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Abstract

Wave propagation, excitation and associated transport are modified by the
Coriolis and the centrifugal accelerations in rotating stars. In this work, we
focus on the influence of the Coriolis acceleration on the volumetric stochastic
excitation in convection zones of rotating stars. First, we present the complete
formalism which has been derived and discuss the different terms which appear
due to the Coriolis acceleration. Then, we use this formalism to compute the
solar mode excitation rates and emphasize the peculiar behavior due to rotation.
Consequences on wave transport in rotating stars are eventually discussed.

Session: STARS: convection

Introduction

The motivation of this work is to investigate the effect of uniform rotation
on the stochastically excited modes amplitudes. Several issues can be ad-
dressed; is the amplitude of an non-axisymmetric mode (m 6= 0) the same
as for an axisymmetric one (m = 0)? Are prograde and retrograde modes
excited in the same manner and what are the consequences? This can have
some important consequences from both an observational point of view as
well as a theoretical one.

As a first step, we neglect the centrifugal acceleration that induces a
deformation of the star. We then focus our attention on the effect of the
Coriolis acceleration. We also restrict the study to uniform rotation. In the
first section we present a formalism of stochastic excitation developed for a
rotating star, and we apply it to the solar case by performing a perturbative
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development. Some consequences on the angular momentum transport by
modes are briefly discussed in a third section. Conclusion and perspectives
are provided in the last section.

Physical assumptions and formalism

Following Samadi & Goupil (2001) and Belkacem et al. (2008), we establish
the inhomogeneous wave equation

(
∂t2 − ~LΩ

)
~υosc + ~C (~υosc, ~ut) = ~St (~ut) .1 (1)

~υosc is the velocity field of the waves and ~ut is the turbulent one associated
to the convective eddies. The ~C (~υosc, ~ut) vector field, which is not detailed
here, is related to the wave-turbulence interaction that corresponds to the
dynamical damping, η. ~LΩ is the operator that rules the wave dynamics in
the case of the star free oscillations

~LΩ (~υosc) = ~∇
[
αs~υosc · ~∇s0 + cs

2~∇ · (ρ0~υosc)
]
− ~geff

~∇ · (ρ0~υosc)

− ρ0Ω∂t,ϕ~υosc−2 ρ0
~Ω×∂t~υosc−ρ0r sin θ

(
∂t~υosc · ~∇Ω

)
êϕ .(2)

ρ, geff and Ω are respectively the fluid density, effective gravity acceleration
(including the centrifugal one) and angular velocity. cs is the sound speed
while αs = (∂p/∂s)ρ, where p is the pressure and s the macroscopic entropy.
X0 and X1 (where X = {ρ, p, s} ) are respectively the hydrostatic value of
X and its wave-associated fluctuation. Finally, (r, θ, ϕ) are the classical
spherical coordinates.

The source terms that drive the eigenmodes are

~St (~ut) = ~SSG − ∂t

[
ρ1

(
Ω∂ϕ~ut + 2~Ω × ~ut + r sin θ

(
~ut · ~∇Ω

)
êϕ

)]
. (3)

The term ~SSG contains the source terms as derived by Samadi & Goupil
(2001) and Belkacem et al. (2008), in which the dominant ones are the
Reynolds and entropy contributions. The three last terms are those induced
by rotation and can be re-expressed such as

∂t

(
2 ρ1

~Ω × ~ut

)
= 2~Ω × ∂t (ρ1~ut) = −2~Ω×

[
~∇ · (ρ0~ut) ~ut

]
(4)

∂t (ρ1Ω∂ϕ~ut) = Ω
[
~∇ · (ρ0~ut) ∂ϕ~ut

]
(5)

∂t

[
ρ1r sin θ

(
~ut · ~∇Ω

)]
= −r sin θ

[
~∇ · (ρ0~ut) ~ut

]
· ~∇Ω, (6)

1Here the following notation for partial derivatives ∂nf
∂xn

= ∂xnf is adopted.



S. Mathis, K. Belkacem, and M.J. Goupil 3

where ~Ω is supposed uniform and steady on a dynamical time scale. These
last three terms scale as M3

t (Mt is the turbulent Mach number), while
Samadi & Goupil (2001) have shown the Reynolds contribution scales as
M2

t . Thus the above rotational contribution can be ignored in front of
the Reynolds one. Moreover, in the case where the turbulent convective
motions are assumed to be anelastic (~∇· (ρ0~ut) = 0), they can be neglected.
Therefore, the only source terms we must retain are the Reynolds and the
entropy ones.

Following the procedure detailed by Samadi & Goupil (2001) and Belka-
cem et al. (2008), the power supplied into the modes (P ) is derived

P =
(
C2

R + C2
S + C2

c

)
/ (8I) (7)

where C2
R, C2

S , and C2
c are respectively the contributions of the Reynolds

stresses, of the entropy fluctuation advection, and the crossed terms. The
crossed terms are ignored in front of C2

R and C2
S (see Belkacem et al. 2008

for details). In addition, as shown above the source terms related to the
rotation have been neglected.

The Reynolds stresses contribution is given by

C2
R = 4π3

∫
dm R(r) SR(ω0), (8)

where

SR (ω0) =

∫
dk

k2
E2(k)

∫
dω χk(ω + ω0) χk(ω) . (9)

E(k) and χk(ω) are respectively the kinetic energy spectrum and the tem-
poral correlation function which are also modified through the action of
rotation on turbulence. The frequencies ω0 and ω are associated with pul-
sation and convection, respectively. Furthermore

R(r) = Rspheroidal + Rtoroidal (10)

with Rtoroidal =
11

15
L2

∣∣∣∣
dξT

dr
−

ξT

r

∣∣∣∣
2

+

∣∣∣∣
ξT

r

∣∣∣∣
2(

11

5
L2(L2 − 2) −

8

5
Fℓ,|m| −

2

3
L2

)
(11)

where Rspheroidal is given by Eq. (23) of Belkacem et al. (2008), Fℓ,|m| =
|m|(2ℓ+1)

2

[
L2 − (m2 + 1)

]
, L2 = ℓ(ℓ + 1), and (ξr, ξH , ξT ) are the radial,

horizontal and toroidal components of the eigenfunction corresponding to a
spherical harmonic (Y m

ℓ ). Rspheroidal corresponds to the non-rotating case.
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It is modified by Coriolis acceleration through the modification of ξr and of
ξH it induces.

The second source term, the entropy fluctuation contribution is obtained
as

C2
S =

4π3 H

ω2
0

∫
dr

r2
α2

s

(∣∣∣∣Dℓ

d (ln | αs |)

d ln r
−

dDℓ

d ln r

∣∣∣∣
2

+ L2 |Dℓ|
2

)
SS(ω0) (12)

with H an anisotropy factor (defined in Samadi & Goupil 2001),

Dℓ = 1
r2

d
dr

(
r2ξr

)
− L2

r
ξH and

SS(ω0) =

∫
dk

k4
E(k)Es(k)

∫
dω χk(ω0 + ω)χk(ω), (13)

Es being the spectrum associated to the entropy turbulent fluctuations. As
for Rspheroidal no direct change are due to uniform rotation.

Application to the excitation of solar oscillation modes

In this section, we apply the formalism to spheroidal solar oscillation modes
for which 2Ω/ω0 (where ω0 is (hereafter) the mode frequency in the non-
rotating case) is such that they are only slightly perturbed by the Coriolis
acceleration. In this case, we get respectively for each displacement eigen-
mode component (cf. Unno et al. 1989)

ξα = ξ(0)
α + m

(
2Ω

ω0

)
ξ(1)
α and ξT =

(
2Ω

ω0

)
ξ
(1)
T (14)

where α = {r, H}, ξ
(0)
α being the component in the non-rotating case for

which ξ
(0)
T = 0, and ξ

(1)
α and ξ

(1)
T are given by Unno et al (1989).

Using these expansions in Eq. (7), we get

Pn,l,m = P
(0)
n,l,m + m

(
2Ω

ω0

)
P

(1)
n,l,m (15)

so that the excitation rate is different for prograde (m < 0) and retrograde
(m > 0)2 modes since it depends explicitly on m. To better quantify this bias
introduced by the Coriolis acceleration, we define

δPm/P−m = (Pm − P−m)/P−m (16)

2The mode phase is expanded as exp [i (mϕ + ω0t)].
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Figure 1: Left panel: Bias between prograde and retrograde modes (see Eq.(16))
for ℓ = 1 modes, computed with a standard solar model. Right panel: Bias between
prograde and retrograde modes as a function of the mode angular degree (ℓ) and for
a radial order n = 5.

which is plotted in Fig. (1). In this first application, the simplest turbulent
spectrum of Kolmogorov is assumed in evaluating Eqs (9) and (13). For low-
frequency g modes that are excited in the bottom of the convection zone,
where 2Ω ≈ ωc (ωc being the convective frequency) the effect of rotation on
the convective velocity field has to be taken into account (work in progress).

First, δPm/P−m scales as 2Ω/ω0. Therefore, in the solar case, we find
that acoustic mode excitation rates are only weakly affected by the Coriolis
acceleration while gravity modes are affected up to 50 % for the most low-
frequency modes. On the other hand, for a given m, δPm/P−m increases for
decreasing ℓ (it becomes maximum for l = |m|); in other words the bias is
stronger for low-ℓ degrees.

Mode-induced transport

Let us now examine the mode-induced transport of angular momentum. The
eulerian flux of angular momentum introduced by the Reynolds stresses, for
each azimuthal order m is given by (see Lee & Saio 1993)

FAM;m =

∫

4π

ρ0r sin θ ur;mu∗
ϕ;mdΩ̃ where ~u = i ω0

~ξ, (17)

dΩ̃ = sin θdθdϕ being the solid angle. In the non-rotating adiabatic case, we
get

FAM;m + FAM;−m = 0; (18)
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therefore, modes do not transport any net flux of angular momentum. In the
rotating dissipative case, introducing Eq.(14) into Eq.(17) , we get

FAM;m + FAM;−m =

− 2D (η) ρ0r
∑

n,l

ω2
0 (2Ω/ω0) Im

{[
A2

l,m

](0)
G1 +

[
A2

l,m

](1)
G2

}
6= 0 (19)

where Im denotes the imaginary part, and

G1 =
[
m2
(
ξ
(1)
r;l ξ

(0)∗
H;l + ξ

(0)
r;l ξ

(1)∗
H;l

)
+ ξ

(0)
r;l

(
αm

l−1ξ
(1)
T ;l−1 − βm

l+1ξ
(1)
T ;l+1

)∗ ]
(20)

G2 = −m2 ξ
(0)
r;l ξ

(0)∗
H;l (21)

with

αℓ,m =ℓ

√
(ℓ + 1)

2
− m2

(2ℓ + 1) (2ℓ + 3)
and βℓ,m =(ℓ + 1)

√
ℓ2 − m2

(2ℓ + 1) (2ℓ − 1)
. (22)

D corresponds to the phase shift between ur;m and uϕ;m due to dissipative
processes (e.g., the thermal diffusion or the viscous friction) that causes a
net transport of angular momentum (Goldreich & Nicholson 1989). Here, we
assume that the damping is quasi-independent of m since ω0 ≫ m Ω for the
considered modes. Then, the amplitude is developed as for the power, i.e.

A2
ℓ,m =

[
A2

ℓ,m

](0)
+ m

(
2Ω

ω0

)[
A2

ℓ,m

](1)
(23)

=
P (0)

2ηIω2
0

+ m

(
2Ω

ω0

)
P (1)

2ηIω2
0

. (24)

Therefore, the Coriolis acceleration introduces extra biases between prograde
and retrograde waves through the modifications of the eigenfunctions (G1) and
of the excitation rate ([A2

l,m](1)).

Conclusion

In this work, we derive the formalism that allows to treat the stochastic excita-
tion of modes by convective regions in presence of rotation. Then, we applied
it, as a first application, to the solar spheroidal oscillations. We show that a
bias between pro- and retrograde waves is introduced in the excitation by the
Coriolis acceleration. It can be relatively important for low-frequency g-modes
while it is quite negligible for acoustic ones. We showed that the azimuthal
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asymmetries both in eigenfunctions and their excitation rates introduce an ex-
tra contribution. The associated mode-induced transport of angular momentum
remains to be quantified as in Talon & Charbonnel (2005).

Future works must apply the formalism to the case of rapid rotators for both
inertial and gravito-inertial modes (Dintrans & Rieutord 2000, Rieutord et al.
2001) and include the effect of differential rotation.
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DISCUSSION

Guzik: Do you see the asymmetry in excitation introduced by the Coriolis acceleration

in any stellar g-mode data? Where we should look for it?

Mathis: I have not seen it yet in any data, but we have to look at this to eventually

get an additional observational constraint on gravity mode behaviour.


