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Single-particle resonant states, also called Gamow states, as well as bound and scattering states
of complex energy form a complete set, the Berggren completeness relation. It is the building block
of the recently introduced Gamow Shell Model, where weakly bound and resonant nuclear wave
functions are expanded with a many-body basis of Slater Determinants generated by this set of
single-particle states. However, Gamow states have never been studied in the context of Hartree-
Fock-Bogoliubov theory, except in the Bardeen-Cooper-Schriefer (BCS) approximation, where both
the upper and lower components of a quasiparticle wave function are assumed to possess the same
radial dependence with that of a Gamow state associated with the Hartree-Fock potential. Hence,
an extension of the notion of Gamow state has to be effected in the domain of quasiparticles. It
is shown theoretically and numerically that bound, resonant and scattering quasiparticles are well
defined and form a complete set, by which bound Hartree-Fock-Bogoliubov ground states can be
constructed. It is also shown that the Gamow-Hartree-Fock single-particle basis can be used to solve
the Gamow-Hartree-Fock-Bogoliubov problem. As an illustration, the proposed method is applied
to neutron-rich Nickel isotopes close to the neutron drip-line.
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I. INTRODUCTION

One of current challenges of nuclear theory is the quantitative description of nuclei situated near and beyond drip-
lines. Powerful facilities are being built in several countries in order to create these very short-lived states. For a
long time, microscopic theories of nuclear structure have been developed for describing ground states of nuclei close
to the valley of stability. For describing stable nuclei which are well localized, the harmonic oscillator (HO) bases are
useful for both shell model [1] and Hartree-Fock Bogoliubov (HFB) calculations [2–6]; the HO bases converge quickly
therein. However, it possesses poor convergence properties for weakly bound nuclei bearing large spatial extensions,
which lie very close to neutron drip lines.

A promising approach to this problem has been proposed in Refs. [7–9] within a shell model framework; namely,
the Gamow Shell Model (GSM). The fundamental idea is to replace the HO basis by the Berggren basis consisting
of bound states, resonance states and continuum scattering states of complex energy, generated by a single-particle
potential. It has been shown numerically that this basis has the ability to expand both halo nuclei and many-body
resonant states precisely. The latter indeed belongs to a rigged Hilbert space [10, 11], which is an extension of the
notion of Hilbert space to non-square integrable wave functions. However, the dimension of the Berggren Slater
Determinants represented by the GSM basis increase very quickly with increasing number of valence particles; it
increases much faster than in standard shell model due to the presence of occupied scattering states. Hence, the GSM
is a tool mainly dedicated to the study of light nuclei. For medium and heavy nuclei, a method of choice is the HFB,
which can be followed by quasiparticle random phase approximation (QRPA). As pairing correlations are absorbed in
the HFB ground state, one-body nature of the HFB framework enables fast evaluations of ground states of medium
and heavy nuclei, and it is in fact the only method suitable for systematic calculations; see Ref. [12] for an evaluation
of even-even nuclei in the whole nuclear chart with the HFB formalism. In order to properly treat drip-line nuclei
within the HFB framework, the real-space coordinate-mesh method has been applied using box boundary conditions
[13, 14]. Extension of this approach to deformed nuclei is difficult and has been carried out only recently [15, 16]. As
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an alternative more convenient approach, one can adopt basis expansion methods, where direct integration procedure
is replaced by matrix diagonalization. A first amelioration of the HO basis had been proposed with the transformed
harmonic oscillator (THO) basis [12, 17]. Applying unitary transformations to the HO basis, one obtains the THO
basis, in which Gaussian fall-off of the HO wave functions is replaced by physical exponential decrease of the THO
basis wave functions. However, the THO basis always dictates exponential decrease in expanding quasiparticle wave
functions, for both upper and lower components, even when they are part of scattering states, so that unsatisfactory
basis dependence remains. In order to solve this problem, a new basis has been introduced very recently, which consists
in using bound and continuum basis states generated by the analytic Pöschl-Teller-Ginocchio (PTG) potential [18].
The PTG basis introduced in this paper [19] possesses a peculiarity to bear no narrow resonance states; those are
replaced by bound PTG states. Thus, PTG continuum set of basis states can be discretized very effectively with
Gauss-Legendre quadrature, as they contain no resonant structure. It has been shown that they can provide a good
description of spatially extended nuclear ground states of both spherical and axially deformed nuclei [19]. On the
other hand, the PTG basis formed by bound and real scattering states is not a Berggren complete set of states, so
that it would be more convenient to use a Berggren quasiparticle basis set, when we are interested in describing
particle-decaying excited states. Up to now, however, resonant quasiparticle states have been studied in the context
of Berggren completeness relation only within the BCS approximation [20, 21]. The last approach is indeed not
satisfactory due to the well-known gas problem arising from the occupation of the continuum: In fact, densities are
not localized in the BCS approach, because the lower components of scattering quasiparticle states are of scattering
type as well. Contrary to what is stated in Ref. [20], it cannot be regularized using complex scaling because it does
not have pure outgoing asymptotic. Use of continuum level density in Ref. [21] is also problematic, even though it
suppresses the gas problem. Indeed, it is not part of continuum HFB theory [19], so that its introduction in HFB
equations strongly modifies quasiparticle coupling to the continuum. In particular, it supresses a large part of non-
resonant continuum, and thus important physical properties of drip-line nuclei as well. Hence, with this approach,
weakly bound systems cannot be studied properly. Only a full application of the HFB framework can unambiguously
solve this problem, where densities are localized by construction for bound HFB ground states.

The major purpose of this paper is to develop a new method of solving the continuum HFB equations utilizing
the Berggren basis, called Gamow-HFB method, by which bound, resonant and continuum quasiparticle states are
provided. It allows expansion of QRPA excited states having escaping widths in terms of the Berggren quasiparticle
basis associated with the bound HFB ground state. This is very important because, in weakly bound unstable nuclei,
low-lying collective excited states may acquire particle-decay widths.

This paper is organized as follows. Firstly, the standard HFB formalism is briefly summarized. As we use the Skyrme
interactions [22], it is effected in the context of density functional theory (DFT). Secondly, we define quasiparticle
S-matrix poles and scattering states of complex energy; these are direct extensions of their single-particle counterparts.
We then present the quasiparticle Berggren completeness relation generated by those states. Numerical methods to
calculate Gamow and complex scattering quasiparticle states are described; they differ significantly from the scattering
quasiparticle states discretized by box boundary conditions. We also present another method of solving the continuum
HFB equations in which the HFB quasiparticle wave functions are expanded in terms of the Gamow-Hartree-Fock
(GHF) basis; this approach may be regarded as an extension of the standard two-basis method [23–25] to complex
energy plane. Feasibility of the proposed methods is illustrated for neutron-rich Nickel isotopes close to the drip line.
Perspectives for unbound HFB theory and QRPA calculations using the Gamow-HFB quasiparticle basis will then be
discussed.

II. GENERAL HFB FORMALISM WITH DFT

The HFB equations are expressed in super-matrix form constituted by particle-hole field Hamiltonian h, particle-
particle pairing Hamiltonian h̃ and chemical potential λ guaranteeing conservation of particle number in average:

(

h − λ h̃

h̃ λ − h

)(

u
v

)

= E

(

u
v

)

. (1)

Using Skyrme and density-dependent contact interactions for the particle-hole and pairing channels, respectively, h
and h̃ are expressed in terms of local normal density ρ(r) and pairing density ρ̃(r). Formulas providing ρ, ρ̃, h and h̃

can be found in [14, 26]. As h and h̃ depend on ρ and ρ̃, determined from quasiparticles eigenvectors of Eq. (1), the
HFB equations must be solved in a self-consistent manner [27].

Let us consider the HFB equations with the Skyrme energy density functionals and density-dependent contact
pairing interactions assuming spherical symmetry. Fixing orbital and total angular momentum ` and j, as well as
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proton or neutron nature of the wave functions, Eq. (1) becomes a system of radial differential equations [14]:
(

d

dr

~
2

2m∗(r)

d

dr

)

u(k, r) =

[

~
2`(` + 1)

2m∗(r)r2
+ V (r) − (λ + E)

]

u(k, r) + W (r) v(k, r),

(

d

dr

~
2

2m∗(r)

d

dr

)

v(k, r) =

[

~
2`(` + 1)

2m∗(r)r2
+ V (r) − (λ − E)

]

v(k, r) − W (r) u(k, r),

(2)

where

• u(k, r) and v(k, r) are respectively the upper and lower components of quasiparticle wave function with energy

E, and k =
√

2mE/~ with the nucleon mass m,

• m∗(r), V (r) and W (r) are respectively the effective mass, the particle-hole (field) and particle-particle (pairing)
potentials of the HFB Hamiltonian.

Because nuclear interactions are finite range, only Coulomb and centrifugal parts remain for r → +∞, so that Eq. (2)
becomes asymptotically:

d2u

dr2
(k, r) =

(

`(` + 1)

r2
+

2ηuku

r
− k2

u

)

u(k, r),

d2v

dr2
(k, r) =

(

`(` + 1)

r2
+

2ηvkv

r
− k2

v

)

v(k, r), (3)

where the generalized momenta ku, kv and their associated Sommerfeld parameters ηu, ηv are defined by

ku =

√

2m

~2
(λ + E) , kv =

√

2m

~2
(λ − E), (4)

ηu(v) =
mZCc

~2ku(v)
(proton) , ηu(v) = 0 (neutron) (5)

with the number of protons Z and the Coulomb constant Cc. Hence, u(k, r) and v(k, r) are linear combinations of
the Hankel or Coulomb wave functions H±

`ηu(v)
(ku(v)r) for r → +∞. Note that kv is always imaginary provided the

HFB ground state is bound (λ < 0), while ku is real (imaginary) for E > −λ (E < −λ).
The chemical potentials λ for neutrons and protons are determined from the requirement of conservation of their

number in average:

〈N̂〉 =
∑

i

Ni = N , Ni =

∫ +∞

0

v2
i (r) dr, (6)

(and similar equations for protons). Here the sum runs over all single-particle states, N is the number of neutrons

and 〈N̂〉 is the expectation value in the HFB ground state. For a given particle-hole field Hamiltonian h, the chemical
potential λ could be calculated in principle exactly at each iteration, recalculating all quasiparticle wave functions from
Eq. (1) and updating λ until Eq. (6) is verified. However, in practice, it is much faster to use instead an approximate
chemical potential issued from the BCS formulas, which will converge self-consistently to the exact chemical potential
along with the HFB Hamiltonian [14]. For that, one defines auxiliary single-particle energies ēi and auxiliary pairing
gaps ∆̄ by

ēi = λ + Ei(1 − 2Ni) , ∆̄i = 2Ei

√

Ni(1 − Ni), (7)

which are defined by applying the BCS type formula to the HFB quasiparticle energies Ei, the average particle number
Ni defined in Eq. (6) and the chemical potential λ issued from the previous iteration. While ēi and ∆̄i correspond to
the single-particle energy and the pairing gap in the BCS approximation, they are used here as auxiliary variables to
solve the HFB equations. The approximate chemical potential λ is obtained by solving its associated BCS equation:

∑

i

(

1 − ēi − λ
√

(ēi − λ)2 + ∆̄2
i

)

= 2N. (8)



4

III. S-MATRIX POLES AND SCATTERING QUASIPARTICLE STATES

A. Boundary conditions

The upper and lower components, u(k, r) and v(k, r), of the quasiparticle wave function satisfy the following
boundary conditions:

u(k, r) ∼ C0
ur`+1 , v(k, r) ∼ C0

vr`+1 , r → 0 (9)

u(k, r) ∼ C+
u H+

`ηu
(kur) + C−

u H−

`ηu
(kur) , r → +∞ (10)

v(k, r) ∼ C+
v H+

`ηu
(kvr) , r → +∞. (11)

Eq. (9) is required by regularity of wave functions at r = 0. Eqs. (10) and (11) determine the nature of quasiparticle
state, which can be a bound, resonant (C−

u = 0) or scattering (C−
u 6= 0) state, and are generalizations of the boundary

conditions defining single-particle states using the Berggren completeness relation. Eq. (11) demands outgoing wave
function behavior of v(r) for all quasiparticle states. If its energy E is real and positive, as in the standard HFB
approach, Eq. (11) is equivalent to the asymptotic condition v(k, r) → 0 for r → +∞; the condition arising from
integrability of nuclear density over all space [14]. Extension to complex energies follows from analyticity of the v(k, r)
function in the complex k-plane. Eq. (10) with C−

u = 0 then defines quasiparticle S-matrix poles, as it is equivalent
to u(k, r) → 0 for r → +∞ for bound quasiparticle states with E < |λ|, and provides resonant quasiparticle states if
E is complex. Eq. (10) with C−

u 6= 0 represents standard scattering quasiparticle states for real and positive E, but
they are extended to complex energies by analyticity arguments.

B. Normalization of quasiparticle states

Bound HFB quasiparticle states with energy En are normalized by:

∫ +∞

0

[

u(kn, r)2 + v(kn, r)2
]

dr = 1. (12)

where kn =
√

2mEn/~. For resonant quasiparticle states, the integral in the above equation diverges, so that this
normalization condition cannot be used. The complex scaling method has been known as a practical means to
normalize single-particle resonance states [28]. Convergence of integrals is obtained therein integrating up to a finite
radius R situated in the asymptotic region, after which the interval [R : +∞[ is replaced by a complex contour defined
by a rotation angle θ > 0, allowing exponential decrease of the integrand. Owing to Eqs. (10) and (11), the same
method can be used to normalize resonant quasiparticle states, so that Eq. (12) becomes:

∫ R

0

[

u(kn, r)2 + v(kn, r)2
]

dr

+

∫ +∞

0

[

C+
u H+

`ηu
(ku(R + xeiθu))

]2

eiθu dx +

∫ +∞

0

[

C+
v H+

`ηv
(kv(R + xeiθv ))

]2

eiθv dx = 1, (13)

where θu > 0 and θv > 0 are chosen such that improper integrals converge. Hence, as in the single-particle case,
normalization of quasiparticle S-matrix poles presents no other difficulty. As in Ref. [8], complex-scaled integrals will

be denoted Reg

[∫ +∞

0

f(r) dr

]

, i.e. the regularized value of the diverging integral.

Scattering quasiparticle states must be orthonormalized with the Dirac delta distribution:

∫ +∞

0

[u(ka, r)u(kb, r) dr + v(ka, r)v(kb, r)] dr = δ(ka − kb), (14)

for those with momenta ka and kb. From Eqs. (10) and (11), assuming that Eq. (3) is obtained for r ≥ R, Eq. (14)
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becomes:
∫ R

0

[u(ka, r)u(kb, r) + v(ka, r)v(kb, r)] dr

+ C+
ua

C+
ub

Reg

[∫ +∞

R

H+
`ηua

(kua
r)H+

`ηub

(kub
r) dr

]

+ C−
ua

C−
ub

Reg

[∫ +∞

R

H−

`ηua

(kua
r)H−

`ηub

(kub
r) dr

]

+ C+
va

C+
vb

Reg

[∫ +∞

R

H+
`ηva

(kva
r)H+

`ηvb

(kvb
r) dr

]

+ C−
ua

C+
ub

∫ +∞

R

H−

`ηua

(kua
r)H+

`ηub

(kub
r) dr + C+

ua
C−

ub

∫ +∞

R

H+
`ηua

(kua
r)H−

`ηub

(kub
r) dr

= δ(ka − kb). (15)

The divergence of the Dirac delta function at ka = kb occurs by way of the two last integrals of Eq. (15), as no
complex scaling can make them converge if ka = kb [8]. The Dirac delta normalization of the Coulomb wave functions
implies, as in the single-particle case:

C−
ua

C+
ub

∫ +∞

R

H−

`ηua

(kua
r)H+

`ηub

(kub
r) dr + C+

ua
C−

ub

∫ +∞

R

H+
`ηua

(kua
r)H−

`ηub

(kub
r) dr

= 2πC+
ua

C−
ua

δ(kua
− kub

) + f(kua
, kub

), (16)

where f(kua
, kub

) is finite for all (kua
, kub

). The relation between δ(ka − kb) and δ(kua
− kub

) is easily obtained from
Eq. (4):

δ(kua
− kub

) =

[

∂kua

∂ka
(ka)

]−1

δ(ka − kb) =
kua

ka
δ(ka − kb). (17)

This a direct application of the standard Dirac delta distribution property stating that δ(f(k)) = f ′(k0)
−1δ(k − k0)

for a given function f(k) bearing a unique simple zero at k = k0 [29]. Note that kb is fixed while ka is varied to obtain
Eq. (17). Inserting Eqs. (16) and (17) into Eq. (15), one obtains:

∫ +∞

0

[u(ka, r)u(kb, r) dr + v(ka, r)v(kb, r)] dr = δ(ka − kb)

⇔ 2πkua

ka
C+

ua
C−

ua
δ(ka − kb) = δ(ka − kb) + g(ka, kb), (18)

where g(ka, kb) bears the same properties as f(kua
, kub

). As quasiparticle scattering states are orthogonal for ka 6= kb,
g(ka, kb) = 0 therein, so that δ(ka − kb) + g(ka, kb) = δ(ka − kb) in all cases.

Dirac delta distribution normalization for scattering states |k〉 and |k′〉 immediately follows:

〈k|k′〉 = δ(k − k′) ⇔ C+
u C−

u =
k

2πku
. (19)

Hence, besides the additional factor k/ku, the normalization condition for quasiparticle scattering states is the same
as that for single-particle scattering states [8].

C. Completeness of quasiparticle states of real and complex energy

The HFB supermatrix defined in Eq.(1) is hermitian, so that it possesses a spectral decomposition [30]:

∑

n∈b

[u(kn, r)u(kn, r′) + v(kn, r)v(kn, r′)] +

∫ +∞

kλ

[u(k, r)u(k, r′) + v(k, r)v(k, r′)] dk = δ(r − r′), (20)

where kn =
√

2mEn/~ for a bound quasisparticle state with energy En, k is a linear momentum for a continuum
quasiparticle state, u(κ, r), v(κ, r) (κ = kn or k) are respectively the upper and lower components of a quasiparticle
wave function with quantum numbers ` and j (here implicit), and kλ =

√
−2mλ/~. All quasiparticle states must

be normalized to one (bound) or to a Dirac delta (scattering) (see Sec.(III B)). Eq.(20) can also be demonstrated
extending the method of Ref. [31] to quasi-particle states.



6

In order to obtain Berggren completeness of quasiparticle states, one can proceed as in Ref. [32], deforming the real
energy contour in the complex plane. Resonant quasiparticle states appear therein, due to the Cauchy theorem, as
S-matrix poles [32]. Hence, Eq. (20) becomes after contour deformation:

∑

n∈(b,d)

[u(kn, r)u(kn, r′) + v(kn, r)v(kn, r′)] +

∫ +∞

L+

[u(k, r)u(k, r′) + v(k, r)v(k, r′)] dk = δ(r − r′), (21)

where kn refers now to a bound (b) or resonant (d) (decaying) quasiparticle state and k is complex as it follows the
deformed contour in the complex plane, denoted as L+. Resonant quasiparticle states are normalized with complex
scaling (see Sec.(III B)).

IV. NUMERICAL DETERMINATION OF QUASIPARTICLE ENERGIES AND WAVE FUNCTIONS

WITH DIRECT INTEGRATION

A. Quasiparticle Jost functions

In Eqs. (9), (10) and (11), constants and momenta of S-matrix poles are determined by the requirement of continuity
of both the u(k, r) and v(k, r) functions and associated derivatives. These conditions can be expressed in a form of
quasiparticle Jost functions, defined as a generalization of the Jost function for single-particle problems, whose zeros
correspond to S-matrix poles [33]. They read:

Ju

(

k,
C0

v

C0
u

,
C+

v

C+
u

)

=
u′(k,R+

0 )

u(k,R+
0 )

− u′(k,R−

0 )

u(k,R−

0 )
,

Jv

(

k,
C0

v

C0
u

,
C+

v

C+
u

)

=
v′(k,R+

0 )

v(k,R+
0 )

− v′(k,R−

0 )

v(k,R−

0 )
,

Jm

(

k,
C0

v

C0
u

,
C+

v

C+
u

)

=
u(k,R+

0 )

u(k,R−

0 )
− v(k,R+

0 )

v(k,R−

0 )
, (22)

where R0 is a radius typically chosen around the nuclear surface and one can demand arbitrarily that C0
u = C+

u = 1
in Eqs. (9) and (10). The functions, u(k,R+

0 ), v(k,R+
0 ) and their derivatives, are obtained by forward integration of

Eq. (2) using Eq. (9) as initial conditions, while u(k,R−

0 ), v(k,R−

0 ) and their derivatives are calculated by backward
integration of Eq. (2) from the initial conditions provided by Eqs. (10) and (11). In Eq. (22), one can clearly see that
u(k, r) and v(k, r) will have continuous logarithmic derivatives if Ju = 0 and Jv = 0 respectively. However, these two
equalities are not sufficient to uniquely determine the quasiparticle state. Indeed, they imply that one can choose
a set of constants so that either u(k, r), u′(k, r), or v(k, r), v′(k, r) are continuous, but not necessarily both of them.
The condition Jm = 0 is thus enforced in Eq. (22). The set of three equations, Ju = 0, Jv = 0 and Jm = 0, uniquely
determine quasiparticle S-matrix poles.

For quasiparticle scattering states, the linear momentum k is fixed, but constants have to be calculated with a
matching procedure. One starts with imposing the condition C0

u = 1, as for S-matrix poles. As the u(k, r) component
is of scattering type, the condition Ju = 0 can always be fulfilled with appropriately chosen C+

u and C−
u constants.

Thus, it is sufficient to deal only with Jv and Jm:

Jv

(

C0
v

C0
u

, C+
v

)

=
v′(k,R+

0 )

v(k,R+
0 )

− v′(k,R−

0 )

v(k,R−

0 )
,

Jm

(

C0
v

C0
u

, C+
v

)

=
u(k,R+

0 )

u(k,R−

0 )
− v(k,R+

0 )

v(k,R−

0 )
, (23)

the difference with Eq. (22) being that Jv and Jm now depend on two parameters instead of three. As in the S-matrix
pole equations, u(k,R+

0 ), v(k,R+
0 ) and their derivatives are generated by forward integration of Eq. (2). Concerning

the implementation of u(k,R−

0 ), v(k,R−

0 ) and their derivatives, however, one first continues integrating forward in
order to obtain u(k,R), u′(k,R), R being in the asymptotic region. At this point R, u(k,R), u′(k,R) provide an
initial condition for backward integration, while Eq. (11) is used to initialize v(k,R), v ′(k,R). In this way, we obtain
u(k,R−

0 ), v(k,R−

0 ) and their derivatives. Thus, the equations Jv = 0 and Jm = 0 provide the matching constants
rendering v(k, r), v′(k, r) continuous.

The conditions, Ju = 0 (for S-matrix poles), Jv = 0 and Jm = 0, form a system of non-linear equations of two
or three dimensions. Consequently, it has to be solved with multi-dimensional Newton method. The only problem
therein is to find a good starting point from where one can attain fast convergence to the exact solution in a stable
way.
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B. Determination of quasiparticle energy and integration constants

Following Ref. [26], it is convenient to introduce linearly independent solutions of Eq. (2) in order to determine the
constants defined in Eqs. (9), (10) and (11):

(

u
v

)

= C0
u

(

fu0

gu0

)

+ C0
v

(

fv0

gv0

)

, (24)

(

u
v

)

= C+
u

(

fu+

gu+

)

+ C−
u

(

fu−

gu−

)

+ C+
v

(

fv+

gv+

)

, (25)

where the introduced basis functions verify:

fu0
(r) ∼ r`+1 , gv0

(r) ∼ r`+1 , fv0
(r) ∼ D0r

`+3 , gu0
(r) ∼ −D0r

`+3 , r → 0,

fu±(r) ∼ H±

`ηu
(kur) , gv+(r) ∼ H+

`ηv
(kvr) , fv+(r) → 0 , gu±(r) → 0 , r → +∞, (26)

with

D0 =
m∗(0)W (0)

(2` + 3)~2
. (27)

Eq. (27) is obtained inserting u(r) = r`+1 and v(r) = −D0r
`+3 in the second equality of Eq. (2) and solving the

equation keeping only dominant terms.
As the basis functions of Eqs. (24) and (25) depend only on k of the quasiparticle state, they can be calculated

with direct integration, in a forward direction for Eq. (24) and in a backward direction for Eq. (25). Used methods
to determine quasiparticle wave function differ according to their characters; S-matrix poles or scattering states, as
discussed below.

C. Bound and resonant quasiparticle states

To find S-matrix poles, it is first necessary to start with a good approximation of k, denoted kapp. For that, a

no-pairing approximation is firstly performed. Neglecting h̃ in Eq. (1), the Gamow-HFB equations reduce to the GHF
equations:

h|φi〉 = ei|φi〉, (28)

where ei are complex (real) for resonant (bound) states. Eq. (28) provides bound and narrow resonant single-particle

states of interest, which will be in finite number. As pairing potential h̃ is weak compared to h, there will always
be unique correspondence between the GHF single-particle S-matrix poles and the HFB quasiparticle S-matrix poles.
Unless the quasiparticle S-matrix poles lie close to the Fermi energy, their lower (upper) components will be very
close to φi(r) if |φi〉 are (un)occupied at the HF level, so that the auxiliary energies ēi, defined in Eq. (7), will be very
close to the real parts of ei. Secondly, the HFB matrix in Eq. (1) is diagonalized. It has been found that the use of a
Pöschl-Teller-Ginocchio (PTG) basis provides sufficiently precise results [19]. Therefore, for Ei in Eq. (7) we use the
quasiparticle energies obtained by diagonalizing the HFB matrix in the PTG basis. For a given GHF state of energy
ei, the starting quasiparticle energy Eapp (from which kapp is immediately deduced), is then the BCS quasiparticle
energy whose ēi is closest to the real part of ei. If the HFB quasiparticle S-matrix pole is far from the Fermi energy,
Eapp is very close to the exact energy. Otherwise, it will still provide a good starting point, as, in practice, one can
have only one quasiparticle state close to the Fermi energy for a given (`, j)-partial wave.

Furthermore, one demands C−
u = 0, which translates into a linear eigen-value problem of dimension equal to four,

deduced from Eqs. (24) and (25), which one matches at r = R0:







fu0
fv0

−fu+ −fv+

gu0
gv0

−gu+ −gv+

f ′
u0

f ′
v0

−f ′

u+ −f ′

v+

g′u0
g′v0

−g′u+ −g′v+













C0
u

C0
v

C+
u

C+
v






= 0, (29)

where all matrix functions have been evaluated at r = R0 by way of backward or forward integration. As the
integration constants are not simultaneously equal to zero, they have to form an eigenvector of the matching matrix
of Eq. (29), which we denote M hereafter, of eigenvalue equal to zero. However, the determinant of the 4 × 4 matrix
M is zero uniquely for the exact value of k. Thus, the set of approximate constants to use as a starting point for
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Newton method is chosen as the eigenvector of tMM whose associated eigenvalue is the smallest in modulus (tMM
is used instead of M because it is symmetric). The constant ratios C0

v/C0
u and C+

v /C+
u used in Eq. (22) follow, as

they are independent of the norm of the considered eigenvector. Exact determination of k, C0
v/C0

u and C+
v /C+

u can
then be worked out via three-dimensional Newton method.

D. Scattering quasiparticle state

If one considers a scattering state, it is convenient to define a+, a−, b+, b− so that C±
u = a±C0

u + b±C0
v . Moreover,

as all constants are calculated up to a normalization factor, one can impose C0
u = 1. Upper components of Eqs. (24)

and (25) matched at r = R and Eq. (26) provide linear equations for a± and b±:

a+fu+(R) + a−fu−(R) = fu0
(R) , b+fu+(R) + b−fu−(R) = fv0

(R),

a+f ′

u+(R) + a−f ′

u−(R) = f ′
u0

(R) , b+f ′

u+(R) + b−f ′

u−(R) = f ′
v0

(R). (30)

From the knowledge of a± and b±, matching lower components in Eqs. (24) and (25) at r = R0 determines C0
v and

C+
v via linear equations as well:

C0
v [gv0

(R0) − b+gu+(R0) − b−gu−(R0)] − C+
v gv+(R0) = a+gu+(R0) + a−gu−(R0) − gu0

(R0),

C0
v [g′v0

(R0) − b+g′u+(R0) − b−g′u−(R0)] − C+
v g′v+(R0) = a+g′u+(R0) + a−g′u−(R0) − g′u0

(R0). (31)

As C±
u = a± + b±C0

v , all constants are determined with simple two-dimensional linear systems. Newton method
applied to Eq. (23) converges very quickly using the obtained set of constants as a starting point. Note that the use
of H±

`ηu
(kur) functions in Eqs. (25) and (26) can be sometimes unstable, especially for the proton case, where, for

low scattering energies, they can be very large and cancel almost exactly in Eq. (10). In this case, it is better to use
regular and irregular Coulomb wave functions, F`ηu

(kur) and G`ηu
(kur), as basis functions.

V. NORMAL AND PAIRING DENSITIES

As quasiparticle states of complex energy form a complete set (see Eq.(21)), one can directly express densities with
upper and lower components of quasiparticle states:

ρ`j(r) =
∑

n∈(b,d)

v2(kn, r) +

∫

L+

v2(k, r) dk , ρ(r) =
∑

`j

ρ`j(r),

ρ̃`j(r) = −
∑

n∈(b,d)

u(kn, r)v(kn, r) −
∫

L+

u(k, r)v(k, r) dk , ρ̃(r) =
∑

`j

ρ̃`j(r), (32)

where ρ`j(r) and ρ̃`j(r) are respectively partial normal and pairing densities related to a given partial wave with
quantum numbers ` and j, and ρ(r), ρ̃(r) are respectively the normal and pairing densities of the HFB ground state.
However, due to the zero-range character of Skyrme forces, it is necessary to introduce an energy cut in contour
integrals, so that L+ contour has to stop at finite energy Ecut (see Fig. 1). Note that, due to this requirement,
it is necessary for L+ complex contours to come back to the real axis. Even though quasiparticle wave functions
are complex in Eq. (32), ρ`j(r) and ρ̃`j(r) are real because one is considering a HFB bound ground state, so that,
due to Cauchy theorem, complex integration in Eq.(32) is equivalent to real integration in the standard case. As a
consequence, the DFT can be applied also to the Gamow HFB formalism, i.e. potentials V (r) and W (r) in Eq. (2) are
evaluated using the standard formulas of Ref. [14]. As shown in Fig. 1, the bound HF single-particle states can become
resonant states when pairing correlations are added [37]. Thus, physical interpretation of a resonant quasiparticle is
somewhat different from that of single-particle resonances: widths of the quasiparticle states associated with the HF
bound single-particle states originates from pairing-induced couplings between the bound and scattering states [34].

In the same way as in the Gamow Shell Model [7–9], the scattering L+ contours in Eq. (32) have to be discretized,
providing a finite set of linear momenta and weights (ki, wi). In practice, the Gauss-Legendre quadrature has been
found to be most efficient. Scattering quasiparticle states are also renormalized, multiplying them by

√
wi [32], so

that the discretized expressions of Eq. (32) are formally identical to the discrete case:

ρ`j(r) '
∑

n∈(b,d)

v2(kn, r) +
∑

i

v2
wi

(ki, r),

ρ̃`j(r) ' −
∑

n∈(b,d)

u(kn, r)v(kn, r) −
∑

i

uwi
(ki, r)vwi

(ki, r), (33)
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where uwi
(ki, r) =

√
wi u(ki, r) and vwi

(ki, r) =
√

wi v(ki, r).

VI. ANOTHER METHOD: EXPANSION OF QUASIPARTICLE STATES WITH THE GHF BASIS

Another possibility to solve the HFB equations in complex energy plane is to use the Gamow single-particle states
as a basis. The optimal Berggren basis to expand the HFB quasiparticle states is obviously the GHF basis generated
by the potential V (r) and the effective mass m∗(r) of Eq. (2). Note that it is not equivalent to the GHF basis issued
from the pure HF variational principle in that pairing correlations always give extra contributions to the particle-hole
part of the HFB Hamiltonian. Indeed, we noticed in our numerical calculation that other Berggren bases make the
HFB self-consistent procedure unstable due to the appearance of very large matrix elements in the HFB Hamiltonian
matrix. The use of the optimized Berggren basis mentioned above removes this problem. This approach may be
regarded as a generalization of the two-basis method [23–25].

The GHF basis states φ(r) are defined by the following equation:
(

d

dr

~
2

2m∗(r)

d

dr

)

φ(r) =

[

~
2`(` + 1)

2m∗(r)r2
+ V (r) − e

]

φ(r), (34)

issued directly from Eqs. (2) and (28), where e is the complex energy of the GHF state. The HFB Hamiltonian matrix
represented with this basis becomes:

(

h − λ h̃

h̃ λ − h

)

=





















e1 − λ 0
. . .

0 eN − λ

h̃

h̃

λ − e1 0
. . .

0 λ − eN





















, (35)

where the continuous Berggren basis is discretized with the Gauss-Legendre quadrature (see Sec. V) so that total

number of basis states is N . Its particle-hole part is evidently diagonal and matrix elements of h̃ read:

〈φa|h̃|φb〉 =

∫ +∞

0

φa(r)W (r)φb(r) dr, (36)

where |φb〉 and |φa〉 are the GHF basis states and W (r) is the HFB pairing potential defined in Eq. (2). For bound
HFB ground states, W (r) decreases sufficiently quickly so that no complex scaling is needed to evaluate the integral of
Eq. (36). Hence, after discretization of the contours representing scattering basis states, this method takes a formally
identical form to the standard matrix diagonalization treatment of the HFB problem.

VII. NUMERICAL APPLICATIONS

The frameworks described above, i.e. the Gamow-HFB approach in the coordinate or the GHF configurational
space, are applied to Nickel isotopes close to the neutron drip-line, from 84Ni to 90Ni, which possess spherical HFB
ground states. In the numerical calculation, the SLy4 Skyrme force [35] is used in combination with the surface-type
contact pairing interaction [26] whose pairing strength is fitted to reproduce the pairing gap of 120Sn. Using the

standard notation [26], the pairing interaction parameters read t
′

0 = −519.9 MeV fm3 for the density-independent

part and t
′

3 = −37.5t
′

0 MeV fm6 for the density-dependent part. The maximal angular momentum used is `max = 10
and a sharp cut-off at Ecut = 60 MeV is adopted. Scattering contours of quasiparticle states are discretized with 60,
100 or 300 Gaussian points. Several hundred points are indeed necessary when resonant states lie relatively close to
Ecut (see Fig. 1), as is the case for the HFB quasiparticle resonance associated with the deeply bound neutron 0s1/2

HF state for example (see Table I). Scattering contours of single-particle states in the GHF basis are discretized up
to kmax = 4 fm−1 with 100 points, which in this case assures convergence of numerical calculation. This concerns
only for the neutron channel, as the pairing gap vanishes in the proton channel.

The result of calculation for normal and pairing densities are presented in Figs. 2 and 3. It is interesting to compare
the densities obtained by solving the Gamow-HFB equations in the coordinate or the GHF configurational space to
those calculated by the standard coordinate space framework where the continuum is discretized with box boundary
conditions. They are denoted GHFB/Coord., GHFB/Config. and HFB/Box., respectively. All results coincide in
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both normal and logarithmic scales for r < 30 fm. It was also checked that spurious imaginary parts of densities,
caused by the discretization of the continuum of complex energy, were negligible, of the order of 10−6 [fm−3] for
GHFB/Coord. and 10−12 [fm−3] for GHFB/Config., as the largest error values. In Table I, the bound and resonant
single-particle states obtained by the GHF calculation are compared with the corresponding quasiparticle states
calculated by the GHFB/Coord. method. It is obvious that bound HF states can give rise to unbound quasiparticle
states carrying a sizable width when pairing correlations are switched on.

Physical observables associated with the HFB ground states are provided in Tables II and III. On the one hand,
differences occur for neutron pairing energies, which are most sensitive to continuum effects [36]. While those of
GHFB/Coord. compared to HFB/Box remain of the order of 500 keV, the difference between GHFB/Config. and
HFB/Box pairing energies can be ∼1.5 MeV. On the other hand, the r.m.s. radii and total energies are basically
the same, with a discrepancy of at most ∼300 keV for the latter. These results indicate that the GHFB/Coord.,
GHFB/Config. and HFB/Box treatments are all reliable methods to solve the HFB equations taking the continuum
effects into account. As resonant states are explicitly treated in the Gamow HFB approach, this implies that the
resonant effects can be well accounted for also by means of the HFB/Box method. This point is not necessarily
widely accepted [37]. Even though the good agreements among the results of the GHFB/Coord., GHFB/Config. and
HFB/Box calculations might be surprising, we see no reason to suspect that this is an exceptional case valid only for
the Ni isotopes considered here. It will be interesting to examine this point further.

VIII. PERSPECTIVES FOR DESCRIBING DECAYING NUCLEI AND BEYOND-MEAN FIELD

APPROACHES

The GHFB/Coord. method directly provides quasiparticle wave functions without using any intermediate basis
states. Hence, it may be used also to describe decaying nuclear ground states in the HFB approximation. In fact,
no HFB theory capable of describing decaying HFB ground states exists, even though an approximate scheme was
proposed in Ref. [38]. The main difficulty is that it is not possible to construct the HFB ground state obeying the
outgoing wave condition if one includes the full set of quasiparticle states of positive energy [38]. This arises from
the fact that quasiparticles form a degenerate continuum of scattering states for E < |λ| if λ > 0, whereas they can
only generate a discrete set of bound states in this region if λ < 0. It is impossible to remove quasiparticle states
with E < |λ| with the use of the GHFB/Config. method, because quasiparticle eigen-energies of the HFB matrix are
complex. In contrast, the direct integration method (GHFB/Coord.) allows us to select which quasiparticle states
are occupied in the HFB ground state. Hence, it may be possible to carefully study properties of decaying HFB states
at least for the spherical case.

The GHF configurational approach (GHFB/Config.) may be more appropriate to study excited states in deformed
nuclei by means of the QRPA. For deformed nuclei, basis expansion approaches may be easier compared to the
calculation of deformed HFB ground states in coordinate space [16]. For calculating bound HFB ground states, we
can use the PTG basis, which is more efficient than the GHF basis, considering the numerical cost of recalculating the
GHF basis states inherent to the two-basis method (see Sec. VI). Once a HFB ground state is obtained in this way,
one can readily calculate the GHF basis wave functions. The QRPA matrix would then be represented afterward with
respect to the quasiparticles wave functions expanded in the GHF basis, thus allowing the description of unbound
QRPA excited states.

IX. CONCLUSION

The Berggren completeness relation, originally developed in the context of standard Schrödinger equation, has been
extended to quasiparticles in the HFB formalism. It was shown that, as in the standard single-particle potential
problem, bound, resonant and scattering quasiparticles are well defined and form a complete set, by which bound
HFB ground states can be constructed. Both situations are very similar and can be treated by contour deformation of
continuous real sets of states, even though physical interpretation of resonant quasiparticles is different from that of
resonant single-particles. Numerical applications have been effected with neutron-rich Nickel isotopes close to the drip
line, for which continuum coupling is important. It was shown that the Gamow-HFB approach, both in coordinate
and configurational space representations, properly describe densities and physical observables. Thus, it provides us
with an efficient tool to study ground states of medium and heavy nuclei close to the drip line. With these approaches,
QRPA calculation fully taking into account continuum coupling may be efficiently carried out.
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TABLE I: Bound and resonant neutron energies and widths for 90Ni, calculated in the GHF approximation and in the
GHFB/Coord. formalism. Single-particle energies (ei) and quasiparticle energies (Ei) are given in MeV and widths (Γ) in
keV. Note that the GHF 2s1/2 state dissolves into continuum quasiparticle states in the Gamow-HFB description.

GHF GHFB/Coord.

states e Γ E Γ

0s1/2 -52.618 0 51.573 1.099 10−3

1s1/2 -24.630 0 24.348 46.006
2s1/2 -1.196 0 —— ——
0p3/2 -41.655 0 40.796 27.282
1p3/2 -12.986 0 12.658 490.565
0p1/2 -42.881 0 38.870 27.138
1p1/2 -11.189 0 10.816 404.299
0d5/2 -29.921 0 29.141 0.780
1d5/2 -2.592 0 3.181 194.181
0d3/2 -30.657 0 25.095 22.567
1d3/2 -0.349 0 2.173 560.608
0f7/2 -18.177 0 17.654 397.374
0f5/2 -11.331 0 11.065 645.638
0g9/2 -6.770 0 6.570 0.807
0g7/2 1.350 6.410 3.120 63.6131
0h11/2 3.852 52.851 5.269 131.776

TABLE II: Gamow-HFB observables for 84Ni and 86Ni calculated with the GHFB/Coord., GHFB/Config. and HFB/Box
methods. The r.m.s. radii are given in fm and other quantities in MeV. The proton chemical potential λp is not presented as
there is no proton pairing gap.

84Ni 86Ni

HFB/Box GHFB/Coord. GHFB/Config. HFB/Box GHFB/Coord. GHFB/Config.

λn -1.453 -1.430 -1.440 -1.037 -1.027 -1.029
rn 4.451 4.450 4.450 4.528 4.526 4.526
rp 3.980 3.982 3.982 4.001 4.001 4.001
∆n 1.481 1.535 1.564 1.667 1.658 1.669
Epair

n -30.70 -30.72 -31.85 -36.52 -35.85 -36.39
Tn 1084.53 1086.05 1086.46 1118.65 1118.68 1118.78
Tp 430.47 430.23 430.17 425.99 426.01 426.00
Eso

n -63.379 -63.164 -63.01 -61.679 -61.712 -61.631
ECoul

dir 132.94 132.89 132.88 132.26 132.25 132.25
ECoul

exc -10.138 -10.135 -10.135 -10.084 -10.085 -10.085
Etot -654.89 -654.89 -655.05 -656.933 -656.836 -656.971
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TABLE III: Same as in Table II but for 88Ni and 90Ni.

88Ni 90Ni

HFB/Box GHFB/Coord. GHFB/Config. HFB/Box GHFB/Coord. GHFB/Config.

λn -0.671 -0.661 -0.665 -0.342 -0.330 -0.342
rn 4.603 4.602 4.601 4.677 4.674 4.675
rp 4.021 4.022 4.022 4.043 4.043 4.043
∆n 1.790 1.782 1.800 1.899 1.899 1.935
Epair

n -41.98 -41.26 -42.17 -47.158 -46.509 -48.449
Tn 1150.71 1150.74 1151.02 1182.52 1182.91 1183.79
Tp 421.71 421.71 421.70 417.38 417.35 417.31
Eso

n -59.558 -59.559 -59.470 -56.898 -56.887 -56.822
ECoul

dir 131.571 131.576 131.576 130.947 130.883 130.878
ECoul

exc -10.033 -10.033 -10.033 -9.980 -9.980 -9.980
Etot -658.167 -658.082 -658.272 -658.665 -658.635 -658.936

0 0.5 1
0

0.5

1

L+ contour

bound quasi-particle

resonant quasi-particle

(scattering states)

(HF bound or resonant)

Im(k)

Re(k)α |λ|1/2 Ecut

FIG. 1: (color online) Location of quasiparticle S-matrix poles and deformed complex contour L+ of scattering quasiparticle
states used in the Berggren completeness relation. Here, α =

√

2m/~.
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FIG. 2: (color online) Neutron densities ρn both in normal (left-hand side) and logarithmic (right-hand side) scales. Results of
the HFB/Box, GHFB/Coord. and GHFB/Config. calculations are displayed by solid, dashed and dotted lines, respectively.
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FIG. 3: (color online) Same as Fig. 2 but for neutron pairing densities.


