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Systematics of geometric scaling
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Using all available data on the deep-inelastic cross-sections at HERA at x < 1072, we look for
geometric scaling of the form 0"’*7’(7') where the scaling variable 7 behaves alternatively like log Q*—
\Y, as in the original definition, or log Q*—AvY’, which is suggested by the asymptotic properties of
the Balitsky-Kovchegov (BK) equation with running QCD coupling constant. A “Quality Factor”
(QF) is defined, quantifying the phenomenological validity of the scaling and the uncertainty on the
intercept A. Both choices have a good QF, showing that the second choice is as valid as the first
one, predicted for fized coupling constant. A comparison between the QCD asymptotic predictions
and data is made and the QF analysis shows that the agreement can be reached, provided going
beyond leading logarithmic accuracy for the BK equation.

1. Geometric scaling [1] is a remarkable empirical
property verified by the data on the high-energy deep-
inelastic scattering (DIS) cross-sections o7 ?. It has been
realized that one can represent with reasonable accuracy
the cross-section by the formula

2
o) (1)

Q3(Y)

where @ is the virtuality of the photon, Y the total rapid-
ity in the y*-proton system and Q? o ¢*¥ an increasing
function of Y. The value found for A ~ 0.3 has been con-
firmed by the well-known Golec-Biernat and Wiisthoff
model |2] where geometric scaling has been explicitly as-
sumed in the parametrisation.

The property (), also observed in DIS on nucleus [3]
and diffractive processes [4], has been intimately related
[5] to the concept of saturation [@], i.e. the behaviour
of perturbative QCD amplitudes when the density of
partons becomes high enough to exercise the unitarity
bound. Indeed, there has been many theoretical argu-
ments to infer that in a Y, Q? domain where saturation
effects set in, geometric scaling is expected to occur.
Within this framework, the function Qs(Y") can be called
the saturation scale, since it delineates the approximate
upper bound of the saturation domain.

Following a theoretical approach, it has been possible
to derive the property () from the nonlinear Balitsky-
Kovchegov (BK) equation which represents the “mean-
field” approximation of the evolution equation for high
energy (high density) QCD amplitudes. This equation
is supposed to capture essential features of saturation
effects. In the 1-dimensional approximation it reads for
the density of gluons with transverse momenta k in some

Jv*p(y, Q) = 07*1)(
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target [1]
HNN(L,Y)=ax(—-0L) N(L,Y) —aN?*(L,Y), (2)

where L = log(k?/k2), with k3 being an arbitrary con-
stant. In Eq.[@), the coupling constant will be con-
sidered alternatively in the following as fixed (we shall
use & = 0.15), or running such that a(L) =1/bL ,b =
(11N.—2Ny)/12N.. The kernel will also be either taken
with leading logarithm (LL) accuracy [§], as x(y) =
2¢(1)—(y)—1¢(1—7) , or at next-to-leading logarithm
(NLL) accuracy (see e.g. |9, (10, [11]).

The key ingredient to theoretically prove geometric
scaling of the asymptotic solutions of the nonlinear equa-
tion (@) is the travelling wave method [12]. Indeed, the
BK equation admits solutions in the form of travelling
waves N'(L—vqyaY). L has the interpretation of a space
variable while t=aY, interpreted as time, is an increas-
ing function of rapidity Y. v, is the critical velocity of
the wave, defined in this case as the minimum of the
phase velocity. The travelling-wave solution for the quan-
tity NV can be easily translated to the property @) (at
least assuming negligible quark masses) since it yields
N(k?/Q3(Y)). Hence the asymptotic travelling-wave so-
lutions of the BK equation satisfy geometric scaling (up
to subdominant scaling violations which we will not anal-
yse in the present work). Similar results can be obtained
[13, 14] from an approximation of the linear equation
with absorptive boundary conditions. The main theoret-
ical results for the asymptotic saturation scale are the
following;:

3

log Q% = aX00e) (Y —Yp) —

log(Y — Yy
= 2 log(Y ~ o)
3 2 1
S +.o, (3
2\ avtd o )



0.14 : : :
Result ——
0.12 | Gaussian fit -—--- i
0.1F .
A =0.321
0.08 1= o = 0.056

0.06 Qmax = 0.113

0.04

(a) Quality Factor as a function of A.

.
8

'
©
'
]
'
w
o
w
D

(b) Scaling curve.

FIG. 1: Geometric Scaling in Y
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for running coupling. <. is the solution of the implicit
equation x(v.) = vex'(7e) while & = —2.338 is the first
zero of the Airy function. Yj is an arbitrary constant
which may parameterize the unknown “non-universal”
preasymptotic contributions, depending on the initial
conditions.

The questions we want to ask deal with the confronta-
tion between the empirical formula @) with the asymp-
totic predictions for the saturation scale (BH). They may
be expressed as follows

e Is geometric scaling, demonstrated for log(Q?) ~ Y
in agreement with the leading term in (B), remains
valid for log(Q?) ~ Y''/2 as suggested by (@)?

e Are the theoretical factors and subasymptotic
terms given in Eqs.(@H) visible in the data?

e Are NLL effects in the theoretical predictions phe-
nomenologically important?

e What is the role of “non-universal” terms?

2. We focus our analysis on the measurements of the
y*p cross-section 07 P = (4w2a, /Q?)Fy for which geo-
metric scaling is predicted. The latter being valid at
high-energy, we shall restrict ourselves to z < 0.01 for all
values of Q2. Within that range, we shall use all avail-
able data (404 points from E665 [13], H1 [16], NMC [17]
and ZEUS [1§]).

In order to get a quantitative answer, we shall intro-
duce an “estimator” or quality factor (QF) for determin-
ing the scaling quality, whose working definition is the
following. Given a set of points (x;,yi, fi = f(zi,yi))
and a parametric scaling law 7(x, y; \), we want to deter-
mine if for some values of A, f(z,y) can be considered a
function of 7 only. To achieve this we define a QF which
is large when the points (r; = 7(z;,yi; A), fi) “lies on a
unique curve”. To quantify this still ill-defined concept,
we shall first rescale the set (7, f;) into (u;,v;) such that
0 < u4,v; <1 and assume that the u;’s are ordered. We
then introduce

-1
> )
(ui - ui_1)2 + g2 '

i

Q(\) =

This definition for the quality factor obviously achieves
what we want: when two successive points are close in
u and far in v, we expect them “not to lie on the same
curve” and, indeed, they give a large contribution to the
sum in (), leading to a small quality factor. The con-
stant €2 in (f) is a small number (we have taken ¢ = 1/n
with n being the number of data points) which prevents
the sum from becoming infinite when two points have the
same value for u. Finally, by studying the dependence on
A of Q (as we shall see, it usually shows a Gaussian peak)
we can determine the best choice for the parameter in the
scaling function 7 and its uncertainty.

3. In order to answer the first question concerning the
compared validity of geometric scaling in Y vs. VY, we
performed the QF analysis in both cases. In Figlll we
show the data and QF for the usual geometric scaling
definition with Y. In Figlll(b), is displayed the data plot
with scale redefinition. The quality of scaling on this plot
can be read from Figlll(a), where the scatter plot of the
QF is displayed together with a Gaussian fit of the peak.
As obvious from FigllH(b), the peak value larger than 0.1
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FIG. 2: Geometric Scaling in VY

showss a good scaling and a Gaussian fit of the bump
gives the best value and error for the lambda parameter
A = 0.321 + 0.056 . Note that the results displayed on
Figlll can be considered as an update for the usual geo-
metric scaling tests and a quantitative determination of
the scaling parameter and its attached uncertainty. The
new point is that geometric scaling is also verified, and
with the same level of quality than previously, when the
saturation scale is chosen as a function of VY. This is
manifest on Figll where comparable QF heights at the
peak and width attest of the quality of scaling. The peak
value getting larger than 0.11 givess a good scaling. The
Gaussian fit of the bump gives A = 1.621 + 0.254 .
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FIG. 3: Quality Factor for the LL prediction.

4. Having verified geometric scaling, as suggested by
the asymptotic solutions of the QCD equations with both
fixed and running coupling constant, it is tempting to go
one step further and to ask whether the theoretical for-
mulae [BIF) with their theoretically predicted parametri-
sations are valid?

For that sake, we have considered first the LL pre-
diction with fixed coupling @) with the first subleading
correction, i.e. of the form log(Q?) oc AY —ulog(Y) (see
Fig. B). The predicted values from (@) are represented
by a point in the A, u plane. It happens that a QF of
~ 0.055 can be attributed to this parametrisation, as
shown on the same figure by the equi-QF curves. In this
case changing Y}, or adding the third term of (Bl does not
improve the QF’s. Hence the asymptotic LL theoretical
prediction remains only marginally verified at present en-
ergies.

Let us now turn to the analysis of the 3 different the-
oretical NLI. schemes that we consider. As now well
known, NLL corrections to the LL kernel |9] have to be
embedded in a resummation scheme in order to cancel
spurious singularities. We consider asymptotic predic-
tions (@) for the so-called S3, S4 schemes [10] and CCS
scheme [[11] which were recently derived [19].

On Figll we show the resulting analysis. The Qual-
ity Factor for the 3 schemes is presented as a function
of Yy, which parameterizes in (@) the non-universal con-
tributions. There always exists a range of Yy for which
the QF goes beyond 0.1 and thus leads to an accept-
able scaling. This has to be contrasted with the situa-
tion with LL kernel. However, if Y} is too negative, the
relevance of geometrical scaling in VY is questionable.
Indeed t = VY — Yy ~ /|Yo| + Y/24/|Ys| and thus the
scaling variable is Y with a non universal A = 1/2,/]Yp|
parameter. For that reason the S4 scheme seems favoured
by the analysis and the figure displays the resulting scal-
ing curve for Yy = —5.5.

5. Using the preceding results based on the estimate of
Quality Factors for scaling properties, it is now possible
to answer the questions asked in the introduction.

e Geometric scaling is definitely as valid for the
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FIG. 4: Geometric Scaling at NLL accuracy

choice log(Q?) ~ Y1/2 as it is for the original
log(Q?) ~ Y suggestion

e The theoretical predictions (B) based on the BK
equation at leading log accuracy, i.e. with fixed

coupling and LL kernel are only marginally verified
with a QF of ~ 0.055.

e At next-to-leading accuracy, the theoretical predic-
tions (@) on scaling may be satisfied. There exists
preferable NLL schemes e.g. the S4 scheme [1(].

e Parametrising “non-universal” terms, i.e. depend-
ing on initial conditions by a constant Yp in the
rapidity evolution, we find that they do not play
an essential role at LL level, while they contribute
to the quality of the scaling at NLL level.

The generality of the Quality Factor method indicates
its interest for a quantitative evaluation of good scaling
properties beyond the specific applications we focussed
on in the present work. It can be used to check empirical
scaling-law proposals as well as to quantitatively evaluate
the “distance” between given theoretical predictions with
data. In the present application, it leads to the conclu-
sion that geometrical scaling is a well verified empirical
property of deep-inelastic cross-sections on the proton. It
also shows that the theoretical predictions based on the
QCD saturation mechanism are consistent with the ob-
servation, but requires to go beyond leading logarithmic
accuracy and the asymptotic terms.

Finally, let us quote that recent high-energy predic-
tions [20] of diffusive scaling, namely o7 ?/\Y = o(r)
with 7 = log(Q?/Q?)/VY, have a QF of 0.05, indicating
that it might require higher energies.
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