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Abstract

The aim of this work is to give a pedagogical derivation of polarization observables for the
annihilation reaction et + e~ — N + N. The reaction mechanism is one photon 4+ two photon
exchange, the last is described by axial parametrization. After deriving the general expressions
for the cross section of a binary process, the matrix element is written in terms of three complex
amplitudes. The method to derive polarization observables is detailed and all expressions are
given in terms of generalized form factors. The strategy for determining physical form factors
in annihilation reactions in presence of two photon exchange is suggested, on the basis of model

independent properties of the relevant observables.
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I. INTRODUCTION

The reactions e +p — e* +p and the crossed channel et +e~ — p+pand p+p — eT+e~
are studied since many decades, as they are considered the simplest reactions which contain
information on the nucleon structure.

Following the developments of the experimental possibilities: high intensity accelerators,
polarized beams and targets, high resolution spectrometers, electron and hadron polarime-
ters, it has been only recently possible to measure polarization observables in space-like
region, and to measure the annihilation cross section in a wide kinematical range in the
time-like region. The physics goal is a precise extraction of hadron form factors in the full
kinematical region. Evidently a comprehension of the reaction mechanism, including precise
radiative corrections is necessary.

The aim of this work is to give a detailed description of a model independent formalism
very well adapted to the extraction of cross section and polarization observables. The present
results are focused on the reaction et +e~ — p+p, as its experimental study is very actual.

Model independent expressions and statements are derived for the interesting experimen-

tal observables, when the reactions occur through the exchange of one and two photons.

II. DIFFERENTIAL CROSS SECTION

Let us define the cross section o for a binary process

a(p1) + b(p2) — c(ps) + d(pa), (1)



where the momenta of the particles are indicated in parenthesis. The cross section o char-
acterizes the probability that a given process occurs. The number of final particles issued
from a definite reaction is proportional to the number of incident particles Ng, the number

of the target particles Ny and the constant of proportionality is the cross section:
NF:O'NBXNT. (2)

The cross section can be viewed as an ’effective area’ over which the incident particle
reacts. Therefore, its dimension is ¢cm?, but more often barn (1 barn=10"% m?), or fm? (1
fm=10""" m).

An useful quantity is the luminosity £, defined as £ = Ng [s !|Nz[em™2]. For simple
counting estimations, Ny = o £. This is an operative definition, which is used in experimental
physics.

On the other hand o needs to be calculated theoretically for every type of process. The

present, derivation is done in a relativistic approach. This means that
1. The kinematics is relativistic;

2. The matrix element M, which contains the dynamics of the reaction is a relativistic

invariant. In general it is function of kinematical variables, also relativistic M =

f(s,t,u);
3. o has to be written in a relativistic invariant form;

The starting point is the following expression for the cross section

_ IMP?

d
7T7

(2m)*6™ (p1 + p2 — p3 — pa)dP, (3)

which is composed by four terms:

1. The matrix element M, which contains the dynamics of the reaction, and it is calcu-

lated following a model:
2. The flux of colliding particles J;

3. The phase space for the final particles, dP;



4. A term which insures the conservation of the four-momentum 5™ (p, + py — ps — p4)
which is the product of four ¢ functions, because each component has to be conserved

separately.

Let us calculate in detail each term.

A. Definition of flux

The flux is defined through the relative velocity of incoming and target particles:

T = npnptye, (4a)

T =4/ (py - p)? — MM, (4b)

where M, (M) is the mass of the beam (target) particle, v, is the relative velocity between
beam and target particles and the densities of the beam and target particles ng,ny are
proportional to their energies as n;, = 2F;.

Let us prove that the two expressions (4a) and (4b) are equivalent. It is more convenient
to calculate Z (Eq. 4 ) in the laboratory frame where the target is at rest:

pr = (E1,p1), pa=(M,0), [vea| =01 — | = 5 = np=2E1, np=2M,. (5)
Replacing the equalities (5) in Eq. (4a):
I — 2E12M2@ — 4M2 ﬁ1|
Ey
and in Eq. (4b) :
(pr-p2)® = MYMG = MyEY — MY My = My(EY — My) = My|pi[*, — T = 4M|p]

and the equalities (4) are proved. Moreover, we prove also that the flux does not depend on
the reference frame, because it can be written in a Lorentz invariant form.

Let us consider the center of mass system (CMS):
P = (E17E)7 P2 = (E27 _E)a P1-pP2 = E1E2 + |E|2, M12 = E12 - |E|2, M22 = E22 — |];|2
and

(p1-p2)* = M{M; = EVE; + 2B E;|k|” + |K|* — EYES + |KI*(E? + E3) — [k|*
= [k (By + o) = |kPPW”. (6)
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The flux, Z, can be written as

T = 4|k|W, (7)

where W = E| 4+ Fj is the initial energy of the system in CMS.

B. Phase space

The phase space for a particle of energy E, mass M and four-momentum p (the number

of states in the unit volume) can be written from quantum mechanics in an invariant form:
d'p 5(p* — M?)
dP = oF
| o)

where the ¢ function insures that the particle is on mass shell and the step function ©(F)

insures that only the solution with positive energy is taken into account. Note that the wave
functions of all particles entering in the matrix element must be normalized to one particle
per unit volume. In this case all these wave functions contain the factor 1/\/%, where ¢ is
the particle energy. Usually these factors are explicitly taken into account in the expression
for the cross section, we insert them into the phase space.

Extracting the term which depends on energy:
d*p §(p* — M?) = $*pdES(E? — 5 — M?).
and using the property of the ¢ function

/5 dx—z|f (8)

(z; are the roots of f(x)), with f(E) = E? — p* — M?, and f’(E) = 2F one finds:

1
dES(E? — 3 — M*)O(E) = —
[ amoe — gt - o) = 5
For the considered reaction:
. T
(2m)32E5 (27)32E,
C. Calculation of the cross section
The total cross section can be written as:
(27T)4 / 2¢(4 d3ﬁ3 d3ﬁ4
= 5 — Py — : 9
| M|?0" (p1 + p2 — p3 — pa) 2r)72E,; (37)2E, (9)
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One can see that it corresponds to a six-fold differential, but four é functions are equivalent to
four integrations. So finally, for a binary process one is left with two independent variables,
(E,0) or (s,t). For three particles, one has nine differentials, four integrations, i.e., five
independent variables.

The term §*) (p1 + p2 — p3 — p4) can be split into an energy and a space part: 5@ (p1 +
P2 — ps —pa) = 0(Ey + By — E3 — Eq)0® (51 + P> — Ps — ).

Note that

59+ 5~ s - =1 (10)

in any reference frame.

Let us use spherical coordinates in CMS (p3 = (E3, D), ps = (E4, —p), d*p = |p|*dQdp)and
consider the quantity J:

d’p

4F3FE,

|p]>dSdp

J =06(EL+ Ey,— E; — Ey) N
ey

= 5(W — By — Ey) (11)

where

After integration, using the property (8):

dE5|pld2 dQ) 1
J = /6(W — B3 — E)) Zg = |TE4 y : (12)
dE, (W — Es5 — Ey)
where
d dE, E; w
— W-E;—E)=-1—-—=_1-2=__" 1
dE; W ’ 2 dE3 Ey Ey4 (13)
and therefore
7l
— ) 14
J =07 (14)

Substituting Eqs. (7, 14) in Eq. (9) we find the general expression for the differential
cross section of a binary process, in CMS:

do __|MPp]

g0 _ 2P 15
d) 64722 || 13)

and for the total cross section:

2
U:/Mdg (16)
64722 |k|



N(p1)

e ~(k,) \ 0
;’4
e (k,)

N(p,)
FIG. 1: Annihilation e~ +e* — N + N in CMS system.

In case of elastic scattering, |k| = |p], therefore:

d_o_el B |M|2
Q) 64m2IV?2
M|

8TW '
For the annihilation reaction considered here, e* + e~ — N + N, neglecting the mass of

= |7 (17
with the elastic amplitude F¢ =

the electron, one has:
-~ W |44
|k|:7, pl=VE*-M?=F 1—M2/b72:—2 B,

and
d_o_(mn B |M|25
dQ  64mw2¢?’

where 8 = /1 — 4M?/q? and ¢* = s = (p; + p2)*.

(18)

III. AXIAL PARAMETRIZATION OF THE MATRIX ELEMENT

In presence of two photon exchange (TPE), the matrix element of the reaction e (k;) +
et (ky) — N(p1) + N(p2), can be parametrized by three complex amplitudes. In the present
derivation we will use the following expression for the matrix element of this reaction, taking
into account the TPE contribution,

2

M = _%{a(_lﬁ)ﬁu(h)a(pﬂ Fi(q® t)y, — Fg—(2q2,t)

Uuuqu] u(—p1)

+a(—k2)%%U(kl)ﬂ(pz)%%?l(—pl)A27(q27 t) }7 (19)



where m is nucleon mass, ki and ks are electron and positron four-momenta, p; and p, are
antinucleon and nucleon four-momenta, ¢ is the four momentum of the virtual photon and ¢
is the Mandelstam variable, the momentum transfer: ¢ = k1 +ky = p;+ps and t = (k; —pl)z.
The first two amplitudes contain the contributions of 1y () 2y exchange, whereas the third
amplitude is fully induced by 2 exchange. A, (g% ¢) can be parametrized in different but
equivalent ways. Here we use the axial parametrization that describes the exchange of a 17
particle. The spin and parity of the transition induced by TPE can be any, but the C-parity
must be positive (whereas it is negative for 1y exchange).

The three complex amplitudes, Fo(¢? t) and Ay, (g% t), which generally are functions
of two independent kinematical variables, ¢> and ¢, fully describe the spin structure of the
matrix element for the reaction et +e~ — N + N - for any number of exchanged virtual
photons, because they contain C-odd and C-even terms.

This expression (19) holds under assumption of the P—invariance of the electromagnetic
interaction and conservation of lepton helicity, which is correct for standard QED at the
high energy, i.e., in zero electron mass limit. Note, however, that expression (19) is one of
the many equivalent representations of the et 4+ e~ — N + N reaction matrix element.

In the Born (17 exchange) approximation these amplitudes reduce to:
FIBOML(QZ, t) — F1(q2), FQBom(q2,t) — FQ(QZ), A2Byorn(q2,t) — 0, (20)

where F(¢®) and Fy(q?) are the Dirac and Pauli nucleon electromagnetic form factors (FFs),
respectively, and they are complex functions of the variable ¢?. The complexity of FFs arises
from the final-state strong interaction of the produced NN —pair. In the following we use
the standard magnetic G/(¢?) and charge Gg(¢?) nucleon FFs which are related to FFs
Fi(¢?) and Fy(¢?) as follows

2

Gu=F+F, Gg=F +1F, 1= -1_>0. (21)
4m?

By analogy with these relations, let us introduce a linear combinations of the Fo(q¢?, t)

amplitudes which in the Born approximation correspond to the Sachs FFs Gj; and Gg:

G~M(q27t) = Fl(q27t)+F2(q27t)7
Ge(®,t) = Fi(¢®t) + Ty (¢ t). (22)

The matrix element (19) can be rewritten in terms of vector and axial electromagnetic

9



currents:

e2

M= =S G 03, @
where 5", j\*) are vector and axial lepton currents and JS”, Ji* are vector and axial nucleon

currents:

Fy(g?, )

i = al=ko)yaulke), I = a(ps) |Fi(a* 1)y, — Tyl | u(=p1),

@ - o 1
g = a(=ka)ysulke), T = a(p2)yuysu(—pi) Az (¢ 1), o = Sl nl (24)

Then the differential cross section of the reaction e~ +e* — N 4+ N in CMS according to

(18) can be written as

do OCQB (v v -(a a (v v -(a a)\*
o = 4_q6(]lg>J£>+]£>Jﬁ>)(]£>J5>+]£>J5>)
a?f N e? 1
_ P i) g (i) (i) _c _
= 0 [LWHW + 2Re(LWHW)] == o

where we neglected terms proportional to A%Ay (since the amplitude A, is entirely due to
the TPE contribution, which is of the order of «). The ’vector’ (v) and ’interference’ (i)

leptonic/hadronic tensors are defined as

L) = 00 L) = j@ 0 g Z go) g gl 2 g jo (25)

o = I Jv " I A % wo v

Note that the term proportional to the Dirac FF, Fi, in the expression for the nucleon vector
current, Jff’), (24), is gauge invariant, when both particles (IV, N) are on mass shell. The
second term proportional to the Pauli FF, F3, is always gauge invariant:

1

1.
(Ow)q, = 5(%% — VY)Wl = §(qq —qq) = 0.

It is possible to find other forms of the nucleon vector current Jff), which are equivalent
only for on-shell particles. In our case nucleons are the final particles, therefore they are
on-shell.

Let us show that for on-shell nucleons the expression for the J,(f) (24) can be simplified

by using Dirac equations' for particles (nucleon - py) and antiparticles (antinucleon - p;)

w(p2) (P2 —m) =0 = @(p2)p2 = u(p2)m

(p1 + m)u(—p1) =0 = pru(—p1) = —u(—p1)m

LTt is correct only when nucleon and antinucleon are on mass shell (real particles), i.e., they satisfy the
Dirac equation.

10



and the properties of Dirac matrices : {v,,7,} = 2g,,, where g,, is the metric tensor of the
Minkowski spacetime, ab + ba = 2ab, ary, + v, = 2a,, where a and b are four vectors.
Let us develop the term accompanying Fj:

$1(6) (s = ) ()

N}

u(p2) o quu(—p1) = =@(P2) (V¥ — W) Gu(—p1) =

N

(p2) [7u(P1 + P2) — (D1 + P2) V] u(—m1)

N}

(p2) [y (=m + P2) — (Pr + m)v,] u(—p1)

N

(p2) [—2my + (b2 — Prvu)] u(=p1)

N}

(pZ) [_vau + (2p2u - ﬁZ/y,u - 2171# + ’}/ﬂﬁl)] U(—pl)

NN =N =N RN =N =

u(pa) [—4my, + 2(p2 — p1) ] u(—p1). (26)

Replacing in the expression for J,(f), Eq. (24):

I = (o) (B + Fa = 520 = ] ) = o) | (81 F2) 3 = 228 ),

(1)
where P = (py, — p1)/2 and Fi, F;, can be substituted by generalized magnetic and charge
nucleon FFs, Eq. (22):

v — ~ GM (q27 t) - éE(q27 t)
For simplicity, we will use in our calculations:
Gu —Gg
—— =G 29
m(l—71) (29)

IV. LEPTON AND HADRON TENSORS

We give a detailed derivation of the tensors, in particular of the lepton tensor and of the

matrix components.

A. Lepton tensors

The calculation of the leptonic tensors leads to the calculation of a trace. Let us give the

explicit derivation. From Eqs. (24,25), the expression for the ’vector part’ of the leptonic

11



tensor is:

L) = a(=kz)yuu(ky) [a(—ke)wulk)]". (30)

Using the definition w(—ky) = uf(—ko)ys = u*(—ky)y4 and the following properties of the

matrices: Vi = Y4, (Va)ij = (V4)jis (Va)k1(V4)im = Okm, the complex conjugated term can be
written as

[@(=k2)you(ky)]” = [u"(—k2)vavu(k:)]” = w(=k2)vivu’ (k). (31)

In component form (with spinor indices):

ui(—k2) (71)ii () v (k1) ke = ul(=k2)i(74)i5 (7)) jkOkmu” (k1)m
= u(—k2)i(74)ij (1) e (V) kit (Va) im0 (K1 ) m
=ty (k1) (va)ma (V)i (V] ) ()it (o)
= a(k)yayiau(—ks) = (k) yu(—ks).

(
(

Therefore
[a(=k2)voulk:)]” = a(ki)vou(—ks). (32)
This result will be used all along the paper, with other terms between bispinors (7v,, 7,75, P,)-

Let us write the tensor (30) in component form

L) = 0i(—ka) (va)sgu(k1) 80 (k1) (Vo) aptin(— k) = up(—k2)i(—k2) (v) 505 (k1) @a (k1) (3 )ab
= (2)5i(V)ij (P1)ja (V) ab = Tr[u(—ko)u(—ke)yuu(ki)u(ki)y], (33)
where we applied the property that a product of matrices is a matrix and the first and

last indices coincide: TrA =), Ay. The density matrices p = u(p)a(p) for polarized and

unpolarized particles and antiparticles are given in the Table I.

particle antiparticle

unpolarized p+m p—m

polarized |(p + m)%(l —v58)|(p — )%(1 — ¥58)

TABLE I: The density matrices for polarized/unpolarized particles and antiparticles.

The polarization four-vector s is related to the unit vector along polarization of the

particle in its rest system, 5 by

so=—p-&; F=E+ (34)

1
m



Let us consider firstly unpolarized incoming positron and longitudinally polarized incom-

ing electron. In this case the leptonic vector tensor, can be written as

) ) ) 1 ) . ;
L) = Tr | (ke = me)y (b1 +me) 5 (1= 58)7 | = LE)(0) + L) (S) (35)

v

and expanded as a sum over polarization states.

1. The unpolarized lepton tensor : LE},},) (0)

Let us extract the part of the leptonic vector tensor which does not depend on polariza-

tion:
L&) = L7 [ (i k = L (e T
;w( )= 9 7 [ (k2 — me)yu(kn +me) v | = 9 r(k2yukiv,) — meTr (vuvw)
Using the rules for calculating the traces of Dirac matrices : T7rvy,y, = 4g, and

TrYyYuYo Vv = 4(9pp9orv + GuocGvp — GopGuw) one finds:

L (0) = 2 (kuwkoy + kipkay — kikagu — m2gu) = =g + 2 (kikoy + kigka,) . (36)

3%

where we used the identity

2

¢° = (k1 + ko) =k} + 2k1ks + k3 = 2(m? + kiko) = kiko +m? = % (37)
The tensor describing unpolarized electrons is symmetric.
2. The polarized lepton tensor : LE},},)(S)
For the polarized part of the lepton tensor one has
(v) 1 ; ; . 1 A .
L)(S) = —§Tr (ke — me)yu(k1 + me)fyg,s%] = —5Mme {Tr [751:2%5%] —Tr [75%1‘913%] }
= 2myi (kopsv) — 2myi (ukisv)y = 2myi (ursq) , (38)

where we used the notation

T/r 75fylif)/l/7p70' - _4i€/tl/p0' - _42 </,“/p0'> y

and the properties of permutations of Dirac matrices. The Greek letters u, v,... are used

for the non contracted indices of the antisymmetric tensor €,,,,.

13



One can check that the tensor LEZL) (S) (38) has the following property, which follows from

current conservation:
4y - L,(E/)(S) = CwopSolpdu =0
as it is the product of an antisymmetric tensor (£,,,,) times a symmetric tensor ¢,q,.
When the electron is longitudinally polarized (E I ki — €k = |E1| =E?>—m2=~E),

the components of the polarization vector s, (Eq. 34) become

E o |y |2 o E? —m? -F . ky
=—; §=¢|1l+ ————— | =¢|{ 14+ ———F= ) =&—, e = A—F,
S0 m, ) S g ( + me(me _|_ E) g + me(E _|_ me) §m67 1.e ) SIL Me
(39)
where the helicity A\, takes the values = +1 if E is parallel or antiparallel to k1. One can see

that the longitudinally polarized part of 'vector’ lepton tensor (38) is not suppressed by the

electron mass and it can be written as:

LY(S) = 2, (uvkyq) . (40)

[17%

Notice that the transversal component of the vector polarization remains unchanged and

should be evaluated from (38).

3. The unpolarized lepton tensor : L,(fl),(O)

According to (24) and (25)
LY = a(—ka)yuysulky) [@(—k2)vou(k)]” = @(—k2)vuvsu(ke) @k you(—k),
resp.

Lffg = Tr{u(—=ko)u(—k2)vuvsu(ki)u (k).

= Tr | (he = mes + ma) 3000 (41)

Do =

Again it can be divided to polarized and unpolarized part. For the unpolarized part
0 (0) = 17 [(i i L -y
L) = 5T | (ks = me)s by +me)w | = 5T7 [rskaruban | (42)
which can be expressed as

. 1 ) .
L(Z) (0) = 5(—42)6pugyk2pklg =0 <,ul/k'2k'1> . (43)

[17%
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4. The polarized lepton tensor : L,(fl),(S)

The polarized part of L,(fl), is written as:
(i Lo T i :
Luu(s) = —§T7” [(k2 - me)%t%)(kl + me)7557u]
1 N 1 . .
= —§TT |:(k2 — me)fyume§fyy] + §TT |:(k2 — me)Vuk157 | (44)

where we used 72 = 1. Eq. (44) can be simplified to

i Me 2 N ~
LI(UZ(S) = [Tr(kgfyus*y,,) —Tr(fyukls%)]

= —2me [kousy + kovsy — k2 - SGu — k1puSy + ks, — ki - sgu) -

In case of longitudinally polarized electron beam, with the help of Eq. (39), this expression

simplifies to:

LE(S) = Xl @ guw — 2(kapkry + kavka,)]. (45)

5. Lepton tensor summary

The leptonic tensors for the case of longitudinally polarized electrons

L/(ﬁ/) = _q2g/w + 2(1471“]?721, + kh,k'gu) + 27:>\e </U/k1q>
LY = 2i (pvkaky) + Ael®guw — 2(k1ukay + k1ka,)], (46)

where ). is the degree of the electron longitudinal polarization. We will consider that the
lepton is fully polarized, i.e., || = 1, but it shows explicitly which part of the leptonic

tensor depends on polarization of the incoming electron.

B. Hadron tensors
According to the definitions (25) and (28), Hfﬁ) can be expressed as

H,Sqf,) = u(p2) [GM% — G2PM] u(—p1) [@(pz) [GM% — GQPV] U(_Pl)] '
= a(p2) [Grry — GoPy| w(=p1)a(=p1) [Gi — 3P u(p2) (47)

=Tr [u(pQ)ﬂ(pQ) [éM’Yu - G2Pu] U(—p1)ﬂ(—p1) [é}ﬁ\/[% - G;PVH .

15



Generally, taking into account the polarization states of the produced nucleon and antinu-

cleon, the hadronic tensor can be written as the sum of three contributions
Hy,, = HMV(O) + HW(SI) + Huu(sla 52), (48)

where the tensor H,,(0) describes the production of unpolarized particles, the tensor H,,(s)
describes the production of polarized nucleon or antinucleon and the tensor H,, (s, s2)
corresponds to the production of both polarized particles (N and N).

According to this notation and with the help of the expressions of the density matrices

from Table I, Eq. (47) can be written as:
~ ~ ~ 1 ~ sk *
ng) =Tr {(pQ +m) [GM’YM — GyP,| (p1 — m)§(1 —¥551) |Gy — GQPV] } ) (49)

which can be considered as a sum of polarized and unpolarized parts (similarly to the leptonic

tensor), sy, is the polarization four-vector of the antinucleon.

1. The unpolarized hadron tensor : Hff,},) (0)

The unpolarized part of HSY) can be extracted from (49)

v 1 H a N Yk *

Hﬁy)(o) = §T7" [(pQ +m) (GM% — GQPM> (p1 —m) (GM% - G2py>]
Lrx ~ ~ ~ ~ * ~ * ~ A

=3 [GMGLTT(MWM%) +mG Gy P, Tr(Pay,) + GoGa P, P, Tr(pepy)
+mC~¥}‘\4G2P”Tr(ﬁ2%) — mCNJMG’gP,,Tr(%ﬁl) — mZCNJMC?}‘MTr(%%)

—mGyy GaPuTr(pry,) — m*GaG3 PP T |

where we omit the terms containing an odd number of v matrices, since their trace vanishes,

and further simplify as:

HY)(0) = 2 [|C~?M|2(p1upzu + P2y — (P12 + m*) g

+ﬂRﬂGﬁ@mrwﬁﬂ4mM@M@”.

Now we can apply following identities

2

q qu9v
pip2 +m® = 5 ; pip2 — m® = 2m”® (7 —1); Prupav + P1uboy = -

- 2P,P, (50)

to obtain

HY(0) = H\§,, + HyP,P,, (51)

1%
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where guy = guu - qqu/qZ and

H, = —¢*|Gul?
Hy = 4 |m?|GoP(r —1) — |éM|2+2mRe(éMG;)].

The formula for Hy can be rewritten in terms of G and Gg

4 - N
Hy=—[|Gul? - T|GM|2] .
T—1

2. The polarized hadron tensor : H,(ﬁ,)(sl)

The polarized part of Hfﬁ,) (also from (49))

H?)(s1)

can be simplified

H®)(s1)

_%Tr [(ﬁz +m) (ému — Gy b, u) (1 —m)7s51 (GW - Ggp”)]

1 s ~ ~ * A A Yk
5 [Tr(szM%m%&GzPu) + Tr (PG rryumys51Gha )
+T7 (PG Puprv551:G o) — Tr(mGarypiys51G i)
1 . o ~ o
3 [ — GuG3P,Tr(vspayupiér) + m|GurPTr (vspavudiv)

+G Go P, Tr (yspapi817) — m| G |*Tr (V7,D15170)

2i | Gr G P, (popprsi) + m|G [P ((uprsiv) — (papsiv))

—é}‘\/[G2Pu (p2p1511/>]

or alternatively in terms of G a and G B

HY)(s1) =

ﬁ [im(r = 1[Gt ? (pvgsn)

—|—iRe(C~¥M(C~¥E — C:’M)*)(Pu (vpap151) — P, (ppapis1))

+Im(éMé*E)(Pu <VP2P151> + P, (Mp2p181>) )

where we used Im|Gj|> = 0 and identity

Re(A) (PMQV - PVQM) - ij(A) (PMQV + PI/QM) = A*PuQu - APVQ/L?

2i (GMGE)*P;L (vpapis1) — éMG;PV (1pap1s1) + m|GM|2 (nvgsi) |,

(52)

which can be easily proved. Notice, that the first 2 terms in equation (54) are antisymmetric

and the third (last) term is symmetric with respect to the exchange p < v.
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3. The unpolarized hadron tensor : H,(fg (0)
Using the definitions (25) and (28)
HE) = alp)msu(-p) Az, [1(22) Gr — GoPo)u(-p)]

. . 1 . . "
=Tr [(p2 + m)7/¢75A27(p1 - m)§(1 - 7581)(GM% - GQPI/):| ) (55)

which gives for the unpolarized part

1 1 ~ ~ Nk *
HY(0) = 5Tr [(pz + m)Yuys Az (P1 — m) (Gl — GZPV)]
1 - o o
= §A27G}§4Trh5pzwp1%] = 2i A, Gy (Lvpapr) - (56)

4. The polarized hadron tensor : H,(fg(sl)

The polarized part of H ,(f,,) follows from Eq. (55)
1

H/E?(Sl) = —§T7“ (P2 + m)%’YE)sz(ﬁl - m)’75§1(é7\/1% - G5P,)
1 [ ~ ~ =k *
= 4n Tr[(P2 +m)rumsi (G — GoFY)]
TP+ m) 151 (G = G3R)|
1

= §A27 — mZGgPVTr[*yu&] + mé}‘wTT[ﬁzfywél%]

—GiP,Tr|payuprén] + méLTrmplm,,]] (57)

and by applying the rules for calculating the traces we get

H,E?(Sl) = 24y, | — M*G3P, 51, — G5 P, (p2yup1 - S1+ Prup2 - $1— D1 - PasSiy) (58)
+mé7\/f(p2u31u + PouSip — P2 * S19uw + P1uSty — PiwSip + D1 S1Gw) |
where
s1:p1 =03 s1:p2=51"4¢,
while sy, is polarization four-vector of the antinucleon. Using Eq. (50), expression (58) can

be simplified to

H;(fu) (Sl) = 2A2’y 2m2(T - l)G;PVSIM - G’ﬁpuplu& g — mé}‘wq *S1Guv

+mG~>’]<\/[(p2u51V + p2u51u +p1;¢511/ - pluslu) ) (59)
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which can be rewritten in terms of the generalized Sachs FFs as

2q - 51 ~ AN
m(GM — Ggr)'pu by (60)

+ (GM + éE)*(Slupzu + S1uP2u) + (éM - éE)*(Sl,uplu + S1P1p)

Hﬁ?(sl) = mAy, | —2q-51G G —

- (GM + GE)*(Sluplu — SwPip) — (GM - éE)*(Slup2u — S1uDau) |

where we can distinguish two antisymmetric terms, three symmetric terms and the term

proportional to p1,P, (2p1,P, = p1uPy + 1Py + D1, Py — p1uPy)-

V. DIFFERENTIAL CROSS SECTION

The differential cross section can be written as the sum of unpolarized and polarized
terms, corresponding to the different polarization states and polarization direction of the
incident and scattered particles. In our case we consider just polarization of the outgo-
ing antinucleon and longitudinal polarization of the incoming electron (with the degree of
polarization A,).

do  dou,

dQ - dQ

[1 + Pygy + Aepxgx + )\ePzgz] . (61)

A. Unpolarized differential cross section

The unpolarized differential cross section can be written as

dO'un aZB v v ) i 0125
0 = if [L)(0)H ) (0) + 2Re(LE)(0)H()(0))] = e D,
where [ = \/m is nucleon velocity in CMS and
10 ) i i
D = [L () HL)(0) + 2Re(LL(0) HE(0))] (62)

Let us calculate the first term of D. According to Egs. (36) and (51)

LOOVHD0) = [~ g + 2 (kroko + krko)] % [Hyguw + HoP, P
2 - .
= —H'(4- q_2) — Hyq” P* + 4H, (kl ko — w>
K q

where ky - ko = k1 -q=ko-q=¢*/2 and

2 . 2_(E?2—_7 -p
P2:(m 2]91 p2) _m”—( : P p2):m2—E2:m2(1—7), (64)
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where E? = ¢*/4 and m? = E? — p?.
Let us define a coordinate frame in CMS of the reaction e™ +e~ — N 4+ N in such a way
that the z axis is directed along the three-momentum of the antinucleon (p;). Therefore,

the components of four-momenta can be written as
p = (E,0,0,|71]) ; ki = (E,—|ki|sin0,0, k| cos)
p2 = (E,0,0,=[p1]) ; k2= (E, |E1| sinf, 0, —|E1| cos 0)
q= (2E, 0,0,0) ; P = (0,0,0, —|ﬁ1|), (65)

where k| = B = my7, |p1| = VE®> —m2 = my/7 — 1 and @ is the angle between electron
and detected antinucleon momenta. These identities and definitions lead to
LU0V HD(0) = 2¢"|Gul” + 4m*¢*(|Gel* = 7IGul?)

16
T—1

~ 1 - 1 - ~
= q4 |:|C;’]\/[|2 + ;|GE|2 — ;(|GE|2 — T|GM|2) COS2 9:|

(IGE|* = 7|Gu|?) k1 |71 cos? 0

_ 1 -
= ¢ [|G]V[|2(1+(:0329)—l——|GE|QSin2 9] : (66)
T
The second term of D can be written according to Eqs. (43) and (56) as

LOWO)HD(0) = 20 (uvkoky) x 2i A, Gy (uvpapy)

LOO)HD(0) = —4A2,G3,2 ((ka - p1) (k1 - p2) — (k2 - p2) (k1 - p1))
gt =245, G0, T 1) cos ] (67)
T

Finally we get the following expression for D

~ 1 - 4 ~
D = |Gul*(1 4 cos®0) + =|Gp|*sin® 0 — —\/7(T — 1) cos ReG A}, . (68)
T T

1. 27y mechanism and the unpolarized cross section

To separate the effects due to the Born and TPE contributions, let us single out the

dominant contribution and define the following decompositions of the amplitudes

GM(q2,t) = GM(q2)+AGM(q2,t),
GE(qZ,t) = GE(q2)+AGE(q2,t). (69)
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AG (% 1), AGR(¢?,t), and Ay, (g% t) are of the order of ~ «, while Gy/(¢*) and Gg(¢?)
are of the order of ~ o°.
Symmetry properties of the amplitudes with respect to the cos @ — — cos 0 transformation
can be derived in model independent way, from the C' invariance of the 1y ® 2y mechanism.
To prove this, let us consider, in addition to C-invariance, crossing symmetry, which allows
to connect the matrix elements for the cross-channels: e (k1) + N(p1) — e (ko) + N(p2), in

s—channel, and et + e~ — N + N, in t—channel. The transformation from s- to ¢-channel

can be realized by the following substitution:
ko — —kay p1 = —p1.
and for the invariant variables:
s=(ki+p)° = (ki —p)°, Q= (k1 —k)® = — (k1 + k)* = —.

Crossing symmetry states that the same three amplitudes Gg(s,@%), G (s, Q%) and
Ay, (s,Q?) describe the two channels, when the variables s and @* scan the physical region
of the corresponding channels. So, if ¢ > 4m? and —1 < cosf < 1 (6 is the angle of
the proton production with respect to the electron three-momentum, in the center of mass
(CMS) for et + e~ — N 4 N), the amplitudes G(t, cos ), Gur(t, cosf), and Ay, (t,cos ),
describe the process et + e~ — p +D.

The C-invariance of the electromagnetic hadron interaction and the corresponding selec-
tion rules can be applied to the annihilation channel and this allows to find specific properties
for one and two photon exchanges. Moreover, on the basis of the crossing symmetry, it is
possible to transform in a transparent way these properties for the different observables in
eN-elastic scattering.

To illustrate this, let us consider firstly the one-photon mechanism for et + e~ — p + .
The conservation of the total angular momentum 7 allows one value, J = 1 , and the
quantum numbers of the photon: J¥ = 17, C = —1. The selection rules with respect to

the C and P-invariance allow two states for eTe™ (and pp):
S=1,¢(=0and S=1, {=2with J" =17, (70)

where S is the total spin and /¢ is the orbital angular momentum. As a result the 6-

dependence of the cross section for et +¢e~ — p+p, in the one-photon exchange mechanism
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is:
do - - 2
d—Q(e +e” = p+Dp) ~a(t)+ b(t) cos® 0, (71)
where a(t) and b(t) are definite quadratic contributions of Gg,(t) and G, (t), a(t), b(t) >0
at t > 4m?.
Using the kinematical relations:
l+e cot? 0,/2 1
1—e€ 1+7

cos? @ = (72)

between the variables in the CMS of et + ¢~ — p+ P and in the LAB system for e~ +p —
e~ + p, it appears clearly that the one-photon mechanism generates a linear e-dependence
(or cot?6,/2) of the Rosenbluth differential cross section for elastic eN-scattering in Lab
system.

Let us consider now the cos §-dependence of the 17y ) 2y-interference contribution to the
differential cross section of et + e~ — p + p. The spin and parity of the 2vy-states is not
fixed, in general, but only a positive value of C-parity, C'(2y) = +1, is allowed. An infinite
number of states with different quantum numbers can contribute, and their relative role is
determined by the dynamics of the process v* 4+ v* — p + p, with both virtual photons.

But the cosf-dependence of the contribution to the differential cross section for the
17 ) 2~y-interference can be predicted on the basis of its C-odd nature:

d(j(mt)

Lo (e e o p ) = cosBlan(t) +en(t) o B+ erlt)cost 0+ ], (7)

where ¢;(t), i = 0,1.. are real coefficients, which are functions of ¢, only. This odd cos 6-
dependence is essentially different from the even cos#-dependence of the cross section for
the one-photon approximation. It is therefore incorrect to approximate the interference
contribution to the differential cross section (73) by a linear function in cos®#f, because
it is in contradiction with the C-invariance of hadronic electromagnetic interaction. Such
approximation can be done only when all coefficients ¢;(¢) vanish, i.e. in absence of 17 ) 2-
interference!

Therefore C-invariance predict the following symmetry of the two-photon contribution

to the amplitudes in ee~ annihilation:

AGr,p(cosf) = —AGy,p(—cosB), Asy(cosh) = Ay (—cosh). (74)
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Let us consider the situation when the experimental apparatus does not distinguish the
nucleon from the antinucleon. Then we measure the following sum of the differential cross
sections

doy, do

do
- = d—Q(COSH) + d_Q(_ cos f).

We can stress, using the properties (74), that this quantity does not depend on the TPE
terms.
Note also that the TPE terms do not contribute to the total cross section of the reaction

et + e~ — N + N, which can be written as

_dra®s

7(0?) = 5 [1Gula)F + -Gl )| (75)

On the other hand, the relative contribution of TPE mechanism is enhanced in the following

angular asymmetry
o(q*,00) — o(q*, ™ — o)
U(q27 90) + J(q27 ™ = 00) ’

where the quantities o(q?, 6y) and o(q?, m — 6y) are defined as follows

Ay (¢*,00) = (76)

b do T do
2 — 2 Q 2 — = / —_— 2 Q
U(q 790) /0 dQ (q 79)d ) U(q y T 90) b dQ (q 79)d
Using the symmetry relations (74) one can obtain for the asymmetry A, (¢?, 6p) the following

expression

2 [P
Ao (q2,00) = —/ dcos | (1 + cos® 0) ReG y (¢*) AG?, (¢, cos 0)
0

d

sin’ @
+

ReGr(q*)AG3;(¢?, cos 6)

T

—gmcos OReG 1 (q*) A% (¢, cos 9)], (77)

-
where the quantity d is

]_—1'0

3

d =

1
(4 + 20 + 23)|Gu|* + ;(2 — 9 — 23)|GE*|, o= cosby.

The TPE contributions can be removed considering the sum of the quantities o(q?, 6p)

and o (¢, ™ — 60p). As a result we have
2 2 2 ma’
E(q,90)20((1,90)+U(q777—90):75d (78)
always neglecting the terms of the order of a? with respect to the leading ones.
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B. Single spin polarization observables, antiproton polarization P,

P, is a single-spin polarization observable, which appears in the Born approximation in the
e~ +et — N+ N process with one polarized particle - the antinucleon (N), which is polarized
along the y-axis. It is shown below, that this observable doesn’t depend on polarization of
electron. Polarization of antinucleon along y-axis means, that its polarization unit vector E
has only y-component (E: (0,1,0)). This leads to following properties of antinucleon sy,

(34), (65)

Pr-E=0=50=0; 5, ==E=(0,1,0). (79)

The general expression for P, is

925 v v 7 7 daun
By = 4o (LU H) (s1,) + 2Re(LEHE) (51,))]
1 v v i 7
= gt [ Hii) (s1y) + 2Re(L HL (1) (80)

which can be divided into two parts - with unpolarized electron and with polarized electron

1 v v % %
P, = Dat (LG (0)HL) (s1) + 2Re(LY) (0)HL) (s1,))]

1 v v 7 9
T Dg (L) (S)YH) (s1y) + 2Re(L)(S)HY) (s15))]

Firstly we will prove that longitudinally polarized electron doesn’t contribute to the
polarization observable P,. The first term of the polarized electron part equals (40), (54)
for A\, = 1:

LO(SYHY) (s51,) = 2i (urkiq) x

uv ) Z.,'nQ(T - ]')|C~;’1V[|2 </Wq31y>

1)
+ZR€(GM(GE - GM)*)(Pu <Vp2p131y> - b, <MP2P181y>)
+Im(GyG) (P (vpapi51y) + Py (upapisiy)) |-

The lepton tensor is antisymmetric, therefore its product with the third (symmetric) part

of the hadron tensor vanishes. The first product is proportional to

(uvkiq) x (prgsiy) = 2(ki - 51y ¢° = k1 q 515 - q) =0, (81)
where we used (65, 79) ki.s1, = s15.¢ = 0. The second product is proportional to
(nvkiq) x (Py(vpapisiy) — P (upapisiy)) = —2 (v Pkiq) (vpapisiy)
= —2[P-pa(ky-s1y ¢-p1 — k1 -p1 q- s1y) + P-pi(ky-p2 q-s1y— ki - s1y ¢ p2)
+P - siy(ky-p1 g p2s—ki-paq-p1)] =0, (82)
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where again Eqs. (65, 79) was used (P - sy, = q - s1y = k1 - 515 = 0).
The second term of the polarized electron part of P, (45), (60)

LO(SYH D (s1y) = [0°gu — 2(kapkry + kovkiy)] X
2q - s1y
m2(1 — )

+(éM + éE)*(SlyupZ/ + Slyl/p2u) + (GM - GE)*(Slyuplu + Slyuplu)

XmAZ*y [ - 2q Sy ~>]k\4g;w - (GM - GE)*pluPI/

_(GM + éE)*(Slyuplu - Slyuplu) - (éM - éE)*(SlyupZ/ - Slyup2u) )

where taking into account that ¢-s;, = 0 and that the product of a symmetric tensor (L,(f,),)

and an antisymmetric tensor is zero leads to

L(i)(S)H/(‘ZI/)(SIy) = 2q2mA27 [(éM + G~E)*51y "D2 + (éM - GE)*Sly 'pl]
_4mA2'y((éM + GE)*(k2 - Sty k1o pa 4 k1 - s1y ko - p2)

+(éM - GE)*(kZ-Sly ky-py+ k- S1y ks 'p1)) =0, (83)

while kg *S1y = kl *S1y = P11 S1y = P2 S1y = 0.
Therefore, the polarization observable P, depends only on the unpolarized part

L0 0/ (51) + 2Re(LE)(0)H) (51,))] (84)

Py:D—(fl[MV uv v

With the help of Eqs. (36, 54), the first term is equal to
LS;/) (O)H;(LQI}/) (Sly) = [ - CIQQW +2 (kllleu + klukZV) ]
2

xm [im2(T — 1)|C~?M|2 (Urgsiy)

+iRe(éM(éE - GM)*)(PM <l/p2p181y> - P, <Hp2p151y>)

+[m(éMéTE)(Pu (Vp2p181y> + P, (Mp2p181y>) .

As L,(ﬁ,)(()) is a symmetric tensor it gives non-zero product only with the last (symmetric)

part of HSY) (sy,)

L(U) (O)H(U)(Sly) = [ - qZ.g/M/ +2 (k‘ll/k‘ZM + kluk2u) ]

uv

Im(éMé*E)(Pu <Vp2p181y> + P, <MP2P1S1y>)

2 [
m(r —1)
2Im(G G
= H [—@* (P2p2pr51y) + ¢ (P1papisiy)

+ 4ky - P (kopopi51y) + 4ks - P (k1p2pi1siy)],
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where (papapisiy) = (P1pap151y) = 0, because they are antisymmetric with two equal com-
ponents.
The computation of (kypapis1,) and (k1p2pisi,) is more complicated and for the first time

we will make it in detail. Let us recall the definition of

<k2p2p151> - 5uup(rk2up2uplp81yaa m, v, 0,0 = 0...3. (85)

We get, non-zero result only if indices p, v, p, o are different from each other (due to antisym-
metric e-tensor property) and components Ko, D2v, P1ps S1ye are non-zero for the given index.
Notice, that in case of P, polarization four-vector s, has only one (y) non-zero component
(79), so in the equation (85) ¢ = 2. On the other hand four-momentum #ky is the only
one with non-zero z-component and therefore u = 1. At last p; and ps have two nonzero

components, what leads into (with 1930 = 1)

51up2k2zp2up1p81yy = —c1032k22P20P12 — €1302K22P2:P10

= kogPa0P1z — koaP2zpio = 2E|E1||ﬁl| sin 6

7
= SmVT = 1siné. (86)

For the (kipsp151,) we obtain a similar result
2

(k1papr151y) = —%m 7 —1siné

and according to Eq. (65) ky - P = —ky - P = m?/7(7 — 1) cos 0, which all together give a

result

v v 8 ~ sk .
L/(_LV)(O)H/_(LV)(SIZJ) = ml—m(GMGE)fm?’(T—1)\/Fsm9(:059
= 8m2¢*Im(GGy) /T sin @ cos 6. (87)

With the help of Eqs. (43, 60), the second term of Eq. (84) is equal to

. . ‘ ~ 2q-s
LEOH 1) = 20 (ukohy) gy | =20 51, Gy — oo

+(GM + éE)*(Sly[,LPQV + S1yupou) + (GM - GE)*(Slyuplu + StyuPiy)
- (éM + éE)*(Sumpw — SiywDip) — (GM - éE)*(81yup2u — StywDau) | »

where ¢ - 51, = 0 and the product of the antisymmetric LEf,Z(O) with the symmetric parts of
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Hff,,) (s1y4) vanishes:

L) (0)H)(s1y)

[17% 1%

= —2im A, (koky) | (Gar + G (st — s1upia) + (Gar — Gr)* (s1yubaw — S102) |

= —4imA,, [@5\4(<51y2’1k2k1> + (s1yp2kakn)) + G ((s1yprkaks) — <51yP2k2k1>)]

(s1yP1kokr) + (s1yp2kaki) = (S1yqkoki) =0
<81yp1lf2k1> - <Slyp2k2k1> = -2 <81yPk2]€1> .

Therefore

LYWV H Y (s1,) = 8imAy, Gy (s1,Pkoky)

i

where (similar to previous derivation)

623uusnyzk2uklu = —62301(—|ﬁl|)k20k1x - 52310(—|ﬁl|)k2xk10

= 2m*m/7 — 1siné.
So the second term of Eq. (84) is

LO0)HY (s1,) = 16im* Ay, GmV/T — 1sinf

1
and finally for P, (87, 88) we get

2sin 6 S s
P, = NG [[m(GMGE)COSH—F

2sin 0 S = T —1 . A
= D [Im(GMGE) cos O+ 1/ TI7~,z[f127c:E]].

T—1

Re[iA27C~¥*E]]

T

(88)

(89)

The polarization of the outgoing antinucleon in this case is determined by the polarization

component which is perpendicular to the reaction plane.

1. 2~ mechanism and the single spin polarization Py

The polarization P,, being T-odd quantity, does not vanish even in the one-photon—

exchange approximation due to the complexity of the nucleon FFs in the TL region (to say
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more exactly, due to the non—zero difference of the phases of these FFs). This is principal
difference with the elastic electron—nucleon scattering.

In the Born approximation this polarization becomes equal to zero at the scattering angle
6 = 90° (as well at & = 0° and 180°). The presence of the TPE contributions leads to a

non-zero value of the polarization at this angle and it is determined by a simple expression

/r— 1 _
P,(90°) = 2 TD ImGrAs,, D= D(0=90").

29
T Y

Here the function A,, is also calculated at the value § = 90°. This quantity expected to
be small due to the fact that it is determined by the interference of the one—photon and
two—photon exchange amplitudes and should be of the order of a. The measurement of this
polarization at # = 90° contains information about the TPE contribution and its behavior
as a function of ¢2.

In the threshold region we can conclude that in the Born approximation this polariza-
tion vanishes, due to the relation G = G, which is valid at the threshold. The TPE

contributions induces a non zero polarization, which is determined by a simple formula

th B sin 260
Py (9) - Dth

Note that, at threshold, this polarization can still vanish if AGr = AG),. In this case the
differential cross section does not contain any explicit dependence on the angular variable 6.
In the general case, the amplitudes AG g,y depend on the 6 variable. The effect of the TPE
contributions for the polarization at an arbitrary scattering angle is expected to increase as
q? increase, as the TPE amplitudes decrease more slowly with ¢? in comparison with the
nucleon FFs.

Using the properties of the TPE amplitudes with respect to the cos @ — — cos # transfor-
mation, one can remove the contributions of the TPE effects by constructing the following
quantities. Let us introduce the terms P,(¢% 6p) and P,(¢*,m — 6p), which are integrals

of the polarization P,(¢?,6) over the angular regions connected by the above mentioned

transformation

0o T
P,(¢%, 00) = / Py(%.0)d9, P,(¢.7 — o) = / R

Let us calculate the sum and the difference of these two quantities. At the first order of the
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coupling constant «;, we obtain

D”(¢*,00) = Py(q*,00) — Py(¢*,m — ) =

8TR R? )
= —7(1 — 7)7(3/2) Sln((SM — (SE')

f+f

\/_—i-—ln

NG (90)

where

|GE| 2
e = (1 — 1— —
|GM|, Z ( J"O)( T )7

and 6,7 (0g) is the phase of the complex FF G/(Gg). We can see that, in this approximation,

R=

the quantity D? does not depend on the TPE contribution. So, the phase difference of FFs
can be correctly determined from this quantity, if the ratio R is known.

Let us consider the ratio of the function (g%, 6p), Eq. (78), calculated at two values of

90:
(g% 0) 1-—mx A+ o +af+ 12—z —2})R?

Y(q2,0,) 1 —ay 4+x2+m§+%(2—x2—x§)R2’

x; =cosb;, 1=1,2

This ratio allows to determine R, minimizing systematic errors.
The magnitude of the TPE contribution to the polarization P,, integrated over the con-

sidered angular region, can be obtained from the sum of the quantities introduced above

ZP(q27 90) = Py(q27 90) + Py(q27 ™= 90)

8 o sinf
= 77; : d cos HD—B{ cos 0Im(GuAGy — GeAGY,)

2C;SGImGMG* (14 cos? ) ReGay AGY, + 20 eReGEAG*
B
T—1 . 4 4008 20 .
T D
where
20
Dy = (1+cos? )]Gl + 20 G 2.

VI. DOUBLE SPIN POLARIZATION OBSERVABLES

A. The component P,

P, is a double-spin polarization observable: the polarization of the incoming electron is

necessary, in order to obtain a polarization of the outgoing antinucleon along the x-axis.
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The definition of the polarization observable P, is similar to P, (80)

1 ) 17 (v i) py(i
P = o (L HEo10) + 2R 0], )

where, according to definition (34), the four-vector sy, is

—

£€=1(1,0,0) = sy =0; 51, = (1,0,0). (93)

For the derivation of P, we can use the same arguments as for P,, with the following

specificities:
e ki, ko are not perpendicular to s, and ki - s1, = —ko - S1, = |/;1| sin 6.

e the fully contracted terms (....), which contain only s, kq, ks, p1, p2, ¢, P are vanishing,

because these four-vectors have zero y-component.

The first property can be used in steps (81, 82, 83) and, as a consequence, the polarized
electron part of P, is not vanishing. The second property can be used in the derivation
of unpolarized electron part of P,, where similarly to P,, the only mon-zero’ terms are
proportional to (....) terms, which are zero for P,. Therefore unpolarized electron process
doesn’t contribute to P,.

Let us repeat steps (81, 82) for P,
(Lkiq) x (pvgsip) = 2(ki - s10 ¢© — k1 - q S12 - @) = 2k1 - 515 ¢© = 2m/T¢” sin 0,

where s1, - ¢ = 0. And

(Ml/k1Q> X (Pu (l/p2p181x> - P, <Mp2p151x>) = —Q[P : pz(lﬁ “Sig g p1—kipigq- 51:1;)
+P pi(ki-p2q-sie— ki s1pq-p2) + P sig(ky-prq-po—ki-p2 q-pr)]

= 2[P-pi ki 510 q-pa— P-py ki~ 510 ¢ p1] = 2¢°m’ (1 — 1)y/Tsin 0,
where $1, - ¢ = s1, - P = 0. These differences lead to

LY(S)HY) (s15) = —8m*¢*VTsin0[|Gur|” + Re(Gu(Gr — Gur)¥)]

[17%

= —8m?¢>\/Tsin ORe(G 1 G%) (94)
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And step (83)

L (S)H‘(fu)(slw) = 2q2mA27((C~?M + éE)*Slm “p2 + (éM — G~E)*81w '171)
—4m Ay, [(GM + Gp) (kg - s1g k1 po + Ky - S1g ko - p2)
+(Gr — G)(ky - s1 ki pr+ ki - s1p ko - p1)]
= 0 —4mAy, [(Gyr + GE)*k1 - 510 P2 - (ke — ki)
+(Gr — Gp) 'k s1g pre (ko — k)]
= 16m*rv/T — 1 cos0sin O Ay, G, (95)

The results (94, 95) lead to final formula for P,

Re(GuGy) — 4/ -1 cos ORe( Ay, G)
T

2sin 0

P, =—
Dy/7

. (96)

B. The component P,

P, is the polarization of the outgoing antinucleon along the z-axis. It is a double spin
polarization observable, induced by the polarization of incoming electron. The definition of

P, is (similarly to P,):

1 ) 17 (v i) py (i
P = oo [LH (5:) + 2Re( L H 512)],

where sy, is the polarization four-vector with components (similar to longitudinal polariza-

tion of electron, Eq. (39) )

—

E=(0,01) = s0=""=Vr—1; .= (0,0,%) = (0,0, /7). (97)

As we can see si, doesn’t have y-component, what implies (similar as for P,) that the

unpolarized electron part doesn’t contribute to P,

L0 () H®) (512) + 2Re(LE)(S) HO) (5..))] (98)

Pz:D—qJ 2

The first part of Eq. (98) comes from Eqgs. (40, 54)

LO(S)HY) (s1,) = 2i (uvkq) x

1% uv ) im2(7— - 1)|éM|2 </U/q51z>

m(r —1
"‘ZR@(GM(@E - éM)*)(Pu <Vp2p151z> - P, (Mp2p151z>)

+[m(éMéE)(Pu <Vp2p151z> + P, <Mp2p151z>) )
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where antisymmetric leptonic tensor gives vanish with symmetric parts of hadronic tensor

LO(S)YHY) (s1,) = 2i (uwkiq) x

> T .
uv Iy ) ’L’ITLQ(T - ]')|C¥]Vf|2 <:u’l/q812>

m(r —1
—|—ZR€(GM(GE — GM)*)(PM <l/p2p131z> - PI/ <Mp2PISIZ>)]7 (99)

where
(pvkiq) x (pvgsi,) = 2(ky - s1, ¢ — q - 51, k1 - q) = —2mq*T cos O (100)
and

(tvkiq) x (P, (vpap1siz) — Py (upapi51z)) = —2 (uPkiq) X (upap15i.)
= —Q[P'pz(kl 81, ¢ pL—k1-p1q-51.) + Pepi(kyope g 812 — ki s1. g po)

+ P s (kv -p (J'p2—1€1'p2(J'p1)] =0, (101)
where we used notations (65) and (97). Now we can use Eqgs. (100, 101) in Eq. (99)

LO(S)HY (s1,) = 2¢*|G . cos b (102)

1% uv

The second part of (98) is according to (45, 60)

L(l)(S)H,(flz (Slz) = [q29uu - 2(k2uk11/ + k2uk1u)] mA?’y |:_2q : Slzéy\/[guu
. 2q * S1z
m2(1—7)

+(GM + éE‘)*(Slz,uPZV + SizwDau) + (GM - éE)*(Slzuplu + S1zuP1p)

(GM - GE)*meu

_(G~M + éE)*(Slzuplu - Slzuplu) - (éM - éE)*(SIZ/_LPZV - Slzl/p2u) )

where the symmetric leptonic tensor vanish when multiplied with the antisymmetric part of

hadronic tensor

LO(SYH(51.) = [¢°guw — 2(koukry + kakiy)]

112
S 2q'SZéM_éE*
XmAgy | —2¢ + 51,GyGuw — ;’12((1 e )

pluPu

+ (GM + éE)*(SIzMPZV + S12uPop) + (GM - GE)*(Slzuplu + S1zD1p)

(103)
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and after multiplication we get

. . - cs1,(Gar — G)* ~
LOS)H (51.) = 2°mAy, | ~3q- 51,6y — L3O = C0) b o p
m2(1 — )
q- Slz(éM - GE)*

+dmAy, |2q - 51,Glrky - ko + (p1 ki P-ko+p1-ky P-ky)

m2(1 —7)
_(GM + éE)*(Slz ko po- k1 + 81, - k1 pa - ko)
- (GM - GE)*(Slz ko pr- ki 481, ki pr- k2)] . (104)

Inserting Eqs. (65) and (97) the following expression is obtained:
; ; ~ T—1
LO(S)H D (s1.) = —q* Ap, G/ T(1 + cos®6). (105)
Substituting Eqgs. (102, 105) into Eq. (98), the final formula for P, is:

T—1

2 | = ~
P, = ) |Giar|? cos 0 — Re(Ay,Goy) (1 + cos® 9)] : (106)

T

Transversally polarized electron beams lead to antinucleon polarization, which is a factor
(m./m) smaller than in case of longitudinal polarization.

The polarization component P, vanishes when the proton is emitted at an angle = 90°
in the Born approximation. But the presence of the TPE term A, in the electromagnetic
hadron current may lead to non-zero value of this quantity if the amplitude Ay, (6 = 90°) is

not zero, since the value of this component is determined by the term ReAs, G-

VII. SPIN CORRELATIONS

Let us consider the case when the produced antinucleon and nucleon are both polarized.

For convenience, let us write the vector part of the hadronic current in the following form

J;(f) = u(p2) GM’YM + Go Py | u(—p1), (107)

where we introduce the following notation:
Gy — G

@ =)

(108)
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which differs by sign for the corresponding Eqs. (28,29). Then, according to the definition,

the hadronic tensor HSY is

~ ~ +
HY = JO IO = a(ps) [GM%L + G2PM] u(—=p1)u(—=p1)7a [GM% + GQPV] Yau(ps)
— TrA(p,) [GM% + GZPu] A(—p1) [ v+ G;P,,] (109)

1 ~ N =, 1 ~ ~ ~yx *
= Tri(pz +m)(1 — v552) [GM% + GQPH] §(p1 —m)(1 — v58;) [GMfy,, + GQP,,] ,

where A(py)(A(—p1)) is the spin—density matrix of the nucleon (antinucleon).
Retaining here the contribution proportional to the final particle polarizations we obtain

for the H,Sqf,)(sl, S9) tensor the following expression

1 1 ~ ~ ~ ~ A % *
H;(;l]/)(sh 82) = <_§> <_§> TT(pg + m)"}/582 [GM’}/M + Ggpu] (pl — m)’}/581 |: MYy + GQPV

1 ~ ~ ~ ~ ~ sk *
= ZTT(M +m)s, [—GM% + G2Pu:| (p1 +m)sy [GM% + GZPV] . (110)

75 was eliminated using the following rules: 72 = 1 and 757, + 7,75 = 0. So, the expression

for this tensor can be written as

1 o 5 . 5.
H,(LZ)(Sl, 53) = ZTT [G2Pu(m52 + P23a) — mGarS27Y, — GMP282%]

[G;‘Py(m§1 +p181) + mGidiy, + é}‘wﬁl%%] : (111)
Only the terms with even number of gamma matrices do not vanish:

Hf;j)(sl, S9) =
= iTT m?|Gso|* P, P, 3251 — mG Gy Py pasary, s
+ |G2|2PuP,,ﬁ2§2131§1 - méMG§Pu§2%ﬁ1§1 - m2|éM|2§2%§1%
+mGyy GaPup2da317, + mGyGaPudapidi, — |G "adaruprérn,
= m2|G2|2PMP,,31 Sy F |G2|2PuPu(p1 “S1P2 + S2 D1 v SaDa ¢ S1 — D1 P2S1 * S2)
— méMGzpu(p2 - S951, + P2 - 5152 — S1 - SaDoy + P1 - 5152, + 51 - S2P1y — D1 - S52514)
— m2|C~¥M|2(slusz,, + SouS1u — S1 - S2Guw) + mé}‘ngPM(pQ - 951y

1 -
— Do - S1S2, + S1 - SoPoy + P1 v S1S2y — S1 * SeD1y + P1 v S2514) — Z|GM|2XMV7 (112)

where X, = Trp2527,P1517 (we calculate this trace separately). To simplify this expression

let us remind that the four—vectors s;,(i = 1, 2) satisfy to the conditions p; - s1 = pa- s = 0.
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Applying these relations we obtain
q-s1=(p1+p2) 51 =p1-51+p2-si=pysi, (113a)
q-s9=(p1+Dp2) S2=p1-S2+p2-52=Dp1- S0 (113b)
Taking into account that
1 2 2
P, = 5(202 =Py, M —pr-p2=2m(1-71)
the expression for the H, P(ﬁ,)(sl, S9) tensor can be written in the following form

Hﬁﬁ)(sl, Sy) = |G2|2PMP,,[q - 51q - 89+ 2m*(1 — T)s1 - 89
_m2|éM|2(81uS2u + S1ySoy — S1° SQg;w)
—mGMG’gP,,(q ©S1S9, — q - S251, — 251 - $2P,)

+mC~1“jV,G2PM(q - §981, — - S1S9y + 281 - $9P,) — i|éM|2X;w- (114)
Let us calculate the X, tensor, which can be written in the following form
Xow = Trpedavuprd17 = Tr(ViVkVuYmVn Vo )P2iS2kPimS1n-
The trace of six gamma matrices can be written as
TryivevuYm Ve = ginfpmnvy — gp{kmnv} + gim{kpnvt — gin{kpmv} + gi{kpmnf,

where we introduce the notation {ikim} = 4(gikGim — 9iGkm + GimGr1)- S0, the X, tensor

becomes:

X = D2 - So{ppmnv}piysin — {kmnv}pausoDimSin + p1 - Pa{kpnv}sogsiy,
—s1 - po{kpmv}soppim + {kpmn}pay, sokpimsin
= —pod(p1 - 251, + P1 - S1520 — 51+ Sapiy) + D1 - P2A(S1S20 + S1052, — S1* S20uw)
—51 - DA (SouP1y + SouPiy — D1 - S2Guw) + P2v4(S2u51 - D1+ P1uS1 - S2 — S1uP1 - 52)
= 4[p1 - pa(S1uS20 + S10S2u — 51 * S2Guw) — ¢+ S2(S1uD2w + S1wP2u) + ¢ 51 S2Gu

—q - 51(S2uP1y + S2uP1u) + S1 - S2(P1uP2v + P1uD2u)] - (115)
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So, using the relations py, = ¢,/2 — P, pay = q,/2+ P,, we have for the H;(f,’,)(sl, $9) tensor?

H;(;;)(SI; 52) = |G2|2PuPV [(] 819+ Sp + 2m2(1 - 7)81 : 32] - m2|éM|2(51,u52u + S1,52u
— 51+ S9Gu) + 4msy - 59ReGoGo PuP, +myq - 55(GoGa Pyust, + GG Pysiy)
—mgq - 31(G2éLPu82u + GgéMPuszu) - |C~TYM|2 (D1 - p2(s1520 + S1052p
—51 - S2Guw) — ¢ - S2(51, Py + 51, P)) + q - 51(520 Py + 52, P,)
+q - 519 S2gu — 281+ 525, 5] (116)

Using the relation ¢a;b;+1*a;b; = Re(a;bj+a;b;)+iImip(a;b;—a;b;) we can write Eq. (116)

in the following general form

Hl(;'}/) (81, 82) = Clgu,, + CQP”PV + Og(PuShj + Puslu) + C4(P”82V + PVSQ”)

+C5(81”82V + 81,,82u) + iC’g(Pﬁsl,, — P,,Slu) + iC’7(P”32,, — P,,SQM). (117)

The structure functions C; have the following form

1 -
C, = 5( 281 “ 89— 2q - $1q - 52)|GM|27

2 ~ =2 1 2 ~ ~ 2
Cy = m TGy — G| 51-52—1-@(2(]-51(]-52—(1 s1-5)|Gg — Gul*|,

2 ~
Cy = ReE,, Cy = ReBy, Cs = —%|GM|2, Cs = ImE,, Cy = ImE,,

. S ~ ~ ~ - S ~ ~ ~
B = L2 (1GuP — GuGr), By = — L 2L (7|Gu? — GuGay), (118)

T—1 T—1

Now let us calculate the hadronic tensor H;(f,,)(sl, S3). According to the definition one has

H)(s1,52) = T = apa)yusu(—pi) Ay i(—p1) | Giw + GoP u(ps) — (119)
= Ao, TrA(p2)vuvsA(—p1) Gy + G;Py]

1 . R 1, . R S N
= A27T7"§(p2 +m)(1 - 7582)%755(101 —m)(1 —551) [GM% + G2Pu] .

Retaining here the contribution proportional to the final particle polarizations we obtain for

the H L(LZB(SI, S9) tensor the following expression

. 1 1 ~ A ~ A Yk *
HD(s1,5) = (—5)(—§)A27T7“(p2 +m) Y5327, 75 (D1 — M) V551 [GM’YV + Gzpu]
1 ~ N ~ ~ Nk *
= 1A27T7“(P2 +m)397u(P1 — M) Y581 [GM% + Gzpu] : (120)

2 We omitted the terms proportional to g, or g,, since they do not contribute to the cross section and to

the polarization observables due to the conservation of the leptonic current.
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where the following properties were applied: 587,75 = —82757u,75 = S27u7% = So77, and

TrABC = TrBCA. Therefore:

1 kA * A A A A ~ A oA ~
H;(LZV)(SD Sy) = 1A27Tr% [GMSWV + G2Pu51] [—m282% — MpP25Sg7, + Mmszyup1 + p252%p1]
1 * Aa A A A A Nk oA A Nk oA AA A
= ZA27T7"75 [mGQPu(Sﬁﬂupl - 51]0252%) - szMsl’YuSﬂu + GM31’YVP2S2%P1]
1 . . ~
= ZAQV(_4Z) [mGZP,,(< S189up1 > — < S1pasapt >) — m2Ghy < S1USL >]
1 -
+ZA27G}‘MYW, (121)
where Y, = Try5517,p2527,p1. In order to calculate this trace let us write the following
identity:
YaV8Vn = JaBVu + 9puYa — Jau¥p + 1 < aBuv > 7,75

So, one finds:

Y = TryssivwP2827ubr = TTY5%aY Y8527 uP151aP28
= Tr5 [gaw Vs + 9pvVa — Gapv +1 < aVBp > YpY5] S27uD151aD2s
= Trvs [s1wh2 + P2vd1 — P2 - 517 + 1 < 51UP2p > V5] S2Vub1
= —4i(s1, < paSolipr > +P2, < S1Soup1 > —Pa - S1 < VSopy >)
—4i < s1vpap > (S2pP1y + S2uP1p — D1+ S29pu)
= —4i(s1, < pasoppr > +p2y < S152P1 > —Pa - S1 < VSafipy > +89, < S1VPapy >

+p1y < S1UP2S2 > —p1 - So < S1UDaL >).

Then, the expression for the Hl(f,,)(sl, Sy) tensor can be written as

HISZU)(SI, S9) = —iAsy, [—2mG§P,, < ps18oP > —mZG"]‘V[ < pvsi Sy >
—i—é"]‘w(—q 51 < pvSapr > —q - So < PVSipe > +piy, < VS1Sap2 >
+poy < pS152P1 > 452, < UPaS1P1 > +51, < [iP2Sapr >)]
= iAy, [%(GM — Gp)'P, < pus155P > +G%,(m* < pvs sy >
+q - 51 < pvsepr > +q - Sy < pUsipr > —pr, < VS1S2p2 >
—Pay < [S152P1 > —Sou < UP2S1P1 > —51, < [iP2Sapr >)]. (122)

This tensor does not contain the terms proportional to AG; and AGf; since it is proportional

to the TPE term Ay, (terms of the order of a? compared to the dominant (Born) terms
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were neglected). The antisymmetrical parts of the Hl(ﬁ,)(sl, s7) and Hff,,)(sl, S7) tensors (with
respect to the p and v indices) arise due to the fact that nucleon FFs in the TL region of

the momentum transfer are complex quantities.

A. Spin correlations: unpolarized electron beam

Let us calculate the components of the polarization correlation tensor Py, (i, k = x,y, 2),
of the antinucleon and nucleon in presence of TPE mechanism. Let us consider firstly the
case of unpolarized lepton beams. The contribution of the vector part of the hadronic current

is determined by the following expression

S (s1,82) = LU0V HE) (51, 52)
= [~ g + 2(k1ukos + kivkay)] [Crgu + CoPu P, + C3(Pysyy, + Pysyy)
+Cy(Pysay + Pysay) + Cs(s1,500 + S1u59,) + 1Cs(Pusiy — Pusiy)
+i1C7(P,s2, — P,s2,)]
= —2¢°C1 + (4P - k1P - kg — ¢°P*)Cy + 2 [2(P - kysy - ko + P - kosy - ky)
—¢*P - 51] C3+2 [Q(P k1Sy ko + P - koso - k1) — ¢°P - 32] Cy
+2 [2(51 - k1Sy - ko + 59 - ks - k) — ¢Psy - 32] Cs. (123)
Note that the convolution of the symmetrical lepton tensor and antisymmetrical parts of the
hadronic tensor (with respect to p and v), which is proportional to the structure functions

Cs and (7, is equal to zero. Let us give some necessary relations among the kinematical

variables:
1 1 1

P'S1:5(192—191)'51:§p2'81:§(J'31,
Posy=(p— ) . . (124)

c S = — — © 8§ = —— - S9o = ——( - S

2 2272 b1 2 2271 2 2(] 2,

1 1
P221(2m2—2p1-p2)21[2m2—(q2—2m2)]:mQ(l—T),
1

P-k2+P-k1:P-(k1+k2):P-q:§(p2—p1)-(p2—|—p1):0—>P-k2:—P-k1

With the help of relations (124), Eq. (123) can be simplified,as:
SW(sy,50) = —2¢°Cy — [4(P k)2 (1 - T)m2q2] Cs + [4P ckysy - (ke — k1) — ¢q 31] Cs
+[4P - kisy - (ks — k1) + ¢°q - 2] Ol

+2 [2(81 . k182 . kQ + S1 k‘QSQ . k‘l) — q281 . 82] C5. (125)
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Substituting the expressions (118) for the structure functions C; into Eq. (125) one finds:

2 ~ .
SO (s1,59) = p— [7’|GM|2 — |GE|2] [4(P - k1)” + (1 = 7)m¢?] s1 - 52
2¢? -~ .
+ {T - [ReGu Gy — 1Gul?] = [4(P - k) + (1= 7)m?¢’] |G2|2} 0510 5
Pk ~ -
i 11 [TIGMI2 - ReGMGg] [s1- (ky — k1)q - 52 — 59+ (ky — k1)q - 1]
—2q2|éM|2(81 . k182 . k'g + S1 k‘gSQ . k‘l) (126)

The scalar products of various four—vectors in the chosen coordinate system is:

p2

Pk =k p=Epcos, 4P k)* + (1 - r)m’¢® = —p’¢*sin®0, 7 — 1= =,
m

q-S1 = 2E810, q-So = 2E820, (k‘g — k‘l) +S1 = 2];: . gl, (kg — kl) *So = 2];; §2.

The time and space components of the antinucleon (nucleon) polarization four—vectors

s1u(S2,) can be related to the unit polarization vector & (&) in its rest frame. The fol-

lowing relations hold:

1, > p . 2 P &p E
Sjo=—p &= —E&,, S1=+F ————, S1z = &1z, S1y = , S12 = —&12,
10 mp 1 mfl 1=& m(E+m) 1 &1 1y fly 1 mfl

L oz p L2 p- &P E
S — —— 7n. = ——&9,, So = =+ ——————, Sop — zy S = y S2; = —Co25.
20 mp &2 m§2 2 =& m(E+m) 2 &2 2y f2y 2 m§2

Then the different scalar products, including polarization four—vectors, are

E? 4 p? P2
51+ 82 = =128 — §1y§2y - T§1z§2z7 q-51q-52= _Wq2§1z§2z7

(k2—k1)'51Q'52—(k2—k1)'52Q'51:

P 5| (E . E .
—cos &, —sinbéyy, ) &, + | —cos B, —sinb, | &,
m m

=——q
m
(81 : k182 : kg + 51 - k282 . kl) =
2

FE 1
= —% {sin2 0&1,E2, — cosfsin QE (E12€22 + E22612) + 2 (»* + E?cos®0) §1z§23:| :
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Eq. (126) can be expressed in terms of the polarization unit vectors 51 and 52 as:
SW (s, 55) = 2m2¢?sin 6 [T|éM|2 - |C~¥E|2] S1 - So
+Z—z {2m2 [ReéEé}‘w — |C~¥M|Z] + p* sin? 9|GN|2} q-s1q- S2
+4m2% cos |:T|GM|2 — ReéEé}‘w] (ko — k1) - s1q - $2 — (ko — k1) - $2q * $1]

—2q2|éM|2(81 . k182 . k'g + 51 k‘gSQ . k‘l)

' . - E? +p?
= —2m2¢*sin? 0 [7‘|GM|2 — |GE|2] (&12800 + E1y&oy + Tf&zfzz)

_(J_42 {2m2 |:R6G~’Eé>]k\4 — |C~¥M|Z] + p* sin29|G2|2} §1282z

m

—4mEq* cosf [T|éM|2 — ReCNJECNJ}‘V,] [(E cos 0y, — sin 9§2$> &1,
m

n (E cos 0¢;, — sin 9{1;,;) §2z]
m

m2

= A1&108on + A281y82y + A381:62. + As&1262: + As2:6012, (127)

- E 1
+¢* |Gy ]? {sin2 0&1 €9, — cos O sin GE <§1x§2z + €90€1) + — (p* + E? cos? 9) fuf%]

where the coefficients A;, (i =1 — 5), are
1 e .
Ay = —¢*sin?0 |GE|2+T|GM|2] ,
2T L
1 - .
A2 = —q4 Sin29 |GE|2 - T|GM|2] ;
2T L

s : ) )
Ay = og*sin® 0| (14 cos® O)r|Ga|* — |GE|2]’
T L

1 o~
Ay = As = —F(f sin f) cos O ReG G, (128)

Now let us consider the contribution of the axial part of the hadronic current. The contrac-

tion of the unpolarized interference lepton tensor and interference hadronic tensor is

S(i)(sl, Sy) = Ll(fl),(O)HlSiy)(sl, S2)
= —2i < pvkiky > 1Ay, {%(GM — Gg)*P, < ps1s:P >
+Gh(m? < pvsisy > +q - 51 < pvsopy > +q - Sy < JUsipy >
—D1y < VS189D2 > —Poy < [1S189P1 > — SS9y < UPeS1P1 > —S1, < UP2SaPr >)]
= 24,, {%(GM —Gp)'Bi+ Gy (m*By+q - s1B3 +q - 53B,4

+Bs + Bg +B7+B8)], (129)
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where we introduce the notations for the contractions of the tensors

By, = < uPkiky >< ps159P >, By =< uvk ke >< puvsy sy >,
By = < pvkiky >< pvssopy >, By =< pvkiks >< uvsips >,
Bs = < ppikiky >< psisapy >, Bg = — < pp2kiky >< ps1sap1 >,

B7 = < /LSgkle >< UpaSi1pr >, Bg = —<< ,U/SlklkZ >< UpaSapr > . (130)
Moreover

Bs + Bg = Bs— < upokiks >< ps152(q — p2) >
= Bs— < uparkiks > (< pus180q > — < pus189ps >)
= < upikiky >< psi189pa > + < ppakike >< pus159pe > — < upokiky >< j18152q >
= < ps152p2 >< pu(pr + p2)kiky > — < ppokika >< p15152q >

= — < upokike >< psi82q > . (131)
The following relations are used to calculate the quantities B;:

< pvab >< pved > = 2(a-db-c—a-cb-d),
< pabe >< pdef > = a-d(b- fc-e—b-ec-f)+a-elb-dc-f—b- fe-d)
+a-f(b-ec-d—0b-dc-e), (132)

which results in

By = P-s51(P-kiky-s9— P -koky-s9) 4+ P-so(P-koky-s1— P-kiky-sy)
+P?(ky - sk - 51— ki - s1ka - 52),

By = 2(ky - s2ky - 81 — ki - 51ko - 52), B3z = 2(ky - pika - 5o — ki - soky - p1),

By = 2(ky - poky - 51— ky - s1ky - pa),

Bs + Bs = —pa-s1(q-kiky- sy —q-koki-52) —pa-52(q-koky-s1—q-kiky-s1)
—q - p2(k1 - s2ka - 51— ki 51k - 52),

By = py-sa(pr - kika - s1 —pi-koky - s1) + 51 - sa2(ky - paka - pr — pi - kika - pa)
+p1 - sa(ky - s1ka - p2 — ki - paky - 1),

By = —py - si(p1 - kika - 52 — p1 - kaky - s2) — 51+ s2(k1 - poka - p1 — p1 - kika - po)

—Pp1- Sl(kl - S9ko - pa — ki - paks - 32) (133)
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which can be further simplified:

By =P -kiq-s1q-s2+m*(1—7) (ki - sakz - 51— ki - s1ky - 52),

2 2
Bs + Bg = —%q - 51(ky — k1) - 55 — %(kl +Saka - 51— ki - s1ka - s2),
By = s1-59[(p1 - k2)® — (p1 - k1)?] + ¢ - sa(pr - kikr - 51— pu - ok - 51),

By = —q - s1(ky - piks - so— ki - sap1 - ko) — 51+ 82[(p1 - k2)? — (p1 - k1)?]. (134)
Therefore:

m?By +q - 5183+ q - 53By + Bs + Bg + By + By =

= 2m2(1 —7)(ky - soko - 51— Ky - s1ka - 52) + q - S2(p1 - koky - 51— p1 - kiky - 51)
2
+q- Sl(pl ckiko - 59— p1 - koky - 32) - %q ’ 31(k2 - k1) * S9. (135)

So, Eq. (129) for S@ (s, sy) takes the form
. 1
S(l) (81, 82) = 4A27 mZG*E(kl . 82k2 =51 — kl - Slkg . 82) + :(GM — GE')*P . qu * 514 - Sof ,

(136)

where the following equalities were applied:
q- S2ka - 81— q - s1ky- 82 =q- S1ky - so — q - Sk - sy,

q-siki1 52— q-soky - sy =ky-s1ky - sg —ky - s1ko - 50,
Let us calculate the following relation:
51 kosy - ky — 51 - kisy-ky =
ESl() —|— g E820 — kSg) (E810 — Egl)(ESQ[] + Egg) = 2E(820];§1 — Slglzgl)
FE
=75 |:<_ COS gglz — sin 9&1:1:) g?z + <_ Cos 9§2z — sin 9§2x) glz:| . (137)
m

Then the contraction Eq. (136) can be expressed in terms of the polarization unit vectors

51 and 52 as follows

3 m. . * *
SO (sy,50) = —4Ag,pg? [—5 sin 0G (€12€2, + E90€12) + E cos 9GM§12522] . (138)

The part of the differential cross section proportional to the polarization correlation can be

written as
do(s1,s2)  1a?B

dQ 248

[S(”)(Sh S2) + 2ReSY (54, $2)] s (139)
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where the factor 1/2 results from averaging over the positron polarizations. The factor
corresponding to the average over the electron polarization states is already taken into
account in the Lgﬁ,’i)(()) tensors. Eq. (139) can be written as a function of the polarization
of the final hadrons as:

do(s1,s2) _ ldoy,

dQ 4 dQ

[Pmm§1w§2w + Pyy§1y€2y + Pzzé‘lngz + szé‘lngz + szé‘lngw] ) (140)

where the components of the polarization correlation tensor Pj, are

. 2 9
P, = S‘“D [T(|Gm]? + 2ReGMAGY,) + |Grl? + 2ReGpAGY)
T
Sin2 9 2 * 2 *
Pyy = D [|GE| + QRGGEAGE — T(|GM| + QRGGMAGM)] y
1
P.. = — [7(1+ cos®0)(|Gu|” + 2ReG i AG)
—sin?0(|Gp|? + 2ReG pAGS) — 4y/7(T — 1) cos 9ReGMA;7] ,
in 6
Py, = P = 2227 [cosORe(GyGh + GrAGE + GpAG?,)
/7D
T—1 .
— | ReGpA;, (141)

B. Spin correlations: longitudinally polarized electron beam

Let us consider now the case of longitudinally polarized electron beam, while the positron
beam is unpolarized.
Then the contraction of the vector parts of the leptonic and hadronic tensors can be

written as

S(U)(Sl,SQ,)\e) = LEZL) ()\Q)H‘(;;)(Sl,é’g) =
= 2i). < ,U,l/qu > [C’lgu,, + CQPHPV + Cg(PMS‘lV + P,,Slu) + C4(PM82V + P,,SQM)
+C5(81M82V + 81,,82‘) + iCG(PuSh, - Pyslu) + 7:07(Pu821, - PI,SQH)]

= _4)\6(06 < PSlqu > —|—C7 < P82qk2 >), (142)

where we took into account the fact that the contractions of the antisymmetrical leptonic
tensor with the symmetrical parts of the hadronic tensor, which are proportional to the

structure functions C7; — Cjy, vanish.
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As an example, let us calculate the contraction < Pagks > where q, is an arbitrary

four—vector:

< Paqk, > = 2F < Padky >= —2FP; < i1adky >= 2Fp < zadky >= —2FEpky; < zadr >=
= 2Epk; < zadi >= —2EpEsinf < zadx >= 2E’psinf < zydz > @y

= 2E’psinfa,. (143)
Using this result one can easily obtain that
< Psiqky >= 2E?psin 0&1y, < Psyqky >= 2FE?psin 02y -

Substituting the expressions for the structure functions Cg and C7, Eq. (118):

2
. 1 .
SO (51,52, A) = —A\psin 05 ——=ImGuGilg - 5261y — 4+ 5162))
— _2)\,psinf C GG (—282¢ 6, — 28 ¢ &)
‘ T—1 E m> Y m>
4
— A\ sinH%ImGMG}ZJ(&y&QZ + E1,Eay). (144)

The contraction of the interference parts of the leptonic and hadronic tensors can be written

as

S(i)(517827)\e) = L(i)()\e)HL(LQ(Sh@)

1%

. 2 .
= e [q2g/w - 2(k1uk2u + kluk2u)] ZA2fy |:—1(GM — GE) P, < /L8182P >

T —_
+Gh(M? < pvs sy > +q - 51 < vsopy > +q - Sy < Usipy > (145)

—D1y < VS1S2D2 > —Poy < [1S152P1 > — Sy < UD2s1P1 > —S1y < [4P2S2P1 >) |-

The contractions of the symmetrical unpolarized lepton tensor and antisymmetrical parts

of the interference hadronic tensor are equal to zero. As a result we have

. 4
S(Z)(Sla S92, Ae) = _i)\eAQ’y {—1
T —

+P- k'g < klslsgP >] (146)

(GM — GE)* [—qQ < Psys9P > +P - ki < kysis9P >

+Gyr [QZ < p1515ap2 > —2(p1 - k1 < kas18apy > Ap1 - kg < kis1sape >)
+q% < pasisapr > —2(py - ky < kysi5op1 > +py - ki < kpsisopr >)
+q2 < S$2p2S1p1 > —2(k1 - 59 < kopasip1 > +ka - 52 < kipasipy >)

+q2 < S$1p2Sa2p1 > —2(k2 - 51 < kipesapr > +ky - 51 < kapasapy >)] }
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The term < Ps;soP > vanishes, since it is the product of the antisymmetrical tensor €,
and the symmetrical tensor P,P,. To simplify this expression one can use the following
property of < abed >: any permutation of the neighboring variables gives factor (—1), for
example, < abed >= — < acbd >. Four terms, proportional to ¢?, are canceled out. Using
the conservation of four-momenta in the reaction, k; + ko = p; + po, one can prove that
p1 - k1 = po - ke and py - ke = po - k. Taking into account these relations, we can rewrite Eq.

(146) in the form:

S(l)(Sl, S9, )\e) = _iAeAQ’y {4?i < (k‘g — k‘l)SlSQP > (GM — GE)*

—2G 1 - k(< s182kipr > + < S1S2kape >) + p1 - ka(< s152kipe >
+ < s1859kop1 >) + ki - 51 < Sokopapr > ko - 51 < Sakipapr >

+k2 - Sy < 81k1p2p1 > +k1 - Sy < Slkgpzpl >]} (147)
One can also obtain the following relations

< sokipapr > = < 82((] - kz)p2p1 >=< Soqpap1 > — < Sokopopr >= — < sokapapr >,
< s1kopapr > = < 51(q — k1)papr >=< s1qpep1 > — < sikipepr >= — < sikipapr >,
< s189kipa > = < $159(q — k2)pe >=< $1S2qpa > — < S1S9kape >,

< 8132k2p1 > =<K 8182((] — kl)pl >=<818qp1 > — < 8182[€1p1 > . (148)
Therefore

ki - s1 < Sakapapr > +ko - 51 < Sokipap1 > +ka - s < S1kipapr > +k1 - S2 < S1kapapr >
= (k1 — k2) - 51 < sokapapy > +(ka — k1) - 2 < sikipap1 >,
pr k(< sisokipr > + < s1s2kapa >) 4 pi - k(< s182kip2 > + < s152kap1 >)
=p1 - k(< sisokipr > + < s189kape >) + p1 - ka(< s152qp2 >
— < s1859kopy > + < s182qp1 > — < s159k1py >)
=p1 - (k1 — ko) (< sisokipr > + < s189kopa >) +p1 - ko < 5152q(p2 +p1) >
=p1 - (k1 — ko) (< sisokipr > + < s180kopa >) +p1 - ko < 515209 >

=p1- (k‘l — k‘g)(< 8182[€1p1 >+ < 8132k2p2 >). (149)
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Eq. (147) for S (sy, 59, \.) can be simplified to

_ Pk
SD(sy, 50, \e) = —iAeA27{4—1 <
—_

(ky — k1)s1soP > (Gpy — GE)*
—2G [p1 - (k1 — ko) (< s1S2kipr > + < S1S2kaps >)
+ (k1 — ko) - 51 < Sokopapr > + (ko — k1) - s2 < s1k1papy >]} (150)
The following equalities hold:
< sitkipapr >=<s1ki(q — p1)p1 >=<si1kigp >=<gsikip1 >,
< Sokapapr >=< s2ka(q — p1)p1 >=< s2kagpr >=< 52(q — k1)gp1 >= — < gsokipr > .
It is convenient to calculate some auxiliary terms
< qakipy > = 2F < dakp; >= —2F < dakyi > p; = —2Ep < 4ak,z >
= 2Ep < 4daiz > k; = —2EpEsinf < 4axz >
= 2F?%psinf < dyxz > ay = 2E%psin fa,,
< s159Pa > = agp(s1452y — S1yS2z) — Pz (S10S2y — S14520)- (151)
The last relation is obtained assuming that a, = 0. Other useful relations are:
< S189k1pr > + < S189kopy >=< s182k1p1 > + < s152(q — k1)pe >
=< 8152qp2 > + < s182k1(p1 — p2) >=< s152qp2 > +2 < 5152Pky >,
< 51S9qpr >=2FE < 51504py >= 2Ep < 515042 >= 2Ep(s1yS2z — S1252y)5
< 5159Pky >= Ep(s15S2y — S1y525) + PE sin0(s1952y — S14520),
< 8159Pky >= Ep(S15S9y — S1y525) — PE sin 0(s1952y — S1452)- (152)
Inserting (151,152) in (147), one finds:
SO (sy, 59, \e) = —iAeA27{2mpq2 sinfcos 0(Gyr — Gi)* (&6, + £1:82y)
—2Gy, [quQ sin 6 (% cos 0y, — sin 9§2$) &1y + Epg®sin 6 <% cos 0&;, — sin 9§1$> Eay

—p2q2% sin @ cos 0 (£1,62, + fu&y)] }

- _Qi)\epqz sin 91427 [E sin QG*M (§1$§2y + €1y€2m) — mcos HG*E (§1y€2z + €1z€2y)] . (153)

Then the part of the differential cross section, proportional to the polarization correlation

and to the longitudinal polarization of the electron beam, can be written as

dU(Sl, S92, )‘e) . 10526
ds2 2448

[S™) (51, 82, Xe) + 2ReSD (51, 52, \e)] (154)

46



where extra factor 1/2 comes from averaging only over the positron polarizations since the
electron beam is polarized.

The correlation polarization tensor, for the case of the longitudinally polarized electron
beam, is defined as follows

do(s1,52,Ae) _ Ae douy
ds? 2 dQ

[Pwy€1m€2y + wa§1y§2w + Pyz€1y€2z + sz§1z§2y] ) (155)

where the components of the polarization correlation tensor Pj, are

1 -1
P = e =~y 0 ImG

in ¢
P, =P, = \S/I;Dlm(GMG*E + GuAGE — GeAGE, +
+ ; cos G pA3), (156)

and we used the relation Re(iA) = ImA*.

One can easily verify that the following relation holds:
P+ Py+P,,=1.

The components of the tensor describing the polarization correlations Py,, Py, P,., Py,
and P,, are T-even observables, whereas the components P,,, Py, P,,, and P,, are T-odd
ones.

In the Born approximation the expressions for the T-odd polarization correlations co-
incide with the corresponding components of the polarization correlation tensor of baryon
B and antibaryon B created by the one-photon—exchange mechanism in the efe™ — BB

process: Let us write explicitly these expressions:

Py = ST;H[T|GM|2+ G|,
2
Py = SITHDQHGEF—ﬂGMIQ],
P. = 5lr(1+ cos? 0)|Gu|* — sin?0|G x|,
P, = P, = —S\;I;QgRe[GMGE],
Py = Py =0,
Py = Pp= 20 1(GuGy).

v = /D
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1. 2y mechanism and double spin polarization coefficients

The relative contribution of the interference terms (between one- and two—photon—
exchange terms) in these observables will increase as the value ¢* becomes larger since
it is expected that the TPE amplitudes decrease more slowly with ¢? compared with the
nucleon FFs.

At the reaction threshold, the polarization correlation tensor components have some
specific properties:

- All correlation coefficients (both T-odd and T-even) do not depend on the function
Ay, .

- In the Born approximation the P,, observable is zero, but the presence of the TPE term
leads to a non—zero value, determined by the quantity 2Re(GrAGS, — Gy AGY,).

- At the scattering angle # = 90° the relation P,, + P,, = 0 holds.

- The P,y and P, observables are zero, and P,, and P,, observables are determined by

the TPE term only, namely by the quantity ImGy (AGr — AGy)*.

VIII. CONCLUSIONS

A detailed model independent derivation of experimental observables in et +e~ — N+ N
is given here with a specific pedagogical aim toward students at PhD level.

The present analysis is also a guideline for the experimental investigation of the TL
nucleon FFs planned in near future at Laboratories where electron and positron beams are
available.

The short bibliography given below contains more discussion and results, based on similar
ideas and formalism can be found, for this reaction and all crossed reactions as well. A wide
literature exist on this subject, since the first studies, in the fifties. The reader is invited to
consult references contained in the quoted paper, to access other related works, experimental
or theoretical.

This formalism has been extended to spin one hadrons.
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