 S04 )+ ST+ 0 5700+ 0} 168)

A 0B , d*l o
B ) = i [ om0 |

ban (S D S0+ = S0+ D ST+ )

nle) — . d4l
E—%g(pap) =1 /W Sa,o’p(l> {

0 (ST ) S0 - ST ) 5P+ 0}

A - ) dl 58.5
E+,ﬁdg(p,29) =1 /ngp 950 Saﬁ’p(l) {

7 (ST ) S+ ) = S ) ST} (160)

d*l

27T)4 gpp Saﬁ( )Sl;—p(p + l) (g“T qﬁ - gﬂﬁ qT) 9

ng’“(ﬁvp) =—1 / (
- o odY
E3"(p,p) = +2i / o)

el = ; d'l o —a QT
EXH (p,p) = —i / 2yt 90 52 DS+ D) (9" 40— 9" a-)

9pp Sﬁp(l) P S (p+1)qr,

&7 : d4l o —a T T o
B pp) =1 [ G gt 90 S2 0P 5 (0 +1) (97 0 = 97 a7 (170)

o, o
Fabc (pvp):_QZ/(z ) Sp(l)qye“ UTE’B__

X+ (B+1)7S(p+1)ST,(p+1),

4
Faﬁu ——9; /
abc ( >p) t (271')4

SEVP(L) gy € . €ap s
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X(PA+D)"(p+1)sp" Sp(p+1)S7,(p+1). (171)

The evaluation of the decay constant do+_..1- as of (B8) is determined by the

contraction of the gauge invariant tensors (89, @11, 02, 04)) and (IGSHITI)) with
the anti-symmetric tensor

P, = —% <{gua P (g - Z; u.qqﬁ} pa> . (172)

We derive the required contractions in terms of the master loop integrals
Lap, Lap, Jape and Jyp introduced in (I6I). We remind the reader that following
the arguments of section 3.3 reduced tadpole integrals are dropped systemat-
ically. Utilizing the notation p*> = M? and (p — ¢)* = M7 it holds

8 (p-q) M} Py At = [MP — (m2 —mj} + 2 M7) M}
— M} (2m2 — 2mi + M}) M7 + (m2 — m}) M}] Ly
+2 M} (m2 = mi + MF) M2 Iy + 4m2 M7 M? (M} = M3) Joas

48 (p-q) M} Py ) A = — (M7 — Miz)z | = (3 (mi + mi)) - MF) M
+3MP + (ma +mb) M7 M} —2 (mi —m%)zMﬂ Lo

8(p-q) M? P
+ M2 (M} +2M2M} — M) +mj (=M} +2 MM + M) | L,

— 2 M} (=m2 +mj + M7 ) M? L, + 4mj M7 M7 (M} = M?) Jaw,

By = | (M} —2 MM} — M) m

)

8(p-q) MZ Py, ot = [2 (m2 — m2) M + 6 M/ M}

=2 (3mg — 2m} —m? + M}) M} M} — 4 M{ M7| I,
+2MEM? [ (2m2 = 3m3 +m? — MF) M} + (m} — m? + M} ) M?| I,
—4M§ME[—m§M;%+(m§—mb) M3 +2m M2 M7 = mi M| Jupe

(M3 = 02)" (M3 4+ 302) — 3m3 (M} — 303 M?) ) MZ
— (m? = M) (M7 = M?)" (=3 M} + M3 M? 4 2m? M)
+3mg M2 (M7 — M7) (2 M — M} M? — m? M7)

— 6y M7 M| I,

12(p-q) M} PU5) Cop = —[ (4m? — 2m2) (M} — MpM?) m?
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= 3mp M} [ M} (=2m? +3m; — m2 + M})
— (mg — mg ‘l‘MJ%) Mf} I_bc
—6m M} [ —m M} + (m2 —m?)” M3+ 2m M2 M3 — mi M| Jage

12(p- q) M PL,) D3 = [ =6 (m? — m2) (m} + M2) ¢
=3 (M7 = M3) ((m2 —5mg +3m2) M?
o (2 2+ ) Y
w2 (M2 = 02)" (md = 2 (m2 4 MZ) w2+ — 20 w27
— (MP — M3 )" (2md — (3m2 + 4m? + 10 MP) m?
2 (m? Mg)z +3mi (m2 + M2) ) +3 (M? — M3) MF] L.
+3 (mg + M7) M [ M7 (—=m2 + 3mi — 2m? + Mj)
_ (_mz +m? + MJ?) Mﬂ L
6 (mf + M) M [Mm = (22 M5 o+ (M = 247) )i
+my Mﬂ Jabe » (173)

and

96 M3 M (p- q) PLly,) Eof = 3 M2 M2 [ — 4 ((m2 — M2)" —mi) M}
+ (=m2 +mi + M2) (M2 = M}) (—=m2 = 3mi + 7M7) M?
4 (M= r2)” (=3 = 2 (m2 o+ 3mi) M2+ (2~ md)) ] Ly
[ = (5M} — (Tm2 +md) M3+ 2 (m2 —m3)") M — 17 M}l M}
= M7 (=Tmj +2 (mg + M7)m2 +5my + 5 M} — 22mi M7) M
— M} ((2mi — 19 MF) m2 — 19my + 2 M} +23mi M7 ) M;! | I
—6mp M7 M} (M} — M2) [ = M} + (=5m2 +m} + M} ) M}
+ M7} (9m§+3m§ —4MJ%” Jabb »

96 M7 M (p- q) P\, ESSH = 6 M7 M2 [MF — 2 (m? — 2m;) M
+ (mi +4mim? —5m; —4m; Mj%) M}
+ M7 (2mg + (8m — 3 M) m2 — 10my + M} — Tm} M7) M?
+ (mz — mg) Mjﬂ‘ (—mi — 5mj + MJ%) } Iy

+6 Mf M (=m? +mi + M7) (2m2 +10m; + M} — 3 M) I,
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—12mg M} M} (2m2 +10mj + M} — 3M2) (M} — M?) Jus

96 M7 Mm; (p-q) P\, E*% = 3 M} M?|
—4mg (5m2 +mi — M?) (—=m2 +mi + M?) M}
+ (M7 = 22)" (i — i+ M} — 2 (m2 — 2m3) M?)
+ (M? = M3) (mj + 36 mg m? + 11 mj + M}
—2(m2 +10my) M?) M}
+2m} (M} - M2) (= 5mj+4mim2 + my + 9 M
—2(5mZ +2m3) M})]| Ly
+ M3 M} [2 M5 — (m2 +25m}) M§ + (—m} + 56 mi m? + 17mj}) M}
— (=5mg+ (4 M7 — 8my) m2 + 13my + M — 2mi M7 ) M? M;
+12mg (—5my + 4mg mg +my) Mj
— (M} = (5m2 +11m}) M} + 4 (m? mg) ) M| Ly
+6m MM (M~ M3) [4 (5m2 +mi — MZ)mi 2 (M} - M?)’
+ (M2 = M?) (=3m2 +mi +3M7) | Juw, (174)

and

48 M} M} P ) Egpt = M7 [ = 3 M) + 2 (3m2 + 6mj + M) M?
— (3mj +2(12m3 + M) m? + 9my — M} +5m; M7) M
— 2 M7 (my — 9mim2 — 2my + 2 (m2 + mi) M7 ) M
+ M7 (7m§m3 — 8mym2 —mj + (Smi —6m§m§—|—5m§) M?) M?
+2MImEM? — 2 (m2 —m?) (m2 4 m3) M}] Ly
+ M [4 (M2 = MF)m — 3 ((md — 2M7) M} +2 (mf + M7) MZ) m)
+mi M3 (6m3 +25 MF — 13 M) m2 + (mi + M}) (-2 M}
+2 M2 M} +my (M7 +2M2) +mi (4 M} —TM} M?) )| Iy
+6my M7 M (3m2 +mi — M?) (M? = M) Ty,

2AME Py ) BT = =M [3mi (=mi -+ mi 4+ M) M
o (M 7)o (o 20 2+ 0 01) )
+[3 (md =2 (m + 2) 2 + (3 = a)") !
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and

and

—3Mj7 (my — (mi +2 M7) mg + Mf = 3m M7) M?| Iy
+6my M7F M? (M? = M7) Ty,

48 M} Pl ) B0l = [ — 6 (m2 — 2m3) M? M}
+3 (mh — mp) M7 +3 (M} —4mi) M M| L,

+ M2 [ (=5m) +4mim? +my — 8 Mf + (13m2 +m]) M) M}
(5 M} — (T2 +m?) M7+ 2 (m2 —m})" ) M?] Ly

—6mp M7 M7 (M7 — M2) (m2 +m] — 2M} + M?) Ty, (175)

af,u ~ab
+ (3 (ma +10mim? + mf;) -4 (mi + m%) M]%) M}
(5m4 —6m§m2—|—5m§) M]% Mf

48 M} Pl ) B = (M2 — M3) [3MF — (6 (m2 +m7) — M}) M

-2 (m — m§)2 (mi + mi) Mﬂ Loy,

12 M? P ) Bt = M3 (M2 — M) [ = 5mi + 4 (m} + M7) m?

afB,p ~ab

‘l‘( b_Mzz) }Iab>

24 M7 Py ) B = M7 (MP — M) [md + (4mf — 2 M7 ) m?
—5my + M+ 4mg M7 Ly,

24 M Py ) Bl = =M} (M2 — M) [ = 5mb + 4 (mf + M7 ) m?
+ (m} —M?)" Ly (176)

1207 M (p- q) Pl Fl = 3m?m? Mj [207 — 307 M
+ M3 (=2 = 20 + 32+ M) M2+ (m2 = m2) M{] L

2 ME[(3m2 (3M7 — M2) M2 + 4 (2 + M3) (M3 — M?)" ) m?
—o (M3 = 02) it — 6t b — 2 (2 — 2a3)” (M — A2)°
+8mg M (Mf —mi) (M7 = M7) | L

+6m2m? M} M2 [MZmi — (2m2M3 + (M} — M?)" ) m?
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+ mf Mﬂ jabc s

12 M} M7 (p- q) Py, Falt = 3m?2 M [2 Mf — 3 M7 M}
+ (m2 —m2) M} + M7 (—=m2 — 2m2 + 3m? + M3) M?] L,

M ME [~ (3m2 (307 — MP) M 44 (m2 4+ M3) (M7 — 02)" )i
+2 (M2 = MP) mif + 6md M} + 2 (m2 — M3)" (M7 — M2
+3m2 M7 (M} —m2) (MZ = M) | I

+6m? MMM — (2m2 M3 + (M7 — M7 ) ]

+ ¢ M| Jube - (177)
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Appendix E

We detail the contributions of the ¢ DI and K*D* channels to the decay
amplitude M{Lf‘_ﬁwo, as introduced in (@7). All terms are linear in the coupling
constant gy (see (8I))). It is derived

NeY € gT QH Q _ e _ o _
M{ﬂ_ﬁwo, = {Fi‘,ﬁ;; (D, p) + Ei,Dﬁ*K* (D, p) + FB,KQD*(P,]?)}

8 f?
€9E Ju B - o B N )
+ 8f2 {F‘ﬁ@ﬁD:(p’p)+Eﬁ,Dﬁ*K*(p7p)+F_¢7K€D*(p,p)}
gu _ é Cpad s
g [fe — e+ G Hom P (0p) + 00 PG5 (0.0)
1%
Ju - e €Q - - . e B
T 8 f2 M2 {ec 9 f} {gE FquD*(p,p) + gr FiKﬁ*D*(p,p)}
€T JH  Fpap - (2ec +eq/3) gu L
+ Efl.(p,p) + < gv HieS) b (B, p)

8 f2m2 P
(ec —eQ/3)§H
4 f2 M2

eagr Ju a8 _ eagr u af /-
T G e (D, A E D), 178
+ 24 f3 iy, DK (p,p) + 18 Fmy Bens (D, D) (178)

1202

gv HYS b (D, p)

with

aBy— . d*l 7,63 5 o Q@But -
Eilag(pap) =1 /W Edgf €afor Se’ B(Z) {p p* S, o (p+1)
079" ST (P D) + g7 " ST (p 4]
+07 D% gen {SEVF B+ D) ST+ 1) + SEPPR B+ 1) SET(p+ z)}} ,

aB /- . 'l ap,ap G, QTMT (=
Ef’,af(p,p) =+t /Wedgf €agor Se7 (1) {p p* Sy (p+1)

+07 " Sy (B 1) + g7 p* ST (p+ 1) + 07t ST (p + 1)

0 e (S D ST D+ ST ) 5+ 0}
B 0.0 =~ [ s g, ason ST S0 41

<p* 07 (9", 4" — 9" q,) , (179)

and
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B~ . d'l 7o & o oaB,aB ( —
Fred(p,p) = +i /W%gf%ﬁw o7 (1) {p 9" Sy P (p+1)

+ 97 " S5 (p+ 1) + 57 D" gen {S5VF B+ 1) S (p+1)
#0570+ 0}

(180)

+ 57 07 Gan { ST (B 1) SE (p+ 1) + S (5 + 1) Sy (p+ l)}} :

and

N o _ d*l o
Fﬁ:abﬁ(pa p)=+i /W Edgaﬁ €apgar Pa () {

+ 7707 e { S5+ D) S (p+ 1) — S5+ 1) Sy (p + w}} ,
(181)
PE0) = =i [ s e 5250
0 S D SE ) = SP) SE 4 0}
and

4

o Crdl L Ny
Gl (p,p) = +2i /un e oo p™ess t S(l)
x(1+9) P, Sy(p+1)ST(p+1),
(182)
o (= . d4l L o 8 apo
Hal;c (p>p):_2z/w%/€ 57 P G&BU Sa (l)

(L + D) Py Sp(p+1) ST (p+1).

The decay constant dy+_,o- as of (@8] is computed by contracting of the gauge
invariant tensors (Q9 [[02, [[05) and (I79HI8Z) with the anti-symmetric tensor

(07

P;E(]a_ﬁ) - _% ({gua - %}pﬁ - {guﬁ - ];:‘qqﬁ}po) ) (183)
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We provide the results in terms of the master loop integrals In;, Loy, Jape and
Jape introduced in ([IGI]). According to the arguments of section 3.3 reduced
tadpole integrals are dropped. Using p* = M} and (p — ¢)* = M} we derive

16 (p - q) M3 P} A = 2 M3 (M — (m2 —m2)” M7
— (m? +3mb+M2) (M2 — M) M?
(000 (o )

[Mf_2(m Fmi) M+ (m ) M}
+2((m2 = mf)” - Mf) M2M?
~ (ma — 2 (mp 4+ M) m2 + (m? - M;f) MY Ly

+dm2 M7 M7 (mg —mp = M) (M} = M7) Joas

24 M2 PO) —m})" M

paf AP = (Miz N Mf) [BMG B 3( z
— (M2 = M) (M} (m2 4 m) M2 =2 (m2 = m2)")] L.

16(]9 q) Mf P,uaﬁ

— (M}~ (5m2 +3m3) M} +2 (m2 —mp))M?] Ly

Bi® = M3 | — (m2 —mi) M} — (8mj + M7) M
(M5 =2 (m2 e ) M+ (m2 —m3)” M}
— (M} 4 (m2 = mp) ME =2 (m2 —m?)") MP AL
—(—2Mf+( 5mb)Mf—|—( 2 m%f)Mﬂf
—2mj M7 M} (M} — M?) (=2m2 +2m} — M} + 3 M) Juy,

12 P Biy? = — (M2 = M3) [mj + (mg — 2 M?) m?

—2mj —I—Mf‘+7mgMi2} Loy,

1202 B0 Bl = (M= M3) [ =305 +3 (m? —mi)” M?

(M2 Mf)(M4 (mi+m§)Mf—2(mz—mg)2>}Iab,

16 (p- q) M} Py Clie® = —4m?2 M7 | — 2 Mf + 3 M7 M]!
+ M7 (=3m2 +2mg +m? — M}) M? + (m2 — m2) M| L.
—4m? M7 M} | (2m2 —3mg +m? — M}) M;
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and

+ (mj —m? + M7) M?| L.
—8m2 M3 M2 M} — (m2 — mp)” M7 — 2m3 MP M3 + m3 ME] Jupe

12 (p- q) M3 MP PO) Clse® = — M2 [2 (M3 — My MP)" (m2 — 2m2) m
— (M3 - M2) (M7 +3M2) = 3mg (M} =3 M} M?) ) M?m?
+ (m? = M) (MZ = MP)" (=3 M} + M3 M? + 2m? M)
+6my M7 M — 3mg M? (M? — M7?) (2 M} — M7 M} —m? M3) | L,
—3mp M7 M| (2m2 = 3m} +m? — M}) M} + (m} — m? + M7) M?| I,
—6m} M3 A} [m} M} — (m2 —mE)" M} — 2m} M2 M +ml M June

48 M3 P ) D = 2 M3 [ = 3mi (—m2 +mi + M?) M}
— (M? = M3) (m + (mi — 2 MZ)m2 = 2m + M +mi M?) | Ly
+ 16 (mh — 2 (mi + M7)m2 + (m} — Mf) ) M}
—6 M7 (my — (mi +2 M7) m2 + Mf —3m M7) M?| L,
+12my M7 M2 (M? = M3) Juw (184)

2 (p- q) Mj P B = M7 24 ((m? = m?)” = M) 012
+3 (M7 = M3) (m} + 20mg m? + 11my + M
—2 (m2 4+ 2mp) MZ) M — 2 (M — M) (mf+ (Tm] — 2 MP) m?
—8m§+Mi4+m§Mf)}Iab
3]~ (m2+3m3) M MY + 4 (m} — mimy)” (23 M? — M)
— (=M§ +10m} M} + (m} — 8mim2 — 9my) M) M
+ M (=M + (m2 +mi) M} +2m3 (m?2 — m?) M}) M
+amd M} (md — 2 (m} 4 M) m2 + (m} — 213)°)
+ (m2—mf) ME| I
+6mg M7 M? (M? = M7) | = 8mj, +7M7m; — 2 M} + M/
+ (mg + M7) M2 +m2 (8m +3 M} —3M2) | Jaw,

24m? (p- q) M} PO B2 = M3 [24m3 ((m2 —m})” — M) M
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and

+3 (M = M7) (m} + 20mgm? + 11my + M
~2 (m2 4+ 2mp) MZ) M? +2 (M~ M2 (md + (m} — 2 M2) m2
—2my + M+ Tmy M?)| L
—3[— (m2+3m3) MF MY + 4 (m — m2my)” (243 M7 — M)
— (=M +10m3 M} + (m} — 8mim2 — 9my) M7 ) M
+ ME (=M + (m2 +mi) M} +2mZ (m2 — m?) M}) M?
4 M} (md =2 (m} + M) m2 + (m} = 23)°)
+ (m2 = mi)” M| L
+6my M7 M (M} — M7) | = 8mj + 7 M7m; — 2 M} + M}
+ (mf + MF) M +m? (Sm} +3 M} —3M?2) | Ju.

1202 PO) Bl = (M = M2) [ = 708 + (5 (m2 + m2) — M?) M}

+(2(m2 = mp)” — (m2 +m}) M3) M?
+2 (m2 —m3)” M2 Ly, (185)

24mi (p- q) M} PO) Foo) = 2 M7 [12m2 (—m2 + mi + Mg)2 M2
+3m2 (Tm? +9m? —7M?2) (M? — M3) M?
+ (M2 = 22) (=Tl 4 (5mf + 11 MP) m?
2 (- 36)")]
+6mE] — 20} + 4 (m2 + m?) MY~ 2 (m2 —m?) M
+ (4m2 — 4m + M) (=m2 + mi + M7) M? Mj
+ (= 3M} 4 (m2 —9m?) M3 +2 (m2 —m3)" ) M| Ty
—12mZmg M7 M? (4m2 — 4mg + M7 — 5 M2) (M} = M?) Jaw,

24m; (p- q) M7 Po) FP o = 6mg M7[4 (—m2 +m] + Mf)2 M?
+ (M? = M) (Tm2 +9mi — 7M7) M7
+ (m2 =+ M2) (M2~ M3) ] Ly

—6mE[2 (mt — 2 (mf + M) m2 + (m} — M2)" )M

87



— (4m2 = 4mi + M7) (=mZ +m} + M) M? M;
+ (3 M} — (m2—9m3) M} —2 (m? mb) ) M| L,
+12my M7 M? (M7 — M7) (—4m2 +4mi — M} +5M?) Juy,, (186)

and

2P\ ) = m? (=2 M 4 M} M2 + (m2 —mp) M7) Ly

uaﬁ +,ab
+m?2 (—m +mb+Mf)M2.Tab+2m mj M? (M2 M]%) Javh

6 M2 PO B = [3MP — (3m2 + 9mj + 4 M7) M?
+ 03 (2m2 4 5m} + MF) M — 2 (m2 — mp)” M}
+ M7 (2 mi —mim2 —mj + (mi + mi) MJ?) Mf] I

+3m; (—mi +mi + MJ%) M; Iy

+6my M (M? = M7) Ju (187)

and

12 (p- q) M} Py Glie® = 3m2 M} [2 MP — 3 M7 M
+ M} (—=m2 — 2m? + 3m? + M}) M? + (m2 — m2) M| L.

+ M2[(3m2 (3MF — M?) M} +4 (m2 + M7) (M} — M2) ) mi
—2 (M3~ M2) i — 6m! M} -2 (m2 — M2)" (M}~ M?)”
oA (M7 - ) (M3 - 002 T

+6m? M3 M? [MEmd — (2m2 M2+ (M7 = M) ) mif + mi M7 Jage

48 (p - q) M} P\ ) Hige® = =2 M7 |6 (mg —m2) (m2 +mi — M?) M}
+3 (M2 = M}) (ml+ (=3m3 +3m2 — 2 M7) m?
— (m? - M) (m§+Mf))Mf—(M?—Mff(zlmi
— (2m2 +5M2)m2 = 2m} + M + Tm2M?)| L,

—6M? [ (2M} — 3 MZM3 + M) m! —z(mb(3Mf 3M2Mf—|—M4)
— M7 (2 M7 — M?) (m2 = M7 + M?) ym? — (mi — M7) (2 M
— (=3mg +2m2 + 3 M}7) M2 M} + (M} mb)M4)]

~ 12 MMl (MF = M)+ (m = m2)” (2md - MF) (21F = )
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+m? (m2 4 md — MP) (M} - M?)’
— (m —m)" M2 (m2 4+ = M) | e (188)
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Appendix F

We derive the contribution of the ¢ D and K*D* channels to the 17 — ~ 07
process. According to (I08) it suffices to evaluate the contractions of the four
loop tensors introduced in ({09, [[T0, I11]) with the projector

1
P;E?:ﬁ) = _5 qT pg {E,uﬂ'oa Pg — €urop pa} . (189)

It holds

2 M? _
f (O0+) pmaB _ 2 372 2 ()2 2 2
9 I Py g AL Gpe = 2mg My Lo + 2mg (mc - mb) M Jape

[ (2m2+ (M2 = 23)) M3+ (m2 = m?) (M7 — M2) | Ty,

24m§ M]% P(0+

(p-q)

- (mi +5 (8m§ +MJ%) mZ2+7 (mg —mj MJ%)) M}
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+ (mi — mg) (mz +m?+ Mf) (]\/[i2 — Mj%) } Jabe 5 (190)

where we use p* = M} and (p — q)*> = Mj.
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Appendix G

We collect explicit expressions for the contributions to the decay amplitude
(I13)) linear in coupling constant gy (see (8I))). It is derived
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and
ocﬁuozﬁ . 'l B o qa,as TP w8 e
E, (p,p) = /WE&BP p* S (1) S (p+1) (grq -9 C_Ir)>
a B, o - . d4l o of,a0 —a T
B0 = 20 [ i, 0 SEP0" S+ D
a8, - odl 8 o qoBad rp
ES (p,p) = /WE&BP p* SgP (1) p* Sy (p +1)
X(gu'r qO' - guo' C_I'r) )
DA B, .03 . d4l B . a qoaf —a atB.p
E—ab (pvp): Z/(27r)4 Ed,[;'p p Sa’ (l)p Sb (p_'_l)
(9" s — 9" ¢:) , (193)
and

R0 = =1 [ gicas PO o) 01
+959 S B+ 1) + g5 SE P (4 1)

+ % Gon {sﬁ“<p+1>smﬁ<p+1>+55“”<p+1>smﬁ<p+1>}},

aB,m,o . d4l 6.0 _& o oA —

F+/ié" ﬁ(pvp) =1 /WEdﬁﬁﬁgﬁo Sal&p(l) {p gﬂ ‘S'b7 ﬁ(p—i_l)
PP ST (1) + g™ pt SPP (p +1)
0 00 (ST DS +0 4 ST+) 570+D),

Faﬁuaﬁ(pp)——i/ il € -
—,ab ) (271_)4 afBp

+ 9" P ST (P 1) + BB e (ST (B 1) S (p 4 1)

a0 S0 {5 57

93



+5774% (p + )S““ﬁ(pﬂ)}}, (194)

and
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According to (I10)) it suffices to compute the projections of the tensor integrals
(17 120, 122] 192 - [9d) with two tensors
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aBuap — g P 4 \CoranPplaPs — CoranPp s Pa
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+ (M? = M2)” (m2m? 4 (2m2 = 3m2) (m2 + M?)) ] Jue,  (203)

2 p(1) apof _ 32 2 2\2 A 74 12
A8 M2 P HI P = M7 (12 (m} — m2)” M} M;

+ (MF— M) (M) 2 (2 +3mb—8m)Mf (m? m)2)
- (a2 -y’ (—2M{*+(ma+7m (m2 —m2)’
+M,.2[—2(M§+8M?M;—4M4M;+M6)mb

+ (M3(3 (3 M} + 6 M2 M} — MY m? + (M7 — M) (M3 +407))
m? (503 — 4 M2) (M} — M2)" ) mi — 6mi M} (M7 + M)

—3m2 M3 (5 M3 — m2) (M} - M?)’

+ (m2 = M3)" (M —202) (M7 - M2) ] Ty
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+6 M7 M2 [m? (M7 — M2)" =2 (m} —m?)’ M}
+ (mg—mi) (m2 +2m —3m? — M?) (M2 — M3) M}
(o =) (0 202" (2 o~ 20)
+ (i —m2) (me —mi) )

+m? (m2 4+ 2m} — 3m2 = M?) (M? = M3)" ] Tone.

A8 MM P HS0 = 2 M3 [12 (m —m?)” M
12 i )’ (12— 03 0t ()’ o
—2(m2 4 3mp - 8m2) M2+ (m2 —m2)")

— (a2 _M})g(—2Mi4+ (m2+7m?2) M? + (m? _mg)z)} ac

2 M2 [ 2 (M 4 8 M2 M} — 4 MPAE + ME) i
+ (M} <3 (62 27 = 2ty m 4 (7 = M?)” (M1 +4M’2))
+OMPmZ —m? (5 M3 — 4 M2) (M3 = MZ)" ) m?
st ) (07—t 0 30
()" (4 - 2002) (5 — 222)" | L

+6m§M?Mf[—2(m5‘m3) M o (M = a7)’
¥ (o o 20 - ) 0 )
+ (mf —m?) (M7 - az?) (Q(mg_sz)Miz
+ (m? = m?) (m2 - m}))

+m2 (m2 4+ 2m} — 3m2 — M?) (M? — M3)" ] Tune. (204)

We turn to the projections with the tensor P(ﬁ,mﬁ of (I83). It holds

M i AT 0 2 - ) (o )

+12 (M2 — Mf) (m2 +mg +3M7) M

48

6 (—m? 4+ m} + M?) (M? — M3)
— (M3 = M2)" (m — 8 (m} + MP) m? + T
+31 M +22m; M?)| Loy
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+12Mf( mb+Mf) (m§+MJ%)Mi4fab
+24m? M2 (m3 + M2) M (M2 — M?) Jous
M3 M2

(p-q)
_ 192 (M?—Mf) (m —3mb+3Mi2) M}

6 i —a2) (3 - )’
— (M} - Mf) (mh + (4 M2 = 8mi) m2 + 7m;
—29 M + 10m; M?)] Ly
—12 M} (M} —my) (m2 —m} + M}) M} I,
+24m? M3 (M2 —m2) M} (M3 — M2) Jua.

P2 g A = MP 12 (M2 = m}) (m? — m + M?) M}

ap,p,af * =, ab

48

M2
. (p-q)? P s AL = [ = TP+ (T = 3mf — 207) M

—10mE m? + 9m — 2 (m? + mZ) M2) M

+ (my
~ (m2 = ) (m = m} — 404) | .
h mb”sz (;Wi) PO BT = 122 (—m? 4 m} + M?) M}
— (M7 - M3) <M4 2 (m2 — 11m3) M2 + (m2 — m3) >M2
+6mg (M2~ M2)" (m2 —mi + M2) ]| Iy
+[(mt =2 (md + M3)m2 + (m] — M3)") M
02 (=2 (T + M) + 13+ M2+ 10m2 M2) |02 T,
oA MM (M] = M7) T,

M2 M2
PM e paBaas _ g AT N g2
g Labmas Boy? = M7 (= M} + (m2 + mj + 3 M7) M;

= (m —mb) Mf)[
2 ((me

48

a2 (mb+Mf)m§+ (mg_Mf)2]I"b
)(ma—i—mb)z —M?) (mg—l—Mﬁ) Mﬂ Ly,

+[-

%dfpmawB%Wﬁ{ww (oo ) =)

b (2 ) M2 2 (2 = ) 7]
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192 M3 M2 POl — A2 [ 12 (i — m2my) M
6 - ) o 02 (0 259 2
w2m (MF M) (=20} + (m2 — 6m +m?) M?
(o)) b
20 ) (M ) 2 22—’
- (MZ?—Mf) (=3MP+ (Tm2 +6m; +5m?) M}

— (m2 = m2) (5m2 +6m} —m?) M? + (m? —m2)" )] L

+2my M} [ (2 M} +5 M2 M} — M) m;

+ (M} — M?) (8 M} — 5 M M} +m? (5 M} — 2 M?)) mj
+6md M} — (m + Mim? —2M}) (M} — M?)’
—3m2 M7 ((3 M} + MZ)mi + (m2 + M7) (M7 — M?)) | L

12 M M (MZ = M3) i+ (= m2) (M7 — M?) )
(ot = i) (o ) (112~ )

+ (mf —m2)" M) June

a

192 M3 M2 P, CPed = A2 [ 12 (i — m2my)” M
+6 (m2 —mi) mi (M2 — M}) (m2 —m2 + 7M7) M
+2md (M2 M) (=20} — (11m? — 6m —m?) M7
+ (g —m2)") 7
2 (M7 = 02)" (=M = (2 m2) M2 4 2 (m2 = m2))
- (MZ-Z—Mf) (Mf = (m2 +6m; +3m?2) M}
o) (6 32) M+ () )]

+2mg M} [ (2 M} +5 M2 M} — M) m;

— (M} — M?) (16 M} +5 M2 M7 +m? (2 M7 — 5 M3 ) ) m;
+6md M} — (md + Mim? —20}) (M7 — M?)’
—3m2 M7 ((3 M} + MZ)mi + (m2 = 7M7) (M} = M?)) | Le

12 M3 M [} M7 (mf — m2)”

—mb( 4m? +mp +2m? — 2M2-2) (Mf M2) (mz—mQ)

a
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o (o 2mi) (35 05
+ (m?: —mZmy)” (M2 = M2) (m2 = m? + 4 M2) | e
96 L2, 00 = 6 — i) 1
-3 (m —mb) (3m2 +m? + M?) (M? — M7) M}
—3m? (=m2 + m? + M?) (M — M3’
— (M = M) (M (5m2 —m?) M?
=2 (m} +ml+ (m2 = 3m5)m?) )| L
+ M2 [ (M} —5M? M7 — 2 M) mj — 6mj; M}
+ (M} — M?) (—2 M} +5 MEM} +m? (7 M7 — 4 M?) ) m}
— (2m! — Mim? - M}) (M - M)
+3m2 M7 (mi (M} +3M2) — (m2+ M7) (M7 = M?)) | L
+6 M2 (mg —mp + Mj — M?) ((m2 — myme) M —my, (my —me) M)
X[(ma +mbmc) M3 — my, (my +me) Mﬂ Jabe »
48%13;;“&61735““5 = 3m? M} [ (=M} +4 M7 M} + M) m?
+ (M2 = M2)" (w2 + M) — 2m M? (M7 + M?)] L.
=] (M3 = M2) (122 M} 2 (2 MF) (M7 = M2)° )
+12md ME 4 (m2 - M3)" (M7 - 22| Ly
+6m? (m2 —mi) M7 M? [ M} — (m? +mi —2m2) M;
— (=m2 +mp + M) M?| Tuse (205)

and

M?
! (2) afp.af _ 8 [ 4.2 2 2 6
48 oo P2 5B’ == 2MF — (—4m? + 8m + M}) M|

+2 (—mj —dmgm? +5my + (m2 +m7) M} ) M
— M7 (Tmg+10mg m2 — 17mj, + 3 M{ — 3 (3m2 + 5m}) M}) M}
+3 (m2 —mg) M} (m2+3mi — M}) | Ly

+ [— (—8Mf (7ma — 11mb) Mf + (mi —m§)2> M}
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and

— M7 (= 7mj+5 (M7 —2mg) m2 + 17m; +2 M}
+23my M7) M7| Iy
+6my M7 M7 (2m2 + 6my + M7 —3M7) (M} = M?) Juw,
o6z M p)  padas M2[—12<(m2—M2)2—m4)M4
@ (p-q) oPwas ta f a i b i
+3(—mi+mb+Mf) (Mf—M]%) (—mi%—mi%—?Mf) M?
w2 (M= 02)" (=5 Mt =2 (m2+ am}) MZ + (m2 = m2)” )] L
+[(4Mﬁ—(5m2—mg)]\/ff+( 2—m§)2)M.6
+ 02 (1M} =2 (m? 4 19m) Mf—5 (m2 —mp)") M}
+ M (16m) — (8mf + 17 M7) m2 — 8mj, + M]
+3Tmy M7 ) M| Ly
—6my M7 M} (M} — M?) [ M} = (=5mg +5m] + M7 ) M;
+Mﬁ(—9mi+mg+4M?)}jabb,

M?
2 f (2) aB,p,a3 2 2 2 4
96mb—(p‘q) P2 BT = M} [24mi (—m2 +mi + M?) M,

— (M2 - M3) <M4 2(m§—5m§)Mf+(mg—m§)2>Mf

+2 (a2 -’ <M,.4—2(m§+4m§) M3+(m§—m§)2)]fab
+[(—2nf v (m2 = 5md) M3+ (m2 —mp)”) M

=0 (=5 M 4 (2 Tmd) M3+ (2 — i) ) M

+3 M} (~8my +3M7mi — M{ +m?2 (8mg + M7)) M7| Ly
+6mg M7 M? (M7 — M2) [ M + (=3m2 +3m] + M}) M}

+ M7 (3m +5m; —2M7) | Ty, (206)

12
T D) g B = | —mg —4mim? +5my — M}

+2 (m2 —2m3) M7| Ly,

6 M P(2) E'Oéﬁ waB _

(p q)? ~ aBmab ab [ 3M; + (3 (m§+mg) —M]%) M
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- (mi + mg) M7 M} 42 (mz - mg)2 MJ%] Ly,

m?2 M?

48(

P B4 = [ (3307~ M)

— (3M +7 M} M2 +mi (M} +5M?)) m} +(9M6+5M;M,.4
+my (13 M7 — 7M7) +2m; (5 M7 M} — 23 M}') )m?

( Mf) (5MZ4 (7mb—|—Mf)M,-2—5mbe”[ab,

P B = (5 (1 ()

—Q(ma—mb) ) =6 M (m2 +mp — M) | L, (207)

and

96 g(MJ%)PfB)WﬁFj‘f“O‘ﬁ | = (M7 = M7) (MF = 58 mj M}

— (3mj — 58mm? —17mb)M2—|—2(m — 3mym2+2mf) ) M
+ (M7 ) (4mg — (2m +5MZ)m2 — 2my + M + Tm; M)
+ (M3 3) (2m + (16 mf — 7 M2) my + 11 my M7
+ (—14my + 28 MZm + 5 M) m2 — 4mf — 49m} M)
+12mg (3m2 +mp — M?) (—=m2 +m} + M) M}| L,
+ M2 [ = 2MF —2(2m2 — 9my) M§ +8m2 (m? —4m}) M}
—Q(mﬁ—18m§m4+9m§m2+8mg)M]%
— (M} +4(m2+4m}) M} =5 (m? mg) ) M
+ (3 M7 +2(4m2 +5m) M} — (13m} + 6mi m? +5my) M}
+2 (m& = 3mym2 +2mf) ) M7| Ly
+6mg M7 M2 (M2 — M7) [ = 2 M) + (3m2 + m + M}) M?
— (3m2+mi — M?) (4m} + M}) | T,
96m§%13§;{w5 FEoe? = M3 [24mE (—m2 + mi + MP) M}
—3 (=2 4+ m + M2)" (M — M) M
(M2 = 22) (5} — (T2 13m) MZ 42 (m2 —m?) )] Ly
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+[(=5Mp 4 (m?—2m) M7+ (m2—m3)" ) M

+ 03 (13M} =2 (Tm? + 13m}) MZ + (m? —m?)" ) M}

—2 M} (ml — 14mm? + 13mj + 4 M} — 5 (m? + m}) M3) M?| L,
+6mg M7 M? (M? = M7) [ (3m2 — MF —2M7) (M} — M)

—mp (5 M} +3 M) | T,

MJ% (2) afyof _ a2 2 ar2\2 4\ e
o q>PaﬁW5F_ab Mf[ 12(( 2 MZ) mb)MZ

96 m;
+ (a2 - 02 (17 ME 42 (m? = 5m2) M2~ 7 (m? — mgf) M2
- (Mf—MZ?) (7M;*+(7m§+13m§) MZ?—2(m§—m§)2>}Iab
+[(70F — 4 (2m2 —m3) M7+ (m2 —m3)") M
M3 (5.24f = 2 (5m2 + 1) M7 + 5 (2 = mit)”) M
+6 Mj (mg + (2my — M7) mZ —3my +3mg M) M?| I,
+6mi MF MZ (MF — M?) [ =2 M} + (—m2 +m + M}) M}
+M3F (5m2+3m; —3M7) | Ty, (208)

and

2

M
f (2 aduwalB _ a2 [ 6 2 2 2 4
48 gy Lavas E " = M; [ —4MP — (3m2 +13m} — 3 M}) M,

+ (9ma—mb—|—3(mz—|—m§)M]%)Mi2
—Qmi(mz—mg) (mi—m%—i—BMﬁ”[ab

+ M} [2(—(2mi—|—3m§)M;§—|—(mi—Smgmi—l—Bmg)Mﬁ)
—I—2( mamg) —I—(M}l—l—él(mz—l—élmg)M?
—5(ma—mb> )Mﬂ Ly

+6mg M7 M? (M? = M) (=m2 +mj — M7 + 2 M?) Ju,,

M3 M
o P EE = M7 [ - 3 (—m? +m} + MP)” M}
p-a

2 " afuaps” +ab
w2 (M7= M2)" (= M} (2 m) M2 2 (m2 —m?))
+ (M2 = MF) (2m} + (8m] +5M?) m2 — 10m; — 7 M;
+ 11y M?) M| Lo,

48
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[ (=50 a(m2—2m) M3+ (m2—m3)") M
— 202 (M} + (m2 4 mp) M7 =2 (m2 —m?)”) M| Ly
+6mg M7 M} (M? = M3) (=m2 +m = M} +2M?) Juy

M?
f (2) aﬁ waf 2 6 2 2 2 4
48 L P s FOe? = M7 2 Mf — (m2 —1Tmg + M7) M;

— (=11m} + (10m + M7) mZ +my + Tmg M) M7
—2(5my — 4mim; —my) M}] Ly

+ [ =6 (m2 +mi — M7) M2M{
— (7 M} — 4 (2m2 — m}) M} + (m? mb))Mﬂf

+6mg M7 M? (M7 = M2) (=m2 +mj — M7 + 2 M?) Ju,, (209)

and

48mngp;;>Wngﬁwﬁ—zmgM;[_6(mg_mz)2M;
=3 (my = m2) (M? = M7) (=m2 +m2+3M?) M}
+ (M3 - M2)2( 2 M} 4 (m2 = 5m2) MP + (m2 —m?)")] Le
+ M2[2mym2 M7 (2 M} + 5 M? M7 — M)
—2mim? (M} — M?) (4 M} +5 M2 M} +m?2 (2 M2 - 5M3)) M}
+m} (3md+ 203 m?2 + 30} (M - M?)’
—6mm! (3M3 + M?) M} +3mj (m? + M3) (M? — M)
+12m8 MY+ (m2 = M3)" (m2 o+ M3) (M2 — M3’
+2m? M3 (M} —m2) (m? + 2 M2) (M} - M?)’
+ (M3 = 22)" mf + 6m M} (307 —m2) (M} — M?)] Ly
— 122 M MP (—mp 4 m? 07— MP) [ (md - m?) (M2~ M) m?
+ (m? M7 —m; Mf) (—m% +m?+ M; — Mf) } Jabe »

A8 MEMF PD | GoRe = 22 M} [ — 6 (m] —m?)” M
+3 (m2 —mg) (M7 = M7) (=m2 +m? +3 M) M}
+ (M7= 22)" (=2 M+ (m2 = 5m?) M2+ (m2 —

3

#0203 = M2) i + 3 (2 + M2) (M2 — 02)

m§)2 )} Loc
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and

+2m2 M7 (2M} + 5M?M} — M) my — 6mim] (3 M7 + M}) M}
—2mZm} (M} — M?) (A M} +5 M2 M} +m?2 (2 M2 — 5 M3)) M}
+ (3ml+2MFm2 4+ 30}) (M2 — MP) ]
+12md MY+ (m2 = M) (m2 o+ M3) (MP - 23’
+2m2 M3 (M} —m2) (m2 +2M3) (M} - M?)”
+6mi Mf (3 M7 —m?2) (M} = M?) | Iy
+12m2 M} M? (mi —m? — M7 + M?) [ (m} —m?) (M} — M?) m?
+ (m2 M7 —mi M?) (—=mg +m2 + M} — M?) | Juse, (210)

24 PY | CHI P = M2 [ 6 (m} — m?)” M
=3 (my —m) (=m +m2+ M7) (M? = M}) M7
(M3 = a2)” (= 2 (m2 o MZ) i 4 (2 = 02)°) |
+ M2 [ (2M} +5 M2 MF — M) mj — (=5m2 +9m? + M) M} m}
+ (= (Tm2 +3m? + M) M? M} +2 (m2 + M}) M}') m}
+omd M}~ (m2 - M3)" (M7 - M2
+3m2 M7 (M} —m?2) (M} — M?) | I
46 (i —m2) MFME| (m —m2) (M7 = M) m
+ (m? M —m} M) (—m} +m? + M} — MQHJ

UMFPY HE = 2 M| — 6 (m] —m?)” M
3( mi)( ma+m§+Mf) (Mf—M]%) M?
b (M3 = g2)” (= 2 (m2 o MZ) i 4 (m2 = 02)°) |
+m2 M2 [ (2 M} +5M2MF — M})mj — (=5m2 + 9m? + M}) M} m}
+ (= (Tm2 +3m2 + M) M? M} +2 (m2 + M}) M) m}
+6md M} — (m2 — M3)" (M7 — M2’
+3m2 M7 (M} —m2) (M7 — M?) | I
+6m2 MEM? [ (=m? 4 m? + M2) (M~ 03) (m} —m2)”
M2 (mf = m2) (= m2)m? (MF = MP) | T (211)
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