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Abstract

Selected problems relative to the study of the electromagnetic
structure of hadrons are presented. Elastic electromagnetic form
factors of proton, neutrons and deuterons are discussed: the meth-
ods used for the measurements, the available results and their in-
terpretation. Special attention is devoted to a general description
in all the kinematical region, including asymptotic properties.

1 Introduction

The electromagnetic structure of hadrons represents a traditional field of
research in nuclear and particle physics in the intermediate energy region.
Such region is defined by beam energies of a few GeV, corresponding to
a wavelength smaller than 1 fm, the dimension of the nucleon. Lepton
probes as electron or muons, being structureless, are in general preferred
to hadronic probes, although, as it will be discussed later, radiative correc-
tions can induce large complexity in the analysis and in the interpretation
of the results. The traditional way to measure hadron electromagnetic FFs
is based on elastic scattering of electrons. In the intermediate region of
momentum transfer squared one of the the main physical issues, related to
the study of the deuteron structure, is to determine the kinematical region
where the transition to pQCD occurs, i.e. where a description in terms
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of quark and gluon degrees of freedom would be more adequate than a
picture based on mesons effective theories.

Recently, precise measurements of elastic scattering of electrons on nu-
cleons, deuteron and light nuclei have been made possible by the construc-
tion of 100% duty cycle electron accelerators, high resolution spectrom-
eters, highly polarized beams and polarimeters which can measure the
proton, neutron and deuteron polarization in the GeV range.

In a P and T invariant theory, the electromagnetic structure of a hadron
with spin S is described by 2S5 + 1 form factors (FFs). The nucleon has
two elastic FF's, electric, Gg, and magnetic, G, or alternatively the Pauli
and Dirac FFs, F} and F;, which are a linear combination of the previous
ones. They seem more fundamental, as they enter into a parametrization
of the electromagnetic current in a relativistic and gauge-invariant form,
valid in any coordinate system. The deuteron, which is an isoscalar, spin
one particle, is described by three FF's, charge, magnetic and quadrupole.
FFs are real functions of one kinematical variabe only, @2, in the space-
like (SL) (scattering) region, if one assumes that the interaction takes
place through the exchange of a virtual photon, of four-momentum Q2.
They are complex functions in time-like region (TL), which is explored in
annihilation reactions of two leptons into two hadrons and in the time-
reverse reaction.

In this series of lectures we will give a view on the present understanding
of the electromagnetic structure of hadrons. The methods of measurement
are presented, the present data illustrated and the open issues underlined.

2 Experimental methods

The expression of the unpolarized cross section for electron elastic scatter-
ing on any hadron, is expressed in all cases through two structure func-
tions, real functions of Q2 only. This derives from the assumption that
the interaction takes place through the exchange of a virtual photon, of
four-momentum Q?. In case of proton, one defines a reduced cross sec-
tion, function of the FFs which contain the dynamics of the reaction, after
factorizing some kinematical terms:
4E?%sin*(0/2) do
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where a = 1/137, 7 = Q*/(4m?), Q? is the momentum transfer squared,
m is the proton mass, E and 6 are the incident electron energy and the
scattering angle of the outgoing electron, respectively, and Gy, and Gg,
are the magnetic and the electric proton FFs.

Measurements of the elastic differential cross section at different angles
for a fixed value of Q> = —4FE;sin®(0/2) (E; is the scattered electron
energy) allow G, and Gy, to be determined as the slope and the intercept,
respectively, from the linear e dependence (1). For each Q* point, one has
to change incident energy and scattering angle. In TL region, Ffs are
extracted from the angular distribution of the final particle, at a fixed
value of the total energy s.

In case of deuteron, a third observable is necessary, in order to make
the full separation of the three FF's, in general the tensor polarization of
the scattered deuteron, in the unpolarized ed elastic scattering, to.

In any case, the unpolarized cross section contains the FF's squared, and
does not allow to determine their sign. This method, called the Rosenbluth
separation [1], is very efficient at low Q?, but already in 1967 A.I. Akhiezer
and M.P. Rekalo proved that the measurement of the polarization of the
scattered proton, in the elastic scattering of longitudinally polarized pro-
tons, contains a more precise information on the FF's, as it depends by an
interference term, which is proportional to the product GgGj; and con-
cluded that 'Thus, there exist a number of polarization experiments which
are more effective for determining the proton charge form factor than is
the measurement of the differential cross section for unpolarized particles’
[2].

The GEP collaboration at JLab showed that very precise data on the
ratio Gg,/Gp can be obtained by measuring the ratio of the longitudinal
to transverse polarization Pp,/Pr [3]. For this aim, it is necessary to have
a high intensity, high polarized and stable electron beam, high precision
spectrometers and especially polarimeters: specific detectors which can
measure the proton polarization polarization in the GeV range.

2.1 Hadron polarimeters

The working principle of hadron polarimeters is the measurement of the
azimuthal asymmetry in a secondary scattering on a light target, hydrogen
or carbone, for example. This can be obtained with the help of a set up
which measures the trajectory of the polarized particle in the focal plane



of a spectrometer, a second thick target, and a detection downstream,
which detects the products of the secondary scattering. The secondary
reaction must have large cross section and large analyzing powers, in order
to reduce statistical and systematic errors. For measuring proton and
deuteron (vector) polarization, it has been shown that a semi-inclusive
reaction as p+C — one charged particle+ X is sufficient (although in case
of deuteron one must eliminate deuteron break up). For tensor polarization
of the deuteron, an exclusive reaction such as dp elastic scattering or dp —
ppn charge exchange have very large analyzing power. The first reaction
was used in a polarimeter HYPOM [4] to study the *He structure [5], the
second one was used in the POLDER [6] polarimeter, to measure the ¢
polarization in unpolarized ed scattering and the deuteron form factors
at JLab [7]. The fact that this reaction has very large tensor analyzing
powers was firstly suggested by I. Pomeranchuk [8] and can be understood
because the deuteron has spin S = 1, isopin I = 0. If one select a pair of
protons in final S = 0 state, the Pauli principle requires a spin-flip, and
the corresponding amplitude contributes to large tensor analyzing power.
The performance of a polarimeter is expressed in terms of the figure of

merit
F= /0 e(0) A2(8)dY (2)

where the integration is done over the angular range of the detection,
€ is the efficiency, i.e. the number of useful events emitted at an angle 6
normalized to the number of incident particles N;,., and A is the analyzing
power. This quantity is especially useful, because it allows to estimate the
number of events in order to obtain a given uncertainty in a polarization
measurement, AP = v/2N;,,.F2.

One can see that the large analyzing powers are essential for a mea-
surement. We can summarize the main aspects of polarimetry:

- precise determination of ingoing and ougoing trajectories, to avoid
systematic errors which would give instrumental azymuthal asymmetries

- search for the best analyzing reaction, depending on the polarized
particle momentum;

- improvement of the figure of merit by adjusting the thickness and the
geometry of the target [9)].



3 Results and Consequences

3.1 Space-like and time-like regions

Let us summarize a few aspects of the experimental data, which are presently
available. The @*-behavior of nucleon electromagnetic FFs is consistent
with:

e "standard” dipole function for the nucleon magnetic FFs G, and
GMna

e linear deviation from the dipole function for the electric proton FF
GE'pa

e non vanishing electric neutron FF, Gg,.
In time-like region:
e No separation has been done between G and G,.

e Gy, extracted under the hypothesis G = G, (valid only at thresh-
old) show a behavior which is compatible with vector meson domi-
nance (VMD) and also with pQCD inspired parametrizations [10]:

A(N)
(%) [7* + In*(¢?/A%)|

where A = 0.3 GeV is the QCD scale parameter and A is a free
parameter. The best fit for this parametrization, which is the same
for proton and neutron, is obtained with A(p)= 56.3 GeV* and A(n)=
77.15 GeV*, which reflects the fact that in TL region, neutron FFs
are larger than for proton (although few data exist).

Gl = (3)

e In TL region, proton FFs are twice larger that in SL region.

e Recent data from Babar (radiative return) show that G, # Gg, and
interesting structures in the * dependence of G, (still extracted
assuming Gy = Gg).

In Fig. 1 a large sample of the world data on the form factors for
proton (top) and neutron (bottom) electric (left) and magnetic (right) are



reported. For the electric proton FF', the discrepancy among the data mea-
sured with the Rosenbluth methods (stars) and the polarization method
(solid squares) appears clearly in Fig. la. This problem has widely been
discussed in the literature and rises fundamental issues. If the trend indi-
cated by polarization measurements is confirmed at higher Q? by the GEP
collaboration, not only the electric and magnetic charge distribution in the
nucleus are different and deviate, classically, from an exponential charge
distribution, but also the electric FF has a zero and becomes eventually
negative.

The data in the TL region are drawn in Fig. 2a, b for the proton
and in Fig. 2c, d for the neutron. As no separation has been done for
electric and magnetic FFs, the data are extracted under the hypothesis
that |Ggn| = |Guy|. Concerning the neutron, the first and still unique
measurement was done at Frascati, by the collaboration FENICE [11]. The
models are fitted to the data, assuming that they correspond to |G |, and
the curves in the |Gg| plots should be considered predictions.

Figs. 1 and 2 show that it is possible to find a satisfactory general
representation of all nucleon FFs. The parametrization from Ref. [12]
(dotted line) is based on a view of the nucleon as composed by an inner core
with a small radius (described by a dipole term) surrounded by a meson
cloud. The result from [13] (solid line) gives a good overall parametrization,
with parameters not far from those found in the original paper for the SL
region only.

It is interesting to note that many nucleon models exist and some of
them predicted the deviation of G, from dipole before the data appeared
[12, 15]. However only few of them, in particular VMD parametrizations
can describe all the data, electric, magnetic, proton and neutron, in the
full kinematical region. Poalrization observables have been derived, and
it has been shown that models which fit all existing data, still give very
different predictions on polarization observables, and in particular to an
angular asymmetry, which can be measured without polarized beam and
target [16] (Fig. (3)).

3.2 The asymptotic region

The analyticity of FFs allows to apply the Phragmen-Lindelof theorem
[17] which gives a rigorous prescription for the asymptotic behavior of
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Figure 1: Nucleon Form Factors in SL region: (a) proton electric FF, scaled
by 1,Garp (b) proton magnetic FF scaled by 1,Gp , (¢) neutron electric
FF, (d) neutron magnetic FF, scaled by p,Gp.See text

analytical functions:

. SL . TL
lim_ FED () = lim FTL(4). (4)
This means that, asymptotically, the imaginary part of FFs, in TL region,
vanishes: ImF;(t) — 0, as t — oo and that the real part of FFs, in TL re-
gion, coincides with the corresponding value in SL region: ReF(" ()t —
o] = FPP (1)t — —oo]

The existing experimental data violate the Phragmen-Lindel6f theo-
rem, even at t values as large as 18 GeV? [18]. In order to test the two
requirements stated above, the knowledge of the differential cross section
for e™ +e~ < p+p is not sufficient, and polarization phenomena have to be
studied also. In this respect, T-odd polarization observables, which are de-
termined by ImF, F;, are especially interesting. The simplest of these ob-
servables is the P, component of the proton polarization in e* +e~ — p+p
that in general does not vanish, even in collisions of unpolarized leptons [19]
with a transversally polarized proton target (or in the collision of transver-
sally polarized antiprotons on an unpolarized proton target) [20]. These
observables are especially sensitive to different possible parametrizations

7



“un
L -

1 1 1 1 1 1 1 1 1 1 1 1 1 :T
6 8 10 1 14 16 18 6 8 10 13 14 16 18
q° (GeV’) q° (GeV')
[l
06 06
05 05
— N _ %
So4 5 0.4
I o T
03 “;[T % 03 1 % %
0.2 % 0.2) |
1 1 1 .-"A' . - 1 1 1 1
35 7 25 5 55 6 35 4 25 5 6
q% (GeV?) o (GeV’)

Figure 2: Form Factors in TL region and predictions of the models: pQCD-
inspired (dashed line), from Ref. [12] (dotted line), from Ref. [13] (solid
line).

of the ratio R, suggested by QCD and VDM models. Calculations have
been done up to ¢t ~ 40 GeV? and show that the P, component remains
large in absolute value [21]. For example, QCD inspired parametrizations,
which fit reasonably well the data in the SL region, predict |P,| ~ 35% up
to t ~ 40 GeV2. Such behavior has to be considered an indication that the
corresponding asymptotics are very far.

Note another important property of QCD inspired predictions for nu-
cleon FFs: the corresponding ImFj(t), t > 4m?, i = 1,2 (m is the nucleon
mass), either vanish or have a definite sign in the TL region. The pre-
viously quoted parametrizations can not apply in the whole TL region:
the asymptotic pQCD behavior follows Fy(¢) ~ ¢ 2 and Fy(t) ~ ¢ at
large ¢, according to the quark counting rules [23]. The superconvergent
conditions: -

: ImF;(t)dt =0, i =1,2 (5)
0
has to be satisfied, where the lower limit corresponds to ty = 4m?2, for
isovector FFs, and ¢, = 9m? for isoscalar FFs, where m, is the pion mass.

This implies that the nonzero QCD-contribution to Eq. (5) has to

be compensated by the corresponding non-perturbative contribution of



0.9 08
osf o8 o6}
0.7k i 0.4

20.2f
<

oF &%

02 SN

R

R RO I TR I IR TTTI 0.4k
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
q*[Gev’] q°[GeV] q*[GeV?]
g Q]

i 0.61
o8-
o0.6F

[
0.4f

Roz
oF
-0.2F

ol ;

-04f B 02f

-0.6F

| P TTTR T T TR

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
¢ [GevA] o’ [Gev]] q? [GeV’]

Figure 3: Angular asymmetry and polarization observables, for a fixed
value of # = 45°. Notations as in Fig. 2.

opposite sign. We can expect that such contribution mainly arises from
the special region of ¢: t; < t < 4m?, which is unphysical for the process
e+ e~ <> p+p. The contribution from the different vector mesons (with
different masses) is expected to be very important here.

Common parametrizations of SL FFs do not satisfy the asymptotic con-
ditions suggested by the Phragmen-Lindelof theorem or they do so only for
very large values of )%, well beyond the experimentally accessible range
[24]. In particular, the 1/1/Q? behavior of this ratio, which reproduces the
recent measurements in the SL region, is certainly not compatible with an
asymptotic regime, showing that the presently measurable data should be
better interpreted in frame of classical nucleon degrees of freedom. The
dipole-like formulas for FFs do satisfy the Phragmen-Lindelof theorem.
But such parametrization has the following evident problems -the thresh-
old condition: Gpy(4m?) = Gun(4m?) is not satisfied, - the unitarity
conditions for all nucleon FFs are strongly violated, as one should have a
branching point at t = 4m?2 for isovector FFs and ¢t = 9m2 for isoscalar
FFs, - the prediction in TL region underestimates the experimental data.



4 The deuteron

The study of the deuteron structure is especially interesting as it is the
simplest nucleus where the nucleon model can be tested. Two aspects are
very interesting: - the deuteron can be considered a good neutron target,
if its structure is well known, - pQCD gives specific predictions for the
FFs and the deuteron structure functions. The measurement of the three
deuteron FFs has been done up to Q? = 1.9 GeV? [25] and refs. therein. T
data disfavor asymptotic predictions from pQCD and favor a description of
deuteron based on relativistic impulse approximation, including different
types of corrections. A precise selection of the models is not possible, due to
systematics among different sets of data in spite of a precise measurement
in the region of the dip [26]. The structure function A(Q?), related to
the forward angle cross section, has been measured up to 6 GeVZ. In [27]
it was shown that the QCD prediction (5), which can be applied to very
large momentum transfer, is working well already for Q? ~ 2 GeV?, with
a plausible value of the parameter A ~ 100 MeV, in agreement with the
values determined by many other possible methods. However, it has been
shown [28] that QCD prescriptions for the reduced deuteron FF, and in
particular the value of the parameter A fitted from the data, are extremely
sensitive to the choice of the nucleon FFs.

In [29] another interesting prediction, concerning the scaling behavior
of the reduced deuteron FF, was done:

o= (14 L) 1of@ = const @) = LTk ©
SR A S (TN
where m? = 0.28 GeV? is a parameter related to the Q*-behavior of the
pion FF, Fiy is the nucleon electromagnetic FF. The same data from [27], if
plotted in the representation of the reduced deuteron FF's, should illustrate
the Q%-independence of this product. Such result was confirmed by the
previous A(Q?) data [22], in the limit of their accuracy. In Fig. (4) precise
data about A(Q?) [27], are not consistent with the prediction (6) as they
show an evident dependence of the product fr on Q2. This behavior is
quite insensitive to different values of the mg parameter and it holds for
different choices of electromagnetic nucleon FF (Fig. 3).
One can conclude that contradictions exist in the interpretation of
hadron electromagnetic FFs (nucleon and deuteron) in terms of pQCD,
in the intermediate Q*-range (at least up to Q* = 6 GeV?).
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Figure 4: Data set corresponding to the reduced deuteron FFs multiplied
by (1+ Q?*/m3). Open circles are from [22], open squares from [30], solid
circles from [27].

5 Radiative corrections

Electron hadron scattering may give very precise information on the hadron
structure as the elctron is considered to be structureless and the reaction
mechanism known. However, it is necessary to correct the experimental
yield for the photons which are emitted from the incident and the outgoing
electron and escape the detection. In case of polarization observables, or, in
general of ratios of amplitudes, radiative corrections (RC) are not applied,
as their contribution is estimated to be negligible (less than 1%). RC are
traditionally applied to the unpolarized differential cross section, following

a prescription which includes only leading order contributions as follows
[31, 32]:

5~ —2?0‘ {m% [m (-%) - 1] + %ln (-i—i) + f(e)} (7)

where f(#) is function only of the scattering angle #. As noted in the
original papers [31, 32], when AE — 0, 0°* becomes negatively infinite,
whereas physical arguments require that it should vanish. The authors
stated already that this problem would be overcome taking into account
higher order radiative corrections.

11



In recent experiments FE' is large and the experimental resolution is very
good (allowing to reduce AFE). Moreover, multiple photon emission from
the initial electron, shifts the momentum transferred to the proton to lower
values, increasing the cross section. Therefore § becomes sizeable and one
can not safely neglect higher order corrections.

A complete calculation of radiative corrections should take into account
consistently all different terms which contribute at all orders (including the
two photon exchange contribution) and their interference, which becomes
extremely complicated. An alternative method for calculating RC is given
by the structure function approach, which takes into account higher order
of perturbation theory, and, in particular, any number of real and virtual
photons, emitted in collinear kinematics [33].

Radiative corrections to elastic ep cross section are usually applied to
the data as a global coefficient, which depends on € and @2, the relevant
variables for the Rosenbluth separation of the FFs. As the radiative cor-
rections become larger, the correlation between the two parameters of the
Rosenbluth fit also becomes larger, reaching values near its maximum (in
absolute value). Full correlation means that the two parameters are related
through a constraint, i.e. it is possible to find a one-parameter description
of the data.

The discrepancy amond polarized and unpolaruzed data is not at the
level of the observables (the polarization transferred to the scattered proton
on one side and the differential cross section on the other side). It has
been shown that, calculating G, from the measured cross section with
the constraint from polarization measurements, leads to a renormalization
of G urp of the order of 2-3% only, with respect to the Rosenbluth data [34],
well inside the error bars. The data are not consistent if one refers to the
slope of the € dependence of the reduced cross section, which is directly
related to Gp,, as shown in particular by the recent precise data [35]

It was shown [36], in a model independent way, that the presence of
two-photon exchange destroys the linearity of the Rosenbluth fit, inducing
a specific dependence of the differential cross section on the variable e,
which is especially large for ¢ — 1. Such linearity has been confirmed from
all the existing data at the level of 1% [37].

In presence of 2y exchange, Eq. (1) can be rewritten in the following
general form:

0req(Q?, €) = €G%(Q%) + TG, (Q?) + aF (Q?, x), (8)

12



where a = €?/(47), and F(Q?, ) is a real function (of both independent
variables Q? and ¢), describing the effects of the 1 ® 2 interference which
can be parametrized as:

F(Q%¢) = exfTN(Q?), == — (9)

C-invariance and the crossing symmetry of hadron electromagnetic interac-
tion, result in the following symmetry properties F(Q?% z) = —F(Q? —x)
[36].

This means that the 17 ® 2v contribution F(Q? z) has an essential
non linear ¢ dependence, at any Q2. It is important to stress that Eq. (9)
is a simple expression which contains the necessary symmetry properties of
the 1y ® 2 interference, through a specific (and non linear) € dependence.

For the Q% dependence of f(*4) we take:

FONQ™) = CHI(1 + Q%[GeV] ?/0.71)*(1 + Q*[GeV]* /m], ,)°},  (10)

where (' is a fitting parameter, mp 4 >~ 1.5 GeV? is the mass of a tensor
or an axial meson with positive C-parity.

Taking into account the a term which is included in Eq. (8), the
deviation of linearity, which is quantified by the parameter C' is smaller
than 1%. In average, the dominating term is the magnetic term with a
contribution at the level of (95.9 4 0.3)%. The electric term contributes
for (3.84+0.3)% and the average for the two photon term is (0.0540.05)%
in the considered sets of data.

In Ref. [38] it was shown that the Gz (p)/Ga(p) problem can be solved
by taking into account initial state emission, in the structure function
(SF) [33] approach and that the 2 exchange mechanism is irrelevant for
the solution of this problem. The cross section can be expressed in terms of
SF of the initial electron and of the fragmentation function of the scattered
electron energy fraction. The dependence of the differential cross section
on the angle and the energy fraction of the scattered electron y = 1/p (p
is the recoil factor p =1+ (E/M)(1 — cosf) ) can be written as:

o [ () (1)

The term K = K, + K, + Ky, includes all the non-leading terms, as two
photon exchange and soft photon emission and it is the sum of three con-
tributions. K, is related to non leading contributions arising from the pure

13
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Figure 5: From top to bottom: Gg,/Gp, Gump/ppyGp, and two-photon
contribution, C' (Eq. (10)). The results including 27y contribution are
shown as solid symbols. The abscissa of the published data (open symbols)
is shifted by -100 KeV, for clarity. The expectation from polarized data is
shown as a dashed line.

electron block, K, concerns the emission of virtual and soft photons by the
proton which is not associated with large logarithm, and Kj,, represents
the interference between the two virtual photon exchange amplitude and
the Born amplitude and the relevant part of the soft photon emission. This
effect is not enhanced by large logarithm (characteristic of SF) and can be
considered among the non-leading contributions.

The numerical results strongly depend on the experimental conditions,
in particular on the inelasticity cut of the scattered electron energy spec-
trum (here ¢ = 0.97). In Fig. 6 the results are shown as a function of ¢, for
Q? =1, 3, and 5 GeV?, from top to bottom. The calculation based on the
structure function method is shown as dashed lines. The full calculation,
including the two-photon exchange contribution is shown as dash-dotted
lines. For comparison the results corresponding to the Born reduced cross
section are shown as solid lines.

One can see that the main effect of the present calculation is to modify

14



and to lower the slope of the reduced cross section. This effect gets larger
with Q?. Non-linearity effects are small and induced by the y integra-
tion. Including two-photon exchange modifies very little the results, in the
kinematical range presented here.

The relative effect of the corrections is of the order of the corrections to
the unpolarized cross section and it is very similar for the longitudinal and
transversal polarized components. Therefore the ratio of the polarizations
is very little affected by radiative corrections.

One can tentatively extract the FFs ratio, after correcting the mea-
sured unpolarized cross section by the ratio of the Born to the SF results.
It is an average correction, which is not applied event by event, but it
takes into account the main feature of the SF calculation, i.e., the lowering
of the slope of the unpolarized cross section as a function of . We ne-
glect the correction from the two photon exchange, as it is negligible when
compared to the high order corrections. The (Q%-dependence of the ratio
R = uGg/G)y is plotted in Fig. 7, for the sets of data for which a detailed
information on RC was published . Open symbols refer to the published
data, the corresponding solid symbols represent the corrected data. At low
Q?, (triangles) RC are small, and high order corrections affect very little
the results. Data from the polarization method are shown as stars, fitted
by a linear function.

The present results suggest that an appropriate treatment of radiative
corrections constitutes the solution of the discrepancy between form factors
extracted by the Rosenbluth or by the recoil polarization method.

6 Conclusion

In these lectures we have summarized experimental results and given a
critical view on some aspects of nucleon and deuteron structure. We have
shown that this domain is very rich and large perspectives are opened at
present and future machines, as JLab, VEPP, BES, FAIR. In particular,
new information is expected in the time-like region.

Many of the ideas presented in these lectures were inspired by Prof.
M. P. Rekalo. The work presented here has been possible in frame of
fruitful collaborations. In particular, I acknowledge the members of the
ALPOM and GEP collaborations, and the co-authors of several papers
quoted here: G.I. Gakh, V. Bytyev, Y. Bystriskyi and E.A. Kuraev also
for careful reading of the manuscript.
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Figure 6: The e-dependence of the elastic differential cross section, for
Q? = 1, 3, and 5 GeV?, from top to bottom: Born cross section (solid
line), Drell-Yan cross section (dashed line), full calculation (dash-dotted
line) (including Born, SF and K-factor contributions).
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