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Abstract

The differential cross section and the polarization observables for A—isobar produc-
tion in the deuteron electrodisintegration process, e~ +d — e~ + A+ N, are calcu-
lated in a general formalism based on structure functions. The obtained expressions
have a general nature, hold for one-photon—exchange, assuming P—invariance of the
electromagnetic interaction and the conservation of the hadron electromagnetic cur-
rent. The dependence of the differential cross section of the e +d e~ + A+ N
reaction on the vector and tensor polarizations of the deuteron target with unpolar-
ized and longitudinally polarized electrons is considered. The general dependence of
the asymmetries on two of five kinematic variables, the azimuthal angle ¢ and € (lin-
ear polarization of the virtual photon) is calculated. A similar analysis is performed
for the polarization of the nucleon produced in y*d — AN reaction provided the
electron beam is unpolarized or longitudinally polarized. Polarization effects, which
are due to the strong AN — interaction in the final state are calculated. The photo-
production of the A—isobar on the deuteron target has been considered in detail, as
a particular case. The differential cross section and various polarization observables
have been derived in terms of the reaction amplitudes. The polarization observables
due to the linear and circular polarizations of the photon, when the deuteron target
is arbitrarily polarized have been derived in terms of the reaction amplitudes. The
polarization of the final nucleon is also considered.
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1 Introduction

It is well known, that the A resonance dominates in the pion production
processes and plays an important role in the physics driven by the strong in-
teraction. Moreover, the mechanism of A resonance excitation has a dominant
role in various nuclear phenomena at energies higher than the pion—production
threshold (for the details see the reviews [1]).

High—precision measurements of the N — A transition induced by photon
(real or virtual) became possible with the availability of high—intensity GeV—
energy electron beam facilities (such as Jefferson Laboratory, Bates, ELSA,
MAMI) and of the high performance spectrometers, detectors and polarime-
ters (for recent review see [2]). It was predicted theoretically and proved ex-
perimentally that the electromagnetic N — A transition is dominated by the
magnetic (M1) dipole transition and that the two other quadrupole transi-
tions (electric (E2) and Coulomb (C?2)) are small. At moderate Q? (transfer
momentum squared) the ratios E2/M1 and C2/M1 are at the level of a few
percent.

The data on the 7~ p channel (both for the case of the photoproduction and
electroproduction) from a neutron (deuterium) target are rather scarce, but
of current interest in various accelerators. For example, recent results have
been obtained to measure cross sections and various polarization observables
for the 7 n [3] and 7~ p [4] channels and a program is ongoing at Jlab (CLAS
collaboration).

The processes of the A—isobar excitation in the scattering of the electrons by
nuclei, e + A — e + A+ A’, where A and A’ are nuclear states, as well as
the processes e + A — e + N + A”, involve both hadron electrodynamics
and nuclear dynamics. Thus, the simplest process of the A—isobar production
in eA-—collisions, e~ +d — e~ + A+ N, brings information on the electromag-
netic form factors of the A — n + ~* transition (v* is the virtual photon).
The investigation of the pion photo— and electroproduction off the neutron
(deuteron) allows to determine the isotopic properties of the hadron electro-
magnetic current (namely, search for the isotensor contributions in the A-
isobar excitation), provided the background contributions can be sufficiently
controlled [5]. The amplitude for the excitation of the A-isobar on the free
proton and on the free neutron is identical as long as isotensor components
can be neglected. The comparison of the electromagnetic form factors for two
transitions AT — p 4+ ~v* and AY — n + v* was used earlier to estimate the
possible admixture of the isotensor component in this current [6].
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For the purpose of nuclear physics itself, the process e + A — e~ + A +
A’ is important, first of all, for clarifying the old standing problem of non—
nucleonic degrees of freedom in the nuclei and their role in various processes
involving nuclei [7]. The problem of the A-isobar behavior in the nuclear
medium [8] is of great interest too. In particular, for the deuteron, despite
the large precision and the new region of internal momentum explored, these
questions (the relative role of different possible components in the deuteron
wave function as the AA-configurations, 6g—components, etc. are still under
discussion [9]).

When addressing the problem of non—nucleonic degrees of freedom (in par-
ticular, the signals of the A—isobar excitation) in nuclear phenomena, it is
natural to start these investigations from the most simple nuclear system,
the two-nucleon system (deuteron). Using this approach, one may try to see
whether the explicit inclusion of the resonance degrees of freedom (the most
important A—isobar) in the nuclear wave functions improves our knowledge of
the nuclear physics.

Due to the isospin conservation in the strong interactions, the A-isobar can
contribute to the deuteron ground wave function in form of AA-admixture.
One should note that problems connected with high spin of the A-isobar,
as the non—physical components of the A—isobar wave function are discussed
in the literature [10]. For on—mass—shell A—isobar these components can be
removed by imposing additional constraints on the Rarita—Schwinger field
describing the A-isobar [11]. But in nuclei the A-isobar must be off-mass—
shell and, therefore, unphysical degrees of freedom are still possible. Therefore,
to reduce the ambiguities inherent to any model-dependent analysis, it is
natural to look for the A—isobar in few—nucleon systems, and/or in processes
where this degree of freedom is excited through the simpler and well-known
electromagnetic and weak interactions. The A-isobar can contribute both to
the one-body current through direct coupling to the photon (real or virtual),
and to the two—body currents, much in the same way as it comes into play in
the intermediate nucleon—nucleon interaction. Exclusive reactions are expected
to convey more information than simpler inclusive experiments, even if they
are obviously more demanding for the theoretical analysis.

Pioneering calculations of the AA-admixture in the deuteron wave function
have been done using static transition potentials with pion—exchange only [12]
and it was found that the A—percentage Pa is of the order of 1%. Later on
some improvements of this simple approach were made: inclusion of the p-
meson exchange [13] and using a coupled—channel approach [14]. It was found
that Pa ~ (0.4 —0.8)%. The possible A—isobar configurations in nuclear wave
functions have been searched for the three-nucleon systems, *He and 3H.

As it was noted [7], resonances are a more efficient source of high momentum



components in nuclear wave functions than the short-range repulsion in the
nuclear force. As a result, a typical resonance Fermi momentum is about 0.3
to 0.6 GeV/c as compared to 0.1 GeV/c for a nucleon in the deuteron.

The experimental investigation of the polarization effects in various processes
of the electron—deuteron scattering has been started some time ago. The ex-
periments were done on the elastic scattering of unpolarized electrons by the
tensor polarized deuteron target and also on the measurement of the tensor
polarization of the recoil deuteron (for the purpose to separate the charge and
quadrupole deuteron electromagnetic form factors) (for the details see the re-
views [15]). To determine the neutron charge electromagnetic form factor G gy,
several polarization measurements were done for the deuteron electrodisinte-
gration process (see, for example, [16]).

The combination of 47 detectors with linearly and circularly polarized photon
beams as well as polarized targets will provide access to new observables,
very powerful for the extraction of specific resonance properties. The use of
polarized proton and deuteron targets will allow measurement of double and
triple polarization observables with polarized neutrons [17].

In Ref. [18] the non—nucleonic degrees of freedom in terms of the A-isobar
were investigated and the contribution of the AA—component of the deuteron
wave function was calculated in the framework of the Nambu-Jona-Lasinio
model of light nuclei. It was found that Pn = 0.3%. This prediction agrees
well with the experimental estimate Px < 0.4% at 90% of confidence level
[19].

The experimental measurement of the AA-admixture in the deuteron wave
function was done in a number of experiments which investigate pure hadronic
reactions and processes induced by leptons as well. The analysis of the final
state NNN7 in the interaction of the antiproton beam with deuteron target
lead to the result Pn = 16% [20]. The dp — NN N reactions were studied
in [21] where an upper limit Pn < (1.1 £ 0.3)% was obtained. The processes
of interaction of the positive (negative) pion with deuteron [22] ([23]) gave
an upper limit of 0.8%(0.4%) for the AA-component of the deuteron wave
function. In Ref. [24] the process of the inclusive A-isobar photoexcitation
on the deuteron target, vd — AX, was studied obtaining Pn ~ 3% . The
latest estimate Px < 0.3% was made in the analysis of the neutrino—deuteron
interaction [19].

Note also that many neutrino oscillation experiments were done in the kine-
matical region corresponding to a neutrino beam energy ~ 1GeV. But in
this kinematical region the inelastic processes (mainly the quasi free A—isobar
production) plays a significant role [25]. The theoretical predictions signifi-
cantly underestimate the data in this region. On the other hand, the results



of Ref. [26] lead to the suggestion that two—body currents may give sizable
contribution in the dip region.

For high virtuality of the exchanged photon, the ? H (e, ¢'p)n reaction is one of
the simplest and best way to investigate the high-momentum components of
the deuteron wave function, possible modifications to the internal structure
of bound nucleons, and the nature of short—range nucleon correlations. It was
found that the A-isobar production dominate over a large part of the phase
space [27].

It is highly desirable to perform measurements on the deuteron in kinematics
where the short—distance structure is emphasized. Such information can be
only accessed in the context of reaction models which include a quantitative
description of final-state interaction, meson—exchange currents, isobar config-
urations and so on. Experiments have already been done in such kinematics
[27].

Theoretical studies of the inclusive electron—nucleus cross section at beam en-
ergies up to a few GeV show that, while the region of the quasielastic peak is
quantitatively understood, the data in the A-isobar region are largely under-
estimated. In view of the rapid development of neutrino physics, the treatment
of nuclear effects in data analysis is now regarded as one of the main sources
of systematic uncertainty. Much of the information needed for this analysis
can be extracted from the results of experimental and theoretical studies of
electron—nucleus scattering. In this kinematical regime both quasielastic and
inelastic processes, leading to the production of hadrons other than protons
and neutrons, must be taken into account [28].

Historically, the quasi—elastic cross section has been exploited in order to mea-
sure the neutron electric and magnetic form factors using mainly light (A < 4)
nuclear targets. Today the emphasis has shifted to the search of possible in
medium modifications of the nucleon form factors. At large momentum trans-
fer it appears that only the low—w (w is the electron energy loss) side of the
quasi—elastic peak can be exploited, the large—w side is obscured by the overlap
with A-isobar excitation [29].

In spite of a large complexity of the spin structure of the e +d - e~ + A+ N
reaction amplitude in comparison with the e~ +d — e + n + p reaction
amplitude, the mechanism of A-isobar production on the deuteron is more
simpler. The reason is that in the impulse approximation the main mechanism
for the e~ +d — e~ +A+N reaction is described only by one Feynman diagram
whereas for the e~ + d — ¢~ + n + p reaction one has to deal, at least, with
four Feynman diagrams (due to the necessity to insure gauge invariance for
the v* +d — n + p process [16]). Moreover, the single diagram in the impulse
approximation for the e +d — e~ + A + N reaction is determined, in good



approximation, only by one form factor of the A — N +~* transition - by the
transition of the magnetic dipole type. All this makes thee™ +d — e + A+ N
reaction more preferable for the determination of the spin structure of the
deuteron wave function in comparison with the e~ +d — e~ 4+ n + p reaction,
from a theoretical point of view.

No wonder that the role of the polarization experiments in the e- +d —
e"+ A+ N and e~ +d — e~ +n+ p reactions is also different. Although the
form factors of the A — N +~* transition are not presently better known than
the nucleon form factors, such uncertainty has no effect on the calculations
of different asymmetries for the e™ +d — e~ + A + N reaction due to the
polarizations of the colliding particles. One can expect that the various asym-
metries in the e~ +d — ¢~ + A + N reaction will be essentially constant, in
the impulse approximation, over all the spectrum of the scattered electrons.
This expectation derives from a factorization of polarization effects for the
e+ N —=e +Aande +d— e + A+ N processes, when the last one
is considered in the impulse approximation. So, the search of deviations from
this factorization deserves a special attention. Such deviations may be origi-
nated by dibaryon resonances [30], meson exchange currents and contribution
of the AA—configuration in the deuteron ground state [7]. The other (small)
form factors of the A — N + * transition may also lead to such deviations.

The e +d — ¢~ + A + N reaction has been investigated earlier in inclusive
set—up: the spectra of the scattered electrons show two peaks, one from quasi—
elastic electron—nucleon scattering and another corresponding to the A-isobar
excitation [31]. Experiments on the A—isobar excitation in the electron—nuclear
scattering have been also carried out [32]. The detailed investigation of the
A —isobar (and other nucleon resonances) production which is planned in a
number of laboratories shows the importance of these processes in nuclear
physics.

The theoretical analysis of the processes v+d — N*+N and e"+d — e +N*+
N has been done in a few papers [33-36]. The cross sections of the reactions
e +d—e +N*+N (N*=A(1232) and N*(1480)) have been calculated in
the framework of the non-relativistic impulse approximation [33]. The y+d —
A + N reaction was considered in the relativistic impulse approximation with
the help of the dnp—vertex formalism [34]. A similar approach was used in
Ref. [35] for the analysis of the e~ +d — e~ + A 4+ N reaction. Estimates
of polarization effects were done in Ref. [36] using the formalism of the spin—
density matrix of the virtual nucleon [37].

For the study of polarization effects in the scattering of electrons by hadrons
and nuclei it is necessary to distinguish the general analysis of the polarization
phenomena on one side, and specific, model dependent, estimations of vari-
ous asymmetries and polarizations, on the other side. The general analysis is



based only on the most general properties of the hadron electrodynamics, such
as the conservation of the hadron electromagnetic current, the invariance of
the hadron electromagnetic interactions with respect to the space reflections
and time reversal as well. The particular structure of the hadrons and nuclei
participating in the reaction, is not essential in this case. The properties of the
polarization phenomena, obtained in this way, are universal for all reactions
of the same type.

In this paper we perform a general analysis of the structure of the differ-
ential cross section and various polarization observables for the e~ + d —
e~ 4+ A+ N reaction. The observables related to the cases of an arbitrary po-
larized deuteron target, longitudinally polarized electron beam, polarization
of the outgoing nucleon, as well as the polarization transfer from electron to
final nucleon, and the correlation of the electron and deuteron polarizations
are considered in detail. The particular case of the process of the photopro-
duction of the A-isobar on the deuteron target has been considered in detail,
separately. The differential cross section and various polarization observables
have been derived in terms of the reaction amplitudes. The polarization ob-
servables due to the linear and circular polarizations of the photon, when the
deuteron target is arbitrarily polarized, have been derived in terms of the reac-
tion amplitudes. The polarization of the final nucleon is also considered. This
analysis was done in frame of the structure function formalism.

The paper is organized as follows. In Section 2 the most general spin structure
of the matrix element of the reaction v* +d — A + N is given. The general
structure of the differential cross section when the scattered electron and one
of the hadrons are detected in coincidence, when the electron beam is longi-
tudinally polarized (the polarization states of the deuteron target and of the
final nucleon can be any) is also given here. In Section 3 the polarization ob-
servables due to the longitudinally polarized electron beam and unpolarized
deuteron target (Section 3.1), or vector (tensor) polarized deuteron target
(Section 3.2 (Section 3.3)) are derived. Section 4 gives the expressions for
the nucleon polarization for the unpolarized and longitudinally polarized elec-
tron beam. Section 5 contains the helicity amplitudes in terms of the reaction
scalar amplitudes. In Section 6 we consider v +d — A + N reaction and
the polarization observables with unpolarized and linear or circular polarized
photon beam and unpolarized deuteron target (Section 6.1), or vector (tensor)
polarized deuteron target (Section 6.2 (Section 6.3)) are derived. Section 6.4
gives the expressions of the nucleon polarization for the unpolarized and linear
or circular polarized photon beam. The main results are summarized in the
Conclusion. Technical details are given in the Appendices.



2 The matrix element and the differential cross section

The general structure of the differential cross section for the e™+d — e”+ A+
N reaction can be determined in the framework of the one-photon—exchange
mechanism. The formalism in this section is based on the most general symme-
try properties of the hadron electromagnetic interaction, such as gauge invari-
ance (the conservation of the hadronic and leptonic electromagnetic currents)
and P-invariance (invariance with respect to space reflections) and does not
depend on the deuteron structure and on details of the reaction mechanism
fore”+d — e+ A+ N. In the one-photon—exchange approximation, the ma-
trix element of the A —isobar production in the deuteron electrodisintegration
process

e (k‘l) + d(P) — 6_(l€2) + A(pl) + N(pQ) (1)

(the four-momenta of the corresponding particles are indicated in brackets)
can be written as

2

e, . _
Myi = 1500, Ju = Uka)yuu(ky), @

where £ (k3) is the four-momentum of the initial (final) electron, k = ky — ks,
and J,, is the electromagnetic current describing the transition v*+d — A+ N
(7* is the virtual photon).

The electromagnetic structure of nuclei, as probed by elastic and inelastic
electron scattering by nuclei, can be described by a set of response functions
or structure functions [38]. Each of these structure functions is determined
by different combinations of the longitudinal and transverse components of
the electromagnetic current .J,, thus providing different pieces of information
about the nuclear structure or possible mechanisms of the reaction under con-
sideration. The ones which are determined by the real parts of the bilinear
combinations of the reaction amplitudes are nonzero in impulse approxima-
tion, those which originate from the imaginary part of the structure functions
vanish in the absence of final state interaction.

The formalism of the structure functions is especially convenient for the inves-
tigation of polarization phenomena in the reaction (1). As a starting point, let
us write the general structure of the differential cross section of the reaction
(1), when the scattered electron and one of the hadrons are detected in co-
incidence, and the electron beam is longitudinally polarized (the polarization
states of the deuteron target and of the final nucleon can be any):
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with

o E' p 1 1
C64m3 E MW 1 — e (—k2)’

o1 k2 0
- 2 2 122 _ AN2WW2 o~ — 1 _ 9/ Lab 2 [ Ue
k| S (W2 + M2 — k2)2 —4AM2W?2 ¢ 1—2 % tan <2>,
P= Sy (W2 + M3 — m?)? —AMAW?, H,, = J,J;. (4)

The z axis is directed along the virtual photon momentum E, the momen-
tum of the detected A-isobar p lies in the xz plane (reaction plane); E(E’)
is the energy of the initial (scattered) electron in the deuteron rest frame
(Lab system); df, is the solid angle of the scattered electron in the Lab
system, dQ2a(p) is the solid angle (value of the three-momentum) of the de-
tected A—isobar in AN-pair center—of-mass system (CMS), Ma, M and m
are the masses of the A-isobar, deuteron and nucleon, respectively; ¢ is the
azimuthal angle between the electron scattering plane and the plane where
the detected A-isobar lies (z2), kg = (W? + k* — M?)/2W is the virtual
photon energy in the AN-pair CMS, W is the invariant mass of the final
hadrons, W? = M? + k* + 2M(E — E'); X is the degree of the electron lon-
gitudinal polarization, € is the degree of the linear polarization of the virtual
photon. The upper (bottom) sign in this formula corresponds to the electron
(positron) scattering. This expression is valid for zero electron mass. Below
we will neglect it wherever possible.

As it is seen from Eq. (3), the differential cross section and various polarization
characteristics of the process under consideration are determined only by the
space components of the hadronic tensor H,,.



Assuming the conservation of the leptonic j, and hadronic .J, electromagnetic
currents the matrix element can be written as

1

Mfi:eeuJ”:ef-i eu:%jﬂ, [=—Fk—¢ (5)

S| &

In CMS of the A-isobar and final nucleon we get
My; :e)a'ﬁxf =el,

where Y4 and ¢ are the A-isobar vector spinor and nucleon spinor, corre-
spondingly.

Let us introduce, the orthonormal system of basic unit n, 7, and k vectors
which are built from the momenta of the particles participating in the reaction
under consideration

Exp

E —
- ﬂi,m:nx
7 7l

k]

Eral g
v

7n:

The unit vectors k and 17 define the 7* +d — A+ N reaction zz—plane (the z
axis is directed along the three-momentum of the virtual photon E, the x axis
is directed along the unit vector m), and the unit vector 7 is perpendicular to
the reaction plane.

In the analysis of polarization phenomena, it is convenient to use the amplitude
F represented in the above orthonormal basis. The amplitude £’ can be chosen
as

foG -0 17+ fro - KO -7+ fuiG -0 - K+ fr08 - KU - K) +

[ k(iU -1t iful - K+ f1s3 - 70 -7+ f163 - 70 - K +

126 0 - + frgd - KO - 70), (6)
3.7l o+



where f;(i =1 — 36) are the scalar amplitudes, depending on three variables,
which completely determine the reaction dynamics. If we single out the photon
polarization vector lj one can write the amplitude F' as F' = Fjl; and the
hadronic tensor as H;; = FZ-F]-*.

3 Polarization of the deuteron target

In the general case the deuteron polarization is described by the spin—density
matrix. Let us start from the following general expression for the deuteron
spin—density matrix in the coordinate representation [39]

1 P,P, i
Puw =773 (gW N ]\#/[2 > a W%aﬁsal)ﬂ + S, (8)

where s, is the four—vector describing the vector polarization of the target,
with s = —1, s- P = 0. S, is the tensor describing the tensor (quadrupole)
polarization of the target, with S,, = S,,, P,S,, =0, S, = 0. Due to these
properties the tensor S, has only five independent components. In Lab system
all time components of the tensor S,, are zero and the tensor polarization
of the target is described by five independent space components (S;; = Sj;,
Sii =0,14,j = x,y, z). The four-vector s, is related to the unit vector gof the
deuteron vector polarization in its rest system:

so = —kE/M, §= &+ k(kE)/M(M +w),
where w is the deuteron energy in the v* +d — A + N reaction CMS.

The hadronic tensor H;j(i,j = z,y,z) depends linearly on the target polar-
ization and it can be represented as follows

Hi; = Hy(0) + Hi;(§) + Hy(S), (9)

where the term H;;(0) corresponds to the case of unpolarized deuteron target,
and the term H;;(£)(H;;(S)) corresponds to the case of the vector(tensor-)-
polarized target.

3.1 Unpolarized deuteron target

The general structure of the part of the hadronic tensor corresponding to
unpolarized deuteron has the following form

11



HZ(O) = O[ll:?iii'j + OZQTLZ'TL]' + agmimj + a4(/%,~mj =+ l;:]m,) —+
iOé5 (lAch] — lAchz) (10)

The structure functions «; are real and depend on three invariant variables
s =W? = (k+ P)? k? and t = (k — P)?. Let us emphasize that the structure
function aj is determined by the strong interaction effects of the A-isobar and
the nucleon in the final state and it vanishes for the pole diagram contribution
in all kinematic range (independently on the particular parametrization of the
v*AN— and dnp—vertexes). This is true for the non relativistic approach and
for the relativistic one as well, when describing the v* +d — A + N reaction.
The scattering of longitudinally polarized electrons by unpolarized deuteron
allows to determine the as contribution. Then, the corresponding asymmetry
is determined only by the strong interaction effects. More exactly, it is de-
termined by the effects arising from non pole mechanisms of various nature
(meson exchange currents can also induce nonzero asymmetry). Dibaryon res-
onances, if present, may also lead to nonzero asymmetry.

In the chosen coordinate system, the different hadron tensor components, en-
tering in the expression of the cross section (10), are related to the structure
functions «;(i = 1 — 5) by:

wa + Hyy = a3+ g, sz = Qy, Hmz + sz = 20&4,
H,, — H,y = —2ics, Hyy+ Hyy =0, H,, + H,, = 0. (11)

In the one—photon—exchange approximation, the general structure of the dif-
ferential cross section for the reaction d(€, e’ A)N (in the case of longitudinally
polarized electron beam and unpolarized deuteron target) can be written in
terms of five independent contributions

d3o
- =N 2 2e(1
TN {UT—FSUL—FSCOS( p)op +1/2e(1 + £) cos oy +

M/2e(1— ) sin goa'l], (12)

where the individual contributions are related to the components of the spin—
independent hadronic tensor, Eq. (10), by:

UT:H:M: + Hyya op = Hxx - Hyya oL = _2_sza

_k2 _k?
sz Hz:v ) =1
ko ( + ), of =i ko

o= —

From the above equations, one can define a single—spin asymmetry which is
due to the electron beam polarization:

12



do(A=+1) —do(A=—-1)
do(A=+1)+do(A=—1)

sin p4/2e(1 — ¢)o}
y2e(1 — &)y | (13)
or +eor, + e cos(2¢)op + 1/2¢(1 + ) cos poy

which contains a ¢-dependence. Therefore, this asymmetry has to be mea-
sured in non coplanar geometry (out-of-plane kinematics).

Yelp) =

We see that this asymmetry is determined by the structure function as which
is defined by the interference of the reaction amplitudes that characterize
the absorption of virtual photons with nonzero longitudinal and transverse
components of the electromagnetic current corresponding to the process v* +
d — A 4+ N. One finds that a5 ~ sin? independently from the reaction
mechanism. It vanishes when the A-isobar emission angles are ¥ = 0° and ¢ =
180°, due to the conservation of the total helicity of the interacting particles
in the v* +d — A + N reaction. The structure function «j; is nonzero only if
the complex amplitudes of the v*4+d — A + N reaction have nonzero relative
phases. This is a very specific observable, which has no corresponding quantity
in the A-isobar excitation in the deuteron photodisintegration process v+d —
A+ N.

The study of the single—spin asymmetry ¥, was firstly suggested for pion
production in electron—nucleon scattering, e+ N — e+ N+ [40]. Afterward,
this asymmetry has been discussed for the hadron production in the exclusive
processes of the type A(€,eh)X, where A is a nucleus and h is the detected
hadron [41,42]. A number of experiments to measure the asymmetry 3, has
already been done [43].

3.2 Vector—polarized deuteron target

The part of the hadronic tensor depending on the deuteron vector polarization
has the following general structure:

H;;(§) = gﬁ(&iﬂffj + Boamymy + Byngnj + Bk, m}i; + iP5 [k, ml;;) +
+5E(56{i€a n}ij + Br{m,n}ti; +ifs [k, nli; + iBe[m, nli;) +
+gm(510{i€, n}i; + fu{m,n}i; + iBialk, nlij + iBis[m, nli;), (14)

where {a,b}i; = ab; + a;b;, [a,bl; = ab; — a;b;.

Therefore, the dependence of the polarization observables on the deuteron
vector polarization is determined by thirteen structure functions. On the basis
of this formula one can make the following general conclusions:

13



e If the deuteron is vector—polarized and the polarization vector is perpen-
dicular to the v* +d — A + N reaction plane, then the dependence of
the differential cross section on the £ and ¢ variables is the same as in the
case of unpolarized target, and the non vanishing components of the H;;(&)
tensor are:

wa(&) + Hyy(g) = (52 + 63)5_)7 zz(é-) - Blgﬁa

e If the deuteron target is polarized in the v* +d — A + N reaction plane
(in direction of the vector k or ), then the dependence of the differential
cross section of the e” +d — e~ + A + N reaction on the € and ¢ variables
is:

- for unpolarized electron beam:

esin(2¢p), \/2e(1 + €)singp,

- for longitudinally polarized electron beam:

+iAV1 — €2, Fi\y/2e(1 —€)cos.

-

The differential cross section of the reaction d(é,e’A)N, where the electron
beam is longitudinally polarized and the deuteron target is vector—polarized,
can be written as follows:

d?o

— 1 b Ad Aed Ad Aed
dE"dQ.dA UO[ + A 8+( s T A 1)5:1:"‘( y+)\ y)§y+

(Al + 24z (16)

where 0g is the unpolarized differential cross section, ¥, is the beam asym-
metry (the asymmetry induced by the electron—beam polarization), A%(i =
x,y, z) are the analyzing powers due to the vector polarization of the deuteron
target, and A% (i = x,y, 2) are the spin— correlation parameters. The direction
of the deuteron polarization vector is defined by the angles ¥*, ¢* in the ref-
erence frame where the 2z axis is along the direction of the three—-momentum
transfer E, and the y axis is defined by the vector product of the momenta
of the detected A— isobar and the virtual photon (along the unit vector 7).
The target analyzing powers and the spin—correlation parameters depend on
the orientation of the deuteron polarization vector. The quantities 3, and A¢
are T—odd observables and they are completely determined by the reaction
mechanism beyond the impulse approximation, for example, by final-state in-
teraction effects. On the contrary, the quantities A¢Y are T—even observables
and they do not vanish in absence of final-state interaction effects.
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The expressions of the A% and A% asymmetries can be explicitly written as
functions of the azimuthal angle ¢, of the virtual-photon linear polarization ¢,
and of the contributions of the longitudinal (L) and transverse (T) components
(relative to the virtual-photon momentum E) of the hadron electromagnetic
current of the v* +d — A + N reaction:

A%y = N sin (,0[ 2¢(1+ )AL 4 ¢ cos gpA:(L,TT)] :

A‘Ziao = Nsin@[ 2e(1 4+ 5)A2LT) + £ cos (pAgTT)] ,

ASUU =N AéTT) + 6A§LL) +1/2e(1 + €) cos goAéLT) +¢ COS(QQO)AZSTT) ,
A%y =N |V1—22BI") 1 /2:(1 — ) cos goB{E:LT)] :

Aoy =N|v1 - 2B 4+ /22(1 — ¢) cos goBgLT)] ,
Azdao =Ny/2¢(1 — ¢) sin goBgsLT), (17)

where the individual contributions to the considered asymmetries in terms of
the structure functions g; are given by

AT =481y, ATTD = By + B, AT = By — By, ATD = 46,

Yy F1

/()2 /()2 /()2
AP = 9V g A0 = Vg g0 - Vg

k() Y kO kU

Q2
AE,LL) ZQk—%Bh BiTT) = 2013, BETT) = 2,
2 2 2
BIN = 2¥ L5, BN = oY Ep, pun = 9V g
0 0 0

At this stage, the general model-independent analysis of the polarization ob-

— —

servables in the reactions d(e, ¢’ A)N and d(€, ¢’A)N is completed. To proceed
further in the calculation of the observables, one needs a model for the reaction
mechanism and for the deuteron structure.

3.8 Tensor—polarized deuteron target

The part of the hadronic tensor H;;(.S), which depends on the deuteron tensor
polarization, has the following general structure:

Hl(S) = Sabl%aifb(f)’ll%iiﬁj + ’)’Qmim]’ + ’)’3n,~nj + ’)/4{12', m}ij + ’L”Y5[I%, m]”) +
Sabmamb (’yﬁkikj + V7 Im + AL + ’Yg{k, m}ij + Z"Ym[k, m]”) +
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Sab{l;a m}ab(’m/;?iifj + Yigmim; + yi3nn; + 714{’% m}i; + iv1s [/;7, m);;) +
Sav{k,n}ap(16{k, n}ij + y17{m, n}z‘j + im18/k, n]ij + iy19[m, n]z]) +
Sap{m, n}ap(vao{k, n}ij + vor{m, n}ij + ivaelk, nlij + iveslm, nlij).  (18)

In this case, the dependence of the polarization observables on the deuteron
tensor polarization is determined by 23 structure functions.

From this equation one can conclude that:

e If the deuteron is tensor polarized so that only S.., S, and (S, + S..)
components of the quadrupole polarization tensor are nonzero, then the
dependence of the differential cross section of the e- +d - e + A+ N
reaction on the parameter € and on the azimuthal angle ¢ must be the same
as in the case of the unpolarized target (more exactly, with similar - and
¢— dependent terms).

e If the deuteron is polarized so that only (S;, + Sy.) and (S, + S.,) com-
ponents of the quadrupole polarization tensor are nonzero, then the typical
terms follow sin ¢ and sin(2¢) dependencies - for deuteron disintegration
by unpolarized electron beam, and terms which do not depend on ¢, ¢,
and cos ¢ - for deuteron disintegration by longitudinally polarized electron
beam.

In polarization experiments it is possible to prepare the deuteron target with
definite spin projection on some quantization axis. The corresponding asym-
metry is usually defined as

dO’()\d = —|—1) - dO’()\d = —1)
dO’()\d = —|—1) + dO’()\d = —1),

A=

where do()\g) is the differential cross section of the e +d — e~ + A+ N reac-
tion when the quantization axis for the deuteron spin (in the AN-pair CMS)
coincides with its momentum, i.e., the deuteron has helicity \;. From an exper-
imental point of view, the measurement of an asymmetry is more convenient
than a measurement of a cross section, as most of systematic experimental
errors and other multiplicative factors cancel in the ratio.

The general form of the hadron tensor H;;(A\4), which determines the differen-
tial cross section of the process under consideration for the case of the deuteron
with helicity A4, can be written as

HZ-(J-)\d:il) = 611}2-15]- + 52mimj + 53%2'713' + 54{];}, m}ij + i(55 [];}, m]z-j +
+06{k,n}ij £ 107 [k, nlij & dg{m,n}i; + ido[m, n;;. (19)

The reaction amplitude is real in the Born (impulse) approximation. So, as-
suming the T-invariance of the hadron electromagnetic interactions, we can
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do the following statements, according to the deuteron polarization state:

e The deuteron is unpolarized. Since the hadronic tensor H;;(0) has to be
symmetric (over i,j indexes) in this case, the asymmetry in the scattering
of longitudinally polarized electrons vanishes.

The deuteron is vector polarized. Since the hadronic tensor H;;(£) has to
be antisymmetric in this case, then the deuteron vector polarization can
manifest itself in the scattering of longitudinally polarized electrons. The
perpendicular target polarization (normal to the v* +d — A + N reaction

plane) leads to a correlation of the following type: +i\y/2¢(1 — ) sin . The
longitudinal and transverse (along or perpendicular to the virtual-photon
momentum) target polarization (lying in the v* + d — A + N reaction
plane) leads to two correlations of the following type : FiAv/1 — &2 and
Fil/2c(1 — ) cos p.

The deuteron is tensor polarized. The hadronic tensor H;;(S) is symmetric
in this case. In the scattering of longitudinally polarized electrons the contri-
bution proportional to AS,, vanishes. If the target is polarized so that only
the (Sgy + Sys) or (S, + S.,) components of the quadrupole polarization
tensor are nonzero, then in the differential cross section only the following

two terms are present: ¢sin(2¢) and 1/2e(1 + ) sin ¢. For all other target
polarizations the following structures are present: a term which does not de-
pend on £ and ¢ variables as well as terms with the following dependencies:

2e, € cos(2¢p), and 1/2¢(1 + €) cos p.

The differential cross section of the A-isobar excitation in the scattering of

longitudinally polarized electrons by tensor polarized deuteron target (in the
coincidence experimental setup) has the following general structure

d*o

-~ _— N AT o AT o — AT .

B dS2,d0 {or + ALQu + AL(Que — Q) + ALQu. +

o+ AL Qe+ AL (Que — Quy) + Aizsz} 4

o1+ AL Qs + AL (Quw — Qyy) + A;sz] 4
V2e(1+2) sin (AL Quy + ALQy.) + £5in(20) (AL Quy + ALLQy2) +
e cos(2¢) {ap + Ay Qux + Ay Qe — Quy) + Af;sz} +

A/2e(1 —¢)sing {U’I + Aisz + A;{;;,;(Qm —Qyy) + A;Qm] +

)\m cos ¢ [Ai.mey + A;;;Qyz:| +

A1 —g2cosp Anywy + AZZQyz] }7

9

2e(1+¢)cosy
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where the quantities @Q;;(i,j = z,v, z) are the components of the quadrupole
polarization tensor of the deuteron in its rest system (the coordinate system
is specified similarly to the case of the AN-pair CMS). These components
satisfy the following conditions: Q;; = @i, @i = 0. By writing this formula
we took into account the following relation: Qg + @Qyy + @, = 0.

A general property of these tensor asymmetries is that they vanish in the
region of the quasi—elastic scattering. This can be explained as follows. All the
asymmetries are determined by the convolution X,,,.S,,, where the tensor X,
is built with the four-momenta describing the d — np transition. Due to the
condition P,S,, = 0, the most general form of this tensor is

X;w = 019w + 1as [’7#7 fyu] + azuDv + a4YvPu + asPupPu,

where p,, is the four-momentum of the nucleon-spectator. However, if we take
into account that S,,9,, = 0, Sy, = S,,, then the convolution X, 5, is
determined by as,as and as. From the condition P,S,, = 0, it follows that
the time components of the S, tensor vanish in the Lab system. Therefore,
the convolution X, S, turns out to be proportional to the nucleon-spectator
three-momentum which is zero at the peak of the quasi—elastic scattering.

Thus, in the general case, the number of independent asymmetries A7} (W, k2, 19),
1,7 =x,y,2;m =T, P, L, I, contributing to the exclusive cross section of the
A-isobar excitation is 23 for the scattering of longitudinally polarized electrons
by a tensor polarized deuteron target, 16(7) for the scattering of unpolarized
(longitudinally polarized) electrons A7} (W, k%, 9), where i,j = z,y,2;m =
T,P,L,I. These asymmetries can be related to the structure functions ~;
which are the bilinear combinations of the 36 independent scalar amplitudes
describing the v* + d — A + N reaction, by the following relations:

w 1
Ay, = 2M(712 +ms), AL, = 5(77 +78),
w? 1 w k? k?
AT = — — - AL = 4=~ AL =
22 M2 (72 + 73) 9 (77 + 78)7 Tz M kg Vi1, Agy k% 65
B 7 VR
Al = (2, — Al = —4— Al = —
22 k_% ( M2 T 76)7 zz M ko 7 V14 rT k'() Y9,
/—k2 —k2
Al =- o (2ﬁ% V), AL, = — fo 200
—k? w w
Al = 4% AP =ty AP =48 AP — 90X
1 w? 1
Ai')x = 5(77 ) AP = M2( 73) ( 78)7
- w vV —k? - —k? V- w?
Al =4— , A:{,x = , AI
Tz M ke V15 ko Y10 ko ( 2 ~575 — Y10)



Al :—4i722 Al = 4=
ry ko TR M kg

w
18, A?p—’y = 423, AZZ = 4@%9-

One can see from this formula that the scattering of unpolarized electrons by
a tensor polarized deuteron target with components @, = Q. = 0, is char-
acterized by the same ¢— and e-dependences as in the case of the scattering
of unpolarized electrons by unpolarized deuteron target. If Q,, # 0, Q. # 0,

then new terms of the type /2¢(1 + ¢) sin ¢ and esin(2¢p) are present in the
cross section. The asymmetries with upper indexes 7, P(L) are determined
only by the transverse (longitudinal) components of the electromagnetic cur-
rent for the v* +d — A + N reaction, while the asymmetries with upper
index I are determined by the interference of the longitudinal and transverse
components of the electromagnetic current.

Using the explicit form for the amplitude of the reaction under consideration
it is easy to obtain the expression for the hadronic tensor H;; in terms of the
scalar amplitudes f; (i = 1,...,36) .Appendix A contains the formulas for the
structure functions «;, f3;, v; in terms of the scalar amplitudes, which describe
the polarization effects in the e~ +d — ¢~ + A + N reaction due the deuteron
polarization.

Let us stress again that the results listed above have a general nature and
are not related to a particular reaction mechanism. They have been derived
assuming the one-photon-exchange mechanism, the spin one nature of the
photon, the P-invariance of the hadron electromagnetic interaction, and the
hadron electromagnetic current conservation. Other possible, model dependent
contributions to the deuteron structure such as meson—exchange current, the
D— wave admixture in the deuteron ground state, a AA— component, six—
quark configuration etc., do not affect the general results of this section.

4 Nucleon polarization

Let us write the matrix element of the reaction under consideration in the
following form (the vector indexes of the virtual photon and A-isobar are
singled out)

My = elixop FriXi-

The polarization properties of the nucleon, produced in the v*+d - A+ N
reaction, are determined by the P;; tensor

Py = TrouFudFf, i,j = ,y, 7, (20)
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where py. is the A—isobar spin—density matrix. Let us consider the case when
the deuteron target and produced A—isobar are unpolarized. The nucleon po-
larization vector P (multiplied by the unpolarized differential cross section
d3o/dE'dQ.d2A) is given by an expression obtained from Eq. (3), replacing
the components of the hadronic tensor H;; by the corresponding ]3Z-j tensor
components. The tensor ]3Z-j can be represented in the following general form:
B = kP + P +ipP.

Assuming the P-invariance of the hadron electroma netlc 1nteract1on we can
write the tensor structure of the quantities P,] , P,] , and P,] , in terms of
the structure functions P;, i = 1 — 13, which depend on three independent
kinematical variables: k2, W, and ¢:

P = Pi{k,n}ij + Po{m, n}ij + iPy[k, nli; + iPym, nlsj,
pz_(]?") = Py{k,n}ij + Ps{m,n};; + iP;[k,nl;; + iPs[m, nl;j,
PZ.(J.”) = ngi]%j + Piomym; + Pyining + P12{]Af, m}ij + Py []%a mj;;. (21)

The expressions for the structure functions P;, in terms of the scalar ampli-
tudes f;, © = 1 — 36, are given in Appendix B. We can see that the symmetric
parts (with respect to the 4, j indexes) of the tensors in this equation (which
correspond to eight structure functions P;, i = 1,2,5,6,9,10,11,12) deter-
mine the components of the polarization vector of the nucleon produced in
collisions of unpolarized electrons with an unpolarized deuteron target, for the
reaction d(e, ¢’ N)A. The antisymmetric parts of the tensors in Eq. (21), (that
is, the five structure functions P;, i = 3,4,7,8,13) determine the components
of the polarization vector of the nucleon produced in collisions of longitudi-

nally polarized electrons with an unpolarized deuteron target, for the reaction
d(€,e'N)A.

Moreover, it can be shown that eight structure functions Py, P, Ps, Ps, Py 1o
(in the symmetric parts of the corresponding tensors) determine the T—odd
contributions to the nucleon polarization vector P (for the scattering of un-
polarized electrons), whereas the five structure functions P3, Py, Pr, Py, Pi3
(in the antisymmetric parts of the corresponding tensors) determine the T-
even contributions to the nucleon polarization vector P (for the scattering of
longitudinally polarized electrons).

These five T—even structure functions are nonzero even when the v* 4+ d —
A + N reaction amplitudes are real functions, which is true in the framework
of impulse approximation. In the scattering of the longitudinally polarized
electrons, they determine the nucleon polarization induced by the absorption
of circularly polarized virtual photons (by unpolarized deuteron target) in the
v*+d — A + N reaction: the polarization is transferred from the electron
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to the produced nucleon by the virtual photon. The eight T-odd structure
functions, defined above, are nonzero only for complex v* +d — A+ N
reaction amplitudes (with different relative phases).

Due to the tensor structure of the quantities R , in the scattering of unpo-
larized electrons by unpolarized deuterons, the polarization component of the
nucleon which is orthogonal to the v* +d — A + N reaction plane is char-
acterized by the same ¢ and ¢ dependences as in the unpolarized case. The
polarization vector of the nucleons polarized in the v* +d — A + N reaction
plane (components P, and P,) is characterized by two dependences: ¢ sin(2¢p)

and y/2¢(1 + ¢) sin .

To prove these statements, we explicitly single out the dependence of the nu-
cleon polarization on the kinematic variables ¢ and e. In the general case, the
vector of the nucleon polarization can be represented as the sum of two terms:
PO and ]3(/\), where the polarization PO corresponds to the unpolarized
electron beam (the so-called induced polarization) and the polarization P
corresponds to the longitudinally polarized electron beam (polarization trans-
fer). So, the components of the nucleon polarization vector P in the reactions
d(e, e’ N)A, d(¢,¢/N)A are given by:

P = PO 4 \pY

Y

POgy = Nsin¢[y/2e(1 + &) P 4 ¢ cos o P,
PO gy = Nsin¢[y/2e(1 + &) PED) 4 ¢ cos P,

z

P{™) 4+ P +\/26(1 + £) cos P + £ cos(2¢) P,

Py(’\)ao =Ny/2¢(1 — &) sin ngéLT)], (22)

where 0g = d*c/dE'dQ.dQ A is the unpolarized differential cross section of the
reaction under consideration, and the individual contributions to the polar-
ization vector in terms of the structure functions P; are:

P = 4P, Py(TT):P10+P11, P(TT):Pm—Pn, P = 4P,

Pw(LT)Z—Q Q2P5, PUT) = _9 L Py, Pz( =-2
ko v k() kO




R;LT) =-2 kQZ Pr, Rg(;LT) =2 kQ2 Pys, RgLT) =2 kQ2
0 0 0

Ps.

The expressions for the structure functions P; in terms of the reaction am-
plitudes are general and do not depend on the details of the reaction mecha-
nism. As explicitly shown in Appendix B, each of the 13 structure functions
P;(W, k*,t), i = 1—13, carries independent information about the scalar ampli-
tudes. Therefore, measurement of all these structure functions is, in principle,
necessary to perform the complete v* +d — A + N experiment.

5 Helicity amplitudes

Since the spin structure of the matrix element of the reaction under con-
sideration is quite complicated, it is convenient to perform the unitarization
procedure (taking into account the final state interaction, i.e., the NA — NA
scattering effects) with the help of the helicity amplitudes formalism. As it was
shown above, the reaction v* +d — A + N is described by 36 independent
amplitudes.

Let us introduce the set of the helicity amplitudes hyy (k?*, W, ) (where A and
A" are the helicities of the initial (y*+d) and final (A+ N) states) and consider
the amplitudes

hax =< Aa, An [Ty, Aa >= 05 (Aa)F (A, Aa)x§ (),
where A, A\g, Ay and A are the helicities of the virtual photon, deuteron,

nucleon and A- isobar, respectively, with A = A, — Ay and X' = A — Ay. We
choose the following convention:

hy =< %%|T|11 >, hy =< —% - %|T|11 >, hy =< %%|T|10 >, (23)
hy =< —% - %|T|10 >, hy =< %%|T|1 —1>,

he =< —% — %|T|1 —1>, hy =< % — %|T|11 >, hg =< —%%|T|11 >,
hy =< % — %|T|10 >, hjp =< —%%|T|1O >, hyp =< % — %|T|1 — 1>

11 11 11
his =< ——=|T|1 -1 his =< ——|T'|01 hyy =< ==|T00
12 =< 22| | >, i <22| 01 >, hig <22| 100 >,

11 11 11
S ITI0—1 —< ——TJ01 e T
11 31 3 1
hig =< —==|T|0 = 1 >, hig =< S=[T|11 >, hop =< —= — =|T11
18 =< 22| 0 >, hig <22|| >, hgy =< 5 2|| >,
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hoy =< g%mm >, hgp =< —g — %|T|1O >, hog =< g%ml —1>,
hay =< —; - %|T|1 — 1>, hyy =< g - %|T|11 >,

hog =< —;%|T|11 >, hor =< ; — %|T|1O >, hog =< —%%|T|1O >,
hag =< % — %|T|1 — 1>, hyg =< —%%|T|1 —1>,

31 31 31
=< 22701 =< —Z|T =< —=|T0—1
h31 < 22| |0 >, h32 < 22| |00 >, h33 < 22| |O >,
31 31 31
hags =< —2=|T|01 >, hgs =< —>=|T has =< —=|T[0—1> .
34 =< 22| |0 >, h3s =< 22| |00 >, h3g =< 22| |0 >

We choose the helicity amplitudes in such a way that the first 18 helicity
amplitudes (corresponding to the A-isobar helicities +1/2) coincide with the
helicity amplitudes for the deuteron electrodisintegration reaction v* + d —
n + p [44]. As it was shown above, the matrix element of the process under
consideration can be described in terms of the scalar amplitudes. The formulas
relating the two sets of independent amplitudes f; and h; are given in Appendix

C.

6 A-isobar production in deuteron photodisintegration process

Let us consider the particular case of the A—isobar production, in the deuteron
photodisintegration reaction

v(k) +d(P) = A(p1) + N(p2), (24)

where the four-momenta of the particles are given in the brackets. Of course,
all observables for this reaction can be obtained using the formulas presented
above for the case of the virtual photon, but it is rather tedious procedure. So,
it is worth to have the expressions for the differential cross section and various
polarization observables which are suitable for the analysis of the future data
on this reaction.

The matrix element of this reaction can be written as

M = eAM‘]H = —GAZ'JZ', (25)

where A, is the photon polarization four-vector and we use the transverse
gauge: k- A =0 (k is the photon momentum).
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The differential cross section in CMS (not averaged over the spins of the initial
particles) can be written as

do o p 1

— = — ;- H;;, 26

a0 ~ srwwz— plit (26)
where p;; = A;A; and hadronic tensor is determined as H;; = J;J;. The
notation of the other quantities have been defined in previous sections.
In the reaction CMS, the quantity .J; can be written as

Ji = X3 Gix{, (27)

where Y3 and x¢ are the A-isobar vector spinor and nucleon spinor, respec-
tively. The quantity G; can be chosen as

G =mG"™ + EGW), (28)

where g;(i = 1—24) are the scalar amplitudes, depending on two variables (en-
ergy and scattering angle), which completely determine the reaction dynamics,
and U is the deuteron polarization vector.

The hadronic tensor H;j(i,j = z,y, %) depends linearly on the target polar-
ization and it can be represented as follows

Hi; = Hy(0) + Hi;(§) + Hy(S), (30)

where the term H;;(0) corresponds to the case of the unpolarized deuteron
target, and the term H,;(&)(H;;(S)) corresponds to the case of the vector
(tensor-)-polarized target. Let us consider the polarization observables of the
v +d — A 4 N reaction for each contribution to the hadronic tensor H;;.
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6.1 Unpolarized deuteron target

The general structure of the hadronic tensor for unpolarized deuteron target
has following form

H;;(0) = aymym; + aznin, (31)

where a; and ay are the structure functions which can be expressed in terms
of the reaction scalar amplitudes. The expressions of these structure functions
can be found in Appendix D.

The differential cross section of this reaction for the case of unpolarized par-
ticles can be written as

_ o p 1
C16m W W2 — M2’

doun

ds?

= N(a1 + 02), N (32)

Let us consider the case when photon is polarized. The general expression of
the photon polarization vector is determined by two real parameters $ and ¢
and it can be written as [45]

—

A = cos Bm + sin Bexp(id)7. (33)

If the parameter 6 = 0 then the photon polarization vector describe the linear
polarization state of the photon, directed at an angle 5 with respect to the x
axis. The parameters 8 = /4 and 6 = +7/2 denote the circular polarization
of the photon. Arbitrary 5 and 0 correspond to elliptic photon polarization.

The differential cross section in the case of polarized photon has the following
form

do  dou,

dQ -~ dQ

(14 A, cos2p), (34)

where A, is the asymmetry due to the linear polarization of the photon and
it can be written as

do/dQ(B = 0°) — do /(B = 90°)

Al = . 35
=7 do /dQU(B = 0°) + do /dQ(B = 90°) (35)
This asymmetry has following form in terms of the structure functions
Oun N yor A = 2% (36)
= N(a; — as) or = .
70 L 1 — Q2 P
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Note that circular polarization of the photon does not contribute to the dif-
ferential cross section due to the P—invariance of the hadron electromagnetic
interaction.

6.2 Vector polarized deuteron target

For v+ d — A + N, the dependence of the polarization observables on the
deuteron vector polarization is determined by six structure functions. The part
of the hadronic tensor which depends on the deuteron vector polarization has
the following general structure:

Hj(&) = ﬁﬁ(blmimj + banin;) + £k (bs{m, n}i; + ibs[m, nly;) +
+Em(bs{m, n}i; + ibg[m, nl;;), (37)

where b;, (i = 1 — 6) are the structure functions, depending on two variables,
which can be expressed in terms of the reaction scalar amplitudes. The ex-
pressions of these structure functions are given in Appendix D.

The part of the differential cross section of the v +d — A + N reaction
which depends on the deuteron vector polarization, for the case of arbitrarily
polarized photon, can be written as

dO'U daun I . [ l
010 A&y + O cos 238, + sin 23 cos 3(C& +CLE,) +
+sin28sin 6(C%E, + C%¢,)|, (38)

where A, is the asymmetry due to the vector polarization of the deuteron
target when the photon is unpolarized (the so—called single target asymme-
try). This asymmetry is due to the component of the polarization vector 5
describing the vector polarization of the target, which is normal to the reac-
tion plane. If the reaction amplitudes are real functions (as, for example, in
the impulse approximation) then this asymmetry is equal to zero. The quan-
tities C?, , ,(C% ,) are the correlation coefficients due to the vector polarization
of the deuteron target when the photon is linearly (circularly) polarized. The
correlation coefficients C:lr,y,z are zero when the amplitudes are real. The corre-
lation coefficients C7 , are determined by the components of the polarization
vector lying in the reaction plane and they are non—zero, in general, for the
real amplitudes. All these polarization observables can be expressed in terms

of the structure functions b;(i = 1 — 6) as:
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d un
Ay = N(by +by), “C = N(by — by),

dQ) dQ Y
doyn B doyn B

0 C, =2Nb;s, 70 C, = 2Nbs,
Aoun B doun B

0 Cs =2Nbg, 70 C; =2Nby.

6.3 Tensor polarized deuteron target

For v+ d — A + N, the dependence of the polarization observables, on
the deuteron tensor (quadrupole) polarization is completely determined by
ten structure functions. The part of the hadronic tensor which depends on
the tensor (quadrupole) polarization of the deuteron target has the following
general structure:

HZ(S) = Sabl%al%b(clmimj + CQ’ni’rL]’) + Sabmamb(cgmimj + C4’ni’n]’) +
Sap{k, m}ap(csmim; + cgning) + Sap{k, n}tap(cz{m,n}i; +
icg[m, n]i;) + Sap{m, n}ap(co{m, n}ij +iciolm, nlij), (39)
where ¢;(i = 1 = 10) are structure functions, which depend on two variables.

Their expressions in terms of the reaction scalar amplitudes are given in Ap-
pendix D.

The part of the differential cross section of the v +d — A + N reaction
which depends on the deuteron tensor polarization, for the case of arbitrarily
polarized photon, can be written as

doy  doun

7t - l

Sin 20 sin 6(CS Qs + c;zQyz)}, (40)

where A,,, Ay, and A,, are the asymmetries due to the tensor polarization of
the deuteron target when the photon is unpolarized. These asymmetries are
non-zero, in the general case, if the reaction amplitudes are real, in contrast
to the A, asymmetry. The quantities C' , CL , C! Cfﬂy and CLZ are the
correlation coefficients due to the tensor polarization of the deuteron target,
when the photon is linearly polarized (they can be non—zero even if the reaction
amplitudes are real). The quantities Cy, and Cy, are the correlation coefficients
which are determined by the tensor polarization of the deuteron target and

the circular polarization of the photon (they are completely determined by
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the reaction mechanism beyond the impulse approximation, for example, by
the final-state interaction effects). All these polarization observables can be
expressed in terms of the structure functions ¢;, (i =1 — 10) as

dgg A, = %[27?((:1 + ¢3) — €3 — ¢4, %Am = g(Q + ),
%Azz =2Nv1(c5 + ), d;;zn C!, = g[?ﬁ(cl — 9) — 3+ ¢4l
d;’_;” Con = %(03 — c4), ds;; Cy, = 2Nvi(cs — co), dsén C’iy = 4Ny,
dg;zn Ci, =4Nver, %C;y = 4N¢yy, %C;Z = 4N7ycs,
"= % (41)

6.4 Polarization of the nucleon

Taking into account the expression of the quantity .J; we may write the nucleon
polarization, in the v 4+ d — A 4+ N reaction, in the following form:

(42)

where 15,~j = TrpﬁGkﬁGf; (ph is the A-isobar spin—density matrix). The
general structure of this tensor, for the case of unpolarized A-isobar and
deuteron target, can be represented in the following form

]3Z-j = E(dl{m, n}ij + ido[m, nlij) + mi(ds{m, n};; + idsm, n)i;) +
+7i(dsmim; + dgn;n;j), (43)

where d; (i = 1 — 6) are the structure functions and their expressions in
terms of the reaction scalar amplitudes are given in Appendix E. The nucleon
polarization in the v +d — A + N reaction, is completely determined by six
structure functions, when the photon is arbitrarily polarized and the other
particles are unpolarized.

The vector components of the nucleon polarization are

doyn,
10 Py=P,) + cos28P,,

daun . 1 . c
70 P, =sin2p(cos P, + sin § PY),
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doun

0 P =sin 23(cos 6 P! + sin 6 PY), (44)

where P; is the y—component of the nucleon polarization when all other parti-
cles are unpolarized, whereas Pé, P! and P! are the components of the nucleon
polarization when the photon is linear polarized. All these observables arise
due to reaction mechanisms beyond the impulse approximation. The quanti-
ties Py and Py are the x— and z—components of the nucleon polarization when
the photon is circularly polarized and in general, they can be non—zero in the
impulse approximation. The expressions of these observables in terms of the
structure functions d; are

N N
P;ZE(df)‘i‘dG), P]jzg(df)_dG),Pi:NdS, le:Ndh
Pt = Ndy, P° = Nds. (45)

7 Conclusions

We developed a relativistic approach to the calculation of the differential cross
section and various polarization observables for the A-isobar production in
deuteron photo— and electrodisintegration processes, v +d — A + N and
e +d—>e +A+ N.

A general analysis of the structure of the differential cross section and polar-
ization observables for the A—isobar excitation in the scattering of the elec-
trons by the deuteron target, v* +d — A + N was derived. Our formalism is
based on the most general symmetry properties of the hadron electromagnetic
interaction, such as gauge invariance (the conservation of the hadronic and
leptonic electromagnetic currents) and P—invariance (invariance with respect
to the space reflections) and does not depend on the deuteron structure and
on the details of the reaction mechanism for v* + d — A 4+ N. This general
analysis was done with the help of the structure function formalism which is
especially convenient for the investigation of the polarization phenomena in
this reaction.

The observables related to the cases of an arbitrary polarized deuteron target,
longitudinally polarized electron beam, polarization of the outgoing nucleon,
as well as the polarization transfer from electron to final nucleon, and the
correlation of the electron and deuteron polarizations were considered in detail.
We derived the expressions for polarization effects which are absent in the
impulse approximation and due to the strong AN— interaction in the final
state.
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A particular case of the process of the photoproduction of the A-isobar on the
deuteron target has been considered in details. The differential cross section
and various polarization observables have been derived in terms of the reac-
tion amplitudes. The polarization observables due to the linear and circular
polarizations of the photon provided the deuteron target is arbitrarily polar-
ized have been derived in terms of the reaction amplitudes. The polarization
of the final nucleon is also considered.

General properties of these observables have been derived and underlined.
Such properties should be fulfilled by any model calculation. In this respect,
the present approach is important, as it gives on one side, guidelines for models
and, on the other side, defines the strategy (the observables and the kinemat-
ical conditions) for experiments.
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9 Appendix A

In this Appendix, we present the formulas for the structure functions which de-
termine the hadronic tensor H;; for various polarization states of the deuteron
target. The functions are written in terms of the scalar amplitudes f; (i =
1,...,36) determining the v* +d — A + N reaction.

e Unpolarized deuteron target.

The hadronic tensor H;;(0) is determined by the structure functions «;, (i =
1,..,5)

2
“= g{Axl [|f13|2 + | fisl” + | fizl® + | fis]? + 2] fral® + Z|f16|2} *

Az “f31|2 + |fa3|2 + |fa5|2 + |f36|2 + Z|f32|2 + Z|f34|2] +
2AxsRe( fi3f5 + fisfig + finfis + fisfis + 2fiafso + 2fr6fa1) +
2BRe(fisfas — firfas + fasfis — farfis + 2fsafia — Zf32ff6)}a

2
0z =2 { A || + 1P+ 1o+ Lfuol? + 21 ful + 2 ol +
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Ay {|J025|2 + | fas]? + | forl” + | fos|* + 2| foo|* + Z|f30|2] +
2Ax3Re(frfos + frofas + fofar + fafas + 2f11fo9 + 2fr12f50) +
2BRe(fuofir — folis + faofi — fosfi + 2uaflo — 2fufio) |

2
as={ A I+ 1P+ 155 + Il + 2102 + 21| +

Az, {|J019|2 + |f21|2 + |fz3|2 + |fz4|2 + Z|f20|2 + Z|f22|2] +
2AxsRe(f1fig + fafor + [sfos + fofor + 2fafoq + 2faf5) +

2BRe(fsfy3 — fsfor + forfi — fiofs + 2forfs — Zf2off)},
2 2

oy = gRe—C’, a5 = —glmC,

C=Aur |fifiy + fafis + Jofis + Jolis + = hofis + 2fafi| +

Axo | frofs1 + for fas + fosfas + foafoe + 2f20 f30 + Zf22f§4] +

Avy | fufis + fofia + fofis + folio + frofis + foufis + fasfir +
Fuafis + 2afin + 2fafia+ 2hnfls+ 2hnfls] +

B|fofis + fosfis = Solia = Fuafi + fufta = Fofis + i fia —
Fafis = 2o+ 2fnfi+ 2l — 2l

We use here the notation

(17 - )’ (k- p)’ i - k-

T =1+ R ,$2:1+M72,$3:T2,
__ MR p MaBy W
M2+ 2 3MZ1R 0T M?

where My is the A—isobar mass, p’ (Fa) and w are the momentum (energy)
and energy of the A-isobar and deuteron in CMS of the v* +d — A+ N
reaction, which are expressed in term of the total energy and of the masses of
the particles as:

WP M=k 5 ~ W?P4 MR —m?
YTTTaw AT W
1
m:ﬁ (W2 4+ MX —m?)2 — 4W?2M3.
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e Vector polarized deuteron target.

The hadronic tensor H;;(§) is determined by the structure functions f; (i =
1,..,13)

w w
1= —2MImD1, 52 = —2MImD2,

Dy = Az (fiafis + fiefis) + Aza(faafa1 + faafsz) + Avs(frafss — fiafao +
+f16f33 — f15f31) — B(f13fsy + fiefs1 — frafss — fi5f3s),

Dy = Az (faf7 + faf3) + Axa(faofig + faofor) + Axs(fofig — fifop +
f4f2*1 - f3f2*2) - B(f1f2*2 + f4fik9 - f2f2*1 - f3f2*0)7

53:—2%1—7711)3,

Dy = Az (firfs + frafio) + Ava(faofor + faofos) + Avz(frafos +
faofio + fiifor — fofsg) + B(frafor 4+ fofso — frofog — fi1f3s),

w w
64:_M[mD47 BE) - _MR6D47

c =—ImDs, 3 = —ReDs,

Br=—ImDs, By = —ReDs,

Dy= Az (fofis + fafis — fifis — f3fis) +
Azy(faof31 + faofs3 — frofse — forfsa) +
Azs(fafsy + faofis — fifse — frofis + fafss — fafsy + forfis — farfis) —
B(farfia + fifse — foafis — fofss + faofis + fafsi — fiofis — fafs),

Ds = Az (fofi7 + fiofis — frfis — fafis) +
Azo(forfas + fosfas — fosfz1 — fosfa3) +
Axs(frofss + fasfis — ffs1 — fasfis + forfiz — fafss + fofss — fas fis5) +
B(fiofss + forfis — fofss — fasfiz + [afs1 + fosfis — frfaz — fosfi3),

Dg=Ax(fofs + frofs — fofi — fafs) +
Azo(forfoz + fosfas — fosfig — fasfor) +
Axz(frofoy + fosfs — frfio — fosfi + forfs — fafar + fofas — fosf3) +
B(fiofss + forfs — fofor — fosfs + fafio + fosfs — frfor — fosfT),

Bro = —%ImDﬁ Pz = —%ReDh
P = —%[mDS, Pz = —%ReDS,
Dy = Axy(frfly + fafls — funfir — fiafis) + Axa(fos fao + fosf3s —
foa f3s — fa6f30) + Axs(frfso + fos fia —
f1afss — faofis + faf3s — foofi7 + fasfie — f11f35) +
B(faofi7 + firfss — foofis — frafss + fosfia + frf3s — fosfis — fefsa),
Dg=Axi(frf5 + fafi — fufs — fiafs) +
Azo(fas foo + fosfro — foofos — fa0fos) +
A3 (frfoo + fasfs — faofs — frafou + fsfon — foofs + fos fi — funfas) +
B(fsofs + fiifos — foofes — frafos + fosfs + frfoa — fosfi — fsf2)-
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e Tensor polarized deuteron target.

The hadronic tensor H;;(S) is determined by the structure functions v; (i =

1,..,23)

M2
M =2Ax; “]014|2 + | fisl® — F(|f17|2 + |f18|2)] + 214~"U2[|f?,2|2 + | faa|?

2 M2
S (sl + 1fsol?)] + aAzsRe[ fofis + Frafia — oy U fis +

M2
f18f§6)] — 4BRe [f32f1*5 — faafis — F(fnf;e - f18f§5)},

M2
241 ||fof? + /i = S (1fsf2 + 1So)] + 242 | fol? + | ol -

2 MZ
%2(|f23|2 + |f24|2)] + 4Ax;3 Re {f4f2*z + fafo — F(f5f§3 +

M2
faf;a)} —ABRe|fuf; = Ffs = 7 (af3i = faf3)].

2
=240 [l + ol = S + )] + 24 ol + L fol? -

M2
%(|f25|2 1ol + 44w R fuis + frafio — g Ufin +

M2
+fin)| + ABRe[fiafin — fufia = 5 Ui = S f3)],

2
=240, e[ fofis + fufis = g Uslis + Jofin)] + 2400Re oo fi +

2
Fis = (fosfi + oo )| + 2 Re Fufiu 4 i + Fofia +

2
Fuia = (o + fusfi + falia + Foufin)] + 2BRe[fuaf +

Fufis ~ fofi ~ Fuofio — o fofis + Fsfis — Fofis — Fufi)]

—(
M2
=—2AzIm {f2f14 + fafis — " — (fefis + f5f17)] -
2
o2

2Ax9Im {fzof:n + faaf3q — M —(foaf35 + f23f35)] -

2Ax3lm{f4f§4 + faafis + fafse + faofis —

2
Ul + e + fofi + fufi)] -
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2BIm|~fasf; = fusfis + foofi + fiofin -
N fofis + Fnlis — fofi — fu)]

90= 240 | fal® + |fisl* = Lfirl = isl?] + 24z | o+ | fal? =
sl? = Vfsol2] + 44z Re s f3s + Frsfi = Furfis = Fus] -
ABRe|fisfis — fuufio + fuudls = sl

1= 2401 |Fi + 1 = Ifof? = 1ol | + 242 | ol + 1 far* = |l =
ol + s Re | fuf5y + il = fofin— fofi] -

ABRe|fofsy — fofis+ fuufi = fufi],

=241 || fof + | fuol? = 5o = |fol?] + 24| for? + Vfosf = | s -
oo’ + 4dzsRe | fosy + Fiofis — fofis — F113| +
ABRe|fiofss — fofis + fosti = Fosf]

Yo=2Au1Re | fiy + fofis = folis = fafis| + 2AaRe| Rofi + Fn iy -
Furfio = fosfis) + 2AzsRe| fffy + iy + Sy + oSy = Fois -
Fusfn = Sofio = farfis| = 2BRe|fafss + fasfis = foio = funfir +
fisfio + fou 5 = fusfin = Fs .

0= =241 Im | fiy + fofis = folis = fofs] = 2Aaalm]| o +
Faufis = Soalio = Fslis| = 2AzaIm | fufiy + fanfis + i+ Fuolty -
Fofis = fosfis = folio = faslts] + 2BRe|fofis + fuiy = fuio
Fufio = fisfis = Fufi + fuafi + ffi,

=240 Re| fuofiy + Fisfis| + 24 Re| fuufiy + fufis] +
240 Re fis f5u+ fiofis + Fudio + Fuudi| -
2BRe|fufiy + funfis = fusfis = Fuf).

Y12 =2Ax 1 Re | fi f5 + f3ff} + 2AxsRe [fwfz*o + f21f2*2} + 2Ax3Re [f3f2*2 +
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fufis + fofi + Difio| = 2BRe|fuofi + i — fufi = fuf),

Yo =241 Re| foffy + Foffs] + 24 Re| forfia + s fin] +
2AwaRe|fofio + Fufio + iy + Fufi| +
2BRe|fiofs + fiafin = fofio = i),

Y= AnRe| fufly + fofis + fufls & ufls] + AvaRe| fuofiy + foo i +
fufiu+ Fuofis) + AwsRe| fufiy + Fofis + foafis + s +
Fufis + Suofia+ Fooliy + fu i) = BRe|fisfio + rofio + fufi +
Fuafi = fisfin = fufi = fufi = fufi),

Yo = —AnTm| fufi+ fofis + foflo + Fufis] = AvaTm| fro iy + foo i +
Fufiu+ Fonfis] = AasTm| fifi + fofis + fnfis + fofia +
Fufis + Suofis+ Fooiy + fu o] = BIm|fisfiy + frsfig + furfi +
Fuafi = fisfin — fufis = fufi = fufi),

Vo= AviRe| foffu+ fufiy + hfi + frafie] + AvaRe| fusfiy + Fonfii +
Fiofis + faofis] + AasRe| fofiy + fosfis+ fisfin + Frofiy +
fefio + Fusfis + Jofiu+ Foofi| + BRe|fuafis + Foofis = funfio =
Fufie + fuafin + Josfi = fiofis = ffi].

Ve = AviRe|fof; + ifi + Fs i+ Jofi| + AvaRe| fnfiy + frafiy +
Finfin + Fus o) + AaaRe| fofiy + fnfis + Jufis + Fnfi +
Fofis + Faofi + ol + Juafis] + BRe|fofiy + fsfiy = Fs o -
Fusfis + food3 + Fulsa = fosfi = fef),

s =—AviIm| o iy + fufio + fafio + fiafis| = Azalm| Fos iy + P +
Fiofis + fuofio| + AvsIm|~foffy = Fosfis + fusfio + Foofia

firfag + fasfi1 — fafsa — fzaffe} + BIm :—f12f§5 — faof1s +
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furfi+ Frofis + fusfis + foulf = Fifis — fof3),

Vo= AvIm o} + 1§ + FsJiu+ fof ] + Avalm) o i +
Faafio + Fsfio + fufio| + AvaIm|fsfiy + fnfis + oS +
Fuofi + Fafis + o} + fafi + foafia| + BIm| fafin +
Fusfio = fofin — foufty = Food3 = Fifia + Fosti + fufia),

Yoo = A1 Re| fofiy + fiofis + fufls + fol | + AwoRe| s i, +
Fufis + s o + | + AvaRe f15 + fosfis + fus i +
fasfio+ fuadss + funfi + fofis + foofls] + BRe|fuofis +
rfis = fofin — Fosfio + ffin + ff? = Fusdls — Funfi]

Yo = AviRe | o7 + fofi + fofi + falio] + AzaRe| oy + forfis +
fuafsr + Fus i) + AwaRe|fofs + Jonfi + Fafi + Ju i +
Fufis  Foli + Jofis + Foufio] + BRe|fofie + fsfi = fofie -
Fusfi + i + Fifiy = sl = ful).

Yoo == A Tm| fofiy + frofis + fudis + fofe| = Awalm| s f, +
Fufis + s o + for | + Avalm|=fr 5y = Fosfiy + Fusfi +
Fafio + i+ Jusfi = Fafiy = Foofi| + Blm|=frofis =+
Furfis + ol + Sosfie + Fusfio + Fisf} = Fustis = Fu ),

Yoa = Ar | o + Fafi + Jo§ + Fofio| + AaTm| o s + fur f
Fusfio + Fun i) + AwaTm| S5y + ffy + oo + fufi +
fufis + Foli + Jofis+ Foafio] + BIm | fo 5+ fos i = i -
Fusfi = ffi = Fofi + Fosfi + fufis).

_|_
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10 Appendix B

Here we present the expressions for the structure functions P;, (i =1 — 13),
which determine the tensor ]31] These structure functions, defining the nucleon
polarization vector ]3, are written in terms of the scalar amplitudes f; (i =
1,...,36) determining the v* +d — A + N reaction.

Plzlle, P2 = [mQQ, P3 = Rte, P4 = RGQQ,
Q=3 A0 | fuofls + fofis = Fofis — fufly + #fufio + 2frafis| +

AT forfia + 4o = Ffi — Foofis + i + 2w fi) +

AT :f9f§3 + frofs1 + forfis + S fis — frfss — fsfss — fasfis —
Fasfin + 2fufist 2l + 2fnfis + 2fufl| +
2B fufis + fuofia + funliy + Forfis = fofis = fofis — Faofis -

Fasfis + 2hrafis + +2foo iy — 2fudia = 2hofl),

Q=S AT + Fuofi — Fufi = fofi + 2fufi + 2fufs] +
%AM :f27f2*1 + fos flo = fosfar — fasfos + 2f20f0 + Zf30f2*0] +
2

A3 :f9f2*1 + fiofio + forfs + +fosfi — frfos — fafoz — fosfs —
faefs + 2 f11fon + 2fr2fo0 + 2f20 f1 + Zf30f2*— +
gB fafos + frofar + fosfs + forfi — frfaz — fofio — fosfs —

fasfs + zfiafos + 2fa0fs — 2fi1fo0 — 2f30f4
P5:me3, Ps = me4, P, = R€Q3, Py = R€Q4,

2 [ * * * * * *
Q3= §A$1 fofis + fafis — ffiz — fiofis + 2 i fiy — Zf12f16] +

2 [ " " *
§A$2 forfa1 + faef36 — fos S35 — fosfaz + 2fo0f30 + Zf30f34] +

§Ax3 oS+ Fufia + Fos i+ Forfla — i = Frofis — FosSis -

fos fis + 2f11f3o — 2 12fs0 + 2fa0 f1a — Zf30f1*6] +

2B fifin + fufis  foliat ofis — Fofis — fonfis — Fasfin -
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fosfis + 2fr2f3a — 2foo fis + 2f11f3s — Zf30ff4],

Q4:§A$1 :fgfl* + fsfe — frfs — fuofs +2fufs — Zfl?f:] T

2 [ * * * * * *
§A$2 fasfor + forfig — fosfoz — fosfor + 2f20f50 — Zf30f22] +

%AI?, :f9f1*9 + fafos + faofs + forfi = frfas = frofor = fosfs —
fisfi + 2fufi = 2futis + 2hnli - 2huli| +
SB[fifiut Fofin+ fofiu+ Fuofia — Fsfi = Faofi = Fnfi -

fusfi + 2hnfia = 2fnfi + 2fufh — 2],

Py=—Stm{ Ani[fifis + fi i+ =hufis] +
A foufia + Fosio + 2 fs] +
Avs| fisfia + i fis + Forls + Fusis + 2Fufis + 2 fie] +
B|fisfis + Fuadis + +funfla + Fisfis + 2 fis + 2fuafl }
Po=—gtm{ Ans[ffi + fofi + 2oli] + Ava[ o + Fosfia 2 fnfi] +
Avs[Fiffy + fofis+ Frofi + fufi + 2ot + 2] +
B|fofsi+ fsfia+ fufi + frofi + 2 fi + 2283 |,
Pu=—stm{ Az [fofi + fofia + 2fufis
A fos o + Ffia + 2P +
Avs| ol + fofis + Fosdi + Foafio + 2huafio + b fi] +

B|fofin + frofiu funfi + faofi + 2frafin + 2fuu i }
Py =—ImQs, P13 = —ReQs,

Qs =S { A0 [ 1S+ lis = ol = ofio + 28 — At +
A | Fiofia + Fos iy — Forfiy = foufis + 2 i — 2| +
Aws| fufis+ Folio + fiofis + Fosdis = fofi = Folis = S -
fusfio+ 2hofis = hilia = 2 fis+ 2hfis| +

+
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B\ fsfas + fofas + frofis + forfis — fifsy — fafas — fosfiz —
foafis + 2foof1s — 2faf30 + 2fo2f1e — 2fof52]-

11 Appendix C

The relations between the helicity amplitudes and the scalar amplitudes are
given here:

hy = —2%/6{00519(]03 + fs) — sinV(for + fa6) + cos®I(fo — f5) +
sin® 9(fas — fos) — sin cos V(fro — fo + for — faz) —

2]5[—; cos 9(fig + fos) +sinI(f1 + f7) + cos® I(fog — fou) +
sin9(fo — f5) + sind cos I(fro — fo + for — f23)} },

hy = _—{— cosI(fs + fi) +sin(far + fos) +cos? (fo — f5) +
sin® U fog — foa) — sind cos V(fio — fo + for — fo3) +
25—; cos U(frg + fos) +sind(fi + fr) — cos® I(fog — fos) —

sin?9(fy — f5) — sin cos I(fro — fo + for — f23)} },

1
hs = _—K{COS V(fa + cos U fi1) — sinI(for — sind fzg) —

E
sin v cos U(f12 + fao) — 2L
Ma

cos U fao + cos I f39) +

)

{— cos U(fy — cosVfi1) + sin(far + sinfz) —

sin9(fo + sin 9 f11) + sin 9 cos I(f12 + fao)

1 w

2v/3 M
E

sin v cos U(fia + fao) + p

Ma

h4:

cos U( fag — cos U fsp) +

sin(fo —sindf11) — sin cos V(f12 + fzg)] },

hs = _2L\/6{C0Sﬁ(f8 — f3) +sind(far — fas) — cos”I(fo + f5) —

sin® 9(fas + foa) +sinv cosI(fio + fo + for + fo3) +
1

]\lj[ [COS (fr9 — fos) + sinO(f1 — fr) + cos® O( fos + fos) +

22—
A
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hg

hr =

hs

hgz

hl[]:_

hllz_

sin® 9(fy + f5) + sind cos I(frg + fo + for + f23)] }a

:—L{cosﬁ(fg — f3) —sinV(for — fos) — cos® I(fo + f5) —

2V/6

sin? 9(fog + foa) +sincos I(fro + fs + for + fo3) +
2% [cos O(fas — fi9) + sind(fr — f1) + cos® I(fog + fos) +
A

sin? 9( fo —|—f5)—|—sm19cos19(f10+f6+f27+f23)]}

—L\/_{—cosﬁ(fl + f7) +sind(fig + fo5) + cos” I(fio — fo) —
2v/6
sin 19 (for — fo3) +sind cosI(fo — f5 + foa — fog) +

[ cos U(far + fag) — sinI(fs + fs) + cos® I(far — faz) —

sin? 9(fio — fo) +sind cosI(fo — f5 + fos — fzs)} }7

:—L{—Cosﬁ(ﬁ + f7) +sin9(fi9 + fo5) — cos’ I fro — fo) +

2\/6
sin 19 (for — fo3) +sincosI(fs — fo + fog — fou) —

[00579 for 4 fos) +sinU(fs + fs) + cos” (for — foz) —
sin® 9(fio — fo) — sint cosI(fs — fo + fas — fos) },
1

——\/_—{ cos ¥ fo — cosV f12) + sin¥(fag — sin ) fag) +
2 M

E,
sind cos V(f11 — f30) + QE

—cosV(fag — cosV fag) —
SiIl’l9(f4 + SiIl’l9f12) + SinﬁCOS’&(fu — f30):| },

Li{_ cos U( fo + cos U f12) + sin ¥( fao + sind fog) +
2V/3 M

Ey
sind cosVI(fzo — f11) + QE

sin¥(fy — sind fi9) — sin ) cos I(f1; — fgo)] },

L\/—{COSﬂ(ﬁ — fr) +sind(fos — fro) — cos” I(fro + fo) +
21/6
sin® O(far + fo3) — sin cos V(fs + fo — fos — fos) +

2ﬂ [COS I(for — fog) +sind(fz — fs) — cos® I(for + faz3) +
Ma

sin? 9(f1o + f) — sin cosI(fs + fo — fos — f24)} },

—cosV( faz + cos U fog) —
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h12 =

hus

h14 =

h15 =

hig =

hir =

his

hiy =

hao =

—QL\/E{COSﬂ(fl — f7) +sin9(fas — fig) + cos” I(fio + fo) —
sin 19 (for + fa3) +sincos I(fs + fo — fog — foa) +
[cosﬁ For — foo) +sinO(fs — fs) + cos?O(for + fos) —

sin? 9(fio + fe) +sin cos I(f5 + fo — f28_f24):|}7

— _i{cos O f15 — sin ¥ fag — sin® O fag — cos® I f17 +

2V/3

E
sin v cos U(fis + f35) + QVI — cos U f31 + cos? U fss —
A

sin® fi5 + sin® 9 f17 + sin v cos I( f1g + f35)] },

E .
%% —cosVfig + sin v fag + 2M—1A <c0s19f32 + s1n19f14>],
%{COS I(fis + cosVfir) — sind(fzz — sind fzs) —

E
sin v cos U(f1s + f35) — 2
Ma

sin9( fi3 + sind fi7) + sind cos I( f1s + f35)] },

cos U(f31 + cos V fzg) +

_Qi\/g{_ cos V(fi3 — cosV fig) + sin¥(f31 — sindfs5) +

E
sinv cos U(fir — f36) + QVI —cosU(f33 — cosVfss) —
A

sin 19(f15 + sin ﬁflg) + sin 1 cos ﬁ(fn - f36):| },

E
_TM[ cosVfi4 +sintfzy — 2M—1A<(30$19f34 + Sinﬁfw)}a

— i{_ cos ’(9(f13 4+ cos 19f18) + sin ﬁ(fgl + sin ﬁf35) +

2V/3

FE
sind cos U(fs6 — fi7) + 2M—1 —cos U(fz3 + cos U fs5) —
A

sin ¥( fi5 — sin J f1g) + sin ¥ cos I( f36 — f17)] },

_QLﬁ |:COS ﬁ(fl —+ f7) — sin '19(f19 + f25) +

sind cos (fo — f5 + fos — fas) + cos” I(fro — fo) +
SiIl2 19(f23 - f27)},

—2%/5 [cosﬁ(fl + f7) —sind(fig + fos) +

sind cosV(fs — fo + fag — faa) — cos®> I(fio — fo) +
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h21 =

h22 =

h23 =

haa

has =

has =

haor =

h28 =

h29

h30 =

h?)lzé2

sin® J( for — f23)} ;

1
il [— cos U fy + sin v fog — cos® U f1o + sin® 0 fog +

sind cos ¥(f30 — f11)

-
_5% cos ¥ fy — sin 1 fag — cos? ¥ f1y + sin? 0 fog +

sind cos ¥(f30 — fi1)

b
2v/2 _
—f5 — fo) — cos” I(fio + fo) + sin® I(for + fo3) |,

-cos I(fr — f1) +sind(fig — fos) + sind cos V(fos + fos

L [Cosﬁ(ﬁ — f1) +sind(fig — fos) — sind cos I(fos + fos

2v/2 _
—fs — fo) + cos® I(fro + fo) — sin® I(far + fa3)],

_QL\@ [cos V(fs + f3) — sin¥(for + fos) + sin v cos ¥(far + fio

—f6 — fa3) — cos’ I(fo — f5) — sin” V( fag — f24)- ;
_QLﬁ [_ cos 9(f3 + fs) + sind(for + fas) + sin ) cos I(for + f1o
—f6 — fa3) — cos’ I(fo — f5) — sin” V( fas — foa) |,

lwr
—5% cos D fy — sin v fog — cos? U f1; — sin? I fao +

sin ) cos I( f12 + fzg)} ;

Lwt
—5% —cosVfy + sinV fay — cos? D f11 — sin® 0 fy0 +

sin ) cos I( f12 + fzg)} ;

__ 1 [— cosV(fz — fs) +sind(for — fa6) — sin ) cos I(for + fio

2v/2
+f6 + f23) + C082 ﬁ(fg + f5) + Sin2 19(f28 —+ f24) R
—2L\/§ [COS 19(f3 — fg) — sin 19(f21 — f26) —

sin ¥ cos V( far + fio + fo + faz) +cos” I(fo + f5) +
sin® O fos + f24)}7

—cos U fig + sin 0 fs; + cos® 0 f1g — sin® O fa5 +
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sin cos V(fi17 — f36)

Y

_Quw
=5
has = % cos ¥ fig — sin ¥ f31 + cos® 0 fig — sin® O f35 +

hsa <sin U f39 — cos 19f14> )

sin ) cos I(f17 — f36)-

hoi="2

cos U fi5 — sin ¥ fs3 — cos? ¥ fi7 — sin® O fa5 +

sin ) cos 9(f1g + f35)

b

has = —%% (sin Y f34 — cos 19f16> ;
hsg = % —cos ¥ f15 + sin ¥ fa3 — cos® I fi7 — sin® I fa +

sin ) cos I( fig + f35)} ;

where Q = /—k?/ky, By = (W?+M3—m?)/2W, and ko, w, F are the energies
of the virtual photon, deuteron, A—isobar, respectively, in the v*+d — A+ N
reaction CMS, k? is the square of the virtual photon four-momentum, and o
is the angle between the virtual photon and A-isobar momenta.

Let us present here for completeness, the inverse relations, i.e., the expressions
for the scalar amplitudes in terms of the helicity amplitudes:

1
f1 = ——{COS ﬁ(hlg + hgo — h23 — h24) + ysin19 \/g(hg — hl + h5 —

V2
he) + has — hog — hag + h30} },

fo="

W

— COS 19(h21 + h22) + ysin 19(\/5]13 — \/§h4 + th — h27):|,
1 .
f3 = —E{COS ﬁ(h% — h% - hgg + hgg) - ySlHﬁ[\/g(h"( + hg - h,u —

hi2) + hig + hag — hog — h24] },

M
foi= " cos ¥(hog — har) + ysin 19(\/§h9 + V3hio + hay + h22)} ;
1
fo =5 cos sin(hig — hao + oz — haa) — cos U(has + o + hag +

h30)} + % sin 19{(:05 )

h23} — Sinﬁ[\/g(fh + hs + hy + hg) + hos + hos + hag + h30} },

\/§(h7 + hyy — hg — hia) + hoo + hoy — hig —
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1
fﬁzﬁcosﬁ

30)} — ﬁ sin 19{(:0519

h30} sin [\/§(h7 + hyy — hg — hia) + hao + hog — hyg — h23] },

1
f7: — COSﬁ(hlg + hgo + h23 + h24) - ySlIl’l9|:\/§(h,1 - h2 + h5 —

cos U(hig — hao + hag — haa) + sin(haes + has + hag +

V3(hy + ha + hs + hg) + hos + hag + hag +

he

T

hos 4 hog — hag + h30} },

fg = {COS ﬁ(h% — h,25 — h29 + hg()) + ys1n19{\/§(h7 + hg + hu +

S -

hi2) + hig + hag + has + h24} },

1
fg = _ﬁ COS?9|:SiIl ﬁ(hlg — hgo — h23 + h24) — COS 19(]125 + h26 - hgg -

hgg):| — % sin 19{C0819

h23 — h,24:| —sin v

\/§(h7 — hg — hy1 + hia) + hag — hig +

\/§(h,1 + hg — hs — hg) + has + hag — hag — h30] },

1
fm = —% 00819|:COS 19(h19 — h20 - h23 + h24) + sin ﬁ(h% + h26 - h29 —
hg,o)} + L

\/5

h30} + sinﬁ[\/g(fw — hy1 — hg + hi12) + hoo — hag — hyg + h23] },

19{COST9 \/_(hl + hg — h5 — h6) + h25 + h26 — hgg —

M
fu= {cosq?

\/§h4 + h27 + h28) — COS 19(\/§h9 — \/ghlo + h22 — h21):| },

cos V(hay + hog) + sin ¥(hgy — hgl):| + ysind [sin 19(\/§h3 +

M
fia= {cosq?

V3hy + hor + hag) + sin 19(\/51”69 — V/3hyo 4 hoy — h21)} },

cos ¥(hag — hgy) — sin ¥ (har + th)} + ysind [cos 19(\/3/13 +

1
fis= 0 cos 9(haz — ha1) + ysinO(vV/3hiz — V3hys — hae + h34)]:
2M
fia= %; [— cos Vhsy + ysin9(V/3hy + h35)} 5
fi5= Q cos O(has — has) + ysin(V3hig — V/3his — has + h31)]

2M
fie= g; [COS Yhss + ysin 19(\/§h17 + h?ﬂ)} )
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1
fir= a{cos ﬁ[sin U(hsy + hgz) — cos I(hgq + hBG)] —

ysind |sin9(V3his + V3his + hss + hsg) +

cos 9(V/3hig + V/3hig + ha + h33)] },
1
Jis= @{Cos ) [cos V(h3y + h33) + sin9(hzy + h36)] +

ySiIl’l9 — COS 19(\/§h13 + \/§h15 + h34 + h,36) +

sin 9(v/3hi + V3hig + ha + h33)} },

1
—{sin U(h1g + hoo — hog — hoa) — ycos v \/§(h2 — hy + hs — hg) +

f19=\/§
hos — hog — hag + h30} },

M
foo=

1
f21 = ﬁ{sin 19(h25 — h25 — h29 + h30) + ycosﬁ

—h12) + hig + hoo — has — h24] },

sin 19(th + h22) + Y COS 19(\/_h3 \/§h4 + hgg — h27):| y

\/§(h7 + hg — hiy

far = % §in 9 (hor — hag) +y cos 9(v/3ho + v/3hag + hay + hm)},

fos = —% sinﬁ{sinﬁ(hlg o + hay — hay) — c0s (o + hag + hag +
hgo)} _ % cosﬁ{sinﬁ{\/g(hl + o + By + hg) + hos + g + oo +
hgo} c0s 9| V/3(hr + Iy — hs — h1s) + oo + has — hrg — hzg}}

fos= —% sin | cos ¥(hig — hog + hoz — hog) + sin¥(has + hog + hog +

>=

30) - — = COS 19{C0819|:\/_(h1 + h2 + h5 + hﬁ) + h25 + h25 + hgg +
h30} + sin [ (h7 4+ hi1 — hg — h12) + hoo + hoy — hig — h23] },

f25 = {sm 19(]119 + hgo + h23 + h24) + yCOSﬁ[\/_(hl + h5 - hg -

V2 _
he) + hag + hso — has — hag },

1
f26 = —ﬁ{sin 19(]7,26 + h30 — h25 — hgg) — yCOSﬁ[\/g(hz + h6 + h11 +

hz) + hag + haa + has + hag },
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1
for= 7 sinﬁ[sin V(h1g — hao — hag + hos) — cos V(has + hag — hag —

h30)} + % Ccos 19{sin19{\/§(h1 + hy — hs — hg) + has + has — hag —

h30:| — cos v \/g(l“w — hg — hi1 + hi2) + hoo — hig — hos + h23} },

1
fas = 7 sinﬁ[cos V(P19 — hoo — has + hag) + sin 9 (hos + hag — hag —

hgo)} + % cosﬁ{cosﬁ[\/ﬁ(hl + hy — hs — hg) + has + hog — hag —
hgo} + sinﬁ[\/ﬁ(m — hg — huy + hus) + hao — hig — hog + fm] }
fag = %{sin 9 [sin U(hg1 — hag) — cos VI (har + hgg)] +
ycosﬁ[sinﬁ(\/éhg V3l + hor + hag) —
c0s 9(v/3hg — V/3huo + has — th)] }
fao = %{sm 9 [cos I(har — has) + sin 9(hay + hzg)} +
y cos v [cos 19(\/3]13 +V3hy + hor + hag) +
sin 9(v/3hg — V/3hyg + hay — hm)} }
far :% sin 9(hgr — haz) + y cos O(v/3his — V3his — has + h34)],

2M
fao= %; [sin Vhss + y cos 19(\/51114 + h35)} ;

1
fa3 = 3 sin 9(hsg — hss) + y cos 9(V/3hig — V/3his — has + h31)],
2M
faa= g; [— sin Yhgs + y cos 19(\/§h17 + h?ﬂ)} )
1
f35= a{sinﬁ cos U(hsy + has) — sin 9 (hgy + h33)} -

y cos [Sin 9(V3hiz + V3his + has + hae) +
cos 9(V/3hig + V3hig + ha + h33)] },

1
f36 = @{— sin 9 |sin 19(]134 + h36) -+ cos 19(]7,31 + h,33):| -

y cos v [cos 19(\/3/113 +V/3hys + gy + hss) —

sin 9(vV/3hi + V3hig + ha + h33)} },
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where y = MAW/(W? + M3 — m?).

12 Appendix D

In this Appendix, we present the formulas for the structure functions which de-
termine the hadronic tensor H;; for various polarization states of the deuteron
target for the y+d — A+ N reaction. The structure functions are expressed in
terms of the scalar amplitudes g; (i = 1, ..., 24) determining the y+d — A+ N
reaction.

e Unpolarized deuteron target.

The hadronic tensor H;;(0) is determined by two real structure functions a;
and ao:

2
=5 {ri[lonl + lgul? + lgsl? + lool? + gl + rlgal?] +

T2 {|k(]13|2 + |915|2 + |917|2 + |918|2 + 7"|g14|2 + 7“|916|2] +
2rsRe(g1975 + 93915 + 5917 + 96Gis + 792014 + T91G1¢) +
2ryRe(gs917 — 9591s + 91597 — G1395 + 791695 — 7"91491‘)},

2
ay = 5{“ [|g7|2 + 1gs]® + go* + |grol* + r|gu|* + T|912|2] +

T2 “919|2 + |920|2 + |921|2 + |922|2 + 7"|923|2 + 7“|924|2] +
2rsRe(grgte + 910955 + 99951 + GsGa0 + 7911055 + TG12G5,) +
2ryRe(gi0951 — 99952 + 92097 — G199s + 7912933 — 7"91195‘4)},

where we introduce the notations

1 —(1—~2)sin?v 1 —(1—7%)cos?d 21
ry=2 ( 7")sin , Ty =2 ( 7°) cos T3:7 sin 21,
2_’_,-)/2 2_’_,-)/2 2_’_,-)/2
W?2 4+ M?)? W2+ M% —m?
T4 = 7 Q,T:%,’Y: = ) (46)
24 4M?>W 2MAW

where Ma, M and m are the masses of the A-isobar, deuteron and nucleon,
respectively; W is the total energy of the AN pairin CMS of the y+d — A+ N
reaction, ¢ is the angle between A-isobar and photon momenta.

e Vector polarized deuteron target.
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The hadronic tensor H;;(€) is determined by six structure functions b; (i =
1—-6)

by =—=22/rIm|r1 (9291 + 9295) + r2(914973 + 916975) + r3(929%5 — 1954 +

94915 — 9391e) — T4(91976 + 94913 — 92915 — 9391‘4)} :

by = —2v/rIm|r1(g1195 + 912970) + 72(92395, + G24955) + 73(g12955 +

924970 — 911951 — 99933) + T4(912951 + 99954 — 910953 — gugé‘z)} ,
bs=—ImFE,, by = —ReFE\,

Ey=71(9995 + 91096 — 9791 — 9893) + 12(921917 + 922915 — 919973 —
9209715) + 13(91091s + 92295 — 97913 — 91995 + 92195 — 9sgis +
99917 — 92093) + r4(g10917 + 92196 — Gogis — 92295 + 9sGiz + G199 —
97915 — 92091),

bs = —/rImE,, by = —/rReEs,

Eay=11(9795 + 9891 — 91195 — 91296) + T2(910974 + 920916 — 923917 —
92497s) + 13(97951 + G1995 — 92495 — 912915 + Ys9ig — 92395 +
92094 — 911917) + 74(92495 + 11975 — 92396 — 912917 + 92095 +
979165 - 91992 - 989164)-

e Tensor polarized deuteron target.

The hadronic tensor H;;(S) is determined, in this case, by ten structure func-
tions ¢; (¢ = 1 — 10) which have the following expressions in terms of the
v+ d — A+ N reaction amplitudes

1
ev=2r1|lga* + lgaf? = ~(lgsl* + I96P*)| +2ra Jgu? +lgual? -
1 * * 1 * *
;(|917|2 + |918|2)] + 4rsRe [94916 + 92914 — ;(95917 + 96918)} -

* * 1 * *
4dryRe {91494 — J1699 — ;(95918 - 96917)}

1
Co =21, {|911|2 + |g12]” — ;(|97|2 + |98|2)] + 279 [|923|2 + |gaa|® —
1 * * 1 * *
;(|919|2 + Igzo|2)] + 4r3Re [911923 + 912054 — ;(98920 + 97919)] +

1

4r4Re {9129;3 — 01105 — ;(gzog$ — 91995)}7

c3 =21 {|L(]1|2 + |g3|2 - |95|2 - |96|2] + 27"2[|913|2 + |915|2 - |917|2 -
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Iglslﬂ +4r3Re {9391‘5 + 91913 — 95917 — gsgi‘s} -
4r4Re {gegi} — 9597s T 91393 — 9159f] ;
C4 =21 “99|2 + |g10? — g7 — |98|2] + 279 [|921|2 + |g22|* — lg1o]” —
| gmﬂ + 4r3Re {gggé‘l + 910932 — 98920 — 9791‘9} +
4ryRe {gmgé‘l — 99935 + g1995 — gon?)],
c; =21 Re {9195 + gggi‘} + 2ryRte {91391‘4 + 91591‘6} + 2r3Re {939){6 +
94915 + 92913 + 9191‘4] — 2r4Re [913QZ + G1495 — 91593 — 91691‘] ,
cg =2r1Re {999161 + 9109{2] + 2ryRe [921953 + 922934] + 2r3Re [99933 +

910954 + 91195, + gugé‘z] + 2r4Re [gmg;‘g + 912951 — 9995y — 91195‘2] :
c;=ReEs3, cg = ImE;,
E3=11(9297 + 9495 + 95911 + 96972) + T2(914919 + G16950 +

17955 + 918954) + 13(95955 + 917911 + 94950 + 91695 +

92919 T 91497 + 96954 + G18972) + 14(96953 + 917972 — 95954 —

918911 + 92920 + 91697 — 9491y — 91495} )
cg=ReFEy, cig = ImkE,,
Ey=11(9197 + 9395 + 9595 + 96910) + T2(913979 + 915950 +
917951 + G18952) + 13(95951 + 91795 + G390 + 1595 +
91919 T 91397 + 9692 + G18970) + T4(96951 + 917970 — 95952 —
91895 + 91930 + 91597 — 93919 — 91393)-

13 Appendix E

In this Appendix, we present the formulas for the structure functions which
determine the hadronic tensor f’ij describing the nucleon polarization in the
v+ d — A+ N reaction. The structure functions d;, (i = 1 — 6), are written
in terms of the reaction scalar amplitudes:

d1 :I’ITLRl, d2 == R€R1,

2

* * * * * * 2 *
Ry = 57”1 9993 + 91091 — 9796 — 93G5 + rgi1gs + 7"91292} + 57“2 {921915 +

* * * * * 2 * *
922913 — 919918 — 920917 + 7923916 + 7"924914] + 57"3 [99915 + g10913 +
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92193 + 92297 — 97918 — 98917 — G199 — G2095 + rg11916 +

* * * 2 * * * *
Tg12914 + 792394 + 7"92492] + §7”4 [98918 + g10915 + 91995 + 92191 —

9791‘7 - 9991‘3 - 92095 - 92295,‘ + 7”91291% + 7"923!]; - 7“9119111 - 7"92492],
d3 = Tng, d4 = R@RQ,

2 * * * * * * 2 ¥
Ry = 3" {9991 + 9896 — 9795 — 91093 + 791192 — 7"91294} + 3" {920918 +

* * * * * 2 * *
921913 — 919917 — 922915 + 9230914 — T924916] + 57"3 [99913 + 93915 +
92096 + 92191 — 97917 — 10975 — 91995 — G2205 + 7911914 — T 912916 +

g2305 — 7“92491] + %7“4 [9791‘8 + 98917 + 99915 + 910913 — 91995 —
92095 — 92193 — Go291 + T912914 — TG239s + T911916 — 7"92495] )

ds = —gfm{ﬁ {9193; + 9596 + 7"9291} + 7o {91391‘5 + 919915 + 7"91491}5] +
T3 [9191‘5 + 9597s + 91393 + 91795 + T G216 + 7"91491] T+ Ty [969)123 +
95917 + 91593 + g139) + TG1ag5 + rgzg;‘] }

ds = —gl m{h {9795 + 99910 + 7"91191‘2] + 72 {919950 + 92195 + 7"923954} +
rs [9793‘0 + 9993 + 91998 + 921910 + 7911954 + 7“92391‘2} + 74 [gggé‘l +

910952 + 91797 + 92098 + Tg12924 + rgngé‘g] }
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