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Abstract. - Coulomb wave functions are difficult to compute numerically for extremely low energies,
even with direct numerical integration. Hence, it is more convenient to use asymptotic formulas in this
region. It is the object of this paper to derive analytical asymptotic formulas valid for arbitrary energies
and partial waves. Moreover, it is possible to extend these formulas for complex values of parameters.

Introduction. – Coulomb wave functions are the typical
example of functions being both analytic and very difficult to
compute. They are part of the rare cases for which second-
order differential equations can be analytically solved and are
expressed with confluent hypergeometric functions [1]:

F`η(ρ) = C`(η) ρ`+1 eiωρ

× 1F1 (1 + ` + iωη; 2` + 2;−2iωρ) , (1)

Hω
`η(ρ) = eiω[ρ−η log(2ρ)−` π

2
+σ`(η)],

× 2F0

(

−` + iωη, 1 + ` + iωη; ;− i

2ωρ

)

, (2)

σ`(η) =
log Γ(1 + ` + iη) − log Γ(1 + ` − iη)

2i
, (3)

G`η(ρ) =
H+

`η(ρ) + H−

`η(ρ)

2
, (4)

C`(η) = 2` exp [−πη − log Γ(2` + 2)]

× exp

[

log Γ(1 + ` + iη) + log Γ(1 + ` − iη)

2

]

, (5)

where ` is the angular momentum of the wave function, η
its Sommerfeld parameter, ω can be equal to ±1 in eqs.(1,2),
and where the constants of normalization C`(η) (Gamow fac-
tor) and σ`(η) (Coulomb phase shift) appear [1]. All com-
putational difficulty arises from the presence of confluent hy-
pergeometric functions 1F1 and 2F0. They indeed vary by
many orders of magnitude for smooth variations of parame-
ters and are moreover subject to a cut in the complex plane
when analytically continued [1]. Codes handling arbitrary

complex parameters in Coulomb wave function computation
have been published in both Fortran [2] and more recently
in C++ [3] languages. While the former uses only analyti-
cal methods such as power series and continued fractions, the
latter included direct integration as well, which has consider-
ably extended the numerical domain of definition for which
implementation of Coulomb wave functions is stable [3]. How-
ever, even with this amelioration, results become unreliable
for very large values of |Im(`)| and/or |η| [3].

In ref. [4], a uniform approximation for Coulomb wave func-
tions has been presented, which, however, demands ` = 0.
This prevents partial decomposition of wave functions, use-
ful for reaction cross section calculation [5]. Moreover, ap-
proximations for which ` is arbitrary would be of interest for
relativistic calculations, where Coulomb wave functions are
expressed also with the confluent hypergeometric functions
appearing in eqs.(1,2) [6].

Uniform approximation of Coulomb wave functions.

– In order to alleviate instabilities encountered in Coulomb
wave function implementation, we will derive analytic formu-
las valid for large η, ` ≥ 0 and ρ > 0 firstly, which will be
secondly analytically continued to complex values. The stan-
dard method therein is to use uniform WKB approximation,
where divergences occurring at the turning point, denoted in
the following as ρt, are removed through the use of Airy func-
tions [7]. While the method described in ref. [7] demands in
the general case to deal with non-analytical integrals, those
appearing for the Coulomb problem can be calculated exactly
with elementary functions. To apply this method, one firstly
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writes the exact ansatz verified by Coulomb wave functions,
from which approximations can be effected:

F`η(ρ) =
√

πρ
1

6

t φ′(x)−
1

2 Ai(−ρ
2

3

t φ(x)), (6)

G`η(ρ) =
√

πρ
1

6

t φ′(x)−
1

2 Bi(−ρ
2

3

t φ(x)), (7)

x =
ρ − ρt

ρt
, (8)

ρt = η +
√

η2 + `(` + 1), (9)

where Ai(z) and Bi(z) are the standard regular and irregular
Airy functions [1] (their normalization will be justified after-
ward, as well as the reason why F`η (G`η) possesses no Bi (Ai)
component), and where φ(x) verifies the following third-order
non-linear differential equation:

φ′(x)2φ(x) +
1

2ρ2
t

φ
′′′

(x)φ′(x)−1 − 3

4ρ2
t

φ′′(x)2φ′(x)−2

=
x

x + 1
+

ax

(x + 1)2
, (10)

a = 1 − 2η

ρt
, (11)

where the parameter a has been introduced for convenience.
For large η, ρt → +∞, so that terms proportional to ρ−2

t

in eq.(10) can be neglected. Hence, φ(x) verifies asymptoti-
cally a non-linear first order equation. Elimination of turning
point divergence moreover demands that φ(0) = 0, so that its
approximate equation and solution read for real x:

φ′(x)2φ(x) =
x

x + 1
+

ax

(x + 1)2
, (12)

2

3
φ(x)

3

2 =

∫ x

0

√

t

t + 1
+

at

(t + 1)2
dt , x ≥ 0,

2

3
(−φ(x))

3

2 =

∫

−x

0

√

t

1 − t
+

at

(1 − t)2
dt , x < 0. (13)

This approximation has been considered in ref. [4] in the par-
ticular case ` = 0, implying a = 0, for which φ(x) is equal to
a particularly simple expression. For x → +∞, one can ver-
ify easily that (2/3)φ(x)3/2 ∼ x, which justifies the ansatz of
eqs.(6,7), where they reduce to standard sine-cosine approxi-
mation [1]. If a 6= 0, it happens that eq.(13) not only can be

integrated analytically, but also in a very concise way:

2

3
φ(x)

3

2

= (1 − a)[log(
√

1 + a) − log(
√

x +
√

1 + x + a)]

+
√

x(1 + a + x) − 2
√

a arctan

(√

ax

1 + a + x

)

,

x ≥ 0,
2

3
(−φ(x))

3

2

= −
√

−x(1 + a + x)

+
1 − a

2
arccos

(

1 +
2x

1 + a

)

+ 2
√

a arctanh

(√

− ax

1 + a + x

)

,

x < 0. (14)

One can check that the ` = 0 case described in ref. [4] is
properly obtained using a = 0 in eq.(14). φ′(x) is pro-
cured by eq.(12) and the condition that φ′(x) > 0, immediate
from eq.(13). Note that for x ∼ 0, eq.(14) becomes numer-
ically unstable, so that it is preferrable to use the asymp-
totic formulas verified by φ(x) and φ′(x) therein, which are
φ(x) ∼ (1+ a)1/3x and φ′(x) ∼ (1+ a)1/3. F ′

`η(ρ) and G′

`η(ρ)
are obtained by a simple differentiation of eqs.(6,7). It has
been noticed numerically, however, that their term propor-
tional to φ′′(x) is not negligible and should be kept in approx-
imate formula. φ′′(x) is procured by a simple differentiation
of eq.(12).

Extension of eq.(14) to complex arguments demands cau-
tion. On the one hand, it is usually sufficient therein to re-
place the conditions x ≥ 0 and x < 0 by Re(x) ≥ 0 and
Re(x) < 0 respectively, especially if considered imaginary
parts are small in modulus (see also ref. [8] for computational
methods of the Airy function in the complex plane). On the
other hand, however, one has to pay attention to the differ-
ent cuts obeyed by both Coulomb wave functions and the
elementary functions of eq.(14). The theoretical behavior of
Coulomb wave functions in the vicinity of their cut has been
studied in ref. [9]. The simplest method to avoid problems
generated by cuts is to consider complex contours which never
cross the negative real axis, so that Coulomb wave functions
are continuous therein. Then, one just has to modify formu-
las of eq.(14) so that they are continuous on these contours if
cuts of elementary functions therein are encountered. They
are straightforward to treat, as cuts appear only by way of
log, inverse circular/hyperbolic and power functions.

Numerical examples. – In order to show the efficiency
of the approximation presented in eq.(14), one will consider
both sets of parameters. The first set consists in the real val-
ues ` = 2 and η = 10, for which ρ > 0. The second set reads
` = 2 + i and η = 10 + i, with ρ = |ρ|eiπ/4. No cut prob-
lem appears for these complex values in eq.(14). |Re[F`η(ρ)]|,
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|Re[G`η(ρ)]| and analog values related to Coulomb wave func-
tions derivatives are depicted in log scale, in fig.(1) for the real
set of parameters and in fig.(2) for the complex set of param-
eters. They are compared to the exact functions calculated
numerically with the code of ref. [3], with which Airy func-
tions are calculated as well as linear combinations of Bessel
functions [1]. It is clear from these figures that the approx-
imation provided by eq.(14) is very good, even though η is
not very large. The relative error of the approximate formula
of eq.(14) is ∼1% for most ρ values, which was expected as
precision of the approximation is of the order of |ρt|2 (see
eq.(10)).
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Fig. 1: (color online) Absolute values of F`η(ρ), G`η(ρ), F ′

`η(ρ)
and G′

`η(ρ) for ` = 2 and η = 10. Exact calculation provided
by the code of ref. [3] and approximation issued from eq.(14) are
indistinguishable.

Conclusion. – The uniform Coulomb wave function ap-
proximation of ref. [4], valid for η → +∞ and ` = 0, has
been generalized to both arbitrary partial wave and complex
parameters, and has been checked numerically to be reliable.
It provides a useful alternative to exact computation of low-
energy Coulomb wave functions, which can be numerically
costly or unstable. In particular, partial wave decomposition
can be effected with the proposed uniform approximation of
low-energy wave functions.

REFERENCES

[1] M. Abramowitz, Handbook of Mathematical Functions,
edited by M. Abramowitz and I.A. Stegun, National Bureau
of Standards, Applied Mathematics Series - 55 (1972).

[2] I.J. Thompson and A.R. Barnett, Comp. Phys. Comm., 36

(1985) 363; J. Comput. Phys., 64 (1986) 490.
[3] N. Michel, Comp. Phys. Comm., 176 (2007) 232.
[4] C. Grama, N. Grama and I. Zamfirescu, Euro. Phys. Lett.,

59 (2002) 166

10-16

10-8

100

108

0 5 10 15 20 25 30 35 40
|ρ|

10-4
100
104
108

1012
1016

|Re[F (ρ)]| |Re[F’(ρ)]|

|Re[G (ρ)]|
|Re[G’(ρ)]|

lη

lη

lη

lη

Fig. 2: (color online) Absolute values of Re[F`η(ρ)], Re[G`η(ρ)],
Re[F ′

`η(ρ)] and Re[G′

`η(ρ)] for ` = 2+i, η = 10+i and arg(ρ) = π/4.
Exact calculation provided by the code of ref. [3] is provided as
straight lines and approximation issued from eq.(14) as dashed
lines. Differences are visible only for |Re[G`η(ρ)]| and |Re[G′

`η(ρ)]|.
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