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Abstract
We investigate the effect of high order radiative corrections in unpolarized electron proton elas-
tic scattering and compare with the calculations at lowest order, which are usually applied to
experimental data. We show that higher order terms play a role, starting from values of the mo-
mentum transfer squared, 2, larger than the electron mass. Particular attention is devoted to the

€ dependence of radiative corrections.

PACS numbers:



I. INTRODUCTION

Presently, much attention is devoted to electromagnetic nucleon form factors (FFs) due in
particular, to new experimental opportunities to extend their measurement at large momen-
tum transfer and/or to achieve larger precision in the full kinematical region. In particular
the possibility to apply the polarization method [1] allowed a measurement of the electric
FF up to a value of the momentum transfer squared of 5.8 GeV? [2].

In recent works [3, 4], it was shown that high order radiative corrections (RC) should be
properly taken into account as they may change the size of the observables as well as their
dependence on the relevant kinematical variables.

In this paper we investigate in detail the effect of high order radiative corrections, calcu-
lated by the lepton structure function (LSF) method [5], and compare them to first order
calculations. We focus in particular to the region of low momentum transfer. The structure
function method was developed in Ref. [5] and successfully applied in different processes
([4] and refs therein) and allows to calculate high order RC with a precision of 0.1%.

The main contribution to high order terms, in ep elastic scattering, is due to large log-
arithm contributions, i.e., such contributions which contain log(Q?)/m? (m, is the electron
mass). One can see that, already at Q* ~ 1 GeV?, such terms become large (~ 15) partially
compensating the factor a/m which accompanies the emission of an additional photon.

The importance of the low Q? region is related in particular to the high precision parity
violating experiments which achieve a 107% precision on the observables (ppm). A precise
determination of the electromagnetic FF's is extremely important in order to decrease the
error on the strange nucleon FF. Measurements at JLab [6] and Mainz [7], based either on
the polarization method or on the Rosenbluth separation have been recently done or are in
preparation.

In order to extract precise information on the hadron structure, it is necessary to carefully
correct the electron block for the emitted photons. This is especially true when the exper-
iment is not fully exclusive, but also in this case, radiative corrections have to be applied
within the acceptance and the resolution of the detection.

We compare the effects of higher order RC to the calculation of Maximon and Tjon [§]
(partly rederived in Ref [4]). The work of Ref. [8] is based on a first order calculation of RC,

which improves the classical work of Mo and Tsai [9], used in most of the analysis codes for



elastic and inelastic scattering. It will be quoted below as (MT).

In Section I, the LSF formalism is briefly recalled, and the relevant expressions are given
and discussed. In Section IT the main results will be presented. The different terms will
be compared in first and higher order calculations. In Conclusions we do a brief summary,
comment the contribution of inelastic channels, and stress the importance of including high

order RC in the codes for the experimental analysis.

II. FORMALISM

The differential cross section for ep elastic scattering in one photon approximation can
be expressed as a function of two kinematical variables, Q? and ¢, the four momentum Q2

and the polarization € of the exchanged virtual photon, in the form:
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where o), is the Mott’s cross section for electron scattering on point-like particles, and the
nucleon structure is described by the form factors, Gg and GGj;. The kinematical variables are
expressed as a function of the incident(final) electron energy E (E’), the electron scattering
angle . Eqs. (1,2) hold for elastic electron scattering on any hadron, with appropriate
values of the mass and the charge of the hadron M, 7.

It is known [10] that the process of emission of hard photons by initial and scattered
electrons plays a crucial role, which results in the presence of the radiative tail in the
distribution on the scattered electron energy. The LSF approach extends the traditional
calculation of radiative corrections [9], taking precisely into account the contributions of
higher orders of perturbation theory and the role of initial state photon emission. The cross
section can be expressed in terms of LSF of the initial electron and of the fragmentation

function of the scattered electron energy fraction:
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where d&((Q?, ¢,), in shifted kinematics, is the Born cross section divided by the correction

due to the vacuum polarization. The z-dependent kinematical variables, taking into account



the change of the electron four momentum, due to photon emission, 2, €, are calculated
from the corresponding ones (Eq. ( 2)), replacing the initial electron energy E by zE, which
is the energy fraction carried by the electron after emission of one or more collinear photons.

We used for simplicity the notation do for the double differential cross section: do’5™"B =

(doSTB /dQ)ESEB for Born approximation (B) and radiatively corrected (LSF). The lower
limit of integration, zg, is related to the ’inelasticity’ cut, ¢, used to select the elastic data,
and corresponds to the maximum energy of the soft photon, which escapes the detection:
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where p is the recoil factor p =1+ (E/M)(1 —cosf) and y = 1/p is the fraction of incident
energy carried by the scattered electron. In terms of p, one can write Q? = 2E?(1 — cosf)/p.

In Eq. (3) the main role is played by the non singlet LSF:
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m, is the electron mass. Particularly important is the quantity L, called, large logarithm,
which is responsible for the large size of the term related to the LSFE correction.
The integration in Eq. (3) requires a careful treatment, as D(z) has a singularity for

z = 1. So the integration of any function ® gives (see Appendix A in [4]):
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The factor 1+ (a/7) K can be considered as a general normalization. It has been calculated

in detail for ep elastic scattering in Ref. [4] and the term K is the sum of three contributions:
K=K,+ K, + Kjo;. (8)

K. is related to non leading contributions arising from the pure electron block and can be

written as [5, 10]:
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The second term, K, concerns the emission from the proton block. The emission of virtual
and soft photons by the proton is not associated with large logarithm, L, therefore the whole

proton contribution can be included as a K, factor:
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with 2 = (VI+ 7 +7)% 8=1+/1—- M2/E? and E' = E(1 — 1/p) + M are the scattered
proton velocity and energy. The contribution of K, to the K factor is of the order of -.2%
for c = 0.99, F = 21.5 GeV, ?=31.3 GeV? [8], and it is almost constant in e.

Lastly, Ky, represents the interference of electron and proton emission. More precisely
the interference between the two virtual photon exchange amplitude and the Born amplitude
as well as the relevant part of the soft photon emission i.e., the interference between the
electron and proton soft photon emission, may be both included in the term Kj,,. These
effects are not enhanced by large logarithm (characteristic of LSF) and can be considered
among the non-leading contribution, which represents an e-independent quantity of the
order of unity, including all the non-leading terms, as two photon exchange and soft photon
emission.

In order to make comparison with existing calculations of RC, it is convenient to express

the corrections calculated with the LSF method, ¢ in the form:
do™(Q,€) = do®(Q% €)(1 +0), (11)

where
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Let us compare these different terms with the corresponding calculation from Ref. [8],

which has removed or softened some drastic approximations previously used in [9]. The
interference between the box and the Born diagram was included (partially within the soft

photon approximation) as:
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where AE = E'(1—c) is the maximum energy of the soft photon, allowed by the experimental
set-up. The radiation from the electron, in the leading order approximation, including
vacuum polarization, was expressed as
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III. RESULTS AND CONCLUSIONS

In the LSF calculation, the main contribution comes from those terms, which include
higher order corrections, whereas all the terms which do not contain large logarithm are
expected to be suppressed and included in the K-factor.

In Fig. 1 the results for the calculation of different radiative corrections for Q?=0.2 GeV?
are shown. Thick lines correspond to the LSF method and thin lines correspond to MT [8].
The solid line is the sum of the different terms. A large difference can be already seen at
such small value of ()2, both in the values and in the slope of the cross section.

Let us compare the different terms.

The correction from the proton (dash-dotted line) is basically the same, in both calcula-
tions (Eq. 10). It is small and € independent.

For both methods, the largest contribution is due to the radiation from the electron.
However, in the LSF method, the main correction is due to the electron radiation ( dash-
dotted line), whereas the corrections from the electron which do not contain large logarithm
and are calculated in the K, factor, which is small (dashed line), with a small e dependence.

The electron emission from the MT calculation, Eq. (14) is shown as a thin, dashed line,
and corresponds to the largest contribution to RC. In the LSF method, the emission from
the initial electron is taken into account. For the final electron emission, it has been assumed
that the full energy is detected (for example, if the electron is detected in a calorimeter) or
that the electron energy is not measured at all: in these cases, due to the properties of LSF,
the contribution for final emission is unity.

For the LSF calculation, here we take K, = 0. In Refs. [4, 16] it was shown that this
term was small, and with small € dependence.

In the MT calculation, the interference between the box and the born diagram (thin,black
dash-dotted line) has a positive slope, and a large € dependence (Eq. 13). Therefore it is this

term which is responsible for the fact that the slopes of the final corrections as a function



of € (thin and thick solid lines ) have opposite signs in the LSF and MT calculations.
When applied to the experimental cross sections, this will be reflected in a change of slope
of the reduced cross section, as a function of ¢, and the electromagnetic FFs extracted
from the Rosenbluth method will be different. In Ref. [4] it has been shown that the
LSF corrections could bring into agreement the FFs extracted by the Rosenbluth and the
polarization methods.

In Fig. 2 the different contributions to RC are shown for Q?=1 GeV?, as a function of
€. The general behavior of the different terms is essentially similar as in Fig. 1, but the
numerical values of the radiative corrections are larger and the effect of higher orders more
sizable. Numerical values may differ up to a factor of three, and this factor depends on ¢
and Q2.

In Fig. 3 the results are shown in case of Helium target, at ?=0.8 GeV?2.

To summarize, the main difference between the size of RC from the two calculations
should be attributed to the fact that in the present application of the LSF method, the
partition function of the final particle is taken as unity, which is the case in an experiment
where one can not separate events corresponding to an electron and to an electron and a
photon with the same total energy. The difference between the slopes of the corrections to
the cross section as a function of € depends on the ansatz used to include the two photon

exchange mechanism.

IV. CONCLUSIONS

We have calculated radiative corrections for electron hadron elastic scattering, at low
@Q?, in frame of the LSF method, and compared to lowest order calculations. Even if a
comparison can not be done term by term, as the formalisms are different, we can draw the
following conclusions.

Radiative corrections by the LSF method are in general of the same sign, negative, but
smaller than for MT, and they have the effect to increase the cross section, when compared
to the calculations at the lowest order. The two calculations should basically agree at the
lowest order of PT. The difference between the two calculations comes mainly from the fact
that, in this application of LSF approach, the contribution of the final emission is unity and

that higher order are taken into account (in the leading logarithm approximation).



Let us discuss one of possible source of non-leading contributions to elastic-proton scat-
tering — the interference of one and two photon exchange amplitudes. The structure of the
proton can be taken into account by introducing a generalized form factor, which describes
the interaction of an off-mass-shell photon with an on-mass-shell nucleon with production of
an off-mass-shell proton or of some inelastic state (set of nucleons, antinucleons, and pions).
Arguments of analyticity and gauge invariance can be applied to the Compton amplitude
v*p — ~*p. The integration over the invariant mass of the initial particles leads to the
formulation of "sum rules” and to the statement that the contributions of one-proton in-
termediate state in Compton amplitude and the inelastic ones essentially compensate each
other [12, 13]. The relevant contribution of the interference of one and two photon exchange

amplitudes can be included as a K-factor, and, in the case of small 2, it is of the order:

a Q?
K, =1+ —>"—.
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(15)
For these reasons, we neglect this quantity in the present estimation of RC. Moreover, explicit
calculations of elastic and inelastic contributions [14, 15], in frame of models, also support
the statement of the discussed compensation.

The different sign of the slope of RC as a function of € comes, in the MT calculation, from
corrections due to the box diagram. We remind that, in this calculation, one photon is soft
and the other hard, and the corresponding terms are introduced in order to compensate the
infrared divergence due to soft photon emission. Indeed, it was shown in [11] in an exact QED
calculation for ey scattering, that the box contribution is very small (few thousandth). On
the other hand, the charge asymmetry, in the reaction et +e~ — p*+ 4~ can be measurable,

of the order of percent, due to the contribution of soft photon emission. Similar conclusions

hold in case of Helium target.
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FIG. 1: (Color online)Calculation of different radiative corrections for Q2=0.2 GeV2. Thick lines
correspond to LSF calculation, thin black lines correspond to MT [8]. Total correction (solid
lines), electron emission (red and black dashed lines), proton emission ’green and black dotted

lines), Structure function (LL) (blue dash-dotted line), box MT (black, thin, dash-dotted line)
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FIG. 2: (Color online)Same as Fig. 1, for Q?=1 GeV?.
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FIG. 3: (Color online)Calculation of different radiative corrections for e +* He elastic scattering,

at Q?=0.8 GeV2. (notations as in Fig. 1
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