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Abstract. As nuclear wave functions have to obey the Pauli principle, potentials issued from reaction theory
or Hartree-Fock formalism using finite-range interactions contain a non-local part. Written in coordinate
space representation, the Schrödinger equation becomes integro-differential, which is difficult to solve,
contrary to the case of local potentials, where it is an ordinary differential equation. A simple and powerful
method has been proposed several years ago, with the trivially equivalent potential method, where non-local
potential is replaced by an equivalent local potential, which is state-dependent and has to be determined
iteratively. Its main disadvantage, however, is the appearance of divergences in potentials if the wave
functions have nodes, which is generally the case. We will show that divergences can be removed by a
slight modification of the trivially equivalent potential method, leading to a very simple, stable and precise
numerical technique to deal with non-local potentials. Examples will be provided with the calculation
of the Hartree-Fock potential and associated wave functions of 16O using the finite-range N3LO realistic
interaction.

PACS.

02.60.Nm Integral and integrodifferential equations
03.65.Ge Solutions of wave equations: bound states
03.65.Nk Scattering theory
21.60.Jz Nuclear Density Functional Theory and extensions

1 Introduction

As protons and neutrons are indistinguishable in nuclei,
Pauli principle must be taken into account in order to
build nuclear wave functions. This has the well-known con-
sequence of the appearance of exchange potentials in the
one-body Schrödinger equation, in the optical potential
of reaction theory [1] or in the Hartree-Fock (HF) poten-
tial, issued from the variational principle applied to an
antisymmetric wave function of independent particles [2].
Exchange potentials are non-local, i.e they are integral
operators acting on the wave function at each point of
space, so that Schrödinger equation written in coordinate
space representation becomes an integro-differential equa-
tion. This type of equation cannot be handled by standard
numerical methods used in ordinary differential equations,
such as midpoint and Henrici schemes [3].

Many methods have been devised to deal with non-
local potentials. While some of them consider the im-
plementation of bound states only [4], scattering states
can be handled with the methods of Refs.[5–7], where the
Schrödinger equation is transformed to an integral equa-
tion. Solving the Schrödinger equation represented in mo-
mentum space has also been considered (see Refs.[8,9]), as
it becomes an integral equation therein as well. However,

in practice, momentum space has to be discretized [9], so
that wave functions do not have proper asymptotic behav-
ior when back-transformed to coordinate space. Moreover,
consideration of Coulomb potential cannot be handled ex-
actly, its Fourier-Bessel function being undefined due to its
infinite range. In the FRESCO reaction code (see Ref.[10]
for numerical methods employed therein), dealing with
coupled-channel sets of equations involving non-local cou-
plings, non-local parts in equations are replaced by source
terms, converging iteratively to their exact values, which
is the most straightforward method to transform a non-
local equation into a local equation (we will mention it
from now on as the source method). However, the source
method usually converges very slowly, and sometimes even
diverges. Indeed, even in the case of reaction theory, where
local potential is dominant, Padé approximants have to be
used in the FRESCO code in order to avoid instabilities
[10].

A very simple method has been introduced in Ref.[11],
where the non-local potential is replaced by a state-dependent
potential, the so-called trivially equivalent local potential
(TELP), and where the problem has to be solved itera-
tively as well. This scheme is particularly interesting in
HF framework, where iterative scheme is the only one
available as HF equations are non-linear. As all consid-
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ered equations become local, standard numerical methods
for ordinary differential equations can be used, so that
the implementation of both bound and scattering states
poses no problem. Moreover, it is very stable in practice,
contrary to the source method, so that it is widely used
in nuclear theory [14–16]. However, as the TELP method
involves a division by the considered wave functions, it
contains poles, which are difficult to handle numerically.
The solution proposed in Ref.[11] consists in an interpola-
tion of the potential near its poles, replacing the potential
by a straight line connecting two points before and after
the pole, the distance between the two points going to zero
iteration after iteration. However, this procedure is diffi-
cult to apply, as there is no precise criterion to determine
how fast the mentioned distance has to decrease on the
one hand, and, on the other hand, potentials become very
large close to poles, which can generate numerical inaccu-
racies. It would then be interesting to have the advantages
of both source and TELP methods, i.e. fast convergence
of the iterative scheme and absence of divergences in po-
tentials.

2 Combination of source and TELP methods

2.1 Local equivalent equation

For simplicity, we will consider spherically symmetric po-
tentials only, even though the method can be readily ex-
tended to more complicated situations, such as coupled-
channel sets of equations. The Schrödinger equation then
reads:

u′′(r) =

[

`(` + 1)

r2
+

2m

h̄2

(
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Zν Cc

r
− e

)]

u(r)

+
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∫ +∞

0

w(r, r′)u(r′) dr′, (1)

where Zν is the charge of the target (proton) or is equal to
zero (neutron), Cc is the Coulomb constant ' 1.44 MeV
fm, m is the effective mass of the nucleon in MeV c−2

units, u(r) is the calculated wave function, of orbital mo-
mentum `, and energy e in MeV units, v(r) is the remain-
ing local part of the potential in MeV units and w(r, r′)
its non-local part in MeV fm−1 units. v(r) and w(r, r′) are
assumed to decrease quickly at large distance, so that u(r)
becomes a linear combination of Coulomb wave functions
for r > R, with R sufficiently large.

We will now define the equivalent local equation used
in the proposed method:
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where ubef (r) is the normalized wave function obtained at
previous iteration, vloc(r) is the state-dependent local po-
tential used in our method, s(r) is a source term, F (r) is a
smoothing function, detailed afterward, and Cbef is a nor-
malization constant defined so that ubef (r) ∼ Cbef r`+1

for r ∼ 0. Boundary conditions demanded for u(r) in
Eq.(2) are u(r) ∼ r`+1 for r ∼ 0, and outgoing wave
function condition at r → +∞ if one considers a bound or
resonant (Gamow) state [12,13]. The boundary condition
for u(r) at r ∼ 0 implies the presence of Cbef in Eq.(4), be-
cause, during integration of Eq.(2), u(r) is not normalized
whereas ubef (r) is. u(r) will naturally be normalized at
the end of the calculation. If u(r) is a scattering state, no
boundary condition at r → +∞ is required. One can easily
check that Eq.(2) is equivalent to Eq.(1) if ubef (r) ∝ u(r),
hence at convergence of the iterative process.

2.2 Interest of the method

The method embodied by Eqs.(2,3,4,5) is very close to
the TELP method of Ref.[11]. TELP method is indeed re-
covered if one arbitrarily sets F (r) = 0 in Eqs.(3,4). The
presence of F (r) is hence directly related to the zeroes
of the function u(r), which are the cause of the diver-
gences in the TELP method. F (r) consists in two factors
in Eq.(5). The first one is readily seen to be virtually zero
except in the vicinity of the nodes of u(r), where it be-
haves like a Gaussian of maximal value equal to one, so
that it cancels the divergences present in the TELP. The
second factor originates from the fact that the TELP is
well behaved at r ∼ 0, even though u(0) = 0 [11]. Thus,
it is numerically more stable to have vloc(r) equal to the
TELP close to r = 0. As the second factor is virtually
equal to zero close to r = 0, whereas it is otherwise al-
most equal to one, it removes the action of the first fac-
tor at r = 0, while leaving it unchanged for the other
nodes of u(r). The used decay constants equal to 100 are
rather arbitrary and were empirically determined in order
to have stable calculations for a large set of nuclei. As a
consequence, vloc(r) is always finite close to the nodes of
u(r). Hence, the integration of Eq.(2) is always numeri-
cally stable. Moreover, as s(r) is non zero only in very
small regions of considered radii, it does not hinder con-
vergence as in the source method. Note that u′(r) does not
enter Eq.(2), so that Numerov and Henrici methods can
be applied to solve it. Consequently, both advantages of
the source and TELP methods are present in the proposed
numerical scheme. Another interesting feature is the pos-
sibility to obtain rapidly approximate energies of bound
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and narrow resonant states of Eq.(2). For that, one diag-
onalizes vloc(r) with a basis of harmonic oscillator (HO)
states. Due to the overall smallness of s(r), eigenvalues of
the HO matrix are very good starting energies, which are
refined afterward with Newton method in order to deter-
mine the exact eigen-energies of Eq.(2).

3 Example: HF potential of 16O

3.1 Motivation

In order to illustrate the effectiveness of the technique de-
scribed in Sec.(2), we will consider the evaluation of the
HF potential of 16O generated by the realistic interac-
tion N3LO [17], renormalized within the low-momentum
interaction framework [18]. The maximal momentum in
two-body relative space used for the latter is Λ = 1.9
fm−1. Note that we do not aim at describing properly
16O properties at HF level, but simply at illustrating the
proposed numerical scheme. HF equations are solved iter-
atively using linear mixing method for HF potential and
a Woods-Saxon potential was used as starting point for
the HF iterative process. As we consider a rather small
nucleus, a very large potential mixing of 80 % could be
used, which resulted in a very quick convergence to the
HF solution in 32 iterations. If pairing interaction is used,
in the context of Hartree-Fock-Bogolyubov (HFB), linear
mixing might be insufficient, so that the more powerful
modified Broyden method should be used (see Ref.[19] for
recent application to HFB formalism and comparison to
linear mixing method). Moreover, as the N3LO interac-
tion is decomposed in a HO basis [20], the non-local part
of the HF potential is a sum of separable functions of the
form f(r) g(r′). As convergence of shell model energies
and eigenvectors is very quick with the number of HO ba-
sis states, which was shown in Ref.[20], 9 HO states per
partial wave are used in the decomposition of the N3LO
interaction in the present work. The used HO parameter
was b = 2 fm. Hence, the integrations involving w(r, r′) in
Eqs.(3,4) for each r are replaced by sums over a few num-
ber of HO states, rendering wave functions determination
very fast even though non-local operators are used. Note
nevertheless that potential separability is not demanded
in our method, this property being used only to improve
efficiency of calculations.

3.2 Results

Energies of occupied single particle states and of unoccu-
pied 1s1/2 states are shown in Tab.(1), where one can see
that the proton 1s1/2 state is resonant. We will now con-
centrate on the proton and neutron s1/2 states, as they
contain nodes in the nuclear region, which would induce
divergences in TELP. Besides bound/resonant s1/2 states,
30 scattering s1/2 proton and neutron states have been
calculated (see Tab.(2) for the value of their linear mo-
menta). As the proton 1s1/2 state is resonant, proton s1/2

scattering states have been chosen to belong to a complex

Table 1. Single particle energies of occupied 0s1/2, 0p3/2 and
0p1/2, and unoccupied 1s1/2 proton (Ep) and neutron (En) HF
states of 16O. They are given in MeV units. For the resonant
1s1/2 proton state, width is written between parentheses in
keV units after its energy value.

state Ep En

0s1/2 -64.657 -69.444
0p3/2 -29.221 -33.821
0p1/2 -19.753 -24.065
1s1/2 0.519 (22.928) -2.826

contour in k-space, as would be the case in a Gamow Shell
Model calculation [15,16,21–23], where Berggren bases of
complex energy-states consist in bound states, resonant
states, and contours of complex scattering states enclosing
resonances [24]. Potentials vloc(r), sources s(r) and wave
functions u(r) are illustrated in Fig.(1) for bound neutron
1s1/2 state and resonant proton 1s1/2 state, and in Fig.(2)
for two s1/2 proton and neutron scattering states of linear

momentum k = 0.977 fm−1. One can see that potential
vloc(r) and source s(r) vary very much close to the nodes
of associated wave functions, but their maximal values in
modulus remain sufficiently small not to generate numeri-
cal inaccuracies. Moreover, these variations partially can-
cel in Eq.(2), as v(r) and w(r, r′) potentials are smooth in
Eq.(1). In order to check the accuracy of obtained wave
functions, we have calculated the overlaps between the
considered s1/2 states, in both proton and neutron cases.
As one deals with unbound states, complex scaling method
[22] is used to calculate radial integrals, which diverge on
the real axis. Overlap is a very good estimate of the qual-
ity of wave functions, because Eq.(2) provides orthogo-
nal wave functions in practice only if Eq.(2) reflects the
Hamiltonian structure of Eq.(1). Indeed, in general, ar-
bitrary state-dependent potential vloc(r) and source s(r)
generate non-orthogonal wave functions. Hence, small nu-
merical errors present in vloc(r) and s(r) always trans-
late in practice into non-orthogonality between the u(r)
states of the same magnitude. Conversely, their orthogo-
nality signifies that all potentials vloc(r) and sources s(r)
are correct and that Eqs.(1,2) are numerically equivalent.
Smallness of overlaps is measured by way of their average
norm Na and maximal norm Nm:

Na =
2

N(N − 1)

∑

i<j

|〈is1/2|js1/2〉|∞ (6)

Nm = max
i<j

|〈is1/2|js1/2〉|∞ (7)

where N = 17 is the number of considered s1/2 states and
|z|∞ = max(|<(z)|, |=(z)|). Na and Nm calculated values
are shown in Tab.(3). As average values Na of overlaps
are of the order of 10−9, calculated states are numeri-
cally orthogonal, which shows that the method described
in Sec.(2) is very precise.
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Fig. 1. Wave functions (up), potentials (middle) and sources (bottom) of proton and neutron 1s1/2 HF states. Real part (Re)
is depicted as full line and imaginary part (Im) as dotted line. Imaginary part has been multiplied by a factor of 1000 in the
middle/left and bottom/left quadrants to be visible on the figure. Imaginary parts are present for the proton case as proton HF
state is resonant, whereas the bound neutron state is real, so that no imaginary part occurs therein. See Sec.(2.1) for definitions
of potentials and sources.
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Fig. 2. Same as Fig.(1), but with scattering proton and neutron s1/2 states of momentum k = 0.977 fm−1.
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Table 2. Linear momenta of scattering s1/2 proton (kp) and
neutron (kn) HF states in fm−1. Used principal quantum num-
ber is arbitrary.

state kp kn

2s1/2 0.105-i0.00469 0.105
3s1/2 0.123-i0.0231 0.123
4s1/2 0.15-i0.05 0.15
5s1/2 0.177-i0.0769 0.177
6s1/2 0.195-i0.0953 0.195
7s1/2 0.214-i0.0953 0.214
8s1/2 0.269-i0.0769 0.269
9s1/2 0.35-i0.05 0.35
10s1/2 0.431-i0.0231 0.431
11s1/2 0.486-i0.00469 0.486
12s1/2 0.523 0.523
13s1/2 0.616 0.616
14s1/2 0.75 0.75
15s1/2 0.885 0.885
16s1/2 0.977 0.977

Table 3. Maximal and average norms of the overlaps (see
Eqs.(6,7) for their definition) between the considered s1/2

states, i.e. bound/resonant 0s1/2 and 1s1/2 states, and the scat-
tering states described in Tab.(2). Overlaps are calculated with
the complex scaling method [22].

Maximal Average

Proton 1.526 ×10−8 2.207 ×10−9

Neutron 1.287 ×10−8 1.307 ×10−9

4 Conclusion

Numerical methods allowing to solve Schrödinger equa-
tions with non-local potentials are usually complicated or
restricted to a given class of subproblems, such as the
consideration of bound states uniquely. Source and TELP
methods, on the contrary, are very simple to code, but
at the price of slow convergence and reduced stability for
the former, and of the appearance of potential divergences
in the latter. The proposed method, by combining advan-
tages of both source and TELP methods, allows to solve
non-local Schrödinger equation very quickly and precisely,
which has been shown with the example of HF calculation
of 16O with finite-range realistic interaction N3LO. Due to
its simplicity and efficiency, it is a very interesting method
to deal with the integration of non-local Schrödinger equa-
tion.
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