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Diderot, F-91191 Gif-sur-Yvette Cedex, France

2 Observatoire de Paris, LUTH, CNRS, UMR 8102, F-92195 Meudon, France

Abstract

In this work, the complete interaction between low-frequency internal gravity
waves and differential rotation in stably strongly stratified stellar radiation zones
is examined. First, the modification of the structure of those waves due to the
Coriolis acceleration is obtained. Then, theirs feed-back on the angular velocity
profile through their induced angular momentum transport is derived. Finally,
perspectives are discussed.

Motivation

Internal Gravity Waves (hereafter IGWs) are now considered as an essen-
tial transport mechanism in (differentially) rotating stellar radiation zones
which are the seat of the mixing during stars evolution (cf. Talon & Char-
bonnel 2005). Furthermore, they could be excited by turbulent movements
induced by adjacent convective regions at low frequencies (∼ 1µHz in the
Sun) that are of the order of the inertial one (2Ω, Ω being the star’s angular
velocity). The Coriolis acceleration is thus an essential restoring force for
the wave dynamics as the buoyancy one associated to the stable stratifica-
tion. Moreover, IGWs are excited and propagate in regions that are differ-
entially rotating both in the radial and in the latitudinal directions. This
is the reason why we undertake in this work the treatment of the complete
interaction between the low-frequency IGWs and the differential rotation,
which is chosen to be the more general as possible (Ω (r, θ)). We derive their
spatial structure modified by the Coriolis acceleration and theirs feed-back
on the angular velocity profile through their induced angular momentum
transport.
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Low-frequency IGWs in differentially rotating radiation zones

To treat the IGWs dynamics in a differentially rotating star, we have to
solve the complete inviscid system formed by the momentum equation

(∂t+Ω∂ϕ) ~u + 2Ω êz × ~u+ r sin θ
(
~u · ~∇Ω

)
êϕ =−1

ρ
~∇P̃ − ~∇Φ̃ +

ρ̃

ρ2
~∇P , (1)

the continuity equation (∂t+Ω∂ϕ) ρ̃ + ~∇ · (ρ~u) = 0, the energy transport
equation which we give here in the adiabatic limit

(∂t+Ω∂ϕ)

(
P̃

Γ1P
− ρ̃

ρ

)
+

N2

g
ur = 0 (2)

and the Poisson’s equation ∇2Φ̃ = 4πGρ̃. ρ, Φ, P are respectively the
fluid density, gravific potential and pressure. Each of them has been ex-
panded as: X (r, θ, ϕ, t) = X (r) + X̃ (r, θ, ϕ, t) where X is the mean hy-

drostatic value of X on the isobar, X̃ being its wave’s associated fluctua-

tion. N2 = g
(

1
Γ1

d ln P
dr − d ln ρ

dr

)
is the Brunt-Väısälä frequency where Γ1 =

(∂ lnP/∂ ln ρ)S (S being the macroscopic entropy) is the adiabatic exponent.
~u is the wave velocity field. Finally, (r, θ, ϕ) are the usual spherical coordi-
nates with their unit vector basis {êk}k=r,θ,ϕ while êz = cos θ êr − sin θ êθ

is the one along the rotation axis. t is the time and G the universal gravity
constant.

To solve this system, three main approximations can be assumed:
- the JWKB approximation: waves which are studied here are low-

frequency ones such that σ << N (σ is the wave frequency in an inertial
reference frame; see Talon & Charbonnel 2005 and Pantillon et al. 2007 for
a detailed discussion of their spectrum). Then, the JWKB approximation
can be adopted.

- the Traditional approximation: stellar radiation zones are stably stron-
gly stratified regions. Then, in the case where the angular velocity (Ω) is
reasonably weak compared to the break-down one, ΩK =

√
GM/R3 (M

and R being respectively the star’s mass and radius), we are in a situation
where the centrifugal acceleration can be neglected to the first order and
where 2Ω<<N . This allows to adopt the Traditional approximation where
the latitudinal component (along êθ) of the rotation vector ~Ω = Ω êz =
ΩV êr + ΩH êθ (with ΩV = Ω cos θ and ΩH = −Ω sin θ) can be neglected for
all latitudes.

Let us present a brief local analysis of this approximation in the simplest
case of a uniform rotation (see also Lee & Saio 1997). The wave vector ~k
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and lagrangian displacement ~ξ are expanded as

~k = kV êr + ~kH and ~ξ = ξV êr + ~ξH , (3)

where ~kH = kθêθ + kϕêϕ, kH = |~kH |, ~ξH = ξθêθ + ξϕêϕ, ξH = |~ξH | and

~ξ ∝ exp
[
i
(
~k · ~r − σt

)]
.

For low-frequency waves in radiation zones, we can writte ~k ·~ξ = kV ξV +
~kH · ~ξH ≈ 0 since ~∇ ·

(
ρ ~ξ
)
≈ 0 (this is the anelastic approximation that

filters out acoustic waves which have higher frequencies), from which we
deduce that ξV /ξH ≈ −kH/kV .

Next, using the results given in Unno et al. (1989), the dispersion rela-
tion for the low-frequency gravito-inertial waves is obtained:

σ2 ≈ N2 k2
H

k2
+

(
2~Ω · ~k

)2

k2
, (4)

where the two terms correspond respectively to the dispersion relations
of IGWs and of inertial waves. In the case where 2Ω << N and σ <<
N the previous dispersion relation gives k2

H/k2 << 1. The vertical wave
vector is then larger than the horizontal one while the displacement vector
is almost horizontal: |kH |<< |kV |, |ξV |<< |ξH |. On the other hand, we get(
2~Ω · ~k

)2

≈ (2ΩV kV )
2
. The latitudinal component of the rotation vector

can thus be neglected in all the sphere.

A global demonstration in spherical geometry is given in Friedlander
(1987) who gives the frequency domain of application of this approximation
in the case of uniform rotation (2Ω < σ << N) which is also discussed in
Mathis et al. (2008). Its validy domain in the case of a general differential
rotation law will be discussed hereafter.

- the quasi-adiabatic approximation: Following Press (1981) and Zahn et
al. (1997), we adopt the quasi-adiabatic approximation to treat the thermal
damping of IGWs. Let us recall here that this damping is responsible for
the net transport of angular momentum which is due to bias in the wave’s
Doppler schift by differential rotation between retrograde (m > 0) and pro-
grade waves (m < 0)1 that transport respectively a negative and a positive
flux of angular momentum (see Eq. 16 and Goldreich & Nicholson 1989).

Under those approximations, and assuming the anelastic one (~∇·(ρ~u) = 0),
the wave’s velocity field is then obtained (the details of the derivation are given

1The wave phase is expanded as exp [i (mϕ + σt)].
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in Mathis 2008):

~u (~r, t) =
∑

k={r,θ,ϕ}



∑

σ,m,j

uk;j,m (~r, t)


 êk (5)

where

ur;j,m(~r, t) =
σ̂

N

λ
1/2

j,m (r; ν̂ )

r
wj,m (r, θ; ν̂)sin [Ψj,m (r, ϕ, t)]Dj,m (r, θ; ν̂) , (6)

uθ;j,m(~r, t) = − σ̂

r
Gθ

j,m (r, θ; ν̂ ) cos [Ψj,m (r, ϕ, t)] Dj,m (r, θ; ν̂) , (7)

uϕ;j,m(~r, t) =
σ̂

r
Gϕ

j,m (r, θ; ν̂ ) sin [Ψj,m (r, ϕ, t)]Dj,m (r, θ; ν̂) . (8)

The ”local” frequency (σ̂) 2 which accounts for the Doppler shift by the differ-
ential rotation and the ”spin parameter” (see Lee & Saio 1997) are defined:

σ̂ (r, θ) = σ + mΩ (r, θ) and ν̂ (r, θ) =
2Ω (r, θ)

σ̂ (r, θ)
= R−1

o , (9)

where Ro is the Rossby number. Unlike the case of uniform rotation, variables
do not separate neatly anymore in the case of general differential rotations
Ω (r) and Ω (r, θ). The velocity components are thus expressed in terms of the
2D dynamical pressure (P/ρ) eigenfunctions wj,m which are solutions of the
following eigenvalue equation:

O
ν̂;m

[wj,m (r, x; ν̂ )] = −λj,m (r; ν̂ ) wj,m (r, x; ν̂ ) (10)

where we define the General Laplace Operator (GLO)

O
ν̂;m

=
1

σ̂

d

dx

[ (
1 − x2

)

σ̂D (r, x; ν̂ )

d

dx

]
− m

σ̂2D(r, x; ν̂ )

(
1 − x2

) ∂xΩ

σ̂

d

dx

− 1

σ̂

[
m2

σ̂D (r, x; ν̂ ) (1 − x2)
+ m

d

dx

(
ν̂x

σ̂D (r, x; ν̂ )

)]
(11)

with
D (r, x; ν̂ ) = 1 − ν̂2x2 + ν̂ (∂xΩ/σ̂) x

(
1 − x2

)
(12)

2Note that σ̂ can vanish that corresponds to corotation resonance. In layer(s) where
this happens (which are called critical layers), a careful treatment of the complete fluid
dynamics equations has to be undertaken that is out of the scope of the present paper
(see Booker & Bretherton 1967).
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and x = cos θ. O
ν̂;m

is the generalization of the classical Laplace tidal opera-

tor (Laplace 1799), the eigenfunctions wj,m being thus a generalization of the
Hough functions (Hough 1898, Ogilvie & Lin 2004). λj,m (r; ν̂) are its eigen-
values; here, we focus on positive ones that correspond to propagative waves
(cf. Ogilvie & Lin 2004). The GLO is a differential operator in x only and the
wj,m form a complete orthogonal basis

∫ 1

−1

w∗
i,m (r, x; ν̂ )wj,m (r, x; ν̂ ) dx = Ci,mδi,j , (13)

where Ci,m is the normalization factor and δi,j is the usual Kronecker symbol.
The dispersion relation is then given by

k2
V ;j,m (r) =

λj,m (r; ν̂ )N2

r2
(14)

where kV ;j,m is the vertical component of the wave vector (λj,m has the di-
mension of

[
t2
]
). That leads to the following expressions for the JWKB phase

function

Ψj,m (r, ϕ, t) = σt +

∫ rc

r

kV ;j,m dr
′

+ mϕ (15)

(rc is the radius of the basis (or the top) of the adjacent convective region that
excites the waves) and for the damping term

Dj,m = exp

[
−τj,m (r, θ; ν̂)

2

]
where τj,m =

∫ rc

r

K
λ

3/2

j,m (r; ν̂ )N3

σ̂

dr
′

r′3
, (16)

K being the thermal diffusivity. On the other hand, the latitudinal and az-
imuthal eigenfunctions are defined

Gθ
j,m (r, x; ν̂ ) =

1

σ̂2

1

D (r, x; ν̂ )
√

1 − x2

[
−
(
1 − x2

) d

dx
+ mν̂x

]
wj,m (17)

Gϕ
j,m (r, x; ν̂ ) =

1

σ̂2

1

D (r, x; ν̂ )
√

1 − x2

×
[
−
(

ν̂x −
(
1 − x2

) ∂xΩ

σ̂

)(
1 − x2

) d

dx
+m

]
wj,m.(18)

As it has been emphasized by Mathis et al. (2008) and references therein,
the Traditional approximation has to be carefully used since it modifies the
mathematical properties of the adiabatic wave operator. Here, in the case
of a general differential rotation law, it is applicable in spherical shell(s) such
that D > 0 everywhere (∀ r and ∀ θ ∈ [0, π]). There, the adiabatic wave
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operator is elliptic that corresponds to regular (elliptic) gravito-inertial waves
(see Dintrans & Rieutord 2000 for a detailed classification of such waves). In
the other spherical shell(s), where both D < 0 and D > 0, the adiabatic wave
operator is hyperbolic and the Traditional approximation can not be applied
because of the adiabatic wave’s velocity field (and wave operator) singularity
where D = 0. Regularization is there allowed by thermal and viscous diffusions
that lead to shear layers, the attractors, where strong dissipation occurs that
can induce transport and mixing. In Fig. 2, we illustrate for a given chosen
theoretical angular velocity profile (cf. Fig. 1) how those two types of spherical
shells (respectively where the Traditional approximation is allowed or forbidden)
could appear.
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Figure 1: Synthetic internal rotation profile as it may be in the Sun (cf.
Garćıa et al. 2007): Ωsyn (r, θ) = Ωs + ΩsAc [1 − Erf ((r − Rc)/lc)] +
1/2 [1 + Erf ((r − RT )/lT )]

(
A + B cos2 θ + C cos4 θ − Ωs

)
, where Ωs = 430 nHz,

Ac = 1/2 (such that Ωsyn (0, θ) = 2Ωs), Rc = 0.15RT , lc = 0.075RT , RT = 0.71R⊙

(the position of the Tachocline), lT = 0.05RT , A = 456 nHz, B = −42 nHz and
C = −72 nHz (we assume here a Tachocline that is thicker than in reality).

Transport of angular momentum

Since the complete wave’s velocity field is derived, we focus on the induced
transport of angular momentum. The vertical and horizontal Lagrangian angu-
lar momentum fluxes are respectively defined:

FAM
V (r, θ) = ρr sin θ

∫

σ

〈uruϕ + 2Ω cos θurξθ〉ϕ dσ
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Figure 2: D (r, θ; 2Ωsyn/σ) as a function of r and θ (cf. Eq. 12) for σ = 500 nHz
(Left) and σ = 1000 nHz (Right) for axisymmetric waves (m = 0). The critical
surface D (r, θ; 2Ωsyn/σ) = 0 is given by the thick black line and the iso-D lines such
that D (r, θ; 2Ωsyn/σ) > 0 and D (r, θ; 2Ωsyn/σ) < 0 are respectively given by the
red and the blue lines. The Traditional Approximation (T. A.) applies in spherical
shell(s) such that D > 0 everywhere (∀ r and ∀ θ ∈ [0, π]); there, waves are regular
at all latitudes. In other spherical shell(s), where both D > 0 and D < 0, the T. A.
does not apply due to the singularity at D = 0. Therefore, for Ωsyn, the T. A. does
not apply for σ = 500 nHz while it applies for σ = 1000 nHz in the external spherical
shell with the inner border given by the thick red circle.

and FAM
H (r, θ) = ρr sin θ

∫

σ

〈uθuϕ〉ϕ dσ (19)

where 〈···〉ϕ = (1/2π)
∫ 2π

0
· · · dϕ, where the lagragian wave displacement is

defined such that: ~u = (∂t + Ω∂ϕ) ~ξ − r sin θ
(
~ξ · ~∇Ω

)
êϕ and where we sum

over the excited spectrum. Using Eqs. (7-8), we get FAM
H = 0. Then, following

the methodology given in Zahn et al. (1997), Pantillon et al. (2007) and
Mathis et al. (2008), we get the vertical action of angular momentum which is
conserved in the adiabatic limit

LAM
V (r, x; ν̂ ) = r2FAM

V

= −r2
c

∫

σ

∑

m,j

{
m̂j,m (rc, x; ν̂c)

σ̂CZ

FE
V ;j,m (rc, x; ν̂c)D2

j,m

}
dσ. (20)

rc is the radius of the basis (or the top) of the adjacent convective region that
excites the waves while ν̂c = 2ΩCZ (rc, θ) /σ̂CZ where σ̂CZ = σ+mΩCZ (rc, θ),
ΩCZ being its angular velocity. On the other hand, FE

V ;j,m (rc, x; ν̂c) is the
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monochromatic energy flux injected by turbulent convective movements at r =
rc in the studied radiation zone and

m̂j,m (r, x; ν̂ ) =
sin θ σ̂2 wj,m

[
Gϕ

j,m − ν̂ cos θ Gθ
j,m

]

w2
j,m

(21)

is the 2D function which describes its conversion into angular momentum flux.
Following Mathis & Zahn (2005), averaging over latitudes Ω and LAM

V

in spherical shell(s) where the Traditional approximation applies and expanding
this former as LAM

V =
∑

l LAM
V ;l (r) sin2 θPl (cos θ), we get for the mean rotation

rate on an isobar (〈Ω〉θ)

ρ
d

dt

(
r2 〈Ω〉θ

)
− 1

5r2
∂r

(
ρr4 〈Ω〉θ U2

)
=

1

r2
∂r

(
ρνV r4∂r 〈Ω〉θ

)
− 1

r2
∂r

[〈
LAM

V

〉
θ

]
,

(22)
and for the first mode of the latitudinal rotation

ρ
d

dt

(
r2Ω2

)
− 2ρ 〈Ω〉θ

[
2V2 −

1

2

d ln
(
r2 〈Ω〉θ

)

d ln r
U2

]

=
1

r2
∂r

(
ρνV r4∂rΩ2

)
− 10 ρνHΩ2 −

1

r2
∂r

[
LAM

V ;2 (r)
]
, (23)

where Ω̃2 (r, θ) = Ω2 (r) [P2 (cos θ) + 1/5] and Ω = 〈Ω〉θ + Ω̃2.

The meridional circulation is expanded in Legendre polynomials as ~UM (r, θ) =∑
l>0 {Ul (r) Pl (cos θ) êr + Vl (r) ∂θPl (cos θ) êθ} while (νV , νH) are respec-

tively the vertical and the horizontal turbulent viscosities and d/dt is the La-
grangian derivative that accounts for the contractions and the dilatations of the
star during its evolution.

Those equations give the evolution of the differential rotation, both in the
radial and in the latitudinal directions, in the spherical shell(s) where the Tra-
ditional approximation can be applied. This is the first time that an evolution
equation for differential rotation (both in r and θ) capturing gravito-inertial
waves feedback is derived, with taking into account the modification of IGWs
through the Coriolis acceleration and theirs feed-back on the angular velocity
profile through the net induced transport of angular momentum due to the
differential damping of retrograde and prograde waves.

Conclusion

In this work, a complete formalism to treat the dynamics of regular (elliptic)
low-frequency gravito-inertial waves in stably strongly stratified differentially
rotating stellar radiation zones from Tachocline(s) where they are excited to
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their bulk as well as theirs feed-back on the angular velocity profile through the
induced angular momentum transport has been derived. Future works must be
devoted to its implementation in existing dynamical stellar evolution codes and
to its application to different type of stars and evolution stages. This effort will
lead to the building of more and more realistic stellar models which will benefit
from new constraints provided by the development of asteroseismology both on
the ground and in space.

Acknowledgments. S. M. is grateful to the anonymous referee for his sugges-
tions that allow to improve the original manuscript.
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