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ÉCOLE DOCTORALE D’ASTRONOMIE ET

ASTROPHYSIQUE D’̂ILE-DE-FRANCE

DOCTORAT

Astronomie et Astrophysique

IVAN DEBONO

Cosmological parameter forecasts

with weak gravitational lensing

Prévisions pour les paramètres cosmologiques
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Imagination knows no boundaries

and we may well find ourselves

taking the journey through the dark

but finding the melodic sounds

drawing us back to the light.

A State Of Trance Yearmix 2007

3



4



Acknowledgements

I would like to thank some of the people who have helped this thesis come to fruition:
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Abstract

Modern concordance cosmology is faced with two tasks: Accounting for the abundance
of the known constituents, and determining the nature of the unknown components —
dark matter and dark energy. These make up approximately 30% and 70% of the current
mass-energy budget. The nature of these components is unknown. The initial conditions
which led to structure formation pose another important question. This thesis is based
on a method which could, given data from future surveys, determine the nature of dark
energy through its equation of state and its evolution, and advance our understanding of
the distribution of the primordial density fluctuations.

The method used in this thesis is weak gravitational lensing. We use information
from tomographic cosmic shear, which acts as a sensitive probe of cosmological parameters
by measuring the mass distribution and the geometry of the low redshift Universe. This
thesis studies the potential of an all-sky weak lensing tomographic survey to obtain joint
constraints for different sets of cosmological parameters describing dark energy, massive
neutrinos (hot dark matter), and the primordial power spectrum. Using the Fisher matrix
formalism, we examine how the constraints vary as the parameter set is enlarged, and as
the fiducial cosmology is changed. We also study the constraints when CMB priors are
added to our weak lensing error forecasts.

We find that weak lensing with CMB priors provides robust constraints on dark
energy parameters and can simultaneously provide strong constraints on all parameters.
Thus, a future all-sky survey in conjunction with expected results from CMB anisotropy
probes, could provide constraints on the dark energy equation of state parameters. Such
a survey could also constrain the total neutrino mass and the number of massive neutrino
species, as well as the primordial spectral index and its running.

The results presented in this thesis show that error forecasts from a future weak
lensing survey are stable against the addition of parameters to the fiducial model, and
that this stability is improved by adding CMB priors. This thesis also shows that the
weak lensing error forecasts are robust against changes in the fiducial cosmological model.

Applying these methods to study their implications for the the planning of future
surveys, we find that the design parameter which has the greatest impact on the precision
is the survey area. We also show that future surveys will need to utilise a maximum
multipole of 104 if they are to achieve their maximum potential. Our results show that
the same optimisation strategy applies for dark energy, neutrino, and primordial power
spectrum parameters.
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Résumé

L’actuel Modèle de Concordance cosmologique doit faire face à deux défis : Établir la
quantité des composantes connues, et détérminer la nature des composantes inconnues —
la matière noire et l’énergie noire. Celles-ci représentent environ 30% et 70% du contenu de
masse-énergie de l’Univers à l’époque actuelle. Les conditions initiales qui ont engendré
la croissance des structures posent une autre question importante. Cette thèse se base
sur une méthode qui pourrait, avec des données des futurs relevées, détérminer la nature
de l’énergie noire à travers son équation d’état et son évolution, et faire avancer notre
connaissance de la forme des perturbations primordiales de densité.

La méthode utilisée dans cette thèse est celle des lentilles gravitationnelles faibles.
On utilise l’information donnée par le cisaillement cosmique tomographique, qui est une
sonde très sensible aux paramètres cosmologiques par sa mesure de la distribution de
masse et la géométrie de l’Univers à bas décalage spectral. Cette thèse étudie la possibi-
lité pour un relevé de cisaillement cosmique tomographique de tout le ciel d’obtenir des
contraintes conjointes pour des différents groupes de paramètres cosmologiques décrivant
l’énergie noire, les neutrinos massifs (matière noire chaude), et le spectre des perturba-
tions primordiales. En utilisant le formalisme des matrices de Fisher, on étudie comment
les contraintes varient en fonction du nombre de paramètres, et en fonction des valeurs
centrales des paramètres du modèle cosmologique. On étudie également les contraintes
avec l’ajout des a priori du fond diffus cosmologique à nos prévisions des barres d’erreur
du cisaillement gravitationnel.

On trouve que le cisaillement gravitationnel avec des a priori des mesures de l’anis-
tropie du rayonnement du fond cosmique nous donne des contraintes robustes pour les pa-
ramètres d’énergie noire et peut simultanément donner des contraintes fortes pour tous les
paramètres. Ainsi, un futur relevé de tout le ciel, en combinaison avec des prédictions des
résultats des sondes d’anisotropie du fond diffus cosmologique, peut donner des contraintes
sur les paramètres de l’équation d’état de l’énergie noire. Un tel relevé pourrait aussi
contraindre la masse totale des neutrinos et le nombre d’espèces massives de neutrinos,
ainsi que la pente du spectre primordial et sa dérivée.

Les résultats présentés dans cette thèse montrent que les prédictions pour les erreurs
sur les paramètres cosmologiques d’un relevé de cisaillement gravitationnel sont stables,
même avec l’ajout de paramètres dans le modèle, et que cette stabilité est améliorée avec
l’addition des a priori du fond diffus cosmologique. Cette thèse montre aussi que les
prévisions pour un relevé de cisaillement gravitationnel sont robustes à la variation des
valeurs centrales du modèle cosmologique.

Passant à l’application de ces méthodes pour étudier leur implication pour la pla-
nification de futurs relevés, on trouve que le paramètre du relevé qui a l’effet majeur sur

9



la précision est l’étendue. On montre aussi que les futurs relevés devraient utiliser un
intervalle de multipôles allant jusqu’à 104 pour atteindre leur potentiel maximum. Les
résultats montrent que la même stratégie d’optimisation est valable pour les paramètres
d’énergie noire, de neutrinos, et de spectre de puissance primordiale.

10



Contents

1 Cosmology 23
1.1 The theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2 Theories of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Principles of General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Formalism of General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Standard Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.1 Cosmological redshift and expansion . . . . . . . . . . . . . . . . . 33
1.5.2 Dynamics of the expansion . . . . . . . . . . . . . . . . . . . . . . . 34

1.6 Cosmological components . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.1 Dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.2 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.6.3 Dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7 The Hubble parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.8 Cosmological distance measures . . . . . . . . . . . . . . . . . . . . . . . . 37

1.8.1 Proper distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.8.2 Comoving distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.8.3 Angular diameter distance . . . . . . . . . . . . . . . . . . . . . . . 38
1.8.4 Luminosity distance . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.9 The early Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.9.1 The Cosmic Microwave Background . . . . . . . . . . . . . . . . . . 40
1.9.2 Matter-radiation equality . . . . . . . . . . . . . . . . . . . . . . . . 40
1.9.3 Nucleosynthesis and baryogenesis . . . . . . . . . . . . . . . . . . . 41
1.9.4 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.10 Inflation and the primordial power spectrum . . . . . . . . . . . . . . . . . 43
1.11 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.12 The matter-dominated Universe . . . . . . . . . . . . . . . . . . . . . . . . 46

1.12.1 Structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.12.2 Evolution on small scales . . . . . . . . . . . . . . . . . . . . . . . . 48
1.12.3 Growth of perturbations in the presence of dark energy . . . . . . . 49
1.12.4 The matter power spectrum . . . . . . . . . . . . . . . . . . . . . . 50

1.12.4.1 The nonlinear power spectrum . . . . . . . . . . . . . . . 51
1.12.4.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.13 Dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.13.1 The dark energy equation of state . . . . . . . . . . . . . . . . . . . 56

2 Weak lensing and cosmic shear 59

11



Contents

2.1 Gravitational lensing formalism . . . . . . . . . . . . . . . . . . . . . . . . 60
2.1.1 The deflection angle . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.2 The thin lens approximation . . . . . . . . . . . . . . . . . . . . . . 64
2.1.3 The lensing equation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.4 The effective lensing potential . . . . . . . . . . . . . . . . . . . . . 65
2.1.5 Convergence, shear and magnification . . . . . . . . . . . . . . . . . 66
2.1.6 Mass profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2 Types of lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Weak lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3.1 Ellipticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.3.2 Higher order weak lensing . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.3 Tangential shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3.4 E-modes and B-modes . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3.5 Shear measurement methods . . . . . . . . . . . . . . . . . . . . . . 78

2.4 Cosmic shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.4.1 Effective 2D convergence spectrum . . . . . . . . . . . . . . . . . . 83

2.5 Systematic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3 Parameter forecasts 89
3.1 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2 The Fisher matrix formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1 The likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3 Fisher analysis in weak lensing experiments . . . . . . . . . . . . . . . . . 95
3.4 Calculation of the Fisher matrix . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Constraints on cosmological parameters using an all-sky weak lensing
survey 99
4.1 Weak lensing as a cosmological probe . . . . . . . . . . . . . . . . . . . . . 100
4.2 Matter power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 The growth function . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 The primordial power spectrum . . . . . . . . . . . . . . . . . . . . 103
4.2.3 The transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Fiducial cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.1 Parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Tomographic weak lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.1 Error forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.2 The Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.3 Adding Planck priors . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Parameter constraints from lensing . . . . . . . . . . . . . . . . . . . . . . 121
4.5.1 Effect of varying the parameter set . . . . . . . . . . . . . . . . . . 121
4.5.2 Effect of changing the fiducial cosmology . . . . . . . . . . . . . . . 122
4.5.3 Constraints on the primordial power spectrum . . . . . . . . . . . . 126
4.5.4 Combined neutrino and primordial power spectrum parameters . . 134

4.6 Joint lensing and CMB results . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

12



Contents

5 Tomographic weak lensing survey optimisation 145
5.1 Defining an optimum survey . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2 Varying the survey parameters . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3 The multipole range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4 Optimisation for all parameters in hypothesis space . . . . . . . . . . . . . 157
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Conclusion 163
6.1 Beyond dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2 The future of weak lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 Tomographic weak lensing as a cosmological probe . . . . . . . . . . . . . . 166
6.4 Survey optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.5 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5.1 Combining experiments . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.5.2 Systematic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.5.3 Beyond the Fisher matrix . . . . . . . . . . . . . . . . . . . . . . . 169
6.5.4 Further diagnostics of dark energy . . . . . . . . . . . . . . . . . . . 169

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography 171

13



14



List of Tables

4.1 Cosmological parameter sets used in our calculations. The central values
for each parameter are shown in the row labelled ‘Fiducial Values’. For each
parameter set, the ticks (�) and crosses (×) indicate whether a parameter
is allowed to vary or not, respectively. . . . . . . . . . . . . . . . . . . . . . 111

4.2 Fiducial parameters for our all-sky weak lensing survey. . . . . . . . . . . . 116

4.3 Predicted marginalised parameter errors for weak lensing alone. We show
results using different cosmological parameter sets. The second column
shows the results for our most restricted parameter set QCDM. In the third
column, we add massive neutrinos. Primordial power spectrum parameters
are added in the fourth and fifth columns. In the sixth we add neutrinos
and a running of the primordial spectral index. The seventh column shows
our most extended model νQCDM+α+β. We also show the DETF Figure
of Merit for each model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Predicted marginalised parameter errors for weak lensing alone, for two
dark energy models: Phantom (w0 = −1.2, wa = −0.3) and SUGRA
Quintessence (w0 = −0.8, wa = +0.3). . . . . . . . . . . . . . . . . . . . . 133

4.5 Predicted marginalised parameter errors for for cosmic shear combined with
Planck priors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

15



16



List of Figures

1.1 The 68.3%, 95.4% and 99.7% confidence regions for Ωm and ΩΛ, showing
results from CMB, BAO and Union Supernovae experiments, as well as the
combined constraints from the different techniques (filled grey contours).
Note that these results assume w = −1 (i.e. ΩΛ = ΩDE). The plot shows
the degeneracies between the two parameters, as well as the limits imposed
by the choice of physical theory (from Kowalski et al. 2008). . . . . . . . . 58

2.1 Schematic diagram of a gravitational lens system (from Bartelmann &
Schneider, 2001). All the distances D are angular diameter distances. The
deflection angle is α̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Convergence map with the shear overlaid, showing the strong link between
the shear and convergence fields. Overdense, high convergence regions
(shown in white) tend to be surrounded by a ring shear pattern, while un-
derdense regions (in black) tend to be sourrounded by radial shear patterns
(from www.icosmo.org). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3 Schematic diagram showing lensing effects (shear and magnification) on a
galaxy. In the source plane, the galaxy is circular, with radius R0. The
convergence κ stretches its average radius to R0/(1 − κ) and the shear γ
distorts the galaxy along some angle β. This results in an elliptical image
with a and b as the semi-major and semi-minor axes respectively. In other
words, convergence increases the average radius of the image, and shear
stretches the circle into an ellipse (from Munshi et al. 2008). . . . . . . . . 72

2.4 Schematic illustration of the geometrical meaning of the shear γ and the
ellipticity ε. Using a Cartesian axis, a positive shear component γ1 corre-
sponds to an elongation along the x-axis. A negative component gives a
compression along the same axis. A positive (or negative) shear component
γ2 corresponds to an elongation (or compression) along the x = y direction.
For a circular object (shown at the centre), both ellipticity components are
equal to zero. The ellipticity components ε1 and ε2 correspond to the same
compression and elongation as the shear components (from Réfrégier 2003b). 74
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Chapter 1

Cosmology

This chapter presents an outline of Standard Cosmology, which is the theoretical paradigm
on which this work is based. We explain the basic concepts in cosmology, with an emphasis
on cosmological components and structure formation, which are particularly relevant to
this thesis.

We start with a historical outline of gravity theories, discussing the development
of General Relativity and alternative theories. We then introduce the main concepts
in General Relativity, and its application to cosmological models. This is followed by
a review of the components making up the mass-energy budget of the Universe, and of
cosmological distance measures.

We give an overview of structure formation, highlighting its relevance to cosmological
measures. We then discuss the link between cosmological observations and the theoretical
framework, particularly in the context of the acceleration of the cosmic expansion. This
leads to a discussion of the remarkable claim that around 70% of the mass-energy content
of our Universe is made up of dark energy. Possible candidates for dark energy, and
inferences upon the nature of dark energy from cosmological observations, are reviewed.
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Chapter 1. Cosmology

1.1 The theoretical framework

In this thesis, we work within the framework of General Relativity (GR). This theory is
at the basis of the Standard Model, and here we shall discuss the development of GR.
We shall also discuss why the theory has been so successful, and the criteria that must
be satisfied by any alternative theory of physics, and therefore, by any alternative theory
of cosmology.

Cosmology, in its broadest definition, is the study of the cosmos. It aims to provide
an accurate description of the Universe. Throughout much of the history of science,
the development of cosmology was hampered by the lack of a universal physical theory.
Observational tools were extremely limited, and there was no mathematical formulation
for physical laws. The cosmos was described in metaphysical, rather than physical terms.

The scientific revolution which brought about the development of a precise mathe-
matical language for physical theories heralded the scientific age of cosmology. Physical
laws, tested here on earth and later in the solar system, could be applied to the ‘entire
Universe’, and could thus provide a precise physical description of the cosmos. Modern
cosmology is based upon this epistemological framework. Cosmology, therefore, depends
upon a fundamental premise. As a science, it must deal strictly with what can be ob-
served, but the observable Universe forms only a fraction of the whole cosmos. One is
forced, therefore, to make the fundamental assumption that the portion of the Universe
which can be observed is representative of the whole, and that the laws of physics are the
same throughout the whole Universe. Once we make this assumption, we can construct
a model of the Universe, or cosmological model, based on a description of its observable
part.

Any cosmological model which assumes the universality of physical laws must be
based upon some physical theory. Since cosmology aims to describe the Universe on
the largest possible scales, it must be based upon an application long-range physical
interactions. Since the theory of gravitation is the physical theory at the basis of standard
cosmology, and is also at the centre of the big questions facing modern cosmology, we shall
give an overview of the development of theories of gravitation.

1.2 Theories of gravity

The development of physical theories of gravity was driven by the search for ever more
generalised principles. Ancient Greek ‘natural philosophy’ provided qualitative rather
than quantitative descriptions. Nonetheless, there is a certain logic to the development
of physical theories from this time to the Middle Ages. Sorabji (1988, Part III, page
219) provides a very comprehensive account of the development of theories of gravitation
during this period. For an overview of theories of mechanics and gravitation in the
Middle Ages, see Franklin (1976). The revolution in physics came with the development
of mathematical, quantitative, models to describe physical situations. Thus physicists of
Newton’s generation found a very different scientific environment than the one in which
Galileo had started off.

For more than two centuries, Newton’s theory, published in his Principia (Newton,
1687), was the standard physical description of gravity. There was no other attempt to
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find a different theory for the gravitational force, although the intervening years between
Newtonian gravity and Relativity produced some important physical concepts such as
de Maupertuis’s ‘Principle of Least Action’ (de Maupertuis, 1746), further developed by
Euler (1750), Lagrange (1788) and Hamilton (1834, 1835). Although equivalent in classical
mechanics to Newton’s Laws, the action principle is better suited for generalisations.

The physical theory of gravity remained unchanged until Einstein’s time. After the
publication of his Theory of Special Relativity (SR) (Einstein, 1905), Einstein turned
to the problem of including gravitation within four-dimensional spacetime. Newton’s
formulation of the gravitational laws is expressed by the equations:

d2xi

dt2
= − ∂Φ

∂xi
, (1.1)

∇2Φ = 4πGρ, (1.2)

where Φ is the gravitational potential, G is the universal gravitational constant, and ρ is
the mass density. These equations cannot be incorporated into special relativity as they
stand. The equation of motion (1.1) for a particle is in three-dimensional form, so it must
be modified into a four-dimensional vector equation for d2xµ/dτ 2. Similarly, the field
equation (1.2) is not Lorentz-invariant, since the three-dimensional Laplacian operator
instead of the four-dimensional d’Alembertian means that the gravitational potential Φ
responds instantaneously to changes in the density ρ at arbitrarily large distances. The
conclusion is that Newtonian gravitational fields propagate with infinite velocity, which
violates one of the postulates of SR.

Equations (1.1) and (1.2) can be generalised so that they are consistent with the
postulates of Special and General Relativity. Misner et al. (1973, page 178) give the
detailed calculations for three such generalisations. The simplest relativistic generalisation
of Newtonian gravity is obtained by representing the gravitational field by a scalar Φ.
Since matter is described in relativity by the stress-energy tensor Tµν , the only scalar
with dimensions of mass density (which corresponds to ρ) is T µ

µ . A consistent scalar
relativistic theory of gravity would thus have the field equation

�2Φ = 4πGT µ
µ . (1.3)

The equations of motion from this theory, however, when applied to a static, spherically
symmetric field Φ, such as that of the sun, acting on an orbiting planet, would result in a
negative precession, or retardation of the perihelion. Experimental evidence (observation
of the orbit of Mercury) clearly shows that planets experience a precession of the perihe-
lion. Moreover, in the limit of a zero rest-mass particle, such as a photon, the equations
of motion show that the particle experiences no geodesic deviation. The existence of an
energy-momentum tensor due to an electromagnetic field would also be impossible, since
(Telectromagnetic)

µ
µ = 0. The theory therefore allows neither gravitational redshift, nor devi-

ation of light by matter, both of which are clearly observable phenomena (see Will, 2001,
and references therein).

As a second generalisation, the gravitational field could be represented by a vec-
tor field Φµ, by analogy to electromagnetism. Following through with this analogy, the
‘Coulomb’ law in this theory gives a repulsion between two massive particles, which clearly
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contradicts observations. The theory also predicts that gravitational waves should carry
negative energy, and, like the scalar theory, predicts no deviation of light. Like the scalar
theory, then, the vector theory must be discarded.

The best of the flat-space theories of gravitation is the tensor theory. The gravita-
tional field is described by a symmetric tensor hµν = hνµ. The choice of the Lagrangian in
this theory is dictated by the requirement that hµν be a Lorentz-covariant, massless, spin-
two field. Fierz & Pauli (1939) were the first to write down this Lagrangian and investigate
the resulting theory. The predictions of the theory for deviation of light agree with those
of general relativity, and are consistent with observations. Since the field equations and
gauge properties are identical to those of Einsein’s ‘linearised theory’, the predictions for
the properties of gravitational waves, including positive energy, agree with those obtained
using the linearised theory in general relativity. However, the theory differs from General
Relativity (GR) in its predicted value for the perihelion precession, which is 4

3
of that

given by GR, and which disagrees with the value obtained from observations of Mercury’s
orbit. On a conceptual level, the theory has an even worse deficiency. If two gravitating
bodies (that is, not test particles) are considered, and the field equations are applied
to them, then the theory predicts that gravitating bodies cannot be affected by gravity,
since they all move along straight lines in a global Lorentz reference frame. This holds
for bodies made of arbitrary stress-energy, and since all bodies gravitate, then one must
conclude that no body can be accelerated by gravity, which is a glaring self-inconsistency
in the theory.

This theory is not completely without merit however. In fact it is the starting point
for one version of GR, where Einstein’s geometrodynamics is viewed as the standard field
theory for a classical field corresponding to quantum-mechanical particles of zero rest mass
and spin 2 in an unobservable flat spacetime background. This alternative route to the
derivation of general relativity was developed and explored by Gupta (1954, 1957, 1962),
Kraichnan (1955), Thirring (1961), Feynman (1995), and Weinberg (1965). A concise
summary of the comparisons between Einstein’s and the spin-2 derivation is found in
Misner et al. (1973, Box 18.1, page 437). The derivation of the full Einstein equations was
first carried out by Deser (1970), who followed this approach in a detailed manner. Deser
summarises the analysis thus: “Consistency has therefore led us to universal coupling,
which implies the equivalence principle. It is at this point that the geometric interpretation
of general relativity arises, since all matter now moves in an effective Riemann space of
metric gµν ≡ ηµν + hµν . [The] initial flat ‘background’ space is no longer observable.”1.
This seems to suggest that the only way in which a consistent theory of gravity can be
constructed within Special Relativity is to consider the geometry of spacetime as the
gravitational field itself. This is precisely General Relativity.

The existence of curved spacetime can be deduced from purely physical arguments.
Einstein (1911) showed that a photon must be affected by a gravitational field, using
conservation of energy applied to Newtonian gravitation theory. Schild (1960, 1962, 1967)
showed by a simple thought experiment, formulated within Special Relativity, that a
consistent theory of gravity cannot be constructed within this framework. His argument
is based upon a gravitational redshift experiment carried out in the field of the Earth,

1ηµν is the Minkowski metric.
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using a global Lorentz frame tied to the Earth’s centre. Successive pulses of light rising
to the same height should experience a redshift, and therefore the pulse rate at the top
should be slower than that at the bottom. But light rays are drawn at 45° in Minkowski
spacetime diagrams, so that top and bottom time intervals are equal, which is impossible if
redshift occurs. Hence the spacetime must be curved. The detailed argument, with some
improvements, may be found in Misner et al. (1973, page 187). One therefore concludes
that in the presence of gravity, Special Relativity cannot be valid over any sufficiently
extended region.

1.3 Principles of General Relativity

General Relativity, as the name suggests, was Einstein’s generalisation of Special Rel-
ativity. Since Special Relativity can comfortably be described using tensor calculus, it
was only natural to extend the flat Minkowski spacetime of Special Relativity to the
curved (in general) spacetime of General Relativity (Einstein, 1915a,b). This was simply
a physical application of Riemannian geometry (Clifford, 1873; Weber, 1953), which had
been developed in the second half of the 19th century. The idea of tensor calculus on
curved manifolds was already mathematically well-established. Einstein’s innovation lay
in identifying the Einstein tensor, itself mathematically related to the Riemann curvature
tensor, as the ‘gravitational field’ in the theory. Relativity is thus a geometrical approach
to fundamental interactions. These are realised though continuous classical fields which
are inseparably correlated to geometrical structures of spacetime, such as the metric,
affine connection, and curvature.

Einstein’s relativity has three main distinguishing characteristics: it agrees with
experiment; it describes gravity entirely in terms of geometry; and it is free of any ‘prior
geometry’; characteristics lacking in most of the other theories. Ni (1972) and Thorne
et al. (1971) contain good reviews of these theories. Apart from the issue of agreement
with experiment, on which countless papers have been published in the scientific literature
(one very comprehensive review is the article by Will 2001), Einstein’s theory is unique
in its conceptual simplicity. Every other theory introduces auxiliary gravitational fields,
or involves prior geometry.

Prior geometry is any aspect of the geometry of spacetime which is fixed immutably,
that is, it cannot be changed by changing the distribution of gravitating sources. One
such theory involving prior geometry was formulated by Nordstrøm (1913). In this theory,
the physical metric of spacetime g is generated by a background flat spacetime metric η,
and by a scalar gravitational field φ. Stress-energy generates φ:

ηαβφ,αβ = −4πφηαβTαβ (1.4)

and g is constructed from φ and η:

gαβ = φ2ηαβ . (1.5)

Prior geometry cannot be removed by rewriting Nordstrøm’s equations in a form devoid
of η and φ (Einstein & Fokker, 1914). Mass only influences one degree of freedom in
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the spacetime geometry, while the other degrees of freedom are fixed a priori. This prior
geometry, if it existed, could be detected by physical experiments. Whitehead (1922),
formulated a two-tensor theory of gravity in which the prior geometry is quite different
from Ni’s (Ni, 1972). Whitehead’s theory is remarkable in that it agrees with Einstein’s
in its predictions for the ‘four standard tests’ (bending of light, gravitational redshift,
perihelion shift, and time delay). It was accepted as a viable alternative for Einstein’s
theory until Will (1971) showed that it predicts velocity-independent anisotropies in the
Cavendish constant (the gravitational constant G in Newtonian theory). This would pro-
duce time-dependent Earth tides which are clearly contradicted by everyday observations.
Any valid theory of gravity must not only agree with relativistic experiments, but also
with ‘past experiments’ in the Newtonian regime.

One theory which disagrees violently with non-relativistic experiments is due to
Birkhoff (1943). It predicts the same redshift, perihelion shift, deflection and time-delay
as General Relativity, but it requires that the pressure inside gravitating bodies should
be equal to the total density of mass-energy (p = ρ), so that sound waves travel with the
speed of light. This clearly contradicts everyday experiments.

Einstein described both the demand for ‘no prior geometry’ and for a ‘geometric,
coordinate-independent formulation of physics’ by the single phrase ‘general covariance’,
but the two concepts are not quite the same. While many physical theories can be
formulated in a generally covariant way, General Relativity is actually based on the ‘no
prior geometry’ demand. This distinction was not always made, especially in the first
decades after Einstein’s publications (Kretschmann, 1917). Norton (2003), and references
therein, contains a discussion of the controversy surrounding Kretschmann’s objection to
Einstein’s interpretation. Anderson (1967) treats the distinction between prior geometry
and dynamic fields in a very systematic manner in his textbook on relativity.

One notable theory which introduces auxiliary gravitational fields is Dicke-Brans-
Jordan theory, sometimes called Brans-Dicke, or Jordan-Fierz-Brans-Dicke theory (Jor-
dan, 1959; Brans & Dicke, 1961). The different names arise from the fact that the theory
is a special case of Jordan’s, with η = −1. An alternative mathematical representation
of the theory is given by Dicke (1962). Brans and Dicke took the equivalence principle as
the starting point of their theory, and thus they describe gravity in terms of spacetime
curvature, but their gravitational field, unlike Einstein’s, is a scalar-tensor combination.
In this way it overcomes the difficulties associated with tensor or scalar-only theories men-
tioned earlier. The trace of the energy-momentum tensor (TM)µν (representing matter)
and a coupling constant λ generate the long-range scalar field φ via the equation

�2φ = 4πλ(TM)µ
µ. (1.6)

The scalar field φ fixes the value of G, which is therefore not a constant, but simply
the coupling strength of matter to gravity. The gravitational field equations relate the
curvature to the energy-momentum tensors of the scalar field and matter:

Rµν − 1
2
gµνR = − 8π

c4φ
[(TM)µν + (TΦ)µν ] , (1.7)

where (TM)µν is the energy-momentum tensor of matter and (TΦ)µν is the energy-momentum
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tensor of the scalar field φ. For historical reasons, it is usual to write the coupling constant
as

λ =
2

3 + 2ω
, (1.8)

where ω is the dimensionless ‘Dicke coupling constant’. In the limit ω → ∞, we have
λ → 0, so φ is not affected by the matter distribution, and can be set to a constant φ =
1/G. Hence Dicke-Brans-Jordan theory reduces to Einstein’s theory in the limit ω → ∞.

The equivalence principle is satisfied in this theory since the special-relativistic laws
are valid in the local Lorentz frames of the metric g of spacetime. The scalar field does
not exert any direct influence on matter. It only enters the field equations that determine
the geometry of spacetime. On a conceptual level, Brans-Dicke theory can be seen as
more fully Machian than Einstein’s theory. Einstein himself attempted to incorporate
Mach’s Principle into his theory, but in Einstein’s General Relativity, the inertial mass
of an object will always be independent of the mass distribution in the Universe. In
Brans-Dicke theory, the long-range scalar field is an indirectly coupling field, so it does
not directly influence matter, but the Einstein tensor is determined partly by the energy-
momentum tensor, and partly by the long-range scalar field.

Dicke-Brans-Jordan theory is self-consistent and complete, but experimental evi-
dence, based on Solar-system tests, shows that, as a conservative estimate, ω ≥ 600
(Will, 1993). Some recent calculations raise this limit even higher, with ω � 104 (Psaltis,
2005), so Einstein’s theory seems to be valid after all. Brans-Dicke theory is a special
case of general tensor-scalar theories with ω(φ) = constant, where φ is a value depending
on the cosmological epoch. In these theories, the function ω(φ) could be such that the
theory is very different from GR in the early Universe or in future epochs, but very close
to GR in the present. Indeed, Damour & Nordtvedt (1993a,b) have shown that GR is a
natural ‘attractor’ for such scalar-tensor theories, since cosmological evolution naturally
drives the fields towards large values of ω.

The experimental tests to which Brans-Dicke theory was subjected constitute just
one of three fundamental criteria which any viable theory must satisfy: self-consistency,
completeness, and agreement with past experiment. It is self-evident that any alternative
theory to General Relativity must satisfy experimental tests which have already been
carried out (‘past experiment’). The other two criteria can be investigated on a theoretical
level.

To be self-consistent, a theory must not contain any internal contradictions. The
spin-two field theory of gravity (Fierz & Pauli, 1939) described earlier is equivalent to
linearised General Relativity but it is internally inconsistent since it predicts that gravi-
tating bodies should have their motion unaffected by gravity. When one tries to remedy
this inconsistency, the resulting theory is nothing but General Relativity. Another self-
inconsistent theory is due to Kustaanheimo (1966). It predicts zero gravitational redshift
when the wave version of light (Maxwell theory) is used, and nonzero redshift when the
particle version (photon) is used.

To be complete, a theory must be able to analyse the outcome of any experiment.
This means that it must be compatible with other physical theories which describe any
other forces that are present in experiments. This can only be achieved if the theory is
derived from first principles, since the theoretical postulates must be as general as possible
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if the theory is to cover the widest range of phenomena.
A viable theory must agree with past experiment, which includes experiments in

the Newtonian regime, and the standard tests of General Relativity. This means that its
results must agree with those obtained from Newtonian theory in the weak field limit,
and with GR in relativistic situations. It also means that the theory must agree with
cosmological observations.

The experimental criterion also works the other way. Any alternative to General
Relativity that claims to have a smaller set of limiting cases must be experimentally
distinguishable, perhaps by future experiment. At some point, the divergence between
GR and other theories must manifest itself physically, in the form of predictions which
can be verified by experiment.

Most theories of gravity incorporate two principles: spacetime possesses a metric;
and that metric satisfies the equivalence principle. Such theories are called metric theories.
One notable exception is Cartan’s theory. It is generally easier to incorporate the non-
gravitational laws of physics within metric theories, since other theories would result
in greater complexity, rendering calculations difficult. The only way in which metric
theories significantly differ from each other is in their laws for the generation of the metric.
In General Relativity and Brans-Dicke theory, for example, the metric is generated by
different fields.

1.4 Formalism of General Relativity

The two central notions in GR, sometimes referred to collectively as the Equivalence
Principle, are:

• The Strong Equivalence Principle: The laws of physics take the same form in
a freely-falling reference frame as in Special Relativity (SR), and

• The Weak Equivalence Principle: An observer in freefall should experience no
gravitational field.

In GR, the distance between two points in 4-dimensional spacetime is described by
the metric tensor. The separation ds is given by

ds2 = c2 dτ 2 = gµν dxµ dxν . (1.9)

The Equivalence Principle allows us to construct the metric and the equation of motion
by transforming from a freely-falling to an accelerating frame. The General Relativistic
equation of motion is therefore given by

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 (1.10)

where xµ is some set of coordinates for a point in spacetime. Γµ
αβ are the components of

the affine connection (or metric connection). The fundamental theorem of Riemannian
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geometry states that the affine connection can be expressed entirely in terms of the metric:

Γα
λν =

1

2
gαν(gµν,λ + gλν,µ − gµλ,ν), (1.11)

where the comma denotes a derivative, i.e. gµν,λ = ∂gµν

∂xλ .
We need to construct invariant quantities in GR (quantities that are the same for all

observers). To achieve this, we need to contract the the covariant Aµ and contravariant
Aµ components of a vector or tensor A by using the metric to raise or lower indices:
Aµ = gµνA

µ. Thus the equation of motion (1.10) can be made covariant by recasting it
as the covariant derivative of the 4-velocity Uµ = γ(c,v):

DµU
µ

dτ
= 0 (1.12)

where the covariant derivative is defined as

DµA
µ = dAµ + Γµ

αβA
α dxβ (1.13)

The transformation from SR to GR is then carried out by mapping the Minkowski metric
to a general metric: η → g and by mapping ∂ → D.

In GR, freely-falling bodies travel along a geodesic. Geometrically, this is the short-
est distance between two points in spacetime. The path length along a geodesic is given
by

S =

∫
(gµν dxµ dxν)1/2. (1.14)

In cosmology it is essential for us to be able to describe spacetime which is not
‘empty’. In the presence of a perfect fluid (an inviscid fluid with density ρ and isotropic
pressure p), the energy and momentum of spacetime is described by the energy-momentum
tensor (or stress-energy tensor)

T µν =
(
ρ+

p

c2

)
UµUν − pgµν . (1.15)

Classical energy and momentum conservation are generalised in GR as the four conser-
vation laws

DµT
µν = 0. (1.16)

In other words, the stress-energy tensor has a vanishing covariant divergence. In the
absence of a component possessing pressure or density, or both, the energy-momentum
tensor is zero.

The central notion in General Relativity is that gravitation can be described by a
metric. The Einstein equations give us the relation between the metric and the matter
and energy in the Universe:

Gµν = −8πG

c4
T µν . (1.17)

31



Chapter 1. Cosmology

The left-hand side of this equation is a function of the metric: Gµν is the Einstein tensor,
defined as:

Gµν = Rµν − 1

2
gµνR, (1.18)

where Rµν is the Ricci tensor, which depends on the metric and its derivatives, and the
Ricci scalar R is the contraction of the Ricci tensor (R = gµνR

µν). The right-hand side
of Equation 1.17 is a function of the energy: G is Newton’s constant, and T µν is the
energy-momentum tensor.

1.5 Standard Cosmology

When Einstein published his seminal GR papers it became almost immediately apparent
that the theory could be applied to the whole Universe, under certain assumptions, to
obtain a relativistic cosmological description. If the content of the Universe is known,
then the energy-momentum tensor can be constructed, and the metric derived using
Einstein’s equations. The first expanding-universe solutions to the relativistic field equa-
tions, describing a universe with positive, zero and negative curvature, were discovered
by Friedmann (1922, 1924), even before Hubble’s observations of galactic redshifts em-
pirically proved that the Universe is not static. The problem was independently followed
up during the 1930s by Lemâıtre (1927), and by Robertson (1935, 1936a,b) and Walker
(1937).

These exact solutions define what came to be known as the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric2. This metric starts with the assumption of spatial
homogeneity and isotropy, allowing for time-dependence of the spatial component of the
metric. Indeed, it is the only metric which can exist on homogenous and isotropic space-
time. The assumption of homogeneity and isotropy, known as the Cosmological Principle,
follows from the Copernican Principle, which states that we are not privileged observers
in the Universe. This is of course not true below a certain scale, but it does simplify the
description of the distribution of mass in the Universe.

The FLRW metric, therefore, describes a homogeneous, isotropic universe, with
matter uniformly distributed as a perfect fluid, and is written as:

−ds2 = cdτ 2 − R2(t)[dr2 + S0
k(r)(dθ

2 + sin2 θdφ2)], (1.19)

where r is a time independent comoving distance, θ and φ are the transverse polar coor-
dinates, and t is the cosmic time. R(t) is the scale factor of the Universe, which shall be
discussed further in the following section. The function S0

k(r) is defined as:

S0
k(r) =


sin(r) (k = +1)

r (k = 0)

sinh(r) (k = −1)

(1.20)

where k is the geometric curvature of spacetime, the values 0, 1, and −1 indicating flat,

2It is also referred to as the FRW, RW, or FL metric.
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positively curved, and negatively curved spacetime respectively. Another common form
of the metric defines the comoving distance as S0

k(r) → r, so that

− ds2 = c dt2 −R2(t)

[
dr2

1 − kr2
+ r2( dθ2 + sin2 θ dφ2)

]
. (1.21)

The dimensionless scale factor a(t) is defined as

a(t) ≡ R(t)

R0

(1.22)

where R0 is the present scale factor (i.e. a = 1). The scale factor is therefore a function
of time, so it can be abbreviated to a. The metric can then be written in a dimensionless
form

− ds2 = c2 dτ 2 = c2 dt2 − a2
[
dr2 + S2

k(r)( dθ2 + sin2 θ dφ2)
]
, (1.23)

where Sk(r) can be redefined as

Sk(r) =


R0 sin(r/R0) (k = +1)

r (k = 0)

R0 sinh(r/R0) (k = −1).

(1.24)

Equivalently, using the definition in Equation 1.21,

− ds2 = c2 dt2 − a2 dt2 − a2

[
dr2

1 − k(r/R0)2
+ r2( dθ2 + sin2 θ dφ2)

]
. (1.25)

1.5.1 Cosmological redshift and expansion

The FLRW metric relates the spacetime interval ds to the cosmic time t and the comoving
coordinates through the scale factor R(t). The scale factor is the key quantity of any
cosmological model, since it describes the evolution of the Universe. We therefore need to
measure distances (in an expanding universe) if we are to find R(t). We can measure two
kinds of distances: the comoving distance or the physical distance, which will be discussed
in the next section. The comoving distance between a source and an observer is defined
to be a constant:

r =

∫ e

0

ds =

∫ t0

tε

c dt

a(t)
= constant (1.26)

Differentiating with respect to te we obtain the inverse time interval

dt0
dte

=
a(t0)

a(te)
, (1.27)

which can be interpreted in terms of the frequency of emitted and received light:

dt0
dte

=
νe

νo
=
λ0

λe
. (1.28)
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The redshift is then defined as the relative change in wavelength between emission and
observation:

z =
λ0 − λe

λe
, (1.29)

so that the redshift is related to the scale factor by:

a(t0)

a(te)
= 1 + z (1.30)

and a = (z+1)−1 since we have defined a(t0) = 1. The redshift is related, via the Doppler
effect, to the apparent recessional velocity of a source by:

1 + z ≈ 1 +
v

c
. (1.31)

Hubble (1929) observed that the redshift of a galaxy is proportional to its distance
and (via Equation 1.31) formulated Hubble’s law: v = H0r, where H0 is the constant
of proportionality. The Hubble constant H0 is the value of the Hubble parameter at the
present epoch. In general, the time-varying Hubble parameter is related to the scale factor
by:

H(t) =
ȧ(t)

a(t)
. (1.32)

The Hubble constant is usually expressed as:

H0 = 100h kms−1Mpc−1. (1.33)

The Megaparsec is the standard distance measure used in cosmology for convenience, and
1 Mpc = 3.08568025× 1022 m.

1.5.2 Dynamics of the expansion

By combining the GR field equations (1.17) and the definition of the metric (Equation
1.25), we obtain two independent Einstein equations:(

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ (1.34)

and

2

(
ä

a

)
+

(
ȧ

a

)
+
kc2

a2
= −8πG

c2
p. (1.35)

Equation 1.34 is known as the Friedmann equation. It relates the total density ρ of the
Universe, including all contributions, to its global geometry. There exists a critical density
ρc for which k = 0. By rearranging the Friedmann equation and using the definition of
the Hubble parameter (Equation 1.32) we then obtain

ρc(t) =
3H2(t)

8πG
. (1.36)
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A universe whose density is above this value will have a positive curvature, that is, it will
be spatially closed (k=+1); one whose density is less than or equal to this value will be
spatially open (k = 0 or k = −1).

A dimensionless density parameter for any fluid component of the Universe can be
defined by

Ω(t) =
ρ(t)

ρc(t)
=

8πGρ(t)

3H2(t)
. (1.37)

The current value of the density parameter is denoted Ω0.
Subtracting Equation 1.34 from 1.35 yields the acceleration equation:

ä

a
= −4πG

(ρ
3

+
p

c2

)
. (1.38)

We can also use the same equations to construct the fluid equation, or continuity equation,
which describes the relation between the density and pressure, and their evolution:

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0. (1.39)

This is valid for any fluid component of the Universe: baryonic and nonbaryonic matter,
radiation, etc.

1.6 Cosmological components

It is a convenient approximation to divide the components of the Universe into distinct
parts, which are assumed to evolve independently. This is physically valid at late cosmo-
logical times, when the components are decoupled, so the density evolutions are distinct.
We shall now review the properties of the different mass-energy components.

1.6.1 Dust

Matter which is pressureless is referred to as ‘dust’. This is a useful approximation for
cosmological structures which do not interact, such as individual galaxies. Substituting
pm = 0 in the equation of state for dust shows that the density of this component scales
as:

ρm(a) =
ρm,0

a3
(1.40)

where ρm,0 is the current density. Assuming spatial flatness, the time evolution of the
scale factor is then

a(t) =

(
t

t0

)2/3

, (1.41)

which gives us

H(t) =
2

3t
. (1.42)

This is known as the Einstein-de Sitter (EdS) solution, and it describes the evolution of
H in a constant-curvature homogeneneous universe with a pressureless fluid as the only
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component.

1.6.2 Radiation

In the early Universe, the energy content was dominated by photons and relativistic
particles (especially neutrinos). The expansion of the Universe dilutes the radiation fluid,
and the wavelength is increased by the expansion so that the energy decreases. From
thermodynamics,

Erad = ρradc
2 = αT 4, (1.43)

where T is the radiation temperature and α is the Stefan-Boltzmann constant. The
equation of state for radiation can then be derived from the fluid equation (1.39):

ρrad(a) =
ρrad,0

a4
; prad =

ρradc
2

3
. (1.44)

Combining this with the Friedmann equations, and assuming flatness (k = 0), we obtain
the time dependence of the scale factor and the Hubble parameter:

a(t) =

(
t

t0

)1/2

; H(t) =
1

2t
. (1.45)

1.6.3 Dark energy

In this section we shall briefly introduce dark energy as a fluid component with a distinct
equation of state, without going into the historical background, and without justifying
the equations on physical grounds. These details will be discussed in Section 1.13.

Dark energy is a fluid component whose equation of state is:

pDE = wc2ρDE. (1.46)

This is the equation of state in its most general form, since w can be any function of
redshift, scale factor or cosmic time, with the constraint that w ≤ 0 (i.e. the fluid has a
negative pressure). Assuming that w = w(a), and using the fluid Equation 1.39, we have
the following density-scale relation:

ρDE(a) = ρDE,0e
−3

R 1
a [1+w(a′)] d(ln a′). (1.47)

It can be seen that in the special case of a constant w = −1, the fluid equation implies
that the density is constant. Using the Friedmann equation (1.34), we can show that in
this case, as the scale factor increases, kc2/a2 becomes negligible compared to the other
terms. The scale factor then has the functional form:

a(t) = a(t0)e

“
8πGρDE

3

”1/2
t
= a(t0)e

“
Λc2

3

”1/2
t
, (1.48)

where Λ = 8πGρDE/c
2. This is the same as the de Sitter solution.
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1.7 The Hubble parameter

In the previous section we have described the various cosmological components in the
Standard Model. The total density of the Universe in terms of its constituent components
can be written as the sum of the densities of these components at any given time or scale
factor:

ρ = ρm + ρrad + ρDE (1.49)

The total dimensionless density can then be written:

Ω = Ωm + Ωrad + ΩDE, (1.50)

where we have dropped the subscript for clarity, i.e. Ωm,0 = Ωm, etc. This notation will
be used throughout this thesis, unless otherwise specified. The Friedmann equation (1.34)
can now be rewritten using the equations of state for the different components:

H2(a) =
8πG

3

(
ρma

−3 + ρrada
−4 + ρDEe−3

R 1
a [1+w(a′)] d(ln a′)

)
− kc2

a2
. (1.51)

This can be rearranged to give:

H2(a) = H2
0

[
Ωma

−3 + Ωrada
−4 + ΩDEe−3

R 1
a [1+w(a′)] d(ln a′) + (1 − Ω)a−2

]
, (1.52)

or, in terms of redshift:

H2(z) = H2
0

[
Ωm(1 + z)3 + Ωrad(1 + z)a4

+ ΩDEe−3
R z
0 [1+w(z′)]/(1+z′) d(ln z′) + (1 − Ω)(1 + z)2

]
.

(1.53)

The term 1−Ω is sometimes replaced by Ωk, the density due to the intrinsic geometry of
spacetime. Equation 1.53 is of central importance since it relates the redshift of an object
to the global density components and geometry of the Universe.

One parameter which has become defunct since the discovery of dark energy and
the acceleration of the Universe’s current expansion is the deceleration parameter, defined
as:

q = −aä
ȧ2
. (1.54)

1.8 Cosmological distance measures

The notion of distance is fairly straightforward in Euclidean geometry. In General Rela-
tivity, however, where we work with generally curved spacetime, the meaning of ‘distance’
is no longer unique. The separation between events in spacetime depends on the definition
of the distance being used.
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1.8.1 Proper distance

In cosmology, the proper distance between two events at redshifts z1 and z2 is defined as
the light travel time between them: dDproper = c dt, which after rearranging becomes:

dDproper = c
da

a
. (1.55)

This gives us:

Dproper(z1, z2) =

∫ a2(z1)

a2(z2)

c da

aH(a)
(1.56)

=

∫ z1

z2

c dz

H(z)(1 + z)
. (1.57)

Hence, for an observer at z1 = 0, the proper distance to an object at redshift z is:

Dproper(z) =

∫ z

0

c dz′

H(z′)(1 + z′)
. (1.58)

1.8.2 Comoving distance

The comoving distance is defined as the distance on the spatial hypersurface at t =
t0 between the worldline of two events. Rearranging dr = dDcom = a−1c dt gives us
dr = dDcom = c da

aṡ
so that:

Dcom(z1, z2) =

∫ a2(z1)

a2(z2)

c da

a2H(a)
(1.59)

=

∫ z1

z2

c dz

H(z)
(1.60)

For an observer z1 = 0 the comoving distance distance to an object at redshift s is:

Dcom(z) =

∫ z

0

c dz′

H(z′)
. (1.61)

Note that the comoving distance r, defined in Equation 1.26, is equal to Dcom.

1.8.3 Angular diameter distance

The angular diameter distance relates the redshift of an object to the angle it subtends.
In Euclidean geometry, the angular diameter distance relates the cross-sectional area of
an object dA to the solid angle subtended by the object, as measured by an observer dΩ:

dA = D2
ang(z1, z2) dΩ. (1.62)

For an object at redshift z2, the surface area of a sphere of radius R = a(z2)Sk[Dcom(z1, z2)]
centred on the object will be A = 4πR2 = 4πa2(z2)S

2
k [Dcom(z1, z2)], and the angle sub-
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tended would be 4π, so that

dA

4πa2(z2)S
2
k [Dcom(z1, z2)]

=
dΩ

4π
. (1.63)

The angular diameter distance between objects at z1 and z2 is then defined as:

Dang(z1, z2) = a(z2)Sk[Dcom(z1, z2)]. (1.64)

Thus, for an observer at z1 = 0, an object at redshift z will have an angular diameter
distance

Dang(z) = (1 + z)−1Sk[Dcom(z)]. (1.65)

1.8.4 Luminosity distance

Like the angular diameter distance, the luminosity distance can be defined by analogy to
Euclidean geometry. The luminosity distance can be visualised as the distance at which
a source would be if the inverse-square law were to apply. It is related to the observed
flux S and the luminosity L of a source by:

Dlum =

(
L

4πS

)1/2

. (1.66)

The luminosity distance is given in terms of the comoving and angular diameter distance
by:

Dlum(z1, z2) =

[
a(z1)

a(z2)

]2
Dang(z1, z2) =

a(z1)
2

a(z2)
Sk[Dcom(z1, z2)]. (1.67)

Therefore, for an observer at z1 = 0, an object at redshift z will have:

Dlum(z) = (1 + z)Sk[Dcom(z)]. (1.68)

Equation 1.67 involves three factors which are related to the frequency and flux of incom-
ing photons. Firstly, the photons are cosmologically redshifted by a factor a(z1)/a(z2).
Secondly, time dilation adds a further frequency shift of a(z1)/a(z2). Finally, the size of
the sphere centred on an observer, upon which photons arrive, will increase in surface
area between z1 and z2 by a factor of [a(z1)/a(z2)]

2. These effects combine to give a total
factor of [a(z1)/a(z2)]

4 in Equation 1.67.

1.9 The early Universe

In order to explain the Standard Model, and the current Universe and its components, it
is necessary for us to review the early Universe. In the Standard Model, it is generally
accepted that the Universe arose from an initial singularity, often termed the ‘Big Bang’,
which occurred some 13.7 billion years ago (as measured by WMAP-5, Dunkley et al.,
2009). This is not discussed here, but it should be noted that there are several proposals
for the mechanism of this singularity. During this epoch, we are dealing with Planck
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scale physics, so most of these mechanisms involve quantum gravity. Other proposals
(such as some superstring and braneworld theories) do away with the need for an initial
singularity altogether. The aspects of the early Universe are approximately, though not
precisely, presented in cosmological chronological order.

1.9.1 The Cosmic Microwave Background

We have seen that ρrad ∝ a−4, so the temperature evolution of the Universe, from an
initial T0, is:

T =
T0

a
. (1.69)

In other words, the Universe cools as it expands. Conversely, this means at early times,
when the scale factor was close to zero, the temperature was very high (hence the ‘Hot
Big Bang’). The radiation left from the early hot Universe, cooled by expansion, is known
as the Cosmic Microwave Background, or CMB.

The first direct observational evidence for the Hot Big Bang was the discovery of the
CMB by Penzias & Wilson (1965). The CMB is an extremely isotropic source of microwave
radiation, with a spectrum corresponding to a perfect blackbody at a temperature T0 =
2.728± 0.004/,K. Using the current temperature and Erad = ρradc

2 = αT 4, the radiation
density is given by:

Ωrad = 2.47 × 10−5h−2. (1.70)

At some time in the early Universe, the ambient radiation temperature corresponded
to the ionisation potential of hydrogen, which is 13.6 eV. During this epoch, the Universe
was filled with a sea of highly energetic particles and photons — a hot ionised plasma. The
particles were mainly electrons and protons. Other fundamental particles (quarks) existed
earlier when the ambient energy corresponded to their rest mass. At some point, as the
Universe expanded and cooled, the energy of the photons was no longer sufficient to ionise
the hydrogen, and within a relatively short time, all of the electrons and protons combined
to form neutral hydrogen. The photons were then free to move through the Universe. This
process is known as decoupling and it occurred at a temperature of ∼ 2500 K, when the
Universe was approximately 375938+3148

−3115 years old (Dunkley et al., 2009). It is these
decoupled photons which make up the CMB. The surface on the sky from which these
photons originate is known as the surface of last scattering.

1.9.2 Matter-radiation equality

At the present epoch, neglecting dark energy, the Universe is dominated by matter. This
component is characterised by the fact that the particles can be treated in a non-relativistic
régime, whereas photons and relativistic neutrinos both behave like radiation. The total
contribution to the energy density from non-relativistic components and relativistic com-
ponents can be written as ρNR and ρR, respectively. The ratio of the contributions of the
components is (see Dodelson, 2003):

ρR

ρcr
=

4.15 × 10−5

h2a4
≡ Ωrad

a4
. (1.71)
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Then there must exist a scale factor for which the ratio is unity. This is given by:

aeq =
4.15 × 10−5

Ωmh2
, (1.72)

or, in terms of redshift,
1 + zeq = 2.4 × 104Ωmh

2. (1.73)

The epoch at which the matter energy density equals the radiation energy density is called
matter-radiation equality, and it has a special role in large-scale structure formation.

1.9.3 Nucleosynthesis and baryogenesis

The temperature during the early Universe was high enough for nuclear reactions to occur.
This is termed the epoch of primordial nucleosynthesis. Similarly to decoupling, before
∼ 400 seconds the energy of the ambient photons (∼ 0.1 MeV) was such that any nuclei
formed would be dissociated, since the photon energy was greater than the binding energy
of the nuclei. When the temperature fell, nucleosynthesis became possible. This occurred
at a temperature when the nucleons were non-relativistic.

Before this point, protons and neutrons were in thermal equilibrium, and the respec-
tive population numbers were nearly equal. The decay of a proton to a neutron occurs
via β− decay:

n � p+ e− + νe + 0.8 MeV. (1.74)

The nucleon plasma remains in equilibrium while the temperature remains 0.8 MeV or
higher. Once the temperature drops below this, the leftward reaction becomes harder,
and neutrinos freeze out of the plasma. At this point, nucleosynthesis can proceed, with
the creation of the lightest elements (deuterium, helium-3, lithium-7, beryllium-7).

It is beyond the scope of this thesis to go into the details of primordial nucleosyn-
thesis. We simply note that the present epoch baryon and photon densities determine the
primordial abundance of light elements. This abundance can be measured from absorp-
tion lines in the line-pf-sight to high-redshift objects and from CMB observations, and
therefore provides a constraint for the present-epoch baryon density Ωb. WMAP-5 has
constrained this value to Ωb = 0.0462±0.0015 (Dunkley et al., 2009). The term ‘baryonic
matter’ is taken to mean any form of non-relativistic, gravitating matter which inter-
acts with photons. Thus we include all nuclei and electrons under the heading ‘baryonic
matter’, even though electrons are leptons.

1.9.4 Neutrinos

Unlike photons and baryons, cosmic neutrinos have not been observed. However, particle
physics allows us to chart the history of this particle during nucleosynthesis, and to relate
the neutrino temperature to the photon temperature today. The details of the calculations
can be found in Dodelson (2003), and in the review by Quigg (2008).

Neutrinos are fermions, with a Fermi-Dirac distribution with zero chemical potential.
When they decoupled from the plasma, their distribution remained Fermi-Dirac, with
their temperature falling as a−1. This decoupling occurred slightly before the annihilation
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of electrons and positrons, which occurred when the cosmic temperature was of the order
of the electron mass (T ≈ me). Neutrinos decoupled when the cosmic plasma had a
temperature of around 1 MeV. The energy associated with this annihilation was therefore
not inherited by the neutrinos, and the entropy was completely transferred to the entropy
of the photon background. Thus:

(Se + Sγ)before = (Sγ)after, (1.75)

where Se and Sγ are respectively the entropy of the electron-positron pairs and the photon
background, and ‘before’ and ‘after’ refer to the annihilation time.

The entropy per particle species, ignoring constant factors, is S ∝ gT 3, where g is
the statistical weight of the species. For bosons, g = 1 and for fermions, g = 7/8 per spin
state. From particle physics, we know that the neutrino has one spin degree of freedom,
that each neutrino has an antiparticle, and that there are three generations, also called
‘families’ or ‘species’ (µ, τ and electron neutrinos). This means that the degeneracy factor
of neutrinos is equal to six. Before annihilation, the fermions are electrons (2 spin states),
positrons (2), neutrinos and antineutrinos (6 spin states). The bosons are photons (2 spin
states). We therefore have gbefore = 4(7/8) + 2 = 11/2, while after annihilation g = 2
because only photons remain. Applying entropy conservation and counting relativistic
degrees of freedom, the ratio of neutrino and photon temperatures below me is therefore:

Tν

T
=

(
4

11

)1/3

, (1.76)

so that the present neutrino temperature is

Tν,0 =

(
4

11

)1/3

TCMB = 1.945 K. (1.77)

The number density of neutrinos is then (see Elgarøy & Lahav, 2005)

nν =
6ζ(3)

11π2
T 3

CMB, (1.78)

where ζ(3) ≈ 1.202, which gives nν ≈ 112 cm−3 at the present epoch. At late times, when
massive neutrinos have become non-relativistic, their contribution to the mass density
mνnν , giving

Ωνh
2 =

mν

94eV
(1.79)

for TCMB = 2.726 K. This is the expression used in our calculations to relate the total
neutrino mass to the neutrino fraction. It should be noted that this equation can be
modified by many factors: a non-zero initial chemical potential, or a sizeable neutrino-
antineutrino asymmetry, or even a fourth, ‘sterile’ neutrino, for instance (see the references
in Elgarøy & Lahav 2005). However, Equation 1.78 should be accurate in the Standard
Model, and therefore any constraint on the neutrino fraction can be translated on a
constraint on the total neutrino mass via Equation 1.79. In Chapter 4 we shall discuss
the effect of neutrino physics on the matter power spectrum.
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1.10 Inflation and the primordial power spectrum

The Hot Big Bang model was successful in explaining many interlinked phenomena which
were subsequently confirmed by observation: The Hubble Law and the expansion of the
Universe, the thermal history of the Universe, primordial nucleosynthesis, the existence
of the cosmic microwave background, the relation between the temperature and scale
factor, and finally the blackbody nature of the CMB. The remarkable fact is that these
phenomena occur on extremely different scales, and are observed via different physical
processes, and yet they all fit neatly within one model. However, the Hot Big Bang model
fails to provide a solution to a number of outstanding cosmological problems. This gave
rise to the idea of a model in which the early Universe undergoes a period of exponential
accelerated expansion. This theory, called ‘inflation’, was first formulated by Guth (see
Guth, 1997).

It was realised that inflation solves a number of these cosmological problems linked
to the primordial Universe, the most commonly cited being the following (for details see
Guth, 1997; Peacock, 1999; Liddle & Lyth, 2000, and references therein):

• The Horizon Problem: How did causally-disconnected regions of the CMB come to
be in thermal equilibrium?

• The Flatness Problems: Why is the global geometry of the Universe so flat?

• The Monopoles Problem: Grand Unified Theories predict the production of a large
number of monopoles. Why are none observed?

In the context of this thesis, our interest in inflation lies in its link with structure
formation: it provides a mechanism for the power spectrum of primordial perturbations.
In the Standard ΛCDM Model, the initial perturbations from which structure evolved
are assumed to have a scale-invariant spectrum (this will be explained in Section 1.12.4).
Reconstructing the primordial power spectrum is no easy task, and poses two main prob-
lems. Observationally, we want to extract the amplitude and scale variation from the
data. Theoretically, we seek to explain the origin of the perturbations. At present, the
leading theoretical paradigm for the primordial fluctuations is inflation, which provides
initial conditions for both large-scale structure and the cosmic microwave background
radiation. The theory of inflation offers a plethora of models, each of which predicts a
certain power spectrum of primordial fluctuations P(k). Since the inflationary paradigm
is linked to the theoretical description of the primordial power spectrum, it is necessary
to briefly explain some of the main concepts here. We shall not go into the details of the
theory, nor the motivation for inflation (see Liddle & Lyth, 2000, for the full details).

The precise definition of inflation is any period during which the scale factor of the
Universe is accelerating, that is, ä > 0. Equivalently, we can use the expression

d

dt

H−1

a
< 0, (1.80)

which physically means that the observable Universe becomes smaller during inflation.
The basic theory of inflation states that from the initial big bang singularity to

approximately 10−37 seconds, there existed a set of highly energetic scalar fields. By
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definition, Ω is driven towards 1 during inflation. Inflationary theories assume that grav-
ity is described by GR, which means that the component driving inflation must satisfy
ρ+ 3P < 0. The Universe was dominated during the inflationary phase by a scalar field
(or set of fields) φ with a self-interaction potential V (φ). It is the form of this potential
which differentiates the various inflationary theories. Most theories assume a ‘Mexican
hat’ potential, with a single field, while chaotic inflation assumes a simple power law po-
tential with a slowly varying field (see e.g. Linde 1989). The action for this potential is
then (Lidsey et al., 1997)

S = −
∫

d4x
√−g
[
m2

PlR

16π
− 1

2
(∇φ)2 + V (φ)

]
, (1.81)

where mPl is the Planck mass. As the Universe cooled, the scalar field became trapped
in a false vacuum, so its energy density became constant. The potential energy, however,
is nonzero, so the pressure is negative. The scale factor during inflation has the de Sitter
form:

a(t) = e(ΛI/3)1/2t, (1.82)

where ΛI represents the energy density of the inflationary field (sometimes called the
inflaton).

Since the energy density of the inflaton field was very high, the associated magnitude
of the negative pressure would have been very large as well. The scale factor is thought
to have increased during inflation by ∼ e65, and any point in the Universe which found
itself in a false vacuum state would have undergone inflation. The accelerated expansion
lasted until the field rolled down to a minimum, when it decays into the familiar particles
of the Standard Model, and the Universe can then be described by an FRW model.

There are two points of interest in connection with inflation where dark energy and
large-scale structure are concerned. Firstly, inflation solves the flatness problem. Using
Equation 1.82, the evolution of Ω during inflation can be written as:

|Ω(t) − 1| ∝ e−(4ΛI/3)1/2t, (1.83)

so that |Ω − 1| is driven very close to 0 as t increases. This explains why the Universe is
flat. It also means that this value has not deviated significantly from its initial value right
after expansion. We can therefore safely assume spatial flatness throughout the history of
the Universe. Given the observational difficulties, this provides a theoretical motivation
for taking the idea of a large ΩDE seriously.

Secondly, the inflationary scenario provides a natural explanation for the origin of
structure. An initially smooth background needs seed fluctuations around which gravi-
tational collapse can occur. The inflationary scenario attributes their origin to quantum
fluctuations in the inflaton field potential. Different points in the Universe inflate from
slightly different points on the potential, separated by δφ. Inflation for these two points
ends at different times, separated by δt = δφ/φ̇. This induces a density fluctuation
δ = Hδt (see Peacock, 1999). Since all the points undergoing inflation are part of the
same potential field, the initial fluctuations are nearly scale invariant. This means that
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the density amplitude on the horizon scale will also be constant:

δH = Hδt =
H2

2πφ̇
= constant. (1.84)

Most models of inflation are slow-roll models, in which the Hubble rate varies slowly
(see Liddle & Lyth, 2000, 1992; Liddle & Lyth, 1993). It is beyond the scope of this thesis
to go into the detail of the theory, but it is necessary for us to briefly refer to the link
between this theory and the spectral index of primordial fluctuations.

To quantify slow roll, cosmologists typically use two parameters ε and η which vanish
in the limit that φ becomes constant. The first parameter is defined as:

ε ≡ d

dt

(
1

H

)
=

−Ḣ
aH2

, (1.85)

which is always positive, sinceH is always decreasing. The second complementary variable
which defines how slowly the field is rolling is:

η ≡ 1

aHφ̇(0)

[
3aHφ̇(0) + a2V ′

]
, (1.86)

where φ(0) is the zero-order field, and V is the potential (see Dodelson 2003 for details).
The scalar spectral index can be defined in terms of some function, usually a poly-

nomial, involving the two slow-roll parameters ε and η. As an example we shall give two
such parameterisations: n = 1 − 4ε − 2η (Dodelson, 2003) and n = 1 − 6ε + 2η (Liddle
& Lyth, 1992). The rate of change of n can also be expressed in terms of inflationary
parameters: dn/ d ln k = 16εη + 24ε2 + 2ξ2 (Kosowsky & Turner, 1995), where

ξ2 ≡M4
Pl

V ′(d3/dφ3)

V 2
, (1.87)

MPl being the reduced Planck mass (4.342 × 10−6 g).
Therefore, by extracting the values of ε and η from the data, using methods such as

weak lensing, we can directly probe the the potential of of the inflaton field.

1.11 Dark matter

The observed value of the matter density in the Universe is Ωm = 0.2792 ± 0.0145. But
we have seen that density of baryonic matter is Ωb = 0.0462 ± 0.0015. What constitutes
the missing mass? This fluid component that accounts for the majority of matter in the
Universe is called dark matter. The name is an indication of its nonbaryonic nature: it
cannot be observed by emission of photons. The evidence for the existence of dark matter
comes from a variety of sources, which be reviewed here (see Freese 2009 for a recent
review, including a review of current attempts to detect dark matter) .

Anisotropies in the CMB are related to anisotropies in the baryonic density field
by the Sachs-Wolfe effect (see Dodelson, 2003). This means that the baryon density field
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variation at the time of decoupling can be linked to CMB anisotropies. If all matter
were made of baryons, the amplitude of the density fluctuations should have reached
δ ∼ 10−2 at the present epoch. But we observe structures with δ � 1 at the present
epoch (e.g. galaxies and galaxy clusters). The discrepancy can only be explained by
the presence of additional matter, which created potential wells for the baryons to fall
into after decoupling. These potential wells would have had to be formed by a weakly
interacting fluid that decoupled well before baryons and began to cluster much earlier.
Such a fluid would only interact via the gravitational and possibly the weak nuclear
force. As the baryons accumulated in the potential wells, their pressure would have
built up, leading to oscillations in the baryon fluid, termed ‘baryon acoustic oscillations’
(BAO). These oscillations leaves an imprint on the CMB power spectrum, which has been
confirmed observationally, and which constrains the mass density, leading to a further
confirmation of the existence of this missing mass.

Another piece of evidence for dark matter comes from galaxy rotation curves. These
curves relate the tangential velocity of the constituent stars (or gas) about the centre of
the galaxy to their radius from the centre. Observations of the velocities of globular
clusters about galaxies show that at large radii the velocities are approximately constant,
implying that the amount of mass in the galaxies is much higher than the visible mass
(see Freese 2009 for a review of the literature on the subject). The difference must come
from some non-emitting component: dark matter.

Gravitational lensing (see Chapter 2) shows that the amount of lensing of galaxies
around galaxy clusters is too high to be caused by the visible matter. Apart from the
stars themselves, a galaxy cluster also has a gas component, but X-ray observations show
that this is still not enough to account for the extra mass. The cluster must therefore
have a non-emitting halo of dark matter around it.

We shall not go into the details of the various dark matter candidates that have
been proposed in the literature (see Salati 2009 for a recent review). However, all these
candidates have one common characteristic: a very small reaction cross-section, making
them extremely difficult to detect directly. Experiments have, however, placed limits on
the mass of Weakly Interacting Massive Particles (WIMPs), which are the current (2009)
best candidate for dark matter (together with axions). These results show that even the
lightest dark matter particle should have a mass which is not below ∼ 10 MeV. We also
know that ΩCDM = 0.233 ± 0.013 (Dunkley et al., 2009). The conclusion is that Ων � Ωm,
implying that hot dark matter (i.e. neutrinos) cannot account for the dark matter density
ΩCDM.

1.12 The matter-dominated Universe

After the epoch of matter-radiation equality, and before the onset of dark energy dom-
ination, the mass-energy content of the Universe became dominated by matter. The
assumption of a homogeneous Universe evidently breaks down below a certain scale, and
we therefore need a model to describe the evolution of mass structures, i.e. a model of
the behaviour of the matter component of the Universe. From an initially smooth back-
ground (as evidenced by CMB observations), structures have evolved to a scale of more
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than 100 Mpc, with the term ‘large scale structure’ being used to refer to objects mod-
elled on this scale. Below this scale we observe galaxy clusters, individual galaxies, and
stars. The model of structure formation must be accurate enough to provide an accurate
description of the Universe on a wide range of scales.

1.12.1 Structure formation

The standard model for the formation of structure assumes that at some early time there
existed small fluctuations, which grew by gravitational instability. The origins of these
fluctuations are unclear, but they are thought to arise from quantum fluctuations of the
primordial Universe, uncorrelated and with Gaussian amplitudes, which were then ampli-
fied during a later inflationary phase. The subject is presented in more detail in Liddle
& Lyth (2000). The assumption that the amplitudes of the relative density contrasts is
much smaller than unity means that we can think of the primordial fluctuations as small
perturbations on a homogeneous and isotropic background density. This ensures that we
can describe them using linear theory.

Heuristically, the mechanism of structure formation can be understood in terms of
gravitational self-collapse. Matter collapses gravitationally around initial mass overden-
sities. This increases the relative density of that region, causing further collapse of more
matter, and amplifying the effect. The linear theory of structure formation needs to be
relativistic, because the perturbations on any length scale are comparable or larger than
the horizon size3 at sufficiently early times. Dissipative effects and pressure also affect
structure formation, as explained below. For details of the theory, see Bardeen (1980)
and Lifshitz (1946).

The relative density is the density ρ at a particular point in space x relative to
the mean ρ at some time parameterised by the scale factor a, and can be expressed as a
dimensionless density contrast:

δ(x, a) =
ρ(x, a) − ρ(a)

ρ(a)
. (1.88)

This quantity can be understood as the dimensionless density perturbation of some back-
ground matter distribution.

There are two types of density perturbations that can occur within a matter-
radiation fluid. If the fluid could be compressed adiabatically in space, the perturbations
have a constant matter-to-radiation ratio everywhere. Since the energy density of radi-
ation is proportional to T 4, and the number density is proportional to T 3, the energy
densities of radiation and matter are related by:

δrad =
4

3
δm. (1.89)

Isocurvature perturbations occur when the entropy density is perturbed, but not the
energy density. Since the total energy density remains constant, there is no change in the

3The horizon size is defined as the distance ct which light can travel in time t since the big bang.
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spatial curvature and
ρradδrad = ρmδm. (1.90)

Perturbations can occur at different scales, or ‘modes’. The latter term is used when
the amount of perturbation on a particular scale is expressed using Fourier analysis. The
Fourier transform pair of δx is:

δ̂(k) =

∫
d3xδ(x)eik.x ;

δ(x) =

∫
d3k

(2π)3
δ̂(k)e−ik.x, (1.91)

with each mode assumed to evolve independently. In the Einstein-de Sitter régime, linear
adiabatic perturbations scale with time as follows:

δ ∝
{
a(t)2 (radiation domination)

a(t) (matter domination)
(1.92)

while isocurvature perturbation are initially constant and then decline:

δ ∝
{

constant (radiation domination)

a(t)−1 (matter domination).
(1.93)

In both cases, the overall shape of the spectrum of the perturbations over all modes
is preserved, while the amplitude changes with time. The evolution described above is
affected on small scales by a number of processes, which are described below.

1.12.2 Evolution on small scales

During the radiation-dominated epoch the growth of certain modes is suppressed. This
behaviour can be modelled in terms of the horizon scale λH(a), which is the distance ct
that light could have travelled since the initial singularity (a comoving horizon size). A
mode k is said to enter the horizon when λ = λH(a), where λ = (2π)/k. If λ < λH(aeq)
then a mode enters the horizon during the radiation-dominated epoch. The time scale
for collapse of matter during this epoch is larger than the typical expansion time scale
(t ∼ 1/H(a)) due to the relatively rapid expansion ρrad ∝ a−4. The growth of these modes
is therefore suppressed. After the epoch of matter-radiation equality (a = aeq), these
perturbations can then start to collapse gravitationally. We can define the suppression
factor for a particular mode as the factor by which the amplitude is reduced had it not
entered the horizon:

fsup =

(
aenter

aeq

)2

=

(
k0

k

)2

(1.94)

where the mode evolves as ∝ a2 until it enters the horizon at aenter and is suppressed until
aeq, when its evolution resumes as ∝ a. The second equality in the above equation comes
from applying an Einstein-de Sitter approximation where k0 = 1/λH(aeq) (see Bartelmann
& Schneider, 2001).
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Pressure opposes gravitational collapse for modes with a wavelength less than the
Jeans length (sometimes called the free-streaming scale), defined as

λJ = cs

√
π

Gρ
. (1.95)

During the radiation-dominated epoch, the sound speed cs = c/
√

3 and the Jeans length is
always close to the horizon size. The Jeans length then reaches a maximum at a = aeq and
then begins to decrease as the sound speed declines. This means that on scales larger than
the comoving horizon size, perturbations are only affected by gravity, and the spectrum
starts to turn over at this point (where the effects of pressure begin to dominate). The
comoving horizon size at zeq is given by:

R0rH(zeq) ≈ 16.0

Ωmh2
Mpc. (1.96)

Another important scale occurs where photon diffusion erases perturbations in the
matter-radiation fluid. This process is termed Silk damping. The scale at which it occurs
is characterised by the distance travelled by the photon in a random walk by the time of
last scattering:

λS ≈ 16.3(1 + z)−5/4(Ω2
bΩmh

6)−1/4Gpc. (1.97)

All of the effects mentioned above are particularly important where the behaviour
of massive neutrinos is concerned. The details will be discussed later on, but heuristically
we can understand the complexity of their behaviour by considering them as a component
whose equation of state changes as the Universe evolves. From a component which behaves
like photons (since the particles have a very small mass and relativistic speeds), massive
neutrinos lose energy and start behaving like baryonic matter4.

1.12.3 Growth of perturbations in the presence of dark energy

All of the above effects were described in an Einstein-de Sitter universe. In a universe
with a smooth non-clustering dark energy component below the horizon scale, the matter
perturbation fields evolves according to:

δ̈ + 2Hδ̇ − (3/2)H2Ωmδ = 0

δ′′ + (2 − q)a−1δ′ − (3/2)Ωma
−2δ = 0, (1.98)

where a dot denotes a time derivative and a dash denotes a derivative with respect to
a. The term q is the deceleration parameter. This can be interpreted in the following
way: the perturbations grow according to a source term which involves the amount of
matter (Ωm) but the growth is suppressed by the friction term due to the expansion of
the universe. The latter is also known as the Hubble drag, which avoids the use of the
term ‘friction’ (which implies a force).

If we define the growth as the ratio of the amplitude of a perturbation at a time a

4One of the earliest discussions of this mechanism is found in Silk (1982).
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to some initial amplitude, i.e.

D(a) =
δ(a)

δ(ainitial)
, (1.99)

the equation becomes, for a general dark energy scenario where w = w(a) (see Linder &
Jenkins, 2003)

D′′ +
3

2

(
1 − w(a)

1 +X(a)

)
D′(a)
a

− 3

2

(
X(a)

1 +X(a)

)
D

a2
= 0, (1.100)

where

X(a) =
Ωm

ΩDE
e−3

R 1
a d lna′w(a′) (1.101)

is the ratio of the matter density to the dark energy density. For large X (i.e. Ωm ∼ 1
where ΩDE ∼ 1 − Ωm) we recover the matter-dominated behaviour (D ∼ a). To parame-
terise deviations from this behaviour we define the ‘normalised growth’ as G = D/a. The
evolution equation is then:

G′′ +
[
7

2
− 3

2

(
w(a)

1 +X(a)

)]
G′′

a
+

3

2

(
1 − w(a)

1 +X(a)

)
G

a2
= 0. (1.102)

This equation allows us to physically interpret the effects of dark energy. In the presence
of dark energy, the Hubble drag term is increased, so that growth is suppressed in a
universe with an accelerating expansion. This is similar to the suppression due to radiation
dominance.

1.12.4 The matter power spectrum

In an FRW universe, the homogeneity and isotropy assumption means that any statisti-
cal properties must also be homogeneous and isotropic. The implication for the matter
perturbation field is that its Fourier modes must be uncorrelated (due to homogeneity).
Usually, we assume that the mode amplitudes are Gaussian. This assumption is well
motivated since the theory for the seed fluctuations assumes that they have a quantum
origin. Due to the central limit theorem, the sum of a sufficiently large number of mode
amplitudes will tend towards a Gaussian distribution.

Such a field, with uncorrelated modes, and a Gaussian distribution of mode ampli-
tudes is called a Gaussian random field, and can be entirely described by its two-point
correlation function:

〈δ(x)δ∗(y)〉 = Cδδ(|x − y|). (1.103)

The angled brackets denote an ensemble average (an average over a multitude of realisa-
tions). The value of δ at a given point in the Universe will have a different value in each
realisation, with a variance 〈δ2〉. Since we can only observe one realisation of our Universe
(in other words, at most only a finite region in this one Universe), we apply the ergodic
principle: The average over a sufficiently large volume is equal to the ensemble average.
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In Fourier space, the correlation function can be written as:

〈δ̂(k)δ̂∗(k′)〉 =

∫
d3xeik.x

∫
d3x′e−ik′.x′〈δ(x)δ∗(x′)〉. (1.104)

Replacing x′ = x + y, and substituting Equation 1.103, this can be written as:

〈δ̂(k)δ̂∗(k′)〉 =

∫
d3xeik.x

∫
d3ye−ik′.(x+y)Cδδ(|y|) (1.105)

= (2π)3δD(k − k′)
∫

d3ye−ik.(y)Cδδ(|y|) (1.106)

= (2π)3δD(k − k′)Pδ(|k|). (1.107)

The power spectrum has been defined as the Fourier transform of the correlation function:

Pδ(|k|) =

∫
d3yeik.(y)Cδδ(|y|). (1.108)

Hereafter, Pδ(|k|) will be abbreviated to P (k), where k = |k|, following the standard
convention in cosmology. The power spectrum can be expressed in dimensionless form as
the variance per ln k, so that:

∆2(k) =
k3P (k)

2π2
. (1.109)

One very important type of power spectrum in cosmology is the scale-invariant
power spectrum, also known as the Harrison-Peebles-Zel’dovich spectrum. This is the
form assumed in most cases within the Standard Model, as it corresponds very closely to
the observed power spectrum in the Universe. This type of spectrum was first proposed
in the 1970s by Harrison (1970), Zel’dovich (1972) and Peebles & Yu (1970), who were
working independently, as the spectrum for initial density fluctuations. This hypothesis
was subsequently closely borne out by observations. The defining characteristic of this
spectrum is that it describes a fractal metric, where the degree of perturbation is the
same on all scales (hence the term ‘scale-invariant’), so that P (k) ∝ k. If we assume scale
invariance for the power spectrum on large scales, and combine this with Equation 1.94,
this implies the following general shape for the matter power spectrum in the Einstein-de
Sitter scenario:

P (k) ∝
{
k for k � k0

k−3 for k � k0.
(1.110)

The actual form of the spectrum depends in non-trivial ways on the parameters in the cos-
mological model, including the ‘slope’ of the initial power spectrum ns, where P (k) ∝ kns.
In a scale-invariant spectrum in the linear régime, the fiducial value of ns is taken to be
1.

1.12.4.1 The nonlinear power spectrum

The power spectrum gives us the evolution of the initial matter density fluctuations. The
linear evolution breaks down at small scales, when complex structures begin to form,
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and perturbations grow nonlinearly (that is, they cannot be treated as perturbations on
an unperturbed background). The scale above which nonlinearities cannot be ignored
is approximately set by ∆(kNL) � 1, which corresponds to kNL � 0.2 hMpc−1 in most
cosmological models. The standard model for nonlinear evolution is the spherical collapse
model by Hamilton et al. (1991), known as the HKLM model. In their stable clustering
hypothesis, they assume that these nonlinear collapsed objects form isolated, virialised
systems that are decoupled from the expansion of the Universe. The HKLM model was
extended by Jain et al. (1995) and by Peacock & Dodds (1996). Their approach uses a
scaling ansatz, in which the nonlinear spectrum is some function f of the linear spectrum:

∆NL(kNL) = fNL[∆L(kNL)], (1.111)

where L and NL denote linear and nonlinear, respectively, and kNL = [1+∆NL(kNL)]1/3kL.
The functional scaling relations are calibrated using N -body simulations.

Smith et al. (2003) took a different approach known as the halo model (see Seljak
2000 and Peacock & Smith 2000 for details). In the halo model, the density field is
decomposed into individual clumps of matter with some density profile and varying mass.
By using this model to calculate the number of clumps within a given volume, the halo
profile can be calculated. This is the equivalent of the power spectrum for these matter
halos. A functional relation between the linear power spectrum and this halo profile is
then derived and calibrated using large N -body simulations. This relation is then used
to calculate the nonlinear power spectrum. This approach produced halofit (Smith
et al., 2003), which is a fitting formula to numerical simulations, where the halo model
is combined with HKLM scaling. The halofit formula produces accurate power spectra
within the nonlinear régime.

It must be noted, however, that the halofit code may not be accurate enough to to
compute the derivatives of the nonlinear power spectrum over all scales. These derivatives
are needed to calculate the Fisher matrix (see Chapter 3).

1.12.4.2 Normalisation

The power spectrum needs to be normalised to a chosen value. There exist several nor-
malisation schemes, depending on which probe is used, which determines the scale at
which quantities are best constrained. Following most of the literature on weak lensing,
we choose to normalise our power spectra by using σ8. The quantity σ8 is defined as the
root mean square variation of the density field when smoothed by a top-hat filter of radius
R = 8 hMpc−1. This is written as

σ2(R, z) =

∫ ∞

0

dk

k
∆2(k, z)W

2(kR), (1.112)

where the weighting function is defined as the Fourier transform of a sphere of uniform
weight

W (k,R) =
3j1(kR)

kR
, (1.113)
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so that Wσ(R) = 3R−3(sinR − R cosR). The spherical Bessel function j1(x) is of order
1, so that σ8 ≡ σ(8 hMpc−1). It should be noted that the value of σ8 is calculated using
a linear extrapolation of the clustering of matter, so the calculated value will not match
the observed value perfectly.

Normalisation using the CMB and σ8 proceed in different ways. CMB normalisation
usually involves normalising the primordial power spectrum, with the most commonly
used parameter being the WMAP parameter A, which depends on δζ , the amplitude of
fluctuations from WMAP (Bunn & White, 1997):

A = (1.84δζ × 104)2, (1.114)

where δζ ≈ 5.07e−(0.17−τ) × 10−5. This normalisation, therefore, depends on the fiducial
value of the reionisation optical depth τ , unlike σ8, which does not.

The WMAP normalisation is related to σ8 via the definition of the matter power
spectrum:

P (k, z) =
2π2

k3
Akns(k)+3T 2(k, z)

(
D(z)

D(0)

)2

. (1.115)

Integrating this using Equation 1.112 above gives us σ8.
The COBE normalisation parameter δH is related to the WMAP parameter As by:

δH ≡ As(a0H0). (1.116)

1.13 Dark energy

In a previous section (1.6.3), we have alluded to the existence of a fluid component with a
negative pressure. Here we discuss the justification for the dark energy paradigm within
the inflationary ΛCDM model, and the process which led to its acceptance by the scientific
community. We also discuss different theories about the nature of dark energy, and
possible alternatives. For a comprehensive review, see Peebles & Ratra (2003).

Einstein (1917) revised his field equations of GR to read:

Gµν − 8πGρΛgµν = 8πGTµν (1.117)

where ρΛ is proportional to the cosmological constant Λ. It can be seen from this equation
that Einstein did not consider the cosmological constant to be part of the stress-energy
term. One could, of course, put ρΛgµν on the right-hand side of the equation and count
it as part of the source term of the stress-energy tensor. This is not just a semantic
distinction. When ρΛ takes part in the dynamics of the Universe, then the field equation
is properly written with ρΛ, or its generalisation, as part of the stress-energy tensor:

Gµν = 8πG(Tµν + ρΛgµν). (1.118)

The equation describing gravity is then unchanged from its original form — there is no
new physical theory. Instead, there is a new component in the content of the Universe.

This component must satisfy Special Relativity (that is, an observer can choose
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coordinates so that the metric tensor has Minkowskian form). An observer moving in
spacetime in such a way that the Universe is observed to be homogeneous and isotropic
would measure the stress-energy tensor to be

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.119)

This means that the new component in the stress-energy tensor looks like an ideal fluid
with negative pressure:

pΛ = −ρΛ. (1.120)

In modern concordance cosmology, this component is usually termed ‘dark energy’.
We shall retain this term since it best describes the unknown nature of this compo-
nent, without assuming anything about its properties (unlike the terms ‘vacuum energy’,
‘quintessence’, or ‘cosmological constant’). If the equation of state parameter of dark
energy is constant (w(z) = −1), then its energy density will be constant regardless of the
expansion of the Universe.

Einstein inserted the cosmological constant because he felt that the non-static uni-
verse predicted by the formalism of GR was incorrect, given the data available at that time
(particularly the observed low velocities of stars). Meanwhile, Slipher (1917) published
his measurements of the spectra of spiral nebulae, which showed that most were shifted
towards the red. The breakthrough came when the linear redshift-distance relation was
formulated by Hubble (1929), which showed that the Universe was expanding. Einstein
then dropped his support for the cosmological constant.

In the FLRW cosmological model, the expansion history of the Universe is deter-
mined by the mass density of the different components, whose sum is normalised to unity:

Ωm,0 + Ωrad,0 + ΩX,0 + Ωk,0 = 1, (1.121)

where the 0 subscript indicates the present epoch. We use the term ΩX to show that this
equation does not assume anything about the nature of the additional energy component
(dark energy), which is discussed below. In fact we could have used ΩΛ or ΩDE in the
current concordance model.

Big bang nucleosynthesis and observations of large scale structure give a good deter-
mination of the mass content of the Universe, allowing Ωm and Ωrad to be fixed. However,
observations in the 1980s and 1990s started to show inconsistencies with the cosmological
model at the time – that of a matter-dominated, expanding Universe with a present-epoch
Hubble constant ofH0 � 0.7 kms−1Mpc and ΩΛ = 0. This was the so-called ‘age problem’,
where the predicted age of the Universe seemed to be smaller than the age of the oldest
stars. Angular-diameter distances to the last scattering surface at z = 1100 measured
from the CMB are in fact 1.7 times smaller than those predicted by an isotropic and
homogeneous Universe containing only pressureless matter (see Räsänen, 2009). Since
the inflationary scenario, which by then was well established, predicts a flat Ωtotal = 1
universe, there was a problem with the cosmological model.
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It was realised that one of the three assumptions of the cosmological model had
to be wrong. Either the Universe contains exotic matter with a negative pressure, or
standard General Relativity is wrong, or the Universe is not homogeneous and isotropic.
(The solution could also lie in some combination of the three.) Most of the research in
the last decade has followed the first approach, and the term ‘concordance model’ refers
to an FLRW universe, following General Relativistic cosmology, containing dark energy.

In this thesis, we work within an FLRW model. Within this framework, two main
proposals were put forward: one was ΛCDM, in which there is a contribution to the energy
density from a term similar to the cosmological constant (or the cosmological constant
itself), and the other was ν+CDM, where the missing mass came from massive neutrinos
(mν � 7eV).

The first strong evidence of dark energy5 came in 1998-9, when observations of
the luminosities of type Ia supernovae indicated that the expansion of the Universe is
accelerating (Riess et al., 1998; Perlmutter et al., 1999). Concurrently, other observations
constrained the neutrino mass to mν � 7eV, thus discounting the ν + CDM model and
confirming ΛCDM as the concordance model (see Figure 1.1).

Since then, numerous observations have been carried out, including supernovae, the
cosmic microwave background, large-scale structure and baryon acoustic oscillations. The
values of the present epoch matter and radiation components are well established (see, for
example, the WMAP-5 values for the cosmological parameters in Komatsu et al., 2009):

Ωm,0 ≡ 8πGρm,0

3H2
0

∼ 0.3 , Ωrad,0 ≡ 8πGρrad,0

3H2
0

∼ 1 × 10−4, (1.122)

where H0 is the present value of the Hubble parameter. The data also indicate that the
Universe is currently nearly spatially flat:

|ΩK | � 1. (1.123)

This is normally taken to imply that the spatial curvature K = 0, since

Ωk,0 = 0 ≡ −K
a2

0H
2
0

∼ 0, (1.124)

and thus to justify the inflationary paradigm. However, inflation only tells us that
ΩK → 0, so that the curvature may have had a nonzero value in the past. In the present
Universe, however, the distinction is negligible. In any case, Equation 1.121 implies that
there has to be a nonzero Λ (a constant term added to the Einstein equation) such that

ΩΛ,0 ≡ Λ

3H2
0

∼ 0.7. (1.125)

Inserting these values into the Friedmann equation lead to the dramatic conclusion that

5The term ‘dark energy’ was coined around 1998 by analogy to ‘dark matter’ (see Turner, 1999).
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the expansion of the Universe is accelerating:

ä0 = H2
0

(
ΩΛ − 1

2
Ωm − Ωrad

)
> 0, (1.126)

where a0 is the present value of the scale factor a(t).
At this point we should emphasise that this conclusion only holds if the Universe

is homogeneous and isotropic (i.e. a Friedmann-Lemâıtre model). In such a Universe,
the distance to a given redshift z and the time elapsed since that redshift are tightly
related via the only free function, a(t). If the Universe is isotropic around us, but not
homogeneous (i.e. a non-Copernican Tolman-Bondi-Lemâıetre model), then this relation
would be lost and present data might not imply acceleration. A Copernican model where
this relation again breaks down is the inhomogeneous Universe, where the acceleration
can be produced via nonlinear averaging — the backreaction of inhomogeneities (see, for
example, Räsänen 2009 and Wiltshire 2009).

1.13.1 The dark energy equation of state

Since dark energy is a fluid component of the Universe in the Standard Model, it is the
equation of state that has the potential to distinguish between dark energy candidates.

The most important distinction that can be made between different dark energy
models in the context of this thesis is whether the energy density of this component is
constant, filling space homogeneously, or whether it is some form of quintessence field
whose energy density can vary in time and space6. We therefore consider the redshift
evolution of w, so we start by defining w as an arbitrary function of redshift z. There are a
number of different parameterisations of w(z), some of which are discussed in Linder (2003,
and references therein). Throughout our work, we use the most common parameterisation,
proposed by Chevallier & Polarski (2001) and Linder (2003), which is also the one chosen
by the Dark Energy Task Force (Albrecht et al., 2006). It characterises the evolution of
the equation of state by the derivative of w with respect to the logarithm of the scale
factor:

w(z) = w0 − dw

d ln a
. (1.127)

If we define

wa = − dw

a d ln a
, (1.128)

then the equation becomes
w(a) = w0 + wa(1 − a), (1.129)

which is the most commonly used form. This parameterisation is sometimes termed the
Chevallier-Linder-Polarski (or CPL) parameterisation.

At the present epoch, a = 1, and therefore w(a) = w0. Revisiting Equation 1.52,

6There are, however, other models, such as f(R), Chameleon Models, etc. See Durrer & Maartens
2008a for a review.
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the expression can now be written:

H2(a) = H2
0

[
Ωma

−3 + Ωrada
−4 + ΩDEa

−3(w0+wa)e−3wa(1−a)
]
. (1.130)

The term ΩX in Equation 1.121 represents the cosmological constant if w(a) = −1.
Otherwise it represents dark energy with constant w. If w varies, it represents a dark
energy component with a varying equation of state.

It has been shown that this parameterisation is stable and robust over large redshift
ranges. A wide range of functional forms of w(a) can be parameterised by the w0 − wa

combination. However, there are some dark energy models which it cannot reproduce (see
Wang & Freese, 2006; Johri & Rath, 2007; Avelino et al., 2006)

The problem with the dark energy paradigm, put simply, is that the parameters are
not constrained well enough to rule out certain models. We have fairly good bounds on
the dark energy density: ΩDE = 0.721±0.015. However, the dark energy equation of state
is still poorly constrained. Even for a constant w model, corresponding to ΛCDM, we
have w = −0.972+0.061

−0.060 (using WMAP5+BAO+Sne, Dunkley et al. 2009). A time-varying
w(a) could mimic a constant w, thereby disguising underlying physics.
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Figure 1.1: The 68.3%, 95.4% and 99.7% confidence regions for Ωm and ΩΛ, showing
results from CMB, BAO and Union Supernovae experiments, as well as the combined
constraints from the different techniques (filled grey contours). Note that these results
assume w = −1 (i.e. ΩΛ = ΩDE). The plot shows the degeneracies between the two
parameters, as well as the limits imposed by the choice of physical theory (from Kowalski
et al. 2008).
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Weak lensing and cosmic shear

This chapter contains an outline of gravitational lensing, with an emphasis upon weak
lensing, since it is the principal observational technique considered in this thesis. In
particular, we consider cosmic shear.

Although the theory of cosmic shear had been worked out from the 1960s to the
early 1990s (see Schneider 2006 for a review), the first detection had to await the devel-
opment of instruments sensitive enough to make the required obserxvations, and image
analysis software to accurately correct for unwanted effects when measuring the shapes of
galaxies. Then, in March 2000, four groups independently announced the first discovery
of cosmic shear (Bacon et al., 2000; Kaiser, 2000; Van Waerbeke et al., 2000; Wittman
et al., 2000). Since then, cosmic shear has established itself as an important technique
in observational cosmology. Concurrently, with the dark energy paradigm becoming ac-
cepted by the scientific community, it became necessary to find observational techniques
to probe this cosmological component. Cosmic shear has a very strong potential in this
respect. The precision offered by experimental techniques is now catching up with the
requirements of the theoretical formalism, and the next generation of weak lensing surveys
(see Albrecht et al., 2006) should offer new insights into the properties of dark energy, at
least by yielding stricter bounds on parameters within the cosmological model.

We start with a general introduction to the formalism of weak lensing, explaining
the essential quantities and terminology. We then proceed with a description of each of
the types of lensing encountered in astrophysical situations. The phenomenon of weak
gravitational lensing manifests itself as a distortion and magnification for individual lensed
galaxies. In our work, we only use ellipticity measurements, which are a first-order dis-
tortion effect caused by cosmic shear.

We then present the essential calculations used in cosmic shear, giving the effective
2D convergence spectrum derived using the Limber equation. Finally, we give a brief
outline of the formalism of tomographic cosmic shear.

The aim of this chapter is therefore to present the cosmic shear formalism, and
to explain the relationship between gravitational lensing and ellipticity. The measured
ellipticity allows us to calculate the lensing power spectrum, which depends directly upon
the values of the parameters in our cosmological model. Hence the ability of weak lensing
probes to constrain cosmological parameters.
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2.1 Gravitational lensing formalism

The phenomenon of deflection of light by a gravity was studied long before general rela-
tivity. In Newtonian mechanics, a photon considered as a massive particle will have its
path deviated by a gravitating mass. In General Relativity, the effect is twice as large as
in Newtonian physics, and the experimental confirmation of the value for light deflection
was among the most important steps in the acceptance of GR by the scientific community.

The basic physical process underlying gravitational lensing in GR is the fact that
light rays travel along null geodesics. If spacetime is curved by the presence of mass-
energy, these light rays will deviate from their Euclidean path. Even before the full
development of GR, this phenomenon was first studied by Einstein (1911), who showed
that a photon must be affected by a gravitational field, using conservation of energy
applied to Newtonian gravitation theory. In GR, a light ray grazing the surface of the
sun is deflected by 1.75 arc seconds, whereas Newtonian gravity predicts a value of 0.87
arc seconds. In 1919, Einstein’s formula for light deflection was confirmed during the
observation of a solar eclipse (Dyson et al., 1920).

Cosmic shear is the extension of the process of light deflection to the cosmological
régime. This idea is often attributed to Richard Feynman, in a lecture given at Caltech
in 1964 (see Réfrégier, 2003b). From the 1960s to the 1990s, several theorists studied
the phenomenon of light deflection in an inhomogeneous universe (e.g Kristian & Sachs,
1966; Gunn, 1967; Schneider & Weiss, 1988; Jaroszynski et al., 1990; Lee & Paczynski,
1990). During the early 1990s, predictions for the statistics measured from weak lensing
distortions were then worked out by several groups (e.g. Babul & Lee, 1991; Blandford
et al., 1991; Kaiser, 1992; Miralda-Escude, 1991; Villumsen, 1996). In the light of several
current and future high-precision weak lensing surveys to constrain cosmological parame-
ters, the theory of the subject was studied in many reviews (among which are Bernardeau
et al., 1997; Jain & Seljak, 1997; Kamionkowski et al., 1998; Kaiser, 1998; Hu & Tegmark,
1999; Bartelmann & Schneider, 2001; Réfrégier, 2003b; Van Waerbeke & Mellier, 2003).
Here we present the theory of cosmic shear.

In GR, there may exist more than one null geodesic connecting the world-line of a
source to the observation event. Bodies more compact, more massive or more distant than
the sun can therefore bend spacetime sufficiently strongly so that multiple light rays from
one source reach the observer. The observer will then see an image in the direction of
each ray, leading to multiple images of the same source. The first multiple-image system
was discovered by Walsh et al. (1979).

While a point source leads to deflection of light rays, tidal gravitational fields also
cause differential deflection of light bundles, leading to a change in the size and shape
of their cross-section. Since the number of photons in the light bundle is conserved, the
surface brightness of the source is unchanged. A change in the cross-sectional area of
a light bundle therefore leads to a change in the observed flux. Changes in the cross-
sectional shape lead to distortions in the image. This deformation is difficult to identify
if the intrinsic shape of the source is not known. In the case of single lens systems, it
can only be identified if the effect is strong, as in the case of Einstein rings and arcs in
galaxy clusters. Nevertheless, it is still possible to infer the tidal field from the distortion
in single images.
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In standard descriptions of gravitational lensing, there are three assumptions that
are made:

1. The gravitational lens potential is small, so that it can be effectively described by
a Newtonian potential: |Φ| � c2.

2. The lenses are slowly moving, so that a Special Relativistic treatment is not needed:
vlens � c.

3. Individual lenses are assumed to be thin: L� c/H0, where L is the thickness of the
lens and c/H0 is the present-day Hubble radius. Large-scale curvature only becomes
important on scales much larger than the lens.

Under these assumptions, lens systems, which in practice consist of lensing galaxies or
galaxy clusters, can be treated as lenses embedded in an expanding cosmological back-
ground in general relativity (the FRW metric). The path of light rays from the source
to the observer can be approximated by three sections: from the source to a region close
to the lens as geodesics of the FRW metric, from close to the lens to the observer, again
as geodesics on the background FRW metric, and finally a weakly-perturbed, connecting
metric close to the lens.

The first condition allows us to use the weak field limit of GR to derive the form of
the metric (recall Equation 1.9). Since Φ � c and the time variation of the potential is
small, the metric can be written as

ds2 = −gµν dxµ dxν = (1 + 2Φ) dt2 − (1 − 2Φ)δαβ dxα dxβ (2.1)

where Φ is the Newtonian potential.
The geodesic equation in GR is given by:

aµ = uµ
;νu

ν = u̇µ + Γµ
νλu

λuν = 0. (2.2)

The weak field limit also assumes that there is no strong time variation in the metric (i.e.
g0i = 0 where Roman letters are used for the spatial part of the metric), so the geodesic
equation in the weak field limit can be written1

u̇i =
[
2uiΦ̇ +

(
1 + u2)δij − 2uiuj

)∇jΦ
]
. (2.3)

In the slow motion limit, when ui � c, we recover the Newtonian equation of motion:

u̇i = ∇iΦ. (2.4)

In the ultra-relativistic limit, where ui ∼ ric for the unit vector ri along the photon’s
path, we have:

ṙi = 2(δK
ij − rirj)∇jΦ = 2∇⊥

j Φ, (2.5)

1The assumption of an FRW metric simplifies the mathematical description of the lensing system. It
should be noted that dropping this assumption, for instance in Tolman-Bondi-Lemàıtre models, would
modify the lensing equation.
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where the gradient operator perpendicular to r is defined as

∇⊥
j ≡ (δK

ij − rirj)∇j . (2.6)

In the Newtonian limit, it is the term g00,j/2 which dominates, so the deflection results
from the time part only, with the curvature of space being neglected. Comparing Equa-
tions 2.4 and 2.5, we can see that the coefficient of the potential gradient term differs
by a factor of 2. This difference is due to the spatial curvature terms. Ultra-relativistic
particles experience an extra ‘force’ due to this curvature. There is a second difference
between slow and ultra-relativistic particles. In the latter case, the force parallel to the
particle’s trajectory is cancelled out by the spatial curvature terms. The particle only
experiences a transverse deflection.

2.1.1 The deflection angle

By analogy to an optical lens system, we can define a refractive index for a gravitational
lens:

n = 1 =
2

c2
Φ, (2.7)

where Φ is the gravitational potential of the lensing mass region. Following through with
our analogy, the potential is normalised so that it approaches zero at infinity, and is
negative, so that the refractive index is positive. We can define a deflection angle using
Fermat’s principle and integrating n perpendicular to the light path (see Figure 2.1):

α̂ =
2

c2

∫
�∇⊥Φ dz, (2.8)

where the integration is formally carried out along the whole light path with the gradient
taken perpendicular to it. The deflection angle is therefore the integral of the change in
the path of the particle over time, and it depends on the shape of the potential Φ.

Consider a point mass of mass Mpoint, with a Newtonian potential

Φ(ξ, z) = − GMpoint√
ξ2 + z2

, (2.9)

where ξ is the impact parameter and z is the distance along the unperturbed light path.
The deflection angle is then

α̂ =
4GMpoint

c2ξ
, (2.10)

where ξ is the surface mass density, defined as the mass density projected onto a plane
perpendicular to the incoming light ray. This is twice the value obtained in Newtonian
gravity. If the condition ξ � RS is followed, that is, the deflection angle is much greater
than the Schwarzchild radius of the lens, then the deflection angle is small (α̂ � 1).

In astrophysical situation, the lensing mass is of course a three-dimensional object,
not a point mass. Moreover, the light rays are smoothly curved. However, if the deflection
angle is small, the path of the light rays can be approximated by straight-line segments in
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Figure 2.1: Schematic diagram of a gravitational lens system (from Bartelmann & Schnei-
der, 2001). All the distances D are angular diameter distances. The deflection angle is
α̂.
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the neighbourhood of the deflecting mass. This corresponds to the Born approximation
in nuclear and atomic physics (see Bartelmann & Schneider 2001 for further details).

2.1.2 The thin lens approximation

The assumption that the lens can be approximated by a plane is known as the thin lens
approximation. It assumes that the deflection caused by the lens occurs within a narrow
redshift range ∆z ± ξ. The thin lens approximation is useful because it allows us to to
project the mass distribution of the lens onto the lens plane, and therefore to characterise
the lens by its surface mass density Σ:

Σ(ξ) =

∫
ρ(ξ, z) dz, (2.11)

where the impact parameter is generalised to a vector ξ in the lens plane. The deflection
angle is then the sum of the deflections from all the mass elements in the plane:

α̂ =
4G

c2

∫
(ξ − ξ′)Σ(ξ)

|ξ − ξ′| d2ξ′ (2.12)

α̂ =
4GM<ξ

c2ξ
, (2.13)

where M<ξ is the mass enclosed within the radius ξ.

2.1.3 The lensing equation

The basic quantities in gravitational lensing formalism can be derived by examining the
geometry of a typical observer-lens-source configuration, shown in Figure 2.1. The dis-
tances D, given as angular diameter distances in the diagram, are related to the redshifts
by D = Dang(z), such that a mass concentration at redshift zd will be at angular diameter
distance Dd. The three important distances are: the observer-lens distance Dd, the lens-
source distance Ds, and the observer-source distance Dds. The reduced deflection angle
is defined as:

α =
Dds

Dd

α̂ (2.14)

The position of the source on the source plane η can be described in terms of the
deflection angle α and the distances between the different planes:

η =
Ds

Dd
ξ −Ddsα(ξ). (2.15)

The two essential angles in Figure 2.1 are β, the true unlensed angular position of the
galaxy, and θ, the observed lensed angular position. These are related by the deflection
angle in the lensing equation:

θDs = βDs + α̂Dds (2.16)
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Rearranging, and using Equation 2.14, we obtain:

β = θ − α̂
Dds

Dd

β = θ − α. (2.17)

This is the central equation in gravitational lensing formalism. It relates the observed
position of a galaxy θ to its actual position β via the deflection angle α̂. It also gives
us one feature which distinguishes between strong and weak lensing. The solutions θ
for the lens equation give us the angular positions of the images of a source at β. If
the equation for θ has more than one solution then multiple images will be formed. A
necessary condition for this is that the lens must be a strong lens. A strong lens is one
for which the dimensionless mass surface density, defined as

κ(θ) =
Σ(θ)

Σcr
, (2.18)

is greater than or equal to unity in at least one place: κ(θ) ≥ 1. The quantity Σcr is the
critical surface mass density, defined as:

Σcr =
c2

4πG

Ds

DdDds
(2.19)

The quantity κ is known as the convergence, and its value distinguishes a strong lens from
a weak lens. For weak lensing, |κ| � 1, while for strong lensing, |κ| >∼ 1. At points
where Σ > Σcr, the convergence κ(θ) > 1, and the lens is said to be supercritical.

2.1.4 The effective lensing potential

Light rays travel along geodesics which depend on the background spacetime. To relate
the convergence to the gravitational potential of the lens, we start with the effective
lensing potential, which is defined as the scaled, projected, Newtonian potential of the
lens:

ψ(θ) =
Dds

DdDs

2

c

∫
Φ(ξ, z) dz. (2.20)

Taking the gradient of ψ we obtain

�∇θψ = Dd
�∇ξψ (2.21)

�∇θψ =
Dds

Ds

2

c

∫
�∇⊥Φ dz. (2.22)

By comparing the right-hand side of the above equation to 2.12, we can see that the
reduced deflection angle is related to the effective lensing potential by

�∇θψ = α. (2.23)
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The mass density of a lens is related to its potential by Poisson’s equation

�∇2
ξΦ = 4πGρ(ξ, z). (2.24)

Therefore, if we take the Laplacian of the LHS of Equation 2.20 (i.e. ψ), we can relate
the effective lensing potential of the lens to its mass distribution:

�∇θψ =
2

c2
DdDds

Ds

∫
�∇2ξΦ dz (2.25)

�∇θψ =
2

c2
DdDds

Ds
4πGΣ(θ) = 2

Σ(θ)

Σcr
. (2.26)

Thus, the effective lensing potential is related to the convergence by:

�∇2
θψ = 2κ(θ). (2.27)

Referring to Equation 2.12, the reduced deflection angle can be written:

α =
1

π

∫
κ(θ′)

θ − θ′

|θ − θ′|2 d2θ′, (2.28)

so that using Equation 2.27, the effective lensing potential can be related to the conver-
gence by:

ψ(θ) =
1

π

∫
κ(θ) ln(θ − θ′) d2θ′. (2.29)

2.1.5 Convergence, shear and magnification

The surface brightness of a lensed galaxy is conserved. Physically, this is obvious since
there is no emission or absorption of photons in the lensing process. Mathematically, it
follows by Liouville’s theorem: the flux within a given set of geodesics, which is an entire
bounded function, is constant. The surface brightness in the source plane is related to
the observed surface brightness in the image plane by:

I(θ) = Is[β(θ)], (2.30)

where I is the surface brightness, and the angles are those shown in Figure 2.1.
If the angular size of the source is much smaller than that of the region in which

the properties of the lens change, then the distortion of the image of the source can
be described by a linear mapping Aij between the source and the image planes. The
matrix Aij , called the distortion matrix, is of central importance in gravitational lensing
formalism. This matrix can be expressed in two ways. The first way is to write is as the
Jacobian matrix of the lens, defined by:

Aij =
∂βi

∂θj

=
∂

∂θj

(θi − αi). (2.31)
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The second way is to relate it to the Hessian matrix ψij of ψ, using Equation 2.23:

Aij = δij − ∂αi

∂θj
= δij − ∂2ψ(θ)

∂θi∂θj
= δij − ψij ≡M−1

ij , (2.32)

where Mij is the magnification matrix. Equation 2.23 can now be rearranged and written
as:

κ =
1

2
(ψ11 + ψ12). (2.33)

The complex shear is defined by:

γ = γ1 + iγ2 = |γ|e2iφ (2.34)

where γ is the distortion of the image and φ is the orientation of the distortion. The shear
is related to ψ by:

γ1(θ) =
1

2
(ψ11 − ψ22 ≡ γ(θ) cos[2φ(θ)] (2.35)

γ2(θ) = ψ21 = ψ12 ≡ γ(θ) sin[2φ(θ)]. (2.36)

The distortion matrix A can be written in terms of the shear and convergence:

A =

(
1 − κ− γ1 −γ2

−γ2 1 − κ + γ1

)
(2.37)

A = (1 − κ)

(
1 0
0 1

)
− γ

(
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

)
. (2.38)

This is sometimes expressed in terms of the reduced shear g(θ) = γ(θ)/[1−κ(θ)], so that:

A = (1 − κ)

(
1 − g1 −g2

−g2 1 + g1

)
(2.39)

Equation 2.38 has an important physical interpretation:

• The convergence κ causes an isotropic focussing of light rays and an isotropic magni-
fication of the source. The shape of the source galaxy is not altered by convergence
alone.

• The shear γ introduces an anisotropic mapping from the source to the image plane
causing the image to become stretched along some direction φ by a magnitude γ.

The weak lensing calculations in this thesis only consider the latter effect, i.e. shear.
It only remains for us to define the magnification. From Equation 2.30, for a point

θ0 in the image plane corresponding to a point in the source plane β0 = β(θ0), we have:

I(θ) = Is[β0 + A(θ0)(θ − θ0)]. (2.40)

Equation 2.37 describes the mapping of a circular source to an elliptic image. The ratio
of the semi-major axes of the ellipse to the radius of the circular source is 1− κ± γ. The
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flux observed from the image and the unlensed source are integrals over the respective
surface brightness. The magnification is then the ratio of the image and source flux, and
since the surface brightness is conserved, the magnification is also the ratio of the area of
the unlensed galaxy to the lensed image. The magnification is given by:

µ(θ) = detM =
1

detA
=

1

(1 − κ)2 − γ2
. (2.41)

The magnification observable is the magnitude of the magnification |µ|.

2.1.6 Mass profiles

In modelling weak lensing, we need to assign a mass density profile to astrophysical
objects. There are several models in current use, but we shall only discuss the two most
common ones: the singular isothermal sphere, and the Navarro-Frenk-White model. For
a review of models, see Keeton (2001), and references therein.

The singular isothermal sphere (SIS) is among the simplest of mass density pro-
files. It describes a wide range of astrophysical objects, including dark matter halos and
virialised galaxies, with sufficient accuracy. The density profile of an SIS is (Schneider,
2006):

ρ(r) =
σ2

ν

2πGr2
, (2.42)

where r is the radius from the centre of the cluster and σν is the one-dimensional velocity
dispersion of stars (or galaxies) in the galaxy (or galaxy cluster). The surface mass density
is calculated by projecting the density along the line-of-sight:

Σ(ξ) =
σ2

ν

2Gξ
. (2.43)

The SIS has the property that the shear induced at a particular position is equal to the
convergence at that point, i.e. |γ(ξ)| = κ(ξ). For an SIS the convergence is

κ(θ) =
θE

2θ
where θE = 4π

(σν

c

)2 Dds

Ds
. (2.44)

The scaled deflection angle is constant for an SIS: |α| = θE . Similarly, the effective lensing
potential is: ψ = θE|θ|. The shear can then be deduced from Equations 2.35:

γ(θ) = − θE

2|θ|e
2iφ. (2.45)

The SIS is a good approximation in many situations, but it breaks down in two ways:
firstly, the mass distribution is infinite, and secondly, the density diverges for ξ = 0. In
order to apply this approximation, therefore, it is often truncated at small and large radii.

Another widely used profile is the NFW profile, developed by Navarro, Frenk, &
White (1997), who found that the density profiles of many dark matter haloes in numerical
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Figure 2.2: Convergence map with the shear overlaid, showing the strong link between
the shear and convergence fields. Overdense, high convergence regions (shown in white)
tend to be surrounded by a ring shear pattern, while underdense regions (in black) tend
to be sourrounded by radial shear patterns (from www.icosmo.org).
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simulations could be fitted by:

ρ(s) = ρ0
c

νc2g(c)

3s(1 + cs)2
, (2.46)

where s is the radius in units of the virial radius s = r/rv, c is the ‘concentration pa-
rameter’, which is related to the density of the halo, and g(c) = 1/[ln(1 + c)− c/(1 + c)].
Typical values for the concentration parameter range from c = 5 for clusters of galaxies
to c = 10 for large bright objects. The exact value depends on the mass of the object
and on the primordial matter power spectrum. The NFW profile diverges from the SIS
at small and large radii, while being a good approximation at intermediate radii.

2.2 Types of lensing

Gravitational lensing effects can be broadly divided into three main categories, which will
be briefly explained in this section, in order to clarify the discussion of weak lensing in the
next section. It should be emphasised that these categories are not sharply divided, and
indeed there are many lensing configurations which fall under more than one category.

• Micro lensing occurs when the size of the lensing mass is small, so that the object
behaves like a point source. This occurs in the case of single stars or planets. The
magnification effect causes a temporary change in the brightness of the object, since
microlensing causes a measurable increase in the flux.

• Strong lensing occurs when an image appears within or near a caustic, due to the
light path in the lens plane passing within a critical curve. It can produce distorted,
magnified and multiple images.

• Weak lensing produces weakly distorted, single images of sources outside of caustics.
There is no standard definition of the term ‘weak lensing’, but observationally we
can identify its statistical nature as the key aspect which distinguishes this effect
from other forms of gravitational lensing. In other words, weak lensing can only be
inferred by observing a (statistically) large number of images. This distinguishes
it from strong lensing, where the effect is visible in single systems. Both weak
and strong lensing are categorised as macro lensing, since the lensing is caused by
extended massive objects, such as galaxies, galaxy clusters, or dark matter halos.
The term weak lensing is generally applied to the case where the effect is caused by
one lens. In the general case, where lensing may be due to more than one structure,
the term ‘cosmic lensing’ is sometimes used. Cosmic lensing, therefore, is the term
used to describe lensing caused by the general matter distribution of the Universe.
This effect occurs even when an apparently empty region of the sky is observed.
Lensing in this régime is studied using statistical techniques, such as the two-point
correlation function of the shape distortions.
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2.3 Weak lensing

In this section we shall examine the effects produced by weak lensing, and the formalism
of weak lensing. There are two ways in which weak lensing can produce a measurable
effect. Firstly, background galaxies will be weakly distorted by foreground structures,
which can be either large-scale structure or galaxy clusters (see Villumsen 1996; Wittman
et al. 2000). This effect is called weak shear. Secondly, the weak magnification effect can
change the observed number density of source background galaxies or change the size of
an image of a given surface brightness (see Van Waerbeke 2009 for a recent review of the
two effects).

The terms ‘weak lensing’ and ‘cosmic shear’ are sometimes employed interchange-
ably. Strictly speaking, cosmic shear refers to shear by all foreground structures, including
large-scale structure not in the line of sight of the lensed object, while weak lensing also
includes magnification effects. The two terms are also distinguished by the régime in
which observations are made: either around large galaxy cluster, or in the field (away
from large densities), in which case the cosmic shear effect will be the dominant one. In
this thesis, we will only work with cosmic shear, and the term ‘weak lensing’ in the con-
text of our calculations should be understood to refer only to this effect, unless otherwise
specified.
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1−γ

1+γ

Ro
1−κ

a

b

β

Figure 2.3: Schematic diagram showing lensing effects (shear and magnification) on a
galaxy. In the source plane, the galaxy is circular, with radius R0. The convergence κ
stretches its average radius to R0/(1− κ) and the shear γ distorts the galaxy along some
angle β. This results in an elliptical image with a and b as the semi-major and semi-minor
axes respectively. In other words, convergence increases the average radius of the image,
and shear stretches the circle into an ellipse (from Munshi et al. 2008).
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2.3.1 Ellipticity

The effect of foreground structure is to distort the image of a background galaxy due
to weak shear — a circular galaxy appears elliptical. However, we know that not all
galaxies are circular. Therefore, for an elliptical galaxy, weak shear induces an additional
ellipticity.

Referring to Figure 2.3, we may define the ellipticity of a galaxy as:

ε =
a2 − b2

a2 + b2
(2.47)

or as

ε =
a− b

a+ b
, (2.48)

where a and b and the semi-major and semi-minor axes of the ellipse, respectively. We
shall retain the first definition (2.47) throughout this chapter.

We need a way of relating the observed ellipticity to the shear. Consider a galaxy
with a surface brightness profile I(θ) that is well defined for all angular separations from
the centre θ of the image, so that:

θ ≡
∫

d2θw[I(θ)]θ∫
d2θw[I(θ)]

(2.49)

where w[I(θ)] is a suitably chosen weight function so that the integrals converge. The
tensor of second brightness moments is:

Qij =

∫
d2θw[I(θ)](θi − θi)(θj − θj)∫

d2θw[I(θ)]
; i, j ∈ {1, 2}. (2.50)

The trace part of the tensor Qij contains the size information while the traceless part
contains ellipticity information. Thus for a circular image Q11 = Q22 and Q12 = Q21 = 0.
From the definition of Qij , a complex ellipticity, analogous to the complex shear, can be
defined:

ε = ε1 + iε2 = |ε|e2iφ (2.51)

where

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22
(2.52)

or

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
. (2.53)

We shall use the definition in Equation 2.53. For a circular image, ε1 = ε2 = 0 (see Figure
2.4).

Bartelmann & Schneider (2001) and Schneider (2006) show that the original ellip-
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ε
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1

γ2
2

γ1

Figure 2.4: Schematic illustration of the geometrical meaning of the shear γ and the
ellipticity ε. Using a Cartesian axis, a positive shear component γ1 corresponds to an
elongation along the x-axis. A negative component gives a compression along the same
axis. A positive (or negative) shear component γ2 corresponds to an elongation (or com-
pression) along the x = y direction. For a circular object (shown at the centre), both
ellipticity components are equal to zero. The ellipticity components ε1 and ε2 correspond
to the same compression and elongation as the shear components (from Réfrégier 2003b).
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ticity εS of a source galaxy is transformed under lensing, by Equation 2.53 as:

εS =


ε− g

1 − g∗ε
for |g| ≤ 1

ε− gε∗

ε∗ − g∗
for |g| > 1.

(2.54)

To write ε in terms of εS, the inverse transformation is obtained by interchanging ε with
ε∗ and replacing g by −g. In the weak lensing case, |g| � 1, and the inverse of Equation
2.54 reduces to:

ε ≈ εS + g. (2.55)

The above equation applies to individual galaxies, but it cannot be used if the ellipticity
of the individual source is unknown. At this point, we use a key property of weak lensing
observations — their statistical nature. When a large statistical sample of galaxies is used,
the average intrinsic ellipticity should be zero, since there is no preferred orientation of
galaxies in the Universe. Mathematically, therefore:

〈εS〉 = 0. (2.56)

The average additional ellipticity in the weak lensing régime then becomes:

〈ε〉 = 0 + 〈g〉. (2.57)

An estimator for the shear can be deduced by assuming that the galaxy covers a small
angular patch in the sky, so that the light from each part of the galaxy experiences
approximately the same gravitational field:

γ ≈ g ≈ 〈g〉 = 〈ε〉. (2.58)

This result holds for a redshift-distributed source population (Bartelmann & Schneider,
2001). Equation 2.58 implies that the variance in the shear is related to the variance in
the ellipticity by:

σ2
γ = σ2

ε . (2.59)

Using the definition of complex ellipticity in Equation 2.52 we would obtain 〈ε〉 = 0+2〈g〉,
γ ≈ 〈ε〉, and σ2

γ = σ2
ε /4. In our calculations, we shall retain the definition for the variance

in the ellipticity in Equation 2.59.

2.3.2 Higher order weak lensing

So far we have assumed that the distortion matrix is constant across the whole image,
producing an ellipticity. However, the matirx A can vary across an image, producing
higher order effects and leading to a circular source being distorted not into an ellipse,
but into an arc. This effect is termed flexion. Going back to the distortion matrix, we
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can write this quantity in a form which allows a clear physical interpretation:

A =

(
1 − κ 0

0 1 − κ

)
+

(−γ1 −γ2

−γ2 γ1

)
+

(
0 ρ
−ρ 0

)
, (2.60)

where κ and γ have the usual meaning of convergence and shear, respectively, and ρ is a
rotation, which is not observed in weak lensing, but can be caused by telescope rotation.
The image’s surface brightness fI at a position θ can be written in terms of the source
surface brightness fS:

fi(θi) = fS(Aijθj). (2.61)

If A varies across the image, we can take its mean, and write the corrections to this mean
as a Taylor series to second order:

fi(θi) = fS

(
Aijθj +

1

2
Dijkθjθk

)
. (2.62)

The tensor D in the above equation contains the information about the amount of flexion
in the image. It is given by

Dijk = ∂iAjk =
∂3ψ

∂θi∂θj∂θk

. (2.63)

This can be written in terms of flexion components:

F =
1

2
∂∂∂∗ψ G =

1

2
∂∂∂ψ, (2.64)

respectively known as the 1-flexion and 3-flexion. The latter has 120° rotational symmetry,
while the former has 360° rotational symmetry (i.e. it is a vector). The description of
flexion in lensed objects is given by the components of F and G:

−2Dij1 =

(
3F1 F2

F2 F1

)
+

(
G1 G2

G2 −G1

)

−2Dij2 =

(
F2 F1

F1 3F2

)
+

(
G2 −G1

−G1 −G2

)
. (2.65)

There exists an additional second-order effect which is termed ‘twist and turn’. This
appears when the remaining degrees of freedom in D are found (see Bacon & Schäfer,
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2009):

−2Dij1 =

(
3F1 F2

F2 F1

)
+

(
G1 G2

G2 −G1

)
+

(
0 −C1

C1 0

)
+

(
0 T1 − T2

T1 − T − 2 −2T1 − 2T2

)

−2Dij2 =

(
F2 F1

F1 3F2

)
+

(
G2 −G1

−G1 −G2

)
+

(
0 −C1

C2 0

)
+

(−2T1 + 2T2 T1 + T2

T1 + T2 0

)
.

(2.66)

The terms C and T are called the ‘twist’ and ‘turn’, respectively. These terms have
no effects on circularly symmetric objects. In this respect, they are similar to ρ. The
interest of these higher-order lensing effects lies in their potential application to future
high-precision weak lensing surveys.

2.3.3 Tangential shear

The components of complex shear γ1 and γ2 are defined relative to a local Cartesian
coordinate frame. Consider a pair of galaxy images with an angular separation φc (i.e.
the polar angle of the separation vector θ) about the centre of the coordinate frame. Then
the tangential and cross-component of the shear at this position for this pair of galaxies,
respectively aligned perpendicular and parallel to the radius vector, are:

γt = Re[γe−2iφc ] and γ× = Im[γe−2iφc ], (2.67)

where Re and Im denote the real and imaginary parts, respectively. Equivalently,

γt = −[γ − 1 cos(2φc) + γ2 sin(2φc)] and γ× = −γ1 sin(2φc) + γ2 cos(2φc). (2.68)

We can then define the correlation functions 〈γtγt〉, 〈γ×γ×〉 as well as the mixed correlator
〈γtγ×〉. This allows us to write the definition

ξ±(θ) = 〈γtγt〉(θ) ± 〈γ×γ×〉(θ), and ξ×(θ) = 〈γtγ×〉(θ). (2.69)

Due to parity symmetry, ξ×(θ) is expected to vanish since a parity transformation in the
coordinates means that γt → γt but γ× → −γ×. The residual cross-component shear γ×
can therefore be used to estimate the noise on the measurement of the tangential shear.

2.3.4 E-modes and B-modes

At the level of 2-point statistics, one expects that (Schneider, 2006):∫ ∞

0

dθ θξ+(θ)J0(θ�) =

∫ ∞

0

dθ θξ−(θ)J4(θ�), (2.70)

where J0 and J4 are Bessel integrals, and ξ± are defined in Equation 2.69 . The observed
shear field is not guaranteed to satisfy these relations, due to noise, systematics, or other
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effects. Small derivations from the above relations are therefore due to non-lensing effects.
Shear components which satisfy Equation 2.70 are called E-modes, while those that do not
are called B-modes (the names are analogous to those employed for the CMB polarisation
field).

There may be two possible causes for B-modes that are not due to systematic effects.
Firstly, the Born approximation may not be strictly valid. This, however, is expected to
give very small resulting B-modes (see Hilbert et al., 2009). Secondly, there may be
clustering of source galaxies. Again, the effect is expected to be very small. However,
the current best guess for the origin of B-modes remains intrinsic alignment of galaxy
ellipticities (see Kilbinger et al., 2006). It is beyond the scope of this thesis to go into
the details of these mechanisms. A detailed discussion of E- and B-modes, together with
the relevant formalism and possible causes, is found in Schneider (2006), and references
therein, and also in Schneider et al. (2002).

2.3.5 Shear measurement methods

The above discussion shows that the ellipticity observable is related to the shear, and by
measuring the former we can calculate the latter. The difficulty of weak lensing probes
is to detect the true lensing signal while correcting for instrumental and atmospheric
distortions, which can be up to one order of magnitude higher than the gravitational shear
distortion. There are a number of complementary techniques to measure the ellipticity
of a galaxy induced by cosmic shear. The aim of these methods is to measure the true
induced ellipticity by correcting for any non-gravitational source of alignment due to the
point-spread function and camera distortions.

The first method to be developed, and also among the most commonly used, is
the KSB method (Kaiser, Squires, & Broadhurst, 1995). This allows for the removal
of the smearing of a galaxy’s image due to an anisotropic point spread function on the
instrument. The KSB method has been intensively tested and is at the basis of two
other techniques: the ‘extended KSB’ (Kaiser, 2000) and the ‘modified KSB’ (Rhodes
et al., 2000). Another method, developed more recently, is shapelets (Réfrégier, 2003a;
Réfrégier & Bacon, 2003). In the shapelet formalism, the galaxy’s image is decomposed
into spherical polar harmonics, with the shear signal corresponding to particular ‘quantum
numbers’. This method, which uses Cartesian coordinates, has been further developed by
Massey & Réfrégier (2005), who use polar coordinates. An overview of further methods,
with the relevant citations, is given in Réfrégier (2003b), Van Waerbeke & Mellier (2003)
and Bridle et al. (2009b).

2.4 Cosmic shear

Weak lensing does not only occur in the presence of galaxy clusters. Even an apparently
‘empty’ field background should produce some shear on background galaxies, due to the
intervening LSS. The term ‘cosmic shear’ is used to describe shear due to lensing by LSS
away from galaxy clusters. The formalism of cosmic shear will therefore be a generalisation
of the weak shear formalism for a single lens.
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Figure 2.5: Representation of E- and B-modes of the shear. The upper row shows a
typical E-mode shear pattern caused by a mass overdensity (left) or underdensity (right),
giving the tangential and radial alignment of the shear, respectively. The lower row shows
a B-mode pattern, which is obtained from the E-mode pattern by rotating all shears by
45°. B-modes cannot be produced by gravitational lensing (from Van Waerbeke & Mellier
2003).
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Figure 2.6: The effect of weak lensing as detected on the observed image of a galaxy (top
panels) and a point source such as a star (bottom panel). The series of pictures illustrates
how the final observed signal is a sum of the lensing signal and noise, after convolution with
the point-spread-function (PSF) of the experiment, which causes blurring. In contrast,
no shear signal can be observed in the case of individual stars, since they act as a point
source. This can be utilised to correct for the effect of the contaminant signals, since star
images are subject to the same PSF and noise as galaxy images. Although the different
shear measurement techniques vary in their details, they all involve some form of the
inverse of this transform i.e. starting from the image on the right-hand side, they work
backwards to the left-hand side (figure taken from Bridle et al., 2009b).
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Figure 2.7: The effect of image distortion. On the left we see an unlensed image of a
group of galaxies, represented by circular Gaussian mass distributions on a regular grid.
On the left we can see the effect of lensing, calculated using a Gaussian random field for
the dark matter density. For illustration purposes, the lensing effect has been exaggerated
by a factor of 10 (from www.icosmo.org).
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The treatment is analogous to that of a single lens system. By generalising Equation
2.20, the effective cosmological lensing potential φ(r, θ) can be related to the 3D comoving
gravitational potential of the lens Φ(r, θ) by (see Bartelmann & Schneider, 2001):

φ(r, θ) =
2

c2

∫ r

0

dr′
[
Sk(r − r′)
Sk(r)Sk(r′)

]
Φ(r′, θ), (2.71)

where r is the comoving distance and Sk is defined in Equation 1.24. We shall henceforth
write any function r(Sk) as r.

The effective lensing potential, defined in Equation 2.23, can be generalised to obtain
the cosmic lensing potential:

∇2φ = 2κ. (2.72)

The value of κ at a position on the sky θ for source galaxies at a distance r, known as
the convergence field or the effective convergence, can be written as:

κ(r, θ) =
1

c2

∫ r

0

dr′
[
(r − r′)
rr′

]
r′2
∂2Φ(r′, θ)

∂r′2
. (2.73)

Poisson’s equation for the 3D potential is:

∇2Φ(r) = 4πGρma
2δ

=
3

2
H2

0Ωma
−1δ (2.74)

where ρm is the cosmological matter density, a is the scale factor, and δ is the relative
matter density contrast. Using this, Equation 2.73 can be rewritten:

κ(r, θ) =
3

2

(
H0

c

)2

Ωm

∫ r

0

dr′
[
(r − r′)

r

]
r′2
δ(r′θ, r′)
a(r′2)

, (2.75)

where δ(rθ, r) is the fractional matter overdensity at comoving distance r and position θ.
To apply this to a real cosmological matter distribution, we include a normalised redshift
distribution for the source galaxies P (z) dz = G(r) dr, and integrate over the redshift
distribution. The convergence field can then be generalised to:

κ(r, θ) =
3

2

(
H0

c

)2

Ωm

∫ r

0

r′ dr′W (r, r′)
δ(r′θ, r′)
a(r′2)

(2.76)

where

W (r, r′) =

∫ r

r′
dr̃G(r̃)

[
r̃ − r′

r̃

]
. (2.77)

Equations 2.33 and 2.34 can now be generalised via the transformation ψ → φ

κ(r, θ) = 1
2
(φ11 + φ22)

γ1(r, θ) = 1
2
(φ11 − φ22)

γ2(r, θ) = φ12 = φ21. (2.78)
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2.4.1 Effective 2D convergence spectrum

When we observe a patch of sky, we can only measure angular correlations between
galaxies, so we need a way to infer the real-space correlations and thus construct the
matter power spectrum. This is done using the Limber (1953) approximation.

The equations for cosmic shear presented in the previous section can be recast so
that the shear is a continuous field in Fourier space. The Fourier transform of κ(θ) is:

κ(θ) =

∫
d2�

2π
κ(�)ei�.θ. (2.79)

The two-dimensional effective convergence power spectrum Cκκ
� can then be defined

through:
〈κ(�)κ∗(�′)〉 = (2π)2Cκκ

� δD(� − �′) (2.80)

where δD is the Dirac delta function.
In general, under the assumptions of statistical isotropy and small angles (which are

valid for weak lensing observations) the two-point observables of a set of two-dimensional
scalar fields xi(n̂), where n represents the direction on the sky, are given by their angular
power spectra

〈x∗i (l)xj(l
′)〉 = (2π)2δ(l − l′)Cxixj

� , (2.81)

where l is the Fourier wavevector or multipole

xi(n̂) =

∫
d2�

(2π)2
xi(l)e

il·n̂. (2.82)

We relate these two-dimensional angular fields to three-dimensional source fields
si(r; z) by a weighted projection

xi(n̂) =

∫
dzWi(z)si(ri = n̂DA, z), (2.83)

where DA(z) is the angular diameter distance in comoving coordinates and Wi(z) is some
weight function.

The three-dimensional power spectra are then projected onto the two-dimensional
lensing correlation function using the relation given by the Limber equation (Limber,
1953; Kaiser, 1992):

C
SiSj

� =

∫
dz

H

D2
A

Wi(z)Wj(z)P
SiSj(k = �/DA, z), (2.84)

where H(z) ≡ a−1da/dt is the Hubble parameter. The three-dimensional source power
spectrum is defined by

〈s∗i (k)sj(k
′)〉 = (2π)3δ(k − k′)P sisj (k). (2.85)

The Limber approximation is assumed to be accurate for the purpose of our weak lensing
survey. However, Simon (2007) has pointed out that the assumptions upon which it
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is based break down beyond a certain galaxy separation, so that the equation becomes
increasingly inaccurate for larger angular separations.

In our calculations, the two dimensional fields are the ‘lens’ galaxy number density
fluctuations and the electric or ε component of the weak lensing shear field measured with
‘source’ galaxies. One can use different binning strategies for the lens and source galaxies
of a given survey: redshift, luminosity, colour, etc.. Weak lensing tomography divides the
galaxies into redshift bins.

In Equation 2.84 the source field is the three-dimensional number nV (r, z) or rather
its fluctuations:

si(r, z) = δg =
δnV

nV

, (2.86)

and the weight for the angular fluctuation field g(n̂) is the normalised redshift distribution
function

Wg(z) =
D2

A

H

nV

nA
, (2.87)

where the normalisation factor

nA =

∫
dz
D2

A

H
nV (2.88)

is the angular number density in sr−1. The weights are normalised so that
∫
Wg(z)dz = 1.

The ε field itself is a projection of the mass density fluctuation

s(r; z) = δm =
δρm

ρm
, (2.89)

and hence is equal to the convergence κ(n).
In tomographic weak lensing, the only observable being considered is the correlation

between and within redshift bins. The Limber equation therefore has the form:

Cij
� =

∫
dz

H

D2
A

Wi(z)Wj(z)P (k = �/DA, z), (2.90)

where i, j denote redshift bins. The weighting function Wi(z) is defined by the lensing
efficiency:

Wi(z) =
3

2
Ωm

H0

H

H0DOL

a

∫ ∞

z

dz′
DLS

DOS
Wi(z

′), (2.91)

where the angular diameter distance to the lens is DOL, the distance to the source is DOS,
and the distance between the source and the lens is DLS (see Hu & Jain 2004 for details).
In general, the distribution of source galaxies Wg(z

′) need not be the same as for the
lens galaxies above. Furthermore, the normalised redshift distribution Wg is the direct
observable, so that the efficiency Wi for a known Wg may be used to probe cosmology.

Kaiser (1998) showed that by applying Limber’s equation in Fourier space, the 2D
effective convergence spectrum can be be related to the 3D matter power spectrum Pδ by:

Cκκ
� =

9

4

(
H0

c

)4

Ω2
m

∫ rH

0

drPδ(�/r, r)

[
W (r)

a(r)

]2
. (2.92)
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This important equation is at the heart of this thesis, since it allows us to relate a
the convergence, which is measured by weak lensing probes, to cosmological parameters
via the matter power spectrum. The expression can be applied to actual weak lensing
experiment s, and also to future experiments, for which we need to find the predicted
cosmological parameter constraints. Note that it is the total matter density Ωm which
enters the equation. This quantity includes baryonic matter, cold dark matter, and hot
dark matter (neutrinos). Weak lensing therefore depends on the total matter content, and
the only physical process involved is gravitation. Since most of the matter content of the
Universe is dark matter, which has not been directly observed, it is immediately evident
that the weak lensing provides a sensitive probe of dark matter in particular. The other
quantity of interest is matter power spectrum. Weak lensing therefore also probes the
evolution of structure. This obviously depends on the various matter densities, but also
on the geometry of the Universe, which is also governed by dark energy, and its evolution.

2.5 Systematic effects

Here we review the main sources of systematics in weak lensing measurements, and strate-
gies to overcome systematics. A discussion of systematic effects, and of techniques to
reduce these effects, is found in Réfrégier (2003b) and Schneider (2006).

Intrinsic correlations

The essential quantity in weak lensing observations is the cosmic shear signal, obtained
by correlating the measured ellipticities of distant galaxies. We have already seen how
the statistical nature of weak lensing overcomes the obvious difficulty in determining the
true additional ellipticity when galaxies are not circular (Equation 2.56). In fact, the
intrinsic ellipticity is typically one order of magnitude larger than the ellipticity induced
by gravitational shear. This is overcome by measuring the ellipticity correlations for many
pairs of galaxies. Expressing the measured ellipticity ε as the sum of the intrinsic ellipticity
εS and gravitational shear γ, in the standard weak shear treatment. The correlation
between the ellipticities for two galaxies i and j is then:

〈εiεj〉 = 〈γiγj〉 + +〈εSi εSj 〉 + 〈γiε
S
j 〉 + 〈εSi γj〉. (2.93)

Equation 2.56 is then obtained by assuming that the intrinsic ellipticities of galaxies are
randomly distributed, so that they are correlated neither with the intrinsic ellipticities
nor with the shears of neighbouring galaxies. All the terms on the right-hand side of the
above equations except the first one then reduce to zero, and the correlated ellipticities
then give the shear signal.

However, in high-precision cosmic shear measurements, the assumption of random
intrinsic ellipticities is no longer accurate, since galaxies can be intrinsically aligned and
therefore possess correlated intrinsic ellipticities. There are three main systematic effects
that can contaminate the shear signal.

Two physically close galaxies can be aligned by the same dark matter halo surround-
ing them. This means that the second term on the right-hand side of Equation 2.93 is
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non-zero, and the cosmic shear measurement is therefore contaminated. This systematic
effect is termed intrinsic ellipticity correlation (or ‘II correlations’).

If galaxy i is located at a significantly lower redshift than galaxy j (i.e. closer
to the observer), then this second RHS term should vanish, because the shear signal of
galaxy i is not correlated with the intrinsic shape of a background object (unless we
encounter the rather improbable situation of an extended matter structure along the line-
of-sight, for instance). However, the third term on the right-hand-side of Equation 2.93
can contribute to the ellipticity correlator. If a matter structure causes the alignment of
a nearby galaxy and at the same time contributes to the lensing signal of a background
galaxy, then shear-ellipticity correlations are produced. These so-called ‘GI correlations’,
first discussed by Hirata & Seljak (2004) produce a net anti-correlation. This is due to the
fact that the shear of the background galaxy is preferentially tangential to the deflecting
matter concentration, whereas the foreground galaxy is on average radially aligned with
the matter structure.

Both II and GI contamination can contribute as much as 10% to the lensing sig-
nal2. Indeed, third order statistics might be contaminated by III, GII and GGI terms
to a higher level than for two-point statistics (see Semboloni et al., 2008). There exist
solutions to intrinsic alignment contaminants. Weak lensing techniques which include
redshift information, such as tomography and 3D weak lensing, reduce the problem of
II correlations by decoupling the long-distance line-of-sight effects from the the physical
proximity of the galaxies (see e.g. King & Schneider, 2003). Using this approach, a nulling
technique for shear-intrinsic ellipticity has been proposed by Joachimi & Schneider (2008,
2009). Another solution is to put priors on the intrinsic alignments (Bridle & King, 2007;
Kitching et al., 2008c).

Measurement systematics

Any imaging system will produce some blurring of point objects, which is described by the
point spread function (PSF). This can cause an additional ellipticity in the image, which
can cause serious systematics, especially if the PSF is anisotropic (see Kaiser et al., 1995).
Even if the PSF ellipticity is isotropic, there will be some limit to the precision of shear
measurements (see Hirata & Seljak, 2003). Another source of instrument systematics is
the pixel-to-pixel nonlinearity which can exist in CCD cameras, and which can induce
bias in the shear measurements. Since future surveys require shear measurements of the
order of 1% with an accuracy better than 0.1%, smaller shear signals will require an even
better accuracy.

The challenge of weak lensing observations is to disentangle the distortions caused
by weak lensing from those caused by systematics. The lensing signal is only a few
percent in amplitude, and systematic effects may produce a larger signal. The various
shear measurement methods involve a number of steps designed to reduce systematic
effects to a minimum (see Réfrégier, 2003b, and references therein). The first step is
image processing, where the final reduced images are produced, and any instrumental
distortion caused by the telescope is corrected for. The next step is to derive an estimator

2Additionally, II correlations may be responsible for B-modes
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for the shear from the shapes of the galaxies in the final reduced images. This involves a
correction for PSF effects (see Figure 2.6 for a schematic illustration of these steps).

To this end, various methods have been devised, and there is an ongoing effort to
test these methods and establish whether they will achieve the required precision. The
need to compare the various methods has given rise to various collaborations, of which
will mention two.

The Shear Testing Programme3, now in its fourth year (2009), is a collaborative
project which aims to improve the accuracy and reliability of these various methods.
It provides a series of public image simulations, and provides a forum where technical
knowledge can be shared. The first- and second-year results are respectively published in
Heymans et al. (2006) and Massey et al. (2007). Another collaboration is the GREAT08
PASCAL Challenge 4, based on STEP4, which is aimed at the wider scientific community
beyond weak lensing research. The first results are found in Bridle et al. (2009a). The
results of GREAT08 show that the shear measurement problem is essentially a statistical
problem, not an astrophysical one, and that different methods are successful in different
regions of parameter space. They also highlight the steady improvement in measurement
methods5, and show that further optimisation will yield the required accuracy in shear
measurement.

Redshift distribution systematics

To convert cosmic shear measurements into the 3D matter power spectrum, the redshift
distribution of the background galaxies must be known. An uncertainty in the median
galaxy redshift leads to an uncertainty in the amplitude of the matter power spectrum
(Hu & Tegmark, 1999). The problem of photometric redshift systematics can be met
given a number of galaxies in the spectroscopic calibration sample of 104−105 (Ma et al.,
2006; Amara & Réfrégier, 2007).

Theoretical uncertainties

To obtain cosmological parameter constraints from weak lensing, one must essentially
compare the observations to the predictions of some theoretical model. Most of the
signal in cosmic shear surveys comes from small scales and therefore from the nonlinear
part of the matter power spectrum. The existing nonlinear corrections to the matter
power spectrum (Peacock & Dodds, 1996; Ma, 1998) are only accurate to about 10%
and disagree with one another to this level in the nonlinear régime (see Huterer, 2001).
Newer prescriptions such as those by Smith et al. (2003) offer more accurate predictions
particularly for non-ΛCDM cosmological models. The error in the nonlinear part may still
be significant if effect of massive neutrinos is included (see for instance Saito et al., 2008).
Current semi-analytical models need to be improved to match the degree of statistical
accuracy expected for future weak lensing surveys. The solution is to run a suite of
N -body ray-tracing simulations (see e.g. White & Vale, 2004; Huterer & Takada, 2005;
Hilbert et al., 2009; Sato et al., 2009; Teyssier et al., 2009).

3http://www.physics.ubc.ca/~heymans/step.html
4http://www.great08challenge.info
5The next phase of the collaboration is GREAT 10 (www.great10challenge.info).
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Parameter forecasts

In this chapter we present the theory of Fisher matrix analysis, developed by R.A. Fisher.
This technique enables us to quantify the accuracy with which an experiment, past or
future, can measure the parameters of a theoretical model. We start with an introduction
to the general formalism. This is followed by a presentation of the Cramér-Rao Theorem,
which is at the basis of Fisher matrix analysis.

We then present the Fisher matrix technique used in this thesis, where we calculate
error forecasts for a future weak lensing experiment. We give the derivation of the Fisher
matrix for this experiment, where the probability distribution is assumed to be Gaussian.
Finally, we give details of the numerical calculation of the Fisher matrix used in our work.
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3.1 Bayesian statistics

The notion of probability is central to the calculation of cosmological parameter con-
straints. It allows us to model the data with particular cosmological models and to
interpret our parameter constraints in a logical manner. In going from general principles
to observations, we want to apply deductive reasoning to problems which require inductive
reasoning. This is known as the epistemic philosophical stance on probability, describing
the property of a system when the causative mechanism is unknown or uncertain.

There are a number of interpretations that can be used when dealing with proba-
bility. These fall broadly into the following categories:

• Propensity: In this interpretation, probabilities are objective properties of the sys-
tem. This is the approach taken in the Heisenberg formalism, for instance.

• Relative Frequency: This interprets the relative frequency (probability) of an event
as arising from the number of times this event would occur relative to an infinite
ensemble of ‘identical’ experiments.

• Bayesian probability: This takes probability theory as a logic of inference — prob-
abilities are the likelihood of an event being such, given all available information.

The propensity interpretation is difficult to reconcile with cosmology. It would
require the probability of a cosmological parameter to be measured as a certain value to
be an intrinsic property of the Universe.

The frequentist interpretation can be used in cosmology, and will yield sensible
uncertainties, but the underlying philosophy clashes with the idea of a theoretical cos-
mological model. In this approach, the uncertainty in the measurement of, say, w would
result from the fact that each time an observation is made, the measured value would be
slightly, and randomly, different. The spread of measured values after an infinite num-
ber of experiments would then yield the inferred uncertainty. This approach creates a
problem, since we do not perform experiments on the Universe, we merely observe the
outcome of its evolution.

The Bayesian approach is the most logically consistent way of making assertions in
cosmology. The central notion is that the laws of probability apply equally to propositions
of all kinds. Probabilistic statements are interpreted as assertions about the ‘degree of
belief’ given the data available. In other words, the statement: ‘w0 = −0.95 ± 0.05 at
68% confidence’ is interpreted as ‘It is 68% certain that the value of w0 falls between −0.9
and −1, given the data available’.

The main criticism of the Bayesian approach is that any assertion depends on a
given data set. However, if the data sets and priors are the same, then there will be
agreement between different experiments. Among the critics of Bayesian statistics was
R.A. Fisher himself, who developed the Fisher matrix formalism used in this thesis. How-
ever, Fisher later changed his views, and came to see Bayes’s ideas as anticipating his
own fiducial inference approach (for a review and a discussion, see Aldrich, 2008, and
references therein).
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The Fisher matrix formalism uses the Bayesian approach to give us the probable
errors on parameters measured in an experiment. The approach is widely used in cosmol-
ogy due to its relative computational simplicity and its sound mathematical basis. It is
also useful in optimal experiment design, where the aim is to maximise the information.
In the Fisher matrix formalism, this corresponds to minimising the variance of the score.
In the following section, we shall introduce the formalism of Fisher matrix analysis.

3.2 The Fisher matrix formalism

The science of cosmology has seen a steady improvement in experimental techniques in
the last few decades. An increase in the number of experiments, as well as the amount of
data available, has brought to the fore the question of how best to analyse the data.

A weak lensing survey starts with a series of images, made up of a number of pixels.
Each pixel represents the raw data, which must be analysed to obtain scientific results.
The number of operations typically scales as the number of pixels cubed, which means
that brute force calculations become impossible, and alternative solutions must be found
the analyse the data to extract scientific information. This is true for current weak
lensing experiments, as well as future experiments such as the all-sky weak lensing survey
considered in this thesis.

The final aim of weak lensing surveys, as applied to the problem of dark energy or
other cosmological sectors, is to constrain cosmological parameters. This is a problem
common to many branches of science. Given an experiment, what is the uncertainty in
our measurement? How do we optimise our experiment to obtain the best precision in
our measurement? These questions were first answered by Fisher (1935). In our case, the
problem reduces itself to finding how well we can measure cosmological parameters given
a future weak lensing survey.

In this thesis we are concerned with parameter error estimation, not model selection.
We do not interpret results to infer the preferred theoretical framework. The notion of a
model can be either a completely different paradigm (e.g. General Relativistic gravity or
higher-dimensional gravity), or basically the same model, with a different parameter set
(e.g. the Standard Model with Λ or dark energy with varying w).

3.2.1 The likelihood function

The central quantity in analysis is the likelihood function. This is defined as the proba-
bility that a given experiment would obtain a certain data set given a certain theory. The
likelihood function therefore assumes that the model structure is known and that only
the parameters within the structure are to be estimated. It is solely dependent on the
unknown parameters θ, as everything else is known or assumed. The probability and the
associated likelihood differ only in terms of what is known or assumed. In the likelihood
function, the model is assumed and the data either come from past experiments (observed
data) or from future experiments (assumed observations). In either case, the interest lies
in estimating the unknown parameters.

We shall now present the mathematical formalism for the maximum likelihood
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method. Throughout this chapter, we shall follow the notation in Tegmark et al. (1997).
Suppose we have a data set consisting of n real numbers x1, x2, . . . , xn, denoting, for in-
stance, the number of lensed galaxies in a weak lensing survey. We write these numbers
as an n-dimensional vector x. The data set x is therefore assumed to be a random vari-
able with some probability distribution L(x;Θ, σθ), which depends on a vector of model
parameters

Θ = (θ1, θ2, ..., θm). (3.1)

The variance in each theoretical parameter θ is denoted by the σ2
θ . In the simplest case

where we have only one model parameter θ, with Nm data points, the likelihood function
is the product of all the individual likelihood functions:

L =
1

(2πσ2
θ)

Nm/2
exp

{
−
∑Nm

i=1(xi − θ)2

2σ2
θ

}
(3.2)

Then the probability of obtaining the data points x given the parameters Θ is

P [x|Θ] ≡ L(x;Θ, σθ), (3.3)

where P [x|y] denotes the probability of x given y. It is important to note that the
likelihood function of the parameters is not the same as the probability model of the
data, although the two are related. We are interested in the value of the theoretical
parameters Θ. Thus we do not wish to calculate P [x|Θ, σθ] but rather P [Θ, σθ|x]. The
latter can be obtained from the former using an important result which was first applied
in probability theory, known as Bayes’s Theorem (Bayes & Price, 1763):

P [B ∩ A] = P [B|A]P [A] = P [A|B]P [B]. (3.4)

In our context, this means that

P [Θ, σθ|x] =
P [x|Θ, σθ]P [Θ, σθ]

P [x]
. (3.5)

The terms are the following: P [Θ, σθ|x] is the posterior probability for the parameters;
P [x|Θ, σθ] is the likelihood, as described above; P [Θ, σθ] is the prior, and expresses our
knowledge of the parameters prior to the experiment, which may be the result of previous
experiment or of theory (e.g. some parameters, such as the neutrino mass, have to be
positive); P [x] is called the evidence. When all the values of the parameters are assumed
to be equally likely, then the prior P [Θ, σθ] is assumed to be constant, and is referred to
as a flat prior.

Let Θ0 denote the true parameter values and let Θ denote our estimate of Θ0. For
Θ to be a good estimate, it must be unbiased, that is

〈Θ〉 = Θ0, (3.6)

where the angled brackets denote the expectation value. The error bars around Θ must
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also be as small as possible. In other words, the standard deviations must be minimised:

∆θi ≡
(〈
θ2

i

〉− 〈θi〉2
)1/2

. (3.7)

When these two conditions are satisfied, θi is known as the ‘best unbiased estimator’
(BUE). The maximum likelihood estimator (MLE) is defined as the parameter vector ΘML

which maximises the likelihood function L(x;Θ). When x is a given data set, L(x|Θ) is
then interpreted as a function of the model parameters Θ. In other words, we are finding
the likelihood of obtaining x given Θ. In this case, the term MLE is used rather than
BUE.

Parameter estimation consists in finding the place where the likelihood function
is a maximum. At this point we shall introduce the following definition involving the
likelihood function defined in Equation 3.2:

L = − lnL. (3.8)

If we Taylor expand L around the ML-estimate Θ, we obtain:

lnL(Θ|x) ≈ lnL(ΘML|x) +
∑

i

∆θi
∂

∂θi
lnL(ΘML|x)

+
∑
ij

1

2
∆θi∆θj

∂2

∂θi∂θj
lnL(ΘML|x) + O(

∂3

∂θi∂θj∂θk
) + . . . (3.9)

The number of terms in the expansion can be reduced by considering a Gaussian approx-
imation. The first derivatives ∂L/∂θi will vanish at this point, since by definition the
likelihood function has its maximum here. If we assume that there are no local max-
ima in parameter space, the behaviour of the likelihood function will be dominated by
the quadratic terms. Since L = exp[−L], the likelihood function is approximated by a
Gaussian near the ML-point. The Gaussian approximation depends on the size of the
error bars. If they are small everywhere, L usually drops sharply before third order terms
become important, so this Gaussian is a good approximation to L over all the parameter
space.

Although the Gaussian form is an approximation, it is general enough to be applied
to a wide range of situations in cosmology. Even if the probability distribution is not
Gaussian, the error ∆θi on the theoretical parameters given by the Fisher matrix is still
useful, since it is the minimum attainable error (by the Cramér-Rao inequality). In any
case, the real error is not expected to be much larger than that given by the Fisher matrix,
and the Gaussian assumption greatly simplifies the calculation (see Bunn 1995; Vogeley
& Szalay 1996 and Tegmark et al. 1997 for a discussion).

The covariance matrix T is defined as

T ≡ 〈ΘΘ�〉 − 〈Θ〉〈Θ〉�, (3.10)

where the superscript � denotes the transpose. The Gaussian approximation allows us
to define the covariance as the inverse of the second derivatives at the ML-point (i.e. the
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inverse of the Hessian matrix):

(T−1)ij ≡ ∂2L
∂θi∂θj

. (3.11)

The Fisher information matrix, defined as

F ij ≡
〈

∂2L
∂θi∂θj

〉
, (3.12)

is the expectation value of the covariance matrix at the point Θ = Θ0. It tells us how fast
the likelihood function falls off around the ML-point; that is, it is a measure of the width
and shape of the peak. More formally, it is the curvature of log-likelihood surface about
its maximum. The Hessian matrix described above tells us whether the estimates of θi

and θj are correlated or not. This is a statement about the estimates of the parameters,
not about the parameters themselves. In other words, the parameters may be entirely
independent, but if they have a similar effect on the data, then their estimate may be
correlated1.

Error forecasts using the Fisher matrix technique depend on a number of powerful
theorems. The three most important ones, which are explained below, are the following
(see e.g. Kenney & Keeping 1951; Kendall & Stuart 1979; Jun 1998 for details):

1. For any unbiased estimator,

∆θi ≥ 1√
F ii

. (3.13)

2. If there is a best unbiased estimator Θ, then it is the maximum likelihood estimator
or a function thereof.

3. The maximum likelihood estimator estimator is asymptotically the best unbiased
estimator.

The first theorem is known as the Cramér-Rao inequality (first formulated by Rao
1945 and Cramér 1946). This inequality places a lower limit on the error bars that can
be attained on the estimated parameters, regardless of the design of the experiment. If
all the other parameters are known, this gives us the minimum error bar attainable on
θi (see Heavens 2009 for a proof). The 1σ uncertainty on any one parameter is therefore
1/
√

F . This uncertainty is known as the conditional error estimate. It is defined as the
lower error limit on a parameter if all other parameters are known (that is, if the error
on each is zero). If the other parameters are also estimated from the data, the minimum
standard deviation rises to

∆θi ≥
√

F−1
ii . (3.14)

This can be shown by assuming that the joint probability of two parameters is

P (θ1, θ2) ∝ exp

{
−1

2
θiFijθj

}
, (3.15)

1e.g. The value of the baryon mass density Ωb is entirely independent of the dark energy equation of
state w, but the estimates of the two quantities are correlated.
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where we assume that the distribution peaks at θi = 0 for simplicity. Allowing θ2 to vary
is equivalent to integrating this probability distribution over all possible values of θ2. This
is known as marginalising over θ2. Then

P (θ1) =

∫
dθ2P (θ1, θ2) (3.16)

∝ exp

{
−θ

2
1

2

(
F 11F 22 − F 12F 21

F 22

)}
. (3.17)

The term in parentheses is equal to 1/(F−1)11. Thus if the other parameters are also

unknown, the 1σ error on θi is indeed
√

F−1
ii . This quantity is known as the marginal

error, and is defined as the error attainable on a parameter given that there are errors on
all other parameters within the model.

By using the marginal error all correlations between parameters are taken into ac-
count. An estimate of the correlation can be quantified from the Fisher matrix by defining
the correlation matrix, or degeneracy matrix, as

Dij =
Fij

−1√
F−1

ii F−1
jj

(3.18)

If 0 < Dij � 1 then the parameters are correlated. When Dij = 1 the parameters are
totally correlated. If −1 � Dij < 0 then the parameters are anti-correlated. Again, when
Dij = −1 the parameters are totally anticorrelated.

The second theorem shows that if there exists a best method, then it is the maximum
likelihood method.

The third theorem means that in the limit of a very large data set, the maximum
likelihood estimate is for all practical purposes the best estimate, that is, the one for
which the Cramér-Rao bound becomes an equality.

3.3 Fisher analysis in weak lensing experiments

In thesis we are concerned with the predicted cosmological constraints from future weak
lensing experiments. Applying the results in the previous section, we can see that to cal-
culate the expected errors from a weak lensing experiment, we only need three quantities:

1. A set of observables that are assumed to describe the true Universe. In our case,
this is the set of lensing convergence power spectra C�.

2. The uncertainty on the observables δC� from a given experiment, given by Equation
4.31.

3. A set of cosmological parameters Θ for which we want to forecast the errors.

The observed convergence power spectra Cobs
� are assumed to be close to the true

C�s. If we define

χ2(θi) =
∑

�

(C�(θi) − Cobs
� )2

(δC�)2
(3.19)
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then we expect χ2 to reach a minimum at the point in parameter space where θi = θ0i,
the true values of the parameters. Let us consider a model with just one parameter θ.
Expanding χ2 about its minimum at θ0, we obtain

χ2(θi) = χ(θ) + F(θ − θ0)
2. (3.20)

The linear term in the above equation vanishes since χ2 is a minimum at the actual
parameter value. The coefficient of the quadratic term F is

F =
1

2

∂2χ2

∂θ2

∣∣∣∣
θ=θ0

. (3.21)

This curvature quantity measures how fast χ2 changes away from its minimum, and it
is equivalent to the curvature of the likelihood function only if the errors on C� have a
Gaussian distribution. In general, however, they are not, so F is not really the curvature
−∂2 lnL/∂θi. In practice, the distribution is close enough to Gaussian to give us accurate
error estimates if we make the assumption of Gaussianity. This assumption is used in the
Fisher matrix analysis carried out in this thesis. Using the definition of χ2(θi), we obtain:

F =
∑

�

1

(δC�)2

[(
∂C�

∂θi

)
+ (C� − Cobs

� )
∂2C�

∂θ2
i

]
. (3.22)

In the absence of experimental data, we do not have any information about Cobs
� . However,

if the true C� values are close to the observed values, the term C� − Cobs
� is on average

zero, since the difference will sometimes be positive, and sometimes negative, and the
differences will cancel out on average. The first term in the above equation will therefore
dominate, and therefore

F →
∑

�

1

δC2
�

∂C�

∂θi

∂C�

∂θj
. (3.23)

The curvature matrix F as defined above, using the assumption that the C�s have
a Gaussian distribution, is equivalent to the Fisher matrix

Fij =
∑

�

1

δC2
�

∂C�

∂θi

∂C�

∂θj
. (3.24)

This important expression allows us to calculate the model parameter errors for future
experiments, simply by knowing the experimental parameters (to determine δC�) and the
derivatives of C� around their assumed values.

The 1σ errors around each parameter are then given by2

σ(θi) =

√
F−1

ii . (3.25)

This is known as the marginalised error, where there is no prior information on the other
parameters (i.e. the other parameters are allowed to vary). The fixed error, or conditional

2The error on the parameter θ is sometimes denoted by ∆θ instead of σ.
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error, when the other parameters are assumed to be known, is

σ(θi) =
1√
Fii

. (3.26)

This will clearly be smaller than the marginalised error for the same parameter. In an
n parameter model, the smaller the number of parameters for which we have no prior
information, the smaller the marginalised errors on the unknown parameters. This can
be seen from the definition of the marginalised error in Equation 3.25.

3.4 Calculation of the Fisher matrix

The Fisher matrix formalism presented above is used in this thesis to calculate the Fisher
matrix by numerical means. For a central cosmological model and using our experiment
parameters, we calculate the lensing power spectrum C�. We then calculate the derivative
matrices of C� using a finite difference approximation:

∂C�

∂θ
≈ 1

2∆

[
C�(θ+∆) − C�(θ−∆) − 1

6

{
C�(θ+2∆) − C�(θ−2∆) − 2C�(θ+∆) + 2C�(θ−∆)

}]
,

(3.27)
where we calculate the lensing power spectrum four times, varying one parameter at a
time by an amount ±∆ and ±2∆. In the equation above,

C�(θ+∆) = C�(θ + ∆)

C�(θ−∆) = C�(θ − ∆)

C�(θ+2∆) = C�(θ + 2∆)

C�(θ−2∆) = C�(θ − 2∆).

(3.28)

In the work presented in Chapter 4 of this thesis, we use a value of ∆ = 0.006. Our
calculation strategy is designed to minimise the risk of a degenerate or ill-conditioned
Fisher matrix, which reflects the inability to constrain all parameters with the same level
of precision. We therefore keep all parameter variations at the same order of magnitude
(see e.g. Albrecht et al., 2009).
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Chapter 4

Constraints on cosmological
parameters using an all-sky weak
lensing survey

Weak gravitational lensing provides a sensitive probe of cosmological parameters by mea-
suring the mass distribution and the geometry of the low redshift Universe. In this chapter
we present the main results of our work on error forecasts using a future weak lensing
survey. We study the potential of an all-sky weak lensing tomographic survey to constrain
all the cosmological parameters of a generalised dark energy + neutrino + CDM model.
In particular, we focus on three sectors of the mode: dark energy, massive neutrinos (hot
dark matter), and the primordial power spectrum. Using the Fisher matrix formalism
with and without CMB priors, we examine how the constraints vary as the parameter set
is enlarged.

We find that weak lensing with CMB priors provides robust constraints of dark
energy parameters and can simultaneously provide strong constraints in all three sectors.
Implications for the planning of future surveys are then discussed in Chapter 5.
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4.1 Weak lensing as a cosmological probe

The aim of the work carried out in this chapter is to study the constraints on cosmological
parameters that can be obtained using a future weak lensing survey. As discussed in
Chapter 3, we study parameter constraints within a theoretical model using Fisher matrix
analysis without inferring anything about the correctness of the model, which would
involve a higher-order estimate. In particular, we examine the effect of adding further
parameters to the model on parameter constraints. The smaller parameter set may be
interpreted as a simpler model, i.e. a special case of the more complex model where the
additional parameters are set to zero. The additional parameters, as will be described
below, may be an indication of new physics: the deviation of the power spectrum from
scale invariance, or a varying dark energy equation of state, both require a particular
physical mechanism.

The purpose of this work in relation to future weak lensing surveys is therefore
to answer the following question: How well can a future weak lensing survey constrain
the parameters of a model more complex than ΛCDM? The question of parameter op-
timisation for such a survey can then be addressed. Weak lensing is just one of many
probes available in observational cosmology, so we also study the constraints that can
be obtained in combination with CMB probes. Since weak lensing and the CMB involve
physics on significantly different scales, they are complementary techniques which can
break the parameter degeneracies within each method.

The ΛCDM concordance model of the Universe is the inflationary model, with the
mass-energy content made up of cold dark matter, baryonic matter, massive neutrinos, and
dark energy. The existence of the matter components is confirmed both by cosmological
observations (baryons and cold dark matter) and by particle physics (baryons and massive
neutrinos). This model provides a remarkable fit to independent data sets, with a minimal
set of parameters (see for instance the latest WMAP-5 results in Nolta et al., 2009;
Komatsu et al., 2009).

In this part of the thesis we consider extensions of the ΛCDM paradigm. Current
observational data are consistent with dark energy being a cosmological constant Λ. This
is equivalent to a dark energy component with a constant equation of state parameter
w = −1. Current constraints on w, however, are not strong enough to rule out other dark
energy models. Moreover, there are degeneracies between the effects of dark energy, hot
dark matter (neutrinos), and the shape of the primordial power spectrum.

Weak lensing, which probes the matter spectrum at low redshifts (z ∼ 1), without
making any assumptions about the nature of the matter content, has the potential to
constrain cosmological parameters (see Hoekstra & Jain 2008 for a recent review). In this
chapter we shall use the method of tomographic cosmic shear (Hu & Jain, 2004).

Error forecasts for future weak lensing surveys show that this probe can constrain
dark energy parameters particularly well (see for instance Réfrégier, 2009). It can also
be used to constrain neutrino mass parameters, since neutrinos also have an effect on the
matter power spectrum at low redshifts. Expected bounds for neutrino masses have been
obtained using weak lensing tomography with the future LSST experiment (Hannestad,
Tu, & Wong, 2006) and 3D weak lensing with the future DUNE/EUCLID mission (Kitch-
ing, Taylor, & Heavens, 2008c). Constraints on neutrino mass parameters from CFHTLS
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weak lensing data have been obtained by Tereno et al. (2009) and Ichiki, Takada, & Taka-
hashi (2009). These parameters have also been constrained using galaxy surveys (Takada
et al., 2006), and CMB experiments (Lesgourgues & Pastor, 2006). Forecast have also
been made for future redshift surveys (see e.g. Hannestad & Wong, 2007; Abdalla & Rawl-
ings, 2007; Abdalla et al., 2009), combined Planck+Lyman-α forest data (Gratton et al.,
2008), using combined particle detector and CMB experiments (Host et al., 2007) and the
Integrated Sachs-Wolfe effect (Lesgourgues et al., 2008).

The initial conditions for the matter power spectrum are given by primordial per-
turbations, which were set up during inflation. The matter power spectrum at the current
epoch is the result of the evolution of these perturbations in the matter distribution. Weak
lensing can therefore be used to probe the primordial power spectrum, and to constrain
primordial spectral index parameters.

Fisher matrix analysis gives us the lower bound on the accuracy with which we can
estimate model parameters from a given data set e.g. (Fisher, 1935; Tegmark, Taylor,
& Heavens, 1997; Kitching & Amara, 2009). In calculating forecast survey errors, we
are implicitly making assumptions about the parameter set (see the discussion of nested
models in Heavens, Kitching, & Verde, 2007) . We need to know whether our constraints
are robust against variations in the parameterisation of the cosmological model. This
is of particular importance when dark energy constraints are considered, because of the
degeneracies with other parameters.

In this chapter, we investigate how weak lensing can simultaneously constrain cos-
mological parameters. In particular, we focus on three groups of parameters: dark energy,
massive neutrinos, and the primordial power spectrum. We examine how parameter con-
straints change when the cosmological parameter set is varied. We calculate the expected
constraints when massive neutrino parameters and additional parameters in the primor-
dial power spectrum are added to our parameter set, studying the degeneracy between
parameters in different sectors of the cosmological model. Finally, we compare the con-
straints obtained using weak lensing by itself and in combination with CMB constraints.

Throughout this chapter, we shall work within a Friedmann-Robertson-Walker cos-
mology. Our model contains baryonic matter, cold dark matter and dark energy, to which
we add massive neutrinos. We also consider different parameterisations of the primordial
power spectrum which allow for a variation of the primordial spectral index (or ‘running’)
and variation of this running.

In summary, our error forecast calculations essentially consist of three steps:

1. a calculation of the matter power spectrum using analytical fitting formulae,

2. a calculation the resulting lensing power spectrum for an all-sky tomographic weak
lensing survey,

3. and finally a calculation of the Fisher matrix for the experiment in question.

Each of these steps will be described in detail below.
To obtain joint lensing+CMB constraints, we repeat the process, using the Planck

mission to define our CMB survey parameters. In this case we calculate the CMB power
spectrum using a Boltzmann code (CAMB), and we add the respective Fisher matrices
to add Planck priors to our weak lensing forecasts.
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4.2 Matter power spectrum

The matter power spectrum has already been discussed in Section 1.12.4. In broad terms,
this is simply a relation between the potential set up during inflation, and the potential
at late epochs:

Φ(k, a) = ΦPrim(k) × {Transfer Function (k)} × {Growth Function (a)} . (4.1)

The primordial potential is ΦPrim. The transfer function describes the evolution of pertur-
bations during horizon crossing and the matter-radiation transition. The growth factor
describes the wavelength-independent growth at late times. The inclusion of massive
neutrinos complicates matters by introducing a time dependence in the transfer func-
tion. This will be discussed further on, together with the component parts of the above
schematic equation.

We use the standard definition of the spectrum in our calculations:

P (k, z) =
2π2

k3
Ask

ns(k)+3T 2(k, z)

(
D(z)

D(0)

)2

, (4.2)

where As is the normalisation parameter, T (k, z) is the transfer function and D(z) is the
growth function (also called the growth factor). The primordial spectral index is denoted
by ns(k). This definition is valid for late epochs, covering the redshift range probed by
weak lensing.

4.2.1 The growth function

The growth function is defined as the growing solution of the differential equation

d2δm
dt2

+ 2H(a)
dδm
dt

= 4πGρm(a)δm. (4.3)

Defining the growth rate δ(a) ∝ δm/a, this equation becomes

d2δ

da2
+

(
d lnH

da
+

3

a

)
dδ

da
− 3ΩmH

2
0

2a5H2
δ = 0. (4.4)

We solve this equation with the initial conditions δ = 1 and dδ/ d ln a = 0. The growth
function D(z) is then given by (see Dodelson, 2003, Section 7.5):

D(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
. (4.5)

In terms of z, the growth function is (Heath, 1977; Peebles, 1980; Eisenstein & Hu, 1999):

D(z) =
5Ωm

2
(1 + zeq)g(z)

∫ z 1 + z′

g(z′)3
dz′, (4.6)
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where
g2(z) = Ωm(1 + z)3 + (1 − Ωm − ΩDE)(1 + z)2 + ΩDE. (4.7)

The redshift of matter-radiation equality zeq is (Eisenstein & Hu, 1999):

zeq = 2.50 × 104Ωmh
2(TCMB/2.7)−4, (4.8)

where h is given by the Hubble constant parameterisation H0 = 100h km s−1Mpc−1, and
TCMB is the CMB temperature in Kelvin.

Note that our parameterisation of the growth function only uses the total mass
density Ωm. However, the neutrinos have an additional, though small, effect on the growth
function (Bond et al., 1980; Tegmark, 2005; Lesgourgues & Pastor, 2006; Kiakotou et al.,
2008) and the nonlinear power spectrum (Saito et al., 2008; Wong, 2008). Baryonic and
neutrino physics affects the nonlinear part of the spectrum, which constitutes a source of
theoretical systematics in weak lensing (see Huterer & Takada, 2005; Ishak et al., 2004).

4.2.2 The primordial power spectrum

In our cosmological model, the shape of the primordial power spectrum is of particular
interest, since it may mimic some of the small-scale power damping effect of massive
neutrinos. In the concordance model, the primordial power spectrum is generally param-
eterised by a power-law (see e.g. Kosowsky & Turner, 1995; Bridle et al., 2003)

Pχ(k) = As

(
k

ks0

)ns−1

, (4.9)

which corresponds to a scale-invariant, Harrison-Zel’dovich spectrum. There is some
arbitrariness in this choice, beyond parameterising the amplitude of the scale-invariant
spectrum. In standard slow-roll inflation, the deviation from a scale-invariant spectrum
is parameterised by the tilt n − 1 ≡ d lnP/ d ln k and its running n′ ≡ dn/ d ln k by
Taylor expanding lnP around a pivot point ln k0. Inflation predicts the tilt ns and the
running in terms of the slow-roll parameters, which are functions of its potential and its
derivatives. For this reason, it has become customary in the literature to express the
primordial power spectrum as a Taylor series truncated at the running, which allows the
parameters in this expression to be linked to the slow-roll parameters. However, while
this approximation is satisfied by the simplest single-component inflation models, it may
generally not be satisfied by multi-component models of inflation. Currently we have a
situation where there is no observational reason to disfavour multi-component inflation
models, while observations do not rule out a deviation from the scale-invariant spectrum,
despite being in agreement with such a spectrum (see the parameter values derived in
Dunkley et al., 2009).

What is the effect of our hypothesis on the shape of the primordial power spectrum
in our weak lensing Fisher matrix calculation? The assumed functional form of the pri-
mordial power spectrum is equivalent to an analysis with a free form primordial power
spectrum, where P (k) is estimated in separate k bins but where one imposes a strong
correlation between the power in different bins. Shafieloo & Souradeep (2009) show that
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this is dominant in selecting the best fit regions, since the assumed form of the primordial
power spectrum drives the cosmological parameters to adjust into suitable combinations.

The standard parameterisation of the running of the spectral index adopted in most
weak lensing studies is obtained by using a second-order Taylor expansion of Pχ in log-log
space, defining the running as α = dns/d ln k|k0, so that the primordial power spectrum
is now scale-dependent, with the scalar spectral index defined by (Spergel et al., 2003;
Hannestad et al., 2002)

ns(k) = ns(k0) +
1

2

dns

d ln k

∣∣∣∣
k0

ln

(
k

k0

)
, (4.10)

where k0 is the pivot scale or pivot point. Although it is motivated by simplicity and
standard slow-roll inflation theory, the second-order truncated Taylor expansion is limited
and may lead to incorrect parameter estimation (see Abazajian et al., 2005; Leach &
Liddle, 2003). Moreover, it assumes that the second and higher derivatives of ns are
negligible, which is not a trivial assumption, especially far away from the pivot scale.
This assumption is linked to the standard slow-roll inflation model which assumes that
the parameters are both small, and slowly-varying (which is required by observations).
This translates to the hierarchy

|n− 1| � |n′| � |n′′| � . . . . (4.11)

The general slow-roll approximation (see Lee et al., 2005; Abazajian et al., 2005, and
references therein) drops the assumption of slow variation, and covers the cases of

|n− 1| <∼ |n′| <∼ |n′′| <∼ . . . , (4.12)

which includes 4.11 as a special case.
We wish to investigate how our tomographic weak lensing survey will constrain

parameters in a more general primordial power spectrum parameterisation. In order to
test this, we allow an extra degree of freedom in the primordial power spectrum by adding
a third-order term in the Taylor expansion, which we call β :

ns(k) = ns(k0) +
1

2!
α ln

(
k

k0

)
+

1

3!
β ln

(
k

k0

)2

, (4.13)

where β = d2ns/d ln k2|k0. We use a fiducial value of k0 = 0.05Mpc−1 for the primordial
power spectrum pivot scale. This value is used in the current CAMB code (Lewis et al.,
2000) following some of the early WMAP literature (Spergel et al., 2003, 2007). By defini-
tion, it is the point at which the errors on the tilt and its running are decorrelated1. Note,
however, that this depends on the experiment (in this case, on CMB measurements), and
the value may not be the optimum one for a weak lensing experiment. To investigate this,
we shall calculate the marginalised error on the primordial power spectrum parameters
for different values of k0 (see Section 4.5.3).

1It is analogous to the pivot scale an in weak lensing
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4.2.3 The transfer function

The transfer function is defined as

T (k, z) ≡ δ(k, z = 0)

δ(k, z = ∞)

δ(0, z = ∞)

δ(0, z = 0)
, (4.14)

where δ(k, z) is the density perturbation for wavenumber k and redshift z. We use the
Eisenstein & Hu (1999) analytical fitting formula for the time-dependent transfer func-
tion to calculate the linear power spectrum, which includes the contribution of baryonic
matter, cold dark matter, dark energy and massive neutrinos, with the modification in
the transfer function suggested by Kiakotou, Elgarøy, & Lahav (2008). This fitting for-
mula assumes adiabatic scalar initial perturbations, so that we only consider the scalar
primordial spectral index (hence the subscript in ns). We use the Smith et al. (2003)
correction to calculate the nonlinear power spectrum. The matter power spectrum is
normalised using σ8, the root mean square amplitude of the density contrast inside an
8 h−1Mpc sphere.

In an Einstein-de Sitter model, the growth factor is simply equal to the scale factor.
In both open and dark energy cosmologies, however, growth is suppressed at late times.
The various cosmological matter components also affect the transfer function. These are
reviewed below.

Baryons

Baryons account for about 4% of the total energy density in the Universe, so they only
have a small effect on the matter power spectrum. However, they do affect the power
spectrum in two ways.

The first effect is the suppression of power on small scales. At early times, before
decoupling, baryons were tightly coupled to photons. Baryon overdensities decay when
entering the horizon, just like radiation perturbations. After decoupling, the baryons are
released from the relatively smooth radiation field and fall into the dark matter gravita-
tional potentials.

The second effect is smaller. The baryon-photon fluid undergoes oscillations before
decoupling. This manifests itself as small oscillations in the transfer function centred
around k � 0.1 hMpc−1, often termed ‘baryon wiggles’. They are more noticeable in
baryon-only models. Baryon phenomenology in relation to the matter power spectrum is
discussed in many papers. See for example, Eisenstein & Hu (1998); Miller (2000), and
Rudd et al. (2008). The Eisenstein & Hu (1999) analytical transfer function used in this
thesis does not include baryon wiggles.

Dark energy

Dark energy affects the matter power spectrum in three ways.
Firstly, the matter power spectrum turns over at keq, which is proportional to Ωm.

Therefore, the value of ΩDE in the Standard Model will also affect the position of keq, so
dark energy leads to a turnover in the spectrum at a scale much larger than that predicted
by a universe with ΩDE = 0.
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The second effect of dark energy is also indirect. In a flat universe, as the dark
energy density goes up, the dark matter density decreases, and this causes the amplitude
of the matter power spectrum to increase. The power spectrum for a model with dark
energy is therefore normalised higher than for one without.

The third effect of dark energy on density inhomogeneities is direct, and comes
about through its effect on the growth factor. The evolution of the Hubble rate depends
on the model of dark energy — both on the dark energy density ΩDE and on its equation
of state w — since the Hubble rate evolves as:

H(z)

H0
=

[
Ωm

a3
+

ΩDE

a3[1+w]

]1/2

(4.15)

at late times. The growth factor is therefore affected at late times, which is why weak
lensing, which probes the Universe at low redshifts, is sensitive to dark energy.

In addition to this, if dark energy is not a cosmological constant then it also affects
the shape of the matter power spectrum on large scales through dark energy perturbations.
In our calculations, we neglect dark energy perturbations.

Neutrinos

Neutrinos are known to exist from the Standard Model of particle physics, and the stan-
dard Hot Big Bang model predicts the amount of neutrinos in the Universe. The reason
why neutrinos affect the matter power spectrum is simply that they are light particles
that can move fast (meaning that they are not cold dark matter) and can stream out
of high-density regions. They therefore cause the suppression of perturbations on scales
smaller than the free-streaming scale (for a review, see e.g. Hannestad, 2006; Lesgourgues
& Pastor, 2006; Quigg, 2008).

The scale on which perturbations are damped by neutrinos is determined by the
comoving distance that a neutrino can travel in one Hubble time at equality. For a
neutrino mass ∼ 1 eV, the average velocity, Tν/mν is of order unity at equality. This
leads to a suppression of power on all scales smaller than keq. Note that this phenomenon
depends on the individual neutrino mass, rather than the total neutrino mass. A lighter
neutrino can free-stream out of larger scales, so the suppression begins at lower k for the
lighter neutrino species. Heavier neutrinos constitute more of the total neutrino density,
and so suppress small-scale power more than lighter neutrino species. This means that
to accurately model massive neutrino phenomenology, we need at least two parameters:
the neutrino mass fraction Ων , or some expression of this quantity in terms of the total
neutrino mass mν , and the number of massive neutrino species Nν . Here we shall use
Equation 1.79:

Ωνh
2 =

mν

94eV
. (4.16)

Neutrinos introduce a scale dependence in the transfer function. In Chapter 1 we
have seen how perturbation modes of a certain wavelength λ can grow if they are greater
than the Jeans wavelength. Above the Jeans scale, perturbations grow at the same rate
independently of the scale. For the baryonic and cold dark matter components, the time
and scale dependence of the power spectrum can therefore be separated at low redshifts.
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This is not the case with massive neutrinos, which introduce a new length scale given
by the size of the comoving Jeans length when the neutrinos become non-relativistic. In
terms of the comoving wavenumber knr, this scale is given by:

knr = 0.026
( mi

1 eV

)1/2

Ω1/2
m hMpc−1 (4.17)

for three neutrinos of equal mass, each with mass mi. The growth of Fourier modes with
k > knr is suppressed because of neutrino free-streaming. From the equation above, it is
evident that the free-streaming scale varies with the cosmological epoch (since there is
an Ωm-dependence), and therefore the scale and time dependence of the power spectrum
cannot be separated. For analytical calculations of the power spectrum, this means that
the transfer function depends on both the scale k and on the redshift z.

Neutrino oscillation experiments do not, at present, determine absolute neutrino
mass scales, since they only measure the difference in the squares of the masses between
neutrino mass eigenstates (see e.g. Quigg, 2008). Cosmological observations, on the other
hand, can constrain the neutrino mass fraction, and can distinguish between different mass
hierarchies (see Elgarøy & Lahav 2005 for a review of the methods). Indeed, the fact that
cosmological constraints could be stronger than constraints from particle accelerators was
noticed quite early on (see Primack & Gross 2001 for a review). The ‘closure limit’ gives
us mν < 90 eV (first derived by Gerstein & Zel’dovich 1966; Marx & Szalay 1972 and
Cowsik & McClelland 1972). Since then, cosmological neutrino bounds have improved
significantly, with different methods being used e.g. mν < 0.9 eV using SDSS luminous red
galaxies (Tegmark et al., 2006) and mν < 1.3 eV using WMAP5 CMB observations and a
ΛCDM model (Shiraishi et al., 2009). Recent results from weak lensing are found in Tereno
et al. (2009) and Ichiki et al. (2009). The latest results from particle physics give us an
upper mass bound of 2.0 eV for the electron neutrino from tritium β decay and 2.984 ±
0.008 for the total number of neutrino species from Standard Model fits to LEP data
(Particle Data Group, 2008). WMAP5 observations give us mν < 1.5 eV using a varying-
w dark energy cosmological model, while joint WMAP5+BAO+SNe observations with
the same model lower this limit to mν < 0.66 eV (Komatsu et al., 2009), i.e. m <∼ 0.22 eV
for the single electron neutrino mass.

Observations of neutrino flavour oscillations in atmospheric and solar neutrinos,
provide evidence of a difference between the masses of the different species or flavours,
as well as for a non-zero mass. For three neutrino mass eigenstates m1, m2 and m3, the
squared mass differences are (Particle Data Group, 2008):

∆m2
21 = m2

2 −m2
1 = (7.59 ± 0.20) × 10−5 eV2

∆m2
32 = |m2

3 −m2
2| = (2.43 ± 0.13) × 10−3 eV2,

(4.18)

where the ranges indicated are at 90% confidence level. The ambiguity in the sign of
∆m2

32 allows for two possible mass hierarchies: the normal hierarchy given by the scheme
m3 � m2 > m1, or the inverted hierarchy m2 > m1 � m3. Given Equation 4.18, con-
straining the total mass mν <∼ 0.1 eV would automatically exclude an inverted hierarchy.
Conversely, a total neutrino mass mν ∼ 2 eV is only possible with a degenerate neutrino
mass scheme. Hence the interest in finding cosmological neutrino mass bounds.
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Following Eisenstein & Hu (1999), we assume Nν , the number of massive (non-
relativistic) neutrino species, to be a continuous variable, as opposed to an integer. This
is justified since any light particle which does not couple to electrons, photons or ions has
the same small-scale power suppression effect as neutrinos, and will therefore contribute
to the effective Nν .

The Eisenstein & Hu transfer function assumes a total of three neutrino species (i.e.
Nmassless +Nν = 3), with degenerate masses for the most massive eigenstates, i.e. if mν is
the total neutrino mass, then

mν =
Nν∑
i=0

mi = Nνmi, (4.19)

where mi is the same for all eigenstates. Thus, Nν = 2 for the normal mass hierarchy
(two massive and one very light or massless neutrino), and Nν = 1 for the inverted mass
hierarchy (one massive neutrino), while Nν = 3 corresponds to the case where all three
neutrino species have the same mass (see Quigg, 2008). The temperature of the relativistic
neutrinos is assumed to be equal to (4/11)1/3 of the photon temperature (Kolb & Turner,
1990).

In comparing parameter constraints in different parameter spaces, we shall use six
cosmological models. We start with the simplest model (QCDM) to which we add neutrino
and additional primordial power spectrum parameters. Our parameter sets, with the
terms used in the text, are shown in Table 4.1. Note that these are nested parameter
sets. In other words, the fiducial cosmology is the same throughout, and we only vary the
number of parameters for which the Fisher matrix calculation is carried out.

4.3 Fiducial cosmology

In this section we summarise our fiducial cosmological model. We include baryonic matter,
cold dark matter and neutrinos, as well as dark energy. We allow for a non-flat geometry
by including a dark energy density parameter ΩDE together with the total matter density
Ωm, such that in general Ωm + ΩDE �= 1. The dynamical dark energy equation of state
parameter, w = p/ρ, is expressed as function of redshift and is parameterised by a first-
order Taylor expansion in the scale factor a (Chevallier & Polarski, 2001; Linder, 2003):

w(a) = w0 + wa(1 − a), (4.20)

where a = (1 + z)−1. We parameterise neutrino properties using two parameters: the
total neutrino mass mν , and the number of massive neutrino species Nν . The primordial
power spectrum is characterised by the scalar spectral index ns, its running α, and the
‘running of the running’ β. Since we use the Eisenstein & Hu (1999) transfer function, we
only consider adiabatic initial perturbations, and we ignore dark energy perturbations.
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Figure 4.1: The matter power spectrum at z = 0 for three cosmological models: fiducial
(black) with Ωm = 0.3, ΩDE = 0.7; Ωm = 0.9, ΩDE = 0.1 (red); and Ωm = 0.1, ΩDE = 0.9
(blue). In each case, we show the linear (dotted line) and nonlinear (solid line) power
spectra. The power spectra are normalised using σ8, whose value is kept constant. As
the dark energy fraction is increased, the turning point of the power spectrum is shifted
to smaller k, while the amplitude increases.
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4.3.1 Parameter space

Our most general parameter space consists of:

1. Total matter density – Ωm (which includes baryonic matter, hot dark matter (i.e.
neutrinos and cold dark matter)

2. Baryonic matter density – Ωb

3. Neutrinos (HDM) – mν , Nν

4. Dark energy parameters – ΩDE, w0, wa

5. Hubble parameter – h

6. Primordial power spectrum parameters – σ8, ns, α, β (see Section 4.2)

We shall refer to this fiducial cosmology as ‘νQCDM + α+ β’2 We choose fiducial param-
eter values based on the five-year WMAP results (Dunkley et al., 2009) similar to those
used in Kitching et al. (2008c). The values are given in Table 4.1.

In our Fisher matrix formalism, the error forecast on each parameter depends on
the sensitivity of the weak lensing observation to changes in the matter power spectrum.
In order to probe the effect of the different parameters on the matter power spectrum, we
consider the fractional change in the non-linear matter power spectrum P (k), defined as
the change in P (k) with respect to the fiducial P (k)fid, when one parameter at a time is
varied from its fiducial value:

Fractional change =
P (k)fid − P (k)∆

P (k)fid

, (4.21)

where ∆ = 10% for all parameters in the νQCDM + α + β parameter set The power
spectrum is normalised using σ8. Figure 4.2 shows the fractional change in P (k) at
redshift z = 0. There are several features of interest in this plot, including the degeneracy
between the parameters α, β, mν and Ωb at small scales, as well as the degeneracy between
w0, wa, ΩDE and Nν at large scales. The plot shows that the non-linear matter power
spectra for the fiducial model and for the model with non-zero wa are almost completely
degenerate at z = 0. This degeneracy is lifted as the redshift increases. This is shown in
Figure 4.3, where we calculate the fractional change in P (k) at z = 1.

4.4 Tomographic weak lensing

In this section we describe the technique of tomographic weak lensing used in this thesis.
In weak lensing surveys, the observable is the convergence power spectrum. In this thesis,
we calculate this quantity from the matter power spectrum via the lensing efficiency

2We have taken some liberties in using the name ‘QCDM’ (or Quintessence+CDM), since quintessence
implies a specific parameterisation of w. In our cosmological model, we parameterise w by its present
epoch value, and its variation.
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Parameters w0 wa ΩDE Ωm Ωb h σ8 ns α β mν Nν

Fiducial values −0.95 0 0.7 0.3 0.045 0.7 0.8 1 0 0 0.66 3

QCDM � � � � � � � � × × × ×
QCDM + α � � � � � � � � � × × ×
QCDM + α + β � � � � � � � � � � × ×
νQCDM � � � � � � � � × × � �
νQCDM + α � � � � � � � � � × � �
νQCDM + α + β � � � � � � � � � � � �

Table 4.1: Cosmological parameter sets used in our calculations. The central values for
each parameter are shown in the row labelled ‘Fiducial Values’. For each parameter set,
the ticks (�) and crosses (×) indicate whether a parameter is allowed to vary or not,
respectively.
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Figure 4.2: The fractional change in the non-linear matter power spectrum P (k, z) at
z = 0, obtained by varying each parameter in the νQCDM + α+ β set by +10% from its
fiducial value.
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Figure 4.3: The fractional change in the non-linear matter power spectrum P (k, z) at
z = 1, obtained by varying each parameter in the νQCDM + α+ β set by +10% from its
fiducial value.
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function. Our convergence power spectrum therefore depends on the survey geometry
and on the matter power spectrum.

Different weak lensing techniques extract information from the shear field in different
ways. In particular, the lens and source galaxies of a given survey may be divided into
N bins according to redshift, luminosity, colour, or any other criteria chosen by the
observer. We use the power spectrum tomography formalism by Hu & Jain (2004), with
the background lensed galaxies divided into 10 redshift bins. Cosmological models are
then constrained by the power spectrum corresponding to the cross-correlations of shears
within and between bins. This method allows us to probe the redshift dependence of
cosmic shear, and it is especially useful for constraining redshift-dependent cosmological
parameters, such as w(z).

The 3D power spectrum is projected onto a 2D lensing correlation function using
the Limber (1953) equation, giving us:

Cij
� =

∫
dz

H

D2
A

Wi(z)Wj(z)P (k = �/DA, z), (4.22)

where i, j denote redshift bins, each index running from 1 to N . The weighting function
Wi(z) is defined by the lensing efficiency:

Wi(z) =
3

2
Ωm

H0

H

H0DOL

a

∫ ∞

z

dz′
DLS

DOS
P (z′), (4.23)

where the angular diameter distance to the lens is DOL, the distance to the source is DOS,
and the distance between the source and the lens is DLS (see Hu & Jain 2004 for details).
Our multipole range is 10 < � < 5000.

Since we have no data, the galaxy distribution must be assumed. We use the Smail
et al. (1994) probability distribution for magnitude-limited survey, which is a function of
redshift z:

P (z) = za exp

[
−
(
z

z0

)b
]
, (4.24)

where a and b are adjustable parameters. We set a = 2 and b = 1.5. In the above equation,
z0 is determined by the median redshift of the density distribution of the galaxies zm, which
is a parameter depending on the survey geometry (see e.g Amara & Réfrégier, 2007), and
we set z0 � zm/

√
2. Like the other survey parameters, it is independent of the way in

which we calculate the matter power spectrum or the lensing convergence. The other
survey parameters are the area of the sky covered by the survey As, the observed number
density of a galaxies ng, and the number of redshift bins N . We also choose to include
the errors in the measurement of the photometric redshifts and in the observed ellipticity
of the galaxies. These are expressed as variances: σ(z)/(1 + z), and σε, respectively (see
Bartelmann & Schneider, 2001). The effect of the photometric redshift error is to dilute
the shear signal in each redshift by randomly moving galaxies in and out of any particular
bin. If it is assumed that the distribution of redshift errors is Gaussian with width σz(zg),
which depends on the true redshift of the galaxy zg and has a bias in the mean of the
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distribution zbias, then

P (z|zg, σz) =
1√

2πσz(zg)
e−(z−zg+zbias)

2/2σ2
z(zg). (4.25)

In this thesis we assume that zbias = 0 for all experiments (see e.g. Amara & Réfrégier
2007 for a discussion of its effects on a tomographic weak lensing survey).

The expected shear in a redshift bin of width ∆z centred on zi is the average shear
given by integrating over all redshifts weighed at each redshift by the expected number
density n(z) and the probability of finding a galaxy in the redshift bin in question:

〈γt, i〉 = γt,∞

∫ ∞

z�

dz
Sk[r(z) − r(z�)]

Sk[r(z)]n(z)
W (z)

∫ zi+
∆z
2

zi−∆z
2

dz′P (z − z′|σz), (4.26)

where W (z) is a weighting function. The second z′ integral in Equation (4.26) above can
be solved for a Gaussian probability distribution so that

〈γt, i〉 = γt,∞

∫ ∞

z�

dz
Sk[r(z) − r(z�)

Sk[r(z)]n(z)
W (z)P∆z[z − z′|σz(z

′)], (4.27)

where (see e.g. Ma et al., 2006)

P∆z[z|σz] =
1

2

[
erf

(
z + zbias + ∆z/2√

2πσz

)]
− 1

2

[
erf

(
z + zbias − ∆z/2√

2πσz

)]
(4.28)

is the fraction of the redshift error distribution which lies in a redshift bin of width ∆z
centred on z and erf(x) is the error function. The estimated shear is weighted by the
number of galaxies scattered from one redshift to another, given by the galaxy redshift
distribution n(z). The weighting function is:

W (z) =
w̃(z)∫∞

0
dz′w̃(z′)n(z′)P∆z[z − z′|σz(z)]

, (4.29)

where w̃(z) is some arbitrary weighting function of the shears in the redshift, which will
be taken as w̃(z) = 1 in this thesis.

Our survey geometry follows the parameters for a ‘wide’ all-sky survey covering
an area of 20000 square degrees (i.e. the half of the sky that is not obscured by the
Milky Way). The survey parameters are shown in Table 4.2. The median redshift of
the density distribution of galaxies with redshift z is zmedian and the observed number
density of galaxies is ng. For discussions of possible future missions with such a survey
configuration, see the literature on the DUNE/Euclid mission (e.g. Réfrégier, 2009).

4.4.1 Error forecast

The predictions for cosmological parameter errors presented in this thesis use the Fisher
matrix formalism. As described in Chapter 3, the Fisher matrix for the shear power
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As/sq degree 20 000

zmedian 0.9

ng/arcmin2 35

σz(z)/(1 + z) 0.025

σε 0.25

�max 5000

Nbins 10

Table 4.2: Fiducial parameters for our all-sky weak lensing survey.

Figure 4.4: The galaxy redshift distribution for a tomographic weak lensing survey with
a median redshift of 0.9, with the galaxies divided into 10 redshift bins. The red curves
show the galaxy distribution within each bin.
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Figure 4.5: The weak lensing power spectrum and associated 1σ error bars for our all-
sky tomographic weak lensing survey. The curves represent the auto-correlation within
the first (dashed line) and tenth bins (dotted line), with median redshifts of 0.4 and 1.7
respectively, and the cross-correlation between the first and tenth bins (solid line). The
error bars are shown in red.
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spectrum is given by

Fαβ =
∑

�

(
1

∆C�

)2
∂C�

∂pα

∂C�

∂pβ
, (4.30)

where the summation is over modes � which can reliably be measured.
Neglecting non-gaussian corrections, the rms uncertainty in measuring the lensing

power spectrum C� is given by (Kaiser, 1998; Hu & Tegmark, 1999; Huterer, 2001):

∆C� =

√
2

(2�+ 1)fsky

(
C� +

σ2
γ

2ng

)
. (4.31)

In this equation, fsky is the fraction of the sky covered by a survey of area As in degrees2.
This is given by

fsky =
effAs/sr

4π
(4.32)

where eff is the masking efficiency, and As is given in steradian by

As/sr =
As/deg2

(180/π)2
. (4.33)

The parameter ng is the surface density of usable galaxies, and σ2
γ is the shear variance

per galaxy arising from intrinsic shapes and measurement errors.
Assuming Gaussian likelihood with zero mean gives us the following expression for

the Fisher matrix (Hu & Jain, 2004):

Fαβ = fsky

�max∑
�=�min

(2�+ 1)∆�

2
Tr
[
D�αC̃

−1
� D�βC̃

−1
�

]
, (4.34)

where the sum is over bands of multipole � of width ∆�, Tr is the trace, and fsky is the
fraction of sky covered by the survey. The observed power spectra for each pair i, j of
redshift bins are written as the sum of the lensing and noise spectra:

C̃ij
� = Cij

� +N ij
� . (4.35)

The derivative matrices are given by

[Dα]ij =
∂Cij

�

∂pα

, (4.36)

where pα is the vector of parameters in the theoretical model.

4.4.2 The Figure of Merit

In order to quantify the potential for a survey to constrain dark energy parameters,
we use the DETF Figure of Merit (see Linder, 2003; Albrecht et al., 2006). In this
parameterisation, we consider the smallest area in parameter space that can be constrained
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by a given experiment. The dark energy equation of state can be written as:

w(a) = wi + wa(ai − a), (4.37)

where wi ≡ w(ai) and the expansion is carried out around the scale factor ai. The square
of the the error on w(a) is:

∆w(a)2 = ∆w2
i + (an − a)2∆w2

a(ai − a)Cov(wi, wa), (4.38)

where Cov(wi, wa) is the covariance between wi and wa (equal to the inverse of the cor-
responding Fisher matrix element). By taking the derivative of this quantity, the scale
factor at which the error is minimised can be found. Thus

amin = ai +
Cov(wi, wa)

∆w2
a

. (4.39)

In the above formalism, the pivot redshift occurs when the covariance between wn and
wa is zero. In the standard expansion given in Equation 1.129, ai = 1 and the above
expression reduces to the equation for the pivot redshift an (i.e. amin = an). The ellipse
for the joint errors in the (wn, wa) plane is then the smallest ellipse constrained by a given
experiment. Since this ellipse is decorrelated, its area can be closely approximated by:

Area = ∆w(zpivot)∆wa. (4.40)

The Dark Energy Task Force (Albrecht et al., 2006) has chosen to define the Figure of
Merit (FOM) as the inverse of the area enclosed by the 95% confidence limit contour of
(wn, wa):

FOM =
1

∆wn∆wa
. (4.41)

The FOM quantifies the performance of any given experiment: the larger the FOM, the
tighter the constraint on the dark energy equation of state over a large redshift range.
Although other definitions of the FOM have been proposed (see e.g. Wang, 2008; Albrecht
et al., 2009), the DETF FOM has the advantage of simplicity, and of giving us an optimal
pivot redshift which can then be used to set the survey geometry.

4.4.3 Adding Planck priors

Fisher matrix analysis allows us to find the joint constraints from an ensemble of indepen-
dent experiments by using the sum of the respective Fisher matrices. In general, the joint
marginal error ellipses are smaller than or equal to those from the single experiments,
since the operations of addition and marginalisation are not commutative. This can be
understood physically in terms of adding information from independent experiments. In
this chapter, together with lensing-only constraints, we also include joint lensing and CMB
constraints. To combine constraints from different probes we add the respective Fisher
matrices:

Fjoint = Flensing + FCMB. (4.42)
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This approach is based on the assumption that the two experiments are decorrelated,
which is a valid approximation in our work.

For our CMB priors, we use the Planck mission as our survey (The Planck Col-
laboration, 2006). The main constraint on cosmology from the CMB comes from the
measurement of the angular size of the sound horizon at last scattering. The Planck
Fisher matrix is calculated following the method in Rassat et al. (2008), which forecasts
errors on cosmological parameter constraints by estimating the error on the measure-
ment of the temperature and E-mode polarisation power spectra. The power spectra are
calculated using the publicly available CAMB code (Lewis et al., 2000). We do not use
information from B-modes, and only use the 143 GHz channel, assuming other frequencies
will be used for the foreground removal. This is conservative compared to other Planck
priors in the literature.

The details given in this part are taken from Rassat et al. (2008, Appendix B). The
Planck Fisher matrix for the CMB spectrum is given by:

FCMB
ij =

∑
�

∑
X,Y

∂CX,�

∂θi

Cov−1
XY

∂CY,�

∂θj

, (4.43)

where θi are the parameters to constrain, CX,� is the harmonic power spectrum for the
temperature-temperature (X ≡ TT ), temperature-E-polarisation (X ≡ TE) and the E-
polarisation-E-polarisation (X ≡ EE) power spectrum. The covariance Cov−1

XY of the
errors for the various power spectra is given by the fourth moment of the distribution,
which under Gaussian assumptions is entirely given in terms of the CX,� with

CovT,T = f�

(
CT,� +W−1

T B−2
�

)2
(4.44)

CovE,E = f�

(
CE,� +W−1

P B−2
�

)2
(4.45)

CovTE,TE = f�

[
C2

TE,� +
(
CT,� +W−1

T B−2
�

) (
CE,� +W−1

P B−2
�

) ]
(4.46)

CovT,E = f�C
2
TE,l (4.47)

CovT,TE = f�CTE,�

(
CT,� +W−1

T B−2
�

)
(4.48)

CovE,TE = f�CTE,�

(
CE,� +W−1

P B−2
�

)
, (4.49)

where f� = �
(2�+1)fsky

and WT,P = (σT,P θfwhm)−2 is the weight per solid angle for tempera-

ture and polarisation, with a 1σ sensitivity per pixel of σT,P with a beam of θfwhm extent.
The beam window function is given in terms of the full width half maximum (fwhm) beam
width by B� = exp (−�(� + 1)θ2

fwhm/16 ln 2) and fsky is the sky fraction. Equation 4.43
usually includes a summation over the Planck frequency channels. This channel has a
beam of θfwhm = 7.1′ and sensitivities of σT = 2.2µK/K and σP = 4.2µK/K (The Planck
Collaboration, 2006). To account for Galactic obstruction, we take fsky = 0.80. We use
�min = 30 as a minimum �-mode, in order to avoid problems with polarisation foregrounds
and subtleties for the modelling of the integrated Sachs-Wolfe effect, which depends on
the specific dark energy model (Weller & Lewis, 2003; Caldwell & Doran, 2005).

The full parameter set for the Planck calculation is:
{Ωm, ΩDE, h, σ8, Ωb, w0, wa, ns, mν , Nν , α, τ}. We use the same central values as for our
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weak lensing calculations, as described above, with a fiducial value for the reionisation
optical depth τ = 0.09, which is subsequently marginalised over. We consider neutrino
parameters as Ωνh

2 and Nν and use a Jacobian to translate this into constraints on mν

and Nν .

4.5 Parameter constraints from lensing

Table 4.3 shows the marginalised errors for each parameter in our six cosmological pa-
rameter sets. Joint lensing+Planck marginalised errors are shown in Table 4.5. When
expected errors for n unknown parameters are calculated using a Fisher matrix, we are
implicitly setting the errors on any additional parameters to zero. We should therefore
expect QCDM to give us the best parameter constraints. In order to examine the varia-
tion in the marginalised errors with respect to the 8-parameter QCDM model, we define
the fractional change in the marginalised error ∆ for each parameter as

Fractional change in error =
∆pext − ∆pQCDM

∆pQCDM

, (4.50)

where the subscripts ext and QCDM denote the ‘extended’ model and QCDM (our most re-
stricted model) respectively. This quantity is shown in Figure 4.6 for the eight parameters
common to all the parameter sets, while Figure 4.15 shows the fractional error change in
the joint lensing+Planck constraints.

We have also examined the dependence of the marginalised errors on the fiducial
values. The stability of the errors with respect to the central values is an indication of
the confidence which we can have in our experiment. In other words, we should expect
the precision to be almost constant in the region around the true parameter values. The
results for parameters in the dark energy, neutrino and primordial power spectrum sectors
for the νQCDM+α parameter set are shown in a series of figures which will be explained
further on.

4.5.1 Effect of varying the parameter set

The marginalised errors for the eight parameters in QCDM are shown in the second
column of Table 4.3. With QCDM, all the sectors of our model are constrained well, even
with our fiducial model containing massive neutrinos. Using our fiducial weak lensing
survey with a QCDM parameter set, we obtain ∼ 5% expected precision on w0. The joint
errors on the dark energy parameters w0 and wa are shown in Figure 4.16. The FOM in
this case is 130.99. With the addition of Planck priors, we find a significant improvement
in the error bounds for the ΩDE, Ωm, Ωb, h, σ8, and ns. The improvement in the error
bounds on w0 and wa is smaller, with the FOM being increased by a factor of 2.75 (Table
4.5, second column).

With the νQCDM + α parameter set, we obtain the following bounds for the dark
energy equation of state parameters, using lensing only:

w0 = −0.95 ± 0.08 wa = 0 ± 0.33. (4.51)
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At the pivot redshift zn, the constraint on w(zn) improves to

w(zn) = −0.95 ± 0.05. (4.52)

In our calculations, we constrain the total neutrino mass and the number of massive
species by measuring their effect on the lensing power spectrum via the matter power
spectrum. This is sensitive to the neutrino fraction, related to the total neutrino mass by
(Elgarøy & Lahav, 2005)

fν ≡ Ων

Ωm

=
1

94Ωmh2

(mν

eV

)
. (4.53)

Different massive neutrino species become relativistic at different redshifts. Hence, the
matter power spectrum is also sensitive to individual neutrino masses and therefore, in
our parameterisation, to the number of the number of massive neutrino species Nν .

Tereno et al. (2009) find a 3.3 eV upper bound for the total neutrino mass, using
CFHTLS–T0003 data, while Ichiki et al. (2009) find an upper bound of 8.1 eV. Using
our fiducial νQCDM + α cosmology with neutrino parameter values of mν = 0.66 eV and
Nν = 3, our marginalised error forecast for mν is 1.20 eV, which gives us a 1σ upper
bound of 1.86 eV for the total neutrino mass (see Table 4.3), and an error bound of ±3.8
for the number of massive neutrino species. With our joint lensing and Planck constraints
(Table 4.5), we obtain an error of on the total neutrino mass of ∆mν = 0.14 eV and an
error on the number of massive neutrino species of ∆N = 0.12.

4.5.2 Effect of changing the fiducial cosmology

The assumed fiducial cosmology so far has been the one described in Section 4.3, and any
derivatives in the Fisher matrix are taken about these fiducial values. Here we consider
variations of the fiducial cosmology, and study their effect on the ability of our survey to
constrain cosmological parameters (this part of our work has a resonance with Mukherjee
et al., 2006; Pahud et al., 2006). In order to test the stability of our error bars as the
fiducial values are changed, we define the following quantity:

Relative marginalised error =
∆p

|p| (4.54)

as the marginalised error on a parameter divided by the absolute fiducial value of the
parameter. In the case where the denominator is zero (e.g. for wa), we only consider the
numerator. The parameter set used for these calculations is νQCDM + α.

In Figure 4.7 we show the errors for cosmological parameters in the dark energy,
neutrino, and primordial power spectrum sectors against the fiducial neutrino mass, using
the νQCDM+α parameter set. For the dark energy equation of state parameters w0 and
wa, we plot the FOM against the fiducial neutrino mass in Figure 4.8. The results show
that the errors are stable, even if the fiducial value is varied. This confirms the results by
Hannestad et al. (2006), who find that neutrino mass bounds are robust against variations
in w and the running spectral index (and also on the relativistic degrees of freedom). We
also find that the (w0, wa) FOM is stable over a wide range of mν values.

We also varied the fiducial value for the primordial spectral index ns and the dark

122



Chapter 4. Constraints on cosmological parameters using an all-sky weak lensing survey

Parameter QCDM νQCDM QCDM QCDM ν QCDM νQCDM

+α +α+ β +α +α+ β

w0 0.05633 0.06443 0.05740 0.06583 0.08099 0.09608

wa 0.19297 0.23674 0.21567 0.24988 0.32904 0.48144

ΩDE 0.05214 0.05841 0.05287 0.05297 0.05842 0.05856

Ωm 0.00731 0.00742 0.00731 0.00752 0.00749 0.00756

Ωb 0.02411 0.02558 0.02544 0.02981 0.03200 0.03201

mν/eV 1.10229 1.19614 1.51694

Nν 3.27380 3.81643 11.12214

h 0.11337 0.23176 0.18660 0.24691 0.41999 0.53253

σ8 0.01184 0.01230 0.01185 0.01268 0.01307 0.01319

ns 0.02904 0.03038 0.08662 0.11158 0.11969 0.12003

α 0.04378 0.05661 0.06556 0.07137

β 0.02574 0.08479

FOM 130.99 79.69 114.86 97.59 56.36 38.02

Table 4.3: Predicted marginalised parameter errors for weak lensing alone. We show re-
sults using different cosmological parameter sets. The second column shows the results
for our most restricted parameter set QCDM. In the third column, we add massive neu-
trinos. Primordial power spectrum parameters are added in the fourth and fifth columns.
In the sixth we add neutrinos and a running of the primordial spectral index. The seventh
column shows our most extended model νQCDM+α+β. We also show the DETF Figure
of Merit for each model.
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Figure 4.6: Panel 1: The fractional change in the marginalised error for each parameter
with respect to the QCDM model, using a lensing Fisher matrix calculation. In this
panel, we add neutrino parameters before adding degrees of freedom in the primordial
power spectrum. In the second panel (following page) we add primordial power spectrum
parameters before adding neutrinos. In each case, the most general parameter space,
shown by the red bars, is QCDM + ν + α + β.
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Figure 4.6: Panel 2: The fractional change in the marginalised error for each parameter
with respect to the QCDM model, using a lensing Fisher matrix calculation. In this panel
we add primordial power spectrum parameters before adding neutrinos.
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energy equation of state w0. The results are shown in Figures 4.9 and 4.11 respectively.
We find that the bounds on the neutrino mass and the number of massive neutrino
species are stable over a wide range of fiducial values for these parameters (overall, a 20%
deviation from the concordance values). We also calculate the FOM resulting from the
variation of these fiducial values. We find that the FOM is stable over a wide range of
values of ns (Figure 4.10), while it increases as w0 is increased from −1 to −0.8 (Figure
4.12). Since the dark energy equation of state is parameterised by w(a) = w0 + wa(a), a
change in w0 affects the amplitude of w(a) at all redshifts, and therefore affects the shear
as a function of redshift (the lensing efficiency function). Changing the value of w0 also
affects the number distribution of dark matter halos as a function of redshift and mass.
In other words, not only does it change the growth factor (and therefore the matter power
spectrum), it also changes the lensing power spectrum itself. Figure 4.12 suggests that
the sensitivity of weak lensing to the parameters wo and wa increases at higher w0.

We also explored our parameter constraints for two particular dark energy models,
which are considered to be just at the limit of what is allowed by current constraints.
The first is the SUGRA, or supergravity, model proposed by Weller & Albrecht (2002),
which is a form of Quintessence, represented by w0 = −0.8 and wa = 0.3. The second is
a phantom model proposed by Caldwell et al. (2003), with w0 = −1.2 and wa = −0.3.
To test the effect of changing our dark energy model we carried out our Fisher matrix
calculation using the νQCDM + α parameter set and our fiducial lensing survey. The
marginalised errors and FOM for these two models are shown in Table 4.4. We find that
joint w0, wa constraints are considerably weakened in the Phantom model. Constraints
on other parameters, however, are weaker in the SUGRA Quintessence model. A negative
wa, as in the Phantom model, represents a dark energy scenario in which the dark energy
density was less in the past. The effect of dark energy on the Hubble rate in the past is less
in these scenarios, so that it becomes more difficult to constrain dark energy parameters
using weak lensing. One must be careful about the falsely optimistic error bounds on
cosmological parameters in such scenarios, due to the inability of our analytical transfer
function to model dark energy perturbations.

The error on the dark energy density ΩDE is stable against the addition of massive
neutrinos to the parameter set. For the equation of state parameters, we observe a
degradation in the marginalised constraints. The FOM is consequently also degraded, as
can be seen in Table 4.3. The top panel of Figure 4.6 shows that the parameter most
sensitive to the addition of neutrinos is Hubble parameter h, and to a lesser extent, w0

and wa. In the latter case, this is due to a degeneracy with neutrinos in the observed
effect on the growth function.

Figure 4.16 shows the joint 1σ constraints on the dark energy parameters w0 and
wa. The addition of massive neutrinos to the QCDM model produces a degradation on
these constraints but does not significantly change the orientation of the ellipse. This
means that the pivot point an remains almost unchanged.

4.5.3 Constraints on the primordial power spectrum

In this section, we discuss the constraints for primordial power spectrum parameters,
using different parameterisations of the primordial spectral index. We also examine the
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Figure 4.7: Relative marginalised error for parameters in three cosmological sectors,
plotted against the fiducial neutrino mass in eV. The relative marginalised error is the
marginalised error on the parameter divided by its absolute fiducial value: ∆p/|p|. The
plot shows five sets of values on the same axes: In black, the relative marginalised error
for the neutrino mass mν (solid line), and the number of massive neutrino species Nν

(dashed line); in red (solid), the relative marginalised error for dark energy density ΩDE;
in blue, the relative marginalised error for primordial spectral index ns (solid) and its
running α (dashed).
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Figure 4.8: The dark energy Figure of Merit plotted against the fiducial value for the
total neutrino mass mν in eV.
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Figure 4.9: Relative marginalised error for parameters in three cosmological sectors,
plotted against the fiducial value for the primordial spectral index ns. The relative
marginalised error is the marginalised error on the parameter divided by its absolute
fiducial value: ∆p/|p|. The plot shows five sets of values on the same axes: In black, the
relative marginalised error for the neutrino mass mν (solid line), and the number of mas-
sive neutrino species Nν (dashed line); in red (solid), the relative marginalised error for
dark energy density ΩDE; in blue, the relative marginalised error for primordial spectral
index ns (solid) and its running α (dashed).
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Figure 4.10: The dark energy Figure of Merit plotted against the fiducial value for the
primordial spectral index ns.
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Figure 4.11: Relative marginalised error for parameters in three cosmological sectors,
plotted against the fiducial value for the dark energy equation of state parameter w0.
The relative marginalised error is the marginalised error on the parameter divided by its
absolute fiducial value: ∆p/|p|. The plot shows five sets of values on the same axes: In
black, the relative marginalised error for the neutrino massmν (solid line), and the number
of massive neutrino species Nν (dashed line); in red (solid), the relative marginalised error
for dark energy density ΩDE; in blue, the relative marginalised error for primordial spectral
index ns (solid) and its running α (dashed).
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Figure 4.12: The dark energy Figure of Merit plotted against the fiducial value for the
dark energy equation of state parameter w0.
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Phantom Quintessence

∆w0 0.11319419 0.060629748

∆wa 0.56475954 0.22300569

∆ΩDE 0.049196426 0.067529670

∆Ωm 0.0082296147 0.0080236744

∆Ωb 0.028589575 0.035248301

∆mν/eV 1.1114124 1.3255770

∆Nν 2.8106820 4.7902798

∆h 0.38745158 0.45608683

∆σ8 0.013459380 0.013865601

∆ns 0.10034771 0.13966256

∆α 0.055004062 0.076554876

FOM 20.96 121.39

Table 4.4: Predicted marginalised parameter errors for weak lensing alone, for two dark
energy models: Phantom (w0 = −1.2, wa = −0.3) and SUGRA Quintessence (w0 = −0.8,
wa = +0.3).
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variations in our error forecasts for other parameters when we vary our primordial power
spectrum parameterisation. Weak lensing forecast constraints on the running spectral
index have been studied by Ishak et al. (2004), who also use combined lensing + current
CMB constraints. They find that CMB constraints are improved when weak lensing is
added, especially for the parameters σ8, Ωm, h and ΩDE. Their cosmological model does
not include massive neutrinos, however.

The parameterisation of the primordial power spectrum used here assumes a pivot
scale k0 at which the amplitude is defined. We find that the best constraints on ns in
the νQCDM + α model using our fiducial weak lensing survey are achieved with a pivot
scale k0 ∼ 1 Mpc−1, which is larger than the value of 0.05 Mpc−1, adopted in the rest of
the thesis. The results are shown in Figure 4.13. This optimum pivot scale is shifted to
∼ 0.3 Mpc−1 when the parameter β is added, and to ∼ 0.1 Mpc−1 when α is added. Our
results show that a weak lensing survey achieves the maximum sensitivity to ns and α
at higher k with respect to CMB probes. To use the same approach as the dark energy
Figure of Merit for the primordial power spectrum sector, we use a simplified form of the
DETF FOM, which we shall call the FOMprim which is simply the area bounded by the
∆ns∆α rectangle:

FOMprim =
1

∆ns∆α
. (4.55)

This definition allows us to define the pivot scale where the product of the marginalised
errors on ns and α as the value of k0 which gives the maximum FOMprim. In Figure 4.14
we show the variation of FOMprim for different values of k0.

In Table 4.3 we note that the addition of the parameter α has a small effect on the
FOM, while adding a further parameter β produces a larger degradation. The degrada-
tion in the Ωb, Ωm and σ8 constraints is negligible against the addition of α, while the
parameters h and ns are most affected, as can be seen in Figure 4.6, Panel 2. The addition
of β degrades the constraints on all these parameters, especially ns.

With weak lensing only, we obtain tighter constraints on α than on ns with the
QCDM + α and QCDM + α + β parameter sets. This error hierarchy is reversed when
Planck priors are added (Tables 4.3 and 4.5, fourth and fifth columns).

Examining Figure 4.16 we observe that the addition of primordial power spectrum
parameters produces a small degradation in the joint (w0, wa) errors and has little effect
on the orientation of the ellipses.

4.5.4 Combined neutrino and primordial power spectrum pa-

rameters

We also investigate the effect adding both neutrinos and primordial power spectrum pa-
rameters (the models νQCDM +α and νQCDM +α+ β). We note that the effect on the
FOM is more significant than with neutrinos or α and β alone (Table 4.3). With the full
extended model, the effect is especially noticeable on Nν and β, showing that there are
significant degeneracies between the effect of neutrinos on the matter power spectrum and
the effect a scale-dependent primordial power spectrum with several degrees of freedom.

Figure 4.6 (red bars) shows that the greatest degradation in constraints with respect
to QCDM occurs in the parameters wa, h, and ns. There is an additional degeneracy in the
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Figure 4.13: The effect of pivot scale on the marginalised errors for primordial power
spectrum parameters. The figure shows the marginalised error ∆ on primordial power
spectrum parameters against pivot scale k0. The calculation was carried out for two
parameter sets: νQCDM + α (shown in black) and νQCDM + α + β (shown in red)
using our all-sky fiducial weak lensing survey. We show the marginalised errors for the
parameters ns (solid line), α (dashed line) and β (dotted line).
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Figure 4.14: The ‘Figure of Merit for the primordial power spectrum’, as described in
the text, for the two parameter sets. The vertical dotted line indicates the value of
k0 = 0.05 Mpc−1.
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matter power spectrum between the small-scale power-suppression effect of massive neu-
trinos and the form of the primordial power spectrum for certain values of the primordial
spectral index.

With weak lensing only, we obtain tighter constraints on α than on ns, which is in
agreement with the results obtained by Kitching et al. (2008b) and Ishak et al. (2004).
Although the precision for both parameters is degraded when neutrinos are added, this
error hierarchy is preserved, even when CMB constraints are added (see Section 4.6 below).

The dependence of neutrino mass bounds on the fiducial value of the running of the
primordial spectral index has been studied by Feng et al. (2006), who use a combination
of WMAP3, 2dF galaxy clustering, and SNIa data. They find that these constraints are
strengthened in the presence of a nonzero α. In order to study the dependence of weak
lensing neutrino mass constraints on this parameter, we calculated the Fisher matrix for
the νQCDM + α parameter set using different fiducial values of the running in the range
−0.05 < α < 0. We find that our neutrino mass bounds are slightly weakened (from
∆mν = 1.196 eV in the fiducial model to 1.219 eV), but the bounds on the number of
massive species are improved (from ∆Nν = 3.816 to 3.760).

4.6 Joint lensing and CMB results

The addition of Planck priors has a significant effect on parameter constraints. In the
dark energy sector, the main constraints on w0 and wa come from the Integrated Sachs-
Wolfe effect, although degeneracies between w0 and wa remain. The CMB constrains
the curvature of the cosmological model very well. Hence it constrains ΩDE. Another
parameter which is well-constrained by the CMB is σ8. This comes about through an
indirect effect, since this parameter, as measured by the CMB, is dependent on other
parameters, which in turn are well-constrained by this probe. Particularly relevant to
this thesis are the constraints placed by the CMB on the primordial power spectrum.
Hence, the addition of CMB priors allows us to limit the degeneracy between this sector
and other parameters.

When we add Planck priors to our weak lensing forecasts, the FOM is improved by
a factor of 6 for the νQCDM +α+ β model (Table 4.5), and we obtain better constraints
for all parameters, especially Ωb, ΩDE (related to the geometry of the Universe), h and ns.
Adding CMB priors also lifts the degeneracy between some parameters, so the extension
of the parameter set does not significantly degrade the error bars. This can be seen in
Figure 4.15, where Ωb, h and ns, which are well-constrained by Planck, are now hardly
affected by the addition of extra parameters. It can be seen from Table 4.5 that we obtain
better constraints on α than on ns with the addition of CMB priors, reversing the error
hierarchy obtained with lensing only. Moreover, the addition of neutrino parameters does
not significantly affect the precision on ns.

With combined lensing+Planck calculations, we obtain an improvement in the joint
(w0, wa) constraints (Figure 4.16). The constraints are robust against the addition of
neutrino parameters and the primordial power spectrum parameters α and β.

One of the aims of this thesis is to investigate dark energy constraints, so we prefer
to consider a possible non-flat model (i.e. Ωm + ΩDE �= 1) since some dark energy models
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involve variations of the Friedmann equations in non-flat geometries (e.g. Dvali & Turner,
2003). The assumption of spatial flatness would give us stronger constraints on our
parameters. CMB probes place very strong constraints on the curvature of the Universe.
The addition of CMB priors therefore allows us to improve the precision on Ωm + ΩDE,
with a consequent improvement of precision for the other parameters.
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Parameter QCDM νQCDM QCDM QCDM ν QCDM νQCDM

+α +α+ β +α +α+ β

w0 0.04942 0.04984 0.04943 0.05055 0.04987 0.05142

wa 0.17943 0.18231 0.17946 0.18260 0.18275 0.18482

ΩDE 0.00644 0.00661 0.00721 0.00722 0.00730 0.00730

Ωm 0.00389 0.00391 0.00391 0.00391 0.00393 0.00393

Ωb 0.00091 0.00119 0.00101 0.00101 0.00128 0.00128

mν/eV 0.14172 0.14172 0.14176

Nν 0.11694 0.11821 0.11924

h 0.00599 0.01360 0.00625 0.00625 0.01381 0.01382

σ8 0.00461 0.00491 0.00467 0.00470 0.00492 0.00501

ns 0.00332 0.00549 0.00356 0.00360 0.00557 0.00563

α 0.00515 0.00519 0.00545 0.00545

β 0.01779 0.01834

FOM 357.12 258.40 357.01 348.70 251.51 240.59

Table 4.5: Predicted marginalised parameter errors for for cosmic shear combined with
Planck priors.
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Figure 4.15: Panel 1: Fractional change in marginalised errors with respect to QCDM,
using a joint lensing+Planck Fisher matrix. As in Figure 4.6, in the first panel we add
neutrino parameters before adding the parameter α, and in the second panel we consider
different parameterisations of the primordial power spectrum without adding neutrinos
to our parameter space.
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Figure 4.15: Panel 2: Fractional change in marginalised errors with respect to QCDM,
using a joint lensing+Planck Fisher matrix. In this panel we consider different parame-
terisations of the primordial power spectrum.
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Figure 4.16: Joint 1σ constraints in the (w0, wa) plane from our Fisher matrix calculation
with four different parameter sets. QCDM ,νQCDM, QCDM+α+β and νQCDM+α+β
are shown in grey, red, blue and green respectively. The solid ellipses show the constraints
using lensing only, while the dashed ellipses show the constraints with the addition of
Planck priors from our CMB Fisher matrix calculation. The lensing-only error ellipses
show that the addition of neutrinos or primordial power spectrum on their own do not
significantly affect the precision on the dark energy equation of state parameters, but
their simultaneous addition has a significant affect. With the addition of CMB priors, we
recover this precision, even with the most extended parameter set.
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4.7 Summary

In this chapter we have calculated forecast errors using the Fisher matrix formalism for
an all-sky tomographic weak lensing survey, and for weak lensing+Planck. We have used
different cosmological parameter sets, studying the effect of the addition of parameters in
the model, and of a change in the fiducial cosmology. We have shown that error forecasts
for some parameters are stable against changes in the parameter set (Table 4.3), and that
degeneracies between the dark energy parameters w0 and wa are not significantly affected
by the addition of parameters (Figure 4.16). The marginalised errors are shown to be
stable against a wide range of fiducial values for three parameters in particular: mν , ns

and w0.
Error forecasts for neutrino parameters have been studied by Kitching et al. (2008a),

who use joint 3D weak lensing + Planck forecasts. We find that our joint lensing +
CMB constraints are weaker in the neutrino sector, by factor of 4.5 and 1.5 for mν and
Nν respectively, a difference which we attribute to the differences in the calculation.
Kitching et al. use more optimistic assumptions for the Planck Fisher matrix calculation
(Kitching, private communication), a different parameter set for the Planck Fisher matrix
(inclusion of the tensor to scalar ratio r), and a different weak lensing method (3D weak
lensing). They also use the modified growth function suggested by Kiakotou et al. (2008)
and a different parameterisation of the primordial power spectrum in terms of ns and α
(Kitching, private communication).

Our results have a resonance with De Bernardis et al. (2009), in which it is shown
that the neutrino mass hierarchy can be constrained using cosmic shear, using a more
general parameterisation of the neutrino mass splitting. We find that for the parameters
that are common between the two calculations there is an agreement between the predicted
errors, despite the slightly different parameter sets and assumptions.

In the neutrino sector, parameter constraints would be improved by a hierarchical
parameterisation in which different neutrino species have non-degenerate masses. This
would model more accurately the process whereby each massive species becomes non-
relativistic at a different redshift. While the different transition redshifts have only a
very small effect on the CMB anisotropy power spectrum, the effect is non-negligible in
future cosmic shear experiments which measure the matter power spectrum to a sufficient
accuracy to discriminate between different mass hierarchies.

In this chapter we have also focussed on the uncertainties in the form of the pri-
mordial power spectrum. We have investigated the shift in the optimal pivot scale for
primordial power spectrum constraints with the addition of extra parameters (Figure
4.13), showing that it tends to be larger by a factor of 2-20 compared to the commonly
used CMB-measurement value . We have shown that parameter constraints are depen-
dent on the parameterisation of the primordial power spectrum. With the addition of
CMB priors, we have shown that we can obtain improved constraints in this sector, which
reduces the dependency on constraints on the parameter set.

In the dark energy sector, the joint (w0, wa) constraints are remarkably robust
against the addition of massive neutrinos and of primordial power spectrum parame-
ters to the parameter set, with only a weak degradation in the precision. When the all
the parameters are added simultaneously, the degradation in the precision is more sig-
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nificant. We find that the addition of CMB priors allows us to recover the precision on
these parameters, and on parameters in the other sectors, even when mν , Nν , α and β
are added simultaneously.

Using the results in this chapter we conclude that future weak lensing surveys, in
combination with CMB priors from future experiments, have the potential to constrain
the parameters in all cosmological sectors. We also show that the survey precision is stable
against changes in the parameterisation of the cosmological model. This is important in
the light of the need to test as wide a range of theories as possible.

We now turn to the question of finding the best survey strategy to maximise our
parameter constraints.
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Chapter 5

Tomographic weak lensing survey
optimisation

In this chapter, we examine how the design of a future all-sky tomographic weak lensing
survey can be optimised to measure cosmological parameters. We focus on three sectors:
dark energy, neutrinos, and the primordial power spectrum.

We examine how the constraints on these cosmological sectors are affected by three
survey design parameters: the survey area As, the galaxy count per sq arcmin ng, and
the median redshift zm. We also study the impact of the multipole range on the survey
precision.
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5.1 Defining an optimum survey

Our weak lensing survey forecast errors are limited by many factors, which can be grouped
into three main areas: the statistical error imposed by the survey geometry, the photo-
metric redshift errors, and the uncertainties in the power spectrum arising from shear
measurement systematics and theoretical uncertainties. Future weak lensing missions
have set 0.1% as the precision on ellipticity measurements, with percent-level precision on
the measurement of w. We need to know how to optimise our survey strategy to achieve
the desired precision in our error bounds. In this section, we shall discuss the limitations
on this precision, together with the optimisation of the survey geometry.

The optimisation of weak lensing surveys and the minimisation of systematics has
been investigated in many papers. Among the more recent ones are Amara & Réfrégier
(2007, 2008); Heymans et al. (2006); Massey et al. (2007); Paulin-Henriksson et al. (2008);
Amara et al. (2009). These studies have converged towards a common optimum survey
design featuring a wide survey with well-controlled and stable point-spread functions, with
precise photometric redshift measurements. Such design criteria are covered by upcoming
all-sky surveys such as the Large Synoptic Survey Telescope 1 (LSST), the Panoramic
Survey Telescope & Rapid Response System (Pan-STARRS)2, DUNE/Euclid3, or the
Joint Dark Energy Mission4 (JDEM).

In this chapter we study the optimisation of an all-sky tomographic weak lensing
survey whose design parameters are based on the DUNE/Euclid concept. The optimi-
sation of such a survey has been investigated by Amara & Réfrégier (2007), who focus
on the dark energy Figure of Merit. They use a ΛCDM fiducial cosmological model
with a spatially flat Universe, and the BBKS transfer function (Bardeen et al., 1986)
with the Peacock & Dodds (1996) non-linear correction. Their parameter set is therefore
{Ωm,Ωb, w0, wa, h, σ8, ns}. Here, we investigate whether the results are modified by the
addition of massive neutrinos to the cosmological model, and the extension of the param-
eter set for which we calculate the Fisher matrix. We also examine the optimisation for
two other cosmological sectors: neutrinos and the primordial power spectrum. The aim
is to investigate whether the same optimum survey design applies for all parameters. In
the final part of our calculation we extend the parameter set to include 12 parameters, as
described in Chapter 4.

To this end, we study the optimisation using our fiducial cosmological model, as
described in Chapter 4, using the Eisenstein & Hu (1999) transfer function and the Smith
et al. (2003) non-linear correction described in Section 4.2. For our fiducial survey ge-
ometry, we use the parameters for a ‘shallow survey’, as described in Amara & Réfrégier
(2007): zm = 0.9, ng = 35 galaxies per sq arcmin, survey area = 20000 sq degree, together
with the weak lensing formalism which we also use in Chapter 4. We consider two cos-
mological parameter sets: νQCDM + α and νQCDM + α+ β, with the following fiducial
values: ΩDE = 0.7, w0 = −0.95, wa = 0, Ωm = 0, Ωb = 0.045, mν = 0.66 eV, N = 3,

1http:www://lsst.org
2http://www.pan-starrs.ifa.hawaii.edu
3As of 2009, DUNE is included in the Euclid concept. See http://www.dune-mission.net and

http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
4http://jdem.gsfc.nasa.gov
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h = 0.7, σ8 = 0.8, ns = 1, α = 0, β = 0.
We calculate the Fisher matrix for the νQCDM + α parameter set varying three

survey parameters: the median redshift zm, the number of galaxies per square arcminute
ng, and the area of the survey in square degrees As. We also study the effect of changing
the maximum multipole �max.

5.2 Varying the survey parameters

Any future survey will be limited by a finite observing time. Within a realistic timeframe,
considered to be roughly 3 years, either the depth or the survey area will have to be limited.
We therefore need to study the trade-off between these two parameters, and the optimum
survey strategy which maximises the precision of our measurements. A very wide, shallow
survey will yield poor cosmological constraints since the shot noise is large, while a very
deep survey will also yield poor constraints because very little area can be covered, and
the cosmic variance will be large. The three most important parameters in this study
are the area of the survey As, the number density of lensed galaxies ng, and the redshift
distribution of the galaxies, which is a function of the median redshift of the survey zm.

We have carried out a Fisher matrix calculation for our νQCDM+α data set (chosen
as the most common generalisation of ΛCDM) for different values of the three survey
parameters described above. Our aim is to study the impact of these parameters on the
FOM, and on the constraints in three cosmological sectors: dark energy, neutrinos and
the primordial power spectrum.

To this end, we show a set of set figures similar to Figures 4.7 to 4.12 in Chapter 4.
Figure 5.1 shows the impact of the survey area on the precision on Ωm, mν , N , ns and
α. We also note that the scaling is similar for all these parameters. The FOM also scales
linearly with the survey area (Figure 5.2).

In Figure 5.3, we see that the scaling of the precision on DE, neutrino and primordial
power spectrum parameters with the galaxy count ng is stronger than with the survey area,
with the precision on Ωm being slightly more sensitive to ng than the other parameters.
In this case, the FOM shows a linear scaling with ng (Figure 5.4).

The precision on these cosmological parameters shows the strongest dependence on
zm. This is shown in Figure 5.5 (thin lines). We observe a factor of ∼ 10 improvement
in the relative error in the range zm = 0.2 to 1.4. Again, the dependence of Ωm on the
survey parameter is slightly stronger than the other cosmological parameters. The FOM
also shows a strong dependence on the median redshift (Figure 5.6, thin lines), with the
scaling being non-linear.

The FOM shows a nonlinear scaling with zm, tending towards a constant as zm

approaches 1.5 (Figure 5.6 ). At higher redshifts, we have two effects: information from
lensing becomes weaker, and dark energy no longer dominates. These two effects combine
to give us a slight tailing off of the improvement on the FOM beyond zm ∼ 1.

The dark energy Figure of Merit is generally taken as the criterion for measuring the
quality of a weak lensing survey. However, we have shown in this thesis that weak lensing
can constrain other parameters apart from dark energy. The question then is whether the
same optimisation strategy applies across all cosmological parameters. The results in this
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section show that this is indeed the case, since the scaling of the precision is the same
for all parameters. In other words, a survey optimised for weak lensing constraints will
also be the optimum survey for other parameters. There are two reasons for this. One
is the sensitivity to the survey design of the cosmological parameters themselves. The
other is the degeneracy between the dark energy sector and the other parameters. By
constraining dark energy more strongly, we also improve parameter constraints in other
sectors. Although it may be desirable to achieve the maximum precision by using the
optimum values for the individual survey parameters, some trade-offs may be necessary
due to the finite observing time. With our tomographic weak lensing survey, we find that
the dominant factor in the precision is the survey area.

5.3 The multipole range

In this thesis we calculate the theoretical matter power spectrum P (k, z) using an analyt-
ical formula, as described in Chapter 4. This, however, is subject to uncertainties, since
baryonic physics will render the model uncertain at small scales. This creates an addition
systematic effect in our projections. To circumvent this problem, the maximum k value
for the power spectrum calculation is sometimes chosen to be as low as possible, so that
it lies within the linear régime of P (k). However, due to the Limber approximation, there
is a correspondence between the spatial wavenumber k and the angular wavenumber �
(see Hu & Jain, 2004). For our survey, with a median redshift of 0.9, we need k ∼ 100 to
cover an � range up to 5000.

If we limit ourselves to smaller k-range, we cannot use the larger � values. To study
how this impacts our parameter precision, we calculate the relative error for different
values of �max in Figure 5.7 (thin lines). We consider the range 103 < �max < 105,
which corresponds to discarding nonlinear modes (lower bound) to including sub-arcmin
scales (upper bound). The minimum multipole is kept constant at �min = 10. We use a
νQCDM + α parameter set with the fiducial values

We observe that the precision is not significantly improved beyond �max ∼ 104. The
scaling for the precision on mν with �max is stronger than the other parameters below
�max = 104. This suggests that most of the information in this sector comes from modes
corresponding to the nonlinear part of the matter power spectrum, but a maximum �
mode of 5000 is a good compromise. Beyond this value, the improvement in precision
becomes less significant. This also holds for the FOM, as seen in Figure 5.8. Below this
value of �, however, �max has a significant impact on the precision, especially on the FOM.
This is in agreement with the results of Amara & Réfrégier (2007), who use a cosmological
model with no massive neutrinos or running of the spectral index and assume a spatially
flat Universe.
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Figure 5.1: Relative marginalised error for parameters in three cosmological sectors
against the area of the survey As. The relative marginalised error is the marginalised
error on the parameter divided by its absolute fiducial value: ∆p/|p|. The plot shows five
sets of values on the same axes: In black, the relative marginalised error for the neutrino
mass mν (solid line), and the number of massive neutrino species Nν (dashed line); in red
(solid), the relative marginalised error for dark energy density ΩDE; in blue, the relative
marginalised error for primordial spectral index ns (solid) and its running α (dashed).
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Figure 5.2: The dark energy Figure of Merit against the area of the survey As.
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Figure 5.3: Relative marginalised error for parameters in three cosmological sectors
against the number of galaxies per square arcminute ng. The relative marginalised error
is the marginalised error on the parameter divided by its absolute fiducial value: ∆p/|p|.
The plot shows five sets of values on the same axes: In black, the relative marginalised
error for the neutrino mass mν (solid line), and the number of massive neutrino species
Nν (dashed line); in red (solid), the relative marginalised error for dark energy density
ΩDE; in blue, the relative marginalised error for primordial spectral index ns (solid) and
its running α (dashed).
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Figure 5.4: The dark energy Figure of Merit against the number of galaxies per square
arcminute ng.
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Figure 5.5: Relative marginalised error for parameters in three cosmological sectors
against the median redshift of the survey zm. The relative marginalised error is the
marginalised error on the parameter divided by its absolute fiducial value: ∆p/|p|. The
plot shows five sets of values on the same axes: In black, the relative marginalised error
for the neutrino mass mν (solid line), and the number of massive neutrino species Nν

(dashed line); in red (solid), the relative marginalised error for dark energy density ΩDE;
in blue, the relative marginalised error for primordial spectral index ns (solid) and its
running α (dashed).
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Figure 5.6: The dark energy Figure of Merit against the median redshift of the survey
zm.
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Figure 5.7: Relative marginalised error for parameters in three cosmological sectors
against the maximum � value. The relative marginalised error is the marginalised er-
ror on the parameter divided by its absolute fiducial value: ∆p/|p|. The plot shows five
sets of values on the same axes: In black, the relative marginalised error for the neutrino
mass mν (solid line), and the number of massive neutrino species Nν (dashed line); in red
(solid), the relative marginalised error for dark energy density ΩDE; in blue, the relative
marginalised error for primordial spectral index ns (solid) and its running α (dashed).
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Figure 5.8: The dark energy Figure of Merit against the maximum multipole �max.
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5.4 Optimisation for all parameters in hypothesis space

Optimisation studies for weak lensing surveys are usually carried out with respect to the
dark energy equation of state parameters. The results obtained in Chapter 4 of this thesis
show that weak lensing has the potential to constrain all sectors of the cosmological model,
even with the 12-parameter νQCDM + α + β hypothesis space. It is therefore pertinent
to examine the effect of the survey design on all 12 parameters as well as the FOM.

We repeated the calculations carried out in the previous section for the νQCDM+α+
β parameter set, examining the effect of varying the four survey parameters previously
considered. The results are shown in four figures, where we have plotted the relative
marginalised error for the 12 parameters of the model, as well as the dark energy Figure
of Merit (shown by the thick black line on the plots).

In Figure 5.9 we vary the survey area, while keeping all other parameters constant.
The marginalised errors follow the scaling in Figures 5.1 and 5.2, the only difference being
the increased amplitude of the errors. Moreover, all 12 parameters show the same scaling
relation with the survey area.

In Figure 5.10 we vary the galaxy count per square arcminute. Again, the marginalised
errors and FOM follow the scaling for the 11-parameter model shown in Figures 5.3 and
5.4.

In Figure 5.11 we vary the median redshift. We observe a slight difference in the
scaling between different cosmological parameters in the model, but the marginalised
errors all decrease as the redshift is increased. This follows the scaling relation observed
in Figure 5.5.

Finally, we vary the maximum multipole in Figure 5.12. The minimum multipole
is kept fixed at �min = 10, as in the calculations for the νQCDM + α set. Although all
the marginalised errors decrease as �max is increased, following the behaviour observed
in Figure 5.7, the scaling is different for different parameters, especially in the range
100 < �max < 104.

Our results show that the dependence of the parameter precision on the survey
design is similar for all 12 cosmological parameters. Moreover, the scaling relation is
not significantly affected by adding the parameter β to the hypothesis space, as can be
observed by comparing the results obtained in this section with those from the previous
sections. In this section, we also confirm the dependence of the FOM on the survey
geometry studied by Amara & Réfrégier (2007), who work with a smaller parameter set.
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Figure 5.9: Dependence of cosmological parameter precision on the survey area. The
plot shows the relative marginalized error, defined as ∆p/|p| for the twelve parameters in
νQCDM + α + β. The thick black line shows the (w0, wa) Figure of Merit.
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Figure 5.10: Dependence of cosmological parameter precision on the galaxy count. The
plot shows the relative marginalized error, defined as ∆p/|p| for the twelve parameters in
νQCDM + α + β. The thick black line shows the (w0, wa) Figure of Merit.
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Figure 5.11: Dependence of cosmological parameter precision on the median redshift. The
plot shows the relative marginalized error, defined as ∆p/|p| for the twelve parameters in
νQCDM + α + β. The thick black line shows the (w0, wa) Figure of Merit.
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Figure 5.12: Dependence of cosmological parameter precision on the maximum multipole.
The plot shows the relative marginalized error, defined as ∆p/|p| for the twelve parameters
in νQCDM + α + β. The thick black line shows the (w0, wa) Figure of Merit.
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5.5 Summary

In this chapter we have studied how the three properties of the survey design As, ng and
zm affect the precision of our survey. We found that future surveys will improve over
current measurements mostly by increasing the survey area. The best survey strategy is
therefore to aim at increasing the survey area, then the number of galaxies, and finally the
survey redshift. We also looked at survey optimisation for other cosmological sectors apart
from dark energy, and found that the optimisation is similar for the different parameters.

We have examined the impact of the �-mode cutoff, and found that the greatest
improvement in the precision on the joint (w0, wa) parameters is obtained in the range
103 < �max < 104. Beyond �max ∼ 104 the gain in the precision is minimal. This confirms
the results in Amara & Réfrégier (2007). A similar behaviour is observed for the preci-
sion on the other parameters (neutrinos, dark energy density, and the primordial power
spectrum), with the precision on the neutrino mass mν showing a stronger dependence
on the maximum multipole.

Weak lensing surveys seeking to maximise the precision on dark energy parameters
and on neutrino mass bounds should therefore aim to cover multipoles at least up to
�max = 104.

The calculations in this Chapter were carried out for two parameter sets: νQCDM+
α, and νQCDM + α + β. There are two conclusions to be drawn from our results.

Firstly, the dependence of the parameter precision on the survey design is similar in
these two parameter sets. The dependence of the FOM on the survey design also follows
the results in Amara & Réfrégier (2007), who used a 7-parameter cosmological model with
the assumption of flatness5. This indicates that the optimisation strategy is independent
of the hypothesis space, both for the dark energy equation of state, as well as for the
other parameters. In other words, the optimum weak lensing survey design for measuring
the dark energy equation of state will also be the optimum survey for measuring other
cosmological parameters.

Secondly, we have shown that all the cosmological parameters show a similar de-
pendence on the survey design in both the 11- and 12-parameter hypothesis spaces. A
change in the survey design would result in a rescaling of the marginalised errors for the
cosmological parameters (shown in Table 4.3), but would not significantly modify the
fractional change in the marginalised errors. This indicates that the results obtained in
Chapter 4, Figure 4.6 are robust to changes in the survey parameters.

The results obtained in this Chapter show that the optimisation strategy for a weak
lensing survey designed to constrain the dark energy equation of state can be applied
to the other cosmological parameters, independently of the number of parameters in the
cosmological model.

5The parameter set in Amara & Réfrégier (2007) is: {w0, wa, Ωm, Ωb, h, σ8, ns}.
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Chapter 6

Conclusion

This chapter will conclude this thesis by summarising the progress made in understanding
different cosmological sectors, especially dark energy, and the main results presented. We
start with a review of some of the unanswered questions in cosmology. We then give an
overview of future weak lensing experiments, and other methods used to constrain dark
energy. This is followed by a summary of the results presented in this thesis. Finally, we
review possible future work in connection with our methods.
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6.1 Beyond dark energy

This thesis started by summarising the current state of concordance cosmology. This
assumes that General Relativity is correct, an assumption which is justified by the tests
which GR has undergone. We have reviewed the components making up the Universe,
describing how ∼ 95% of the content is unaccounted for. Dark matter, which makes up
around 30% of the mass-energy of the Universe is a matter-like component which is cold
(sub-relativistic) and weakly interacting, in the current paradigm.

We have also explained how the discrepancy between the observed acceleration of
the expansion of the Universe and the predictions of GR leads to the conclusion that there
must be a cosmological component with a negative equation of state parameter making
up around 70% of the mass-energy content of the Universe: dark energy.

The dark energy paradigm, however, does not fix the nature of this component.
There exist many theories which attempt to explain its nature. In particular, one can ask
whether the priors of the concordance model — homogeneity and isotropy — are correct.

Outside of the dark energy paradigm, there are ongoing investigations on the effect
of the backreaction due to an inhomogeneous Universe (e.g. Räsänen, 2009; Wiltshire,
2009), with different lines of research offering different interpretations of the Buchert
equations, where the Friedmann equations are supplemented by an additional backreac-
tion term (Buchert, 2000). A review of the backreaction approach is found in Célérier
(2007). Whether one can explain all of the observed expansion history of the Universe as
a consequence of the growth of inhomogeneities without invoking some additional fluid
component is the subject of ongoing debate (Buchert, 2008). This approach, even if it
eventually does not replace the dark energy paradigm, is still valid as a correction to the
homogeneity assumption.

Another assumption of the concordance model is that the primordial power spectrum
is scale-invariant, or nearly so. Support for this comes from the theory of inflation, which
is another cornerstone of concordance cosmology. However, the data can be fitted by
assuming a scale-dependence primordial power spectrum, and there have been recent
attempts to investigate this (e.g. Blanchard et al., 2003; Sarkar, 2009).

Within the dark energy paradigm, the theories can be divided into two broad cat-
egories: Either dark energy is a modification of gravity on large scales, or dark energy is
a scalar field (or fields) of some kind.

A cosmological constant Λ is the simplest modification which can be made to gravity,
and it is equivalent to dark energy with a constant equation of state. Dark energy can
also be attributed to the energy of the vacuum, although the energy predicted by the
standard model of particle physics is either 0 (using super-symmetry), or 10120 orders of
magnitude larger than the observed cosmological value. There are ongoing attempts to
solve this ‘fine-tuning problem’ using string theory (see e.g. Susskind, 2007), causal sets
(Sorkin, 2000), or by using anthropic arguments.

The other approach is to attribute dark energy to a scalar field whose potential has
evolved in some way that it currently exerts a negative pressure. Such fields, in theories
within the framework of GR, are termed Quintessence. Their distinguishing feature is that
they allow the equation of state of dark energy to evolve. Alternatives to Quintessence
within the same approach include K-essence, Phantom Fields, or the Chaplygin Gas (see
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e.g. Durrer & Maartens, 2008b, and references therein).
The other strategy is to depart from GR and modify the laws of gravity and posit

dark energy as the manifestation of an effect arising from extra dimensions, or higher-
order corrections. Within this category, the most successful theories have been of two
types. DGP dark energy (Dvali, Gabadadze, & Porrati, 2000) considers the Universe as
a 4D brane within a 5D Minkowskian bulk. The weakness of gravity relative to the other
forces is explained by gravity ‘leaking’ into the higher dimensions as it acts through the
bulk, whereas the other forces act within the brane. The other class of theories is f(R)
gravity, where the Ricci scalar R in the Lagrangian is replaced by some function f(R).
Such theories correspond to scalar-tensor gravity with vanishing Brans-Dicke parameter
(see e.g. Amendola et al., 2007).

There exists a wide range of proposals besides these. An exhaustive list is beyond
the scope of this thesis. We simply note that most of them give different predictions for
the equation of state of dark energy, or for its evolution. To distinguish between these
proposals we need to pin down the exact evolution of the equation of state.

6.2 The future of weak lensing

This section will summarise future weak lensing experiments. We shall adopt the classifi-
cation used in the Dark Energy Task Force (DETF) report (Albrecht et al., 2006), which
considers future scenarios for dark energy experiments. The report highlights four stages
of development:

• Stage I: This represents what is currently known, and includes the primary evidence
for the acceleration of the Universe from Type Ia supernovae (Riess et al., 1998;
Perlmutter et al., 1999), which remain the strongest direct evidence for acceleration.
Current CMB anisotropy probes such as WMAP1 provide strong evidence for a flat
Universe, which leads to the conclusion that around 30% of the Universe is made up
of dark and baryonic matter, and 70% is made up of dark energy. The cosmological
parameter values from WMAP are in very good agreement with Type Ia supernova
results (Dunkley et al., 2009). Baryon acoustic oscillations from the Sloan Digital
Sky Survey2 (SDSS) provide geometric evidence for dark energy, particularly when
combined with the CMB.

In the field of weak lensing, the largest survey to date is the Canada-France-Hawaii
Telescope Legacy Survey (CFHTLS)3 which has provided constraints on both dark
energy, and other parameters such as neutrino masses (Tereno et al., 2009; Ichiki
et al., 2009). Among the more recent results, Kilbinger et al. (2009) obtain a
constraint on the dark energy equation of state of −1.10 < w < −0.94 at 68%
confidence.

• Stage II: These are projects that are currently under way, which, once completed,
will provide better constraints on dark energy. Such projects include the CFHT

1map.gsfc.nasa.gov
2www.sdss.org
3www.cfht.hawaii.edu/Science/CFHLS
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survey, SDSS, now in its eighth year, and WMAP, now in its fifth year.

• Stage III: These are near-term projects which are currently proposed. Most consist
of new cameras mounted on existing terrestrial telescopes.

• Stage IV: This consists of next-generation all-sky, or near all-sky photometric
surveys with median redshifts of zm ∼ 1 which are expected to obtain error bounds
on w0 of around 5% or less. Such surveys include DUNE/Euclid (introduced in
Chapter 4), the Large Synoptic Survey Telescope4 (LSST), the Joint Dark Energy
Mission5 (JDEM), the Supernovae Acceleration Probe6 (SNAP), the James Webb
Space Telescope7 (JWST), and the Square Kilometre Array8 (SKA). The time frame
for such projects is around 2015-2020.

6.3 Tomographic weak lensing as a cosmological probe

In Chapter 4 we have used forecast parameter constraints using weak lensing tomography
with an all-sky survey. This thesis has focussed on three groups of parameters: neutrinos,
the primordial power spectrum, and dark energy. Here we give a brief summary of the
results of our work, discussing these three cosmological sectors in this order.

The first sector is neutrinos. The existence of neutrinos is now confirmed by various
results from particle physics. According to the Standard Model of particle physics, there
exist three neutrino flavours. Neutrino oscillations, which require the neutrino to have a
nonzero mass, were discovered by Fukuda et al. (1998). The implications of the discovery
of neutrino mass for cosmology are significant. In particular, the results from particle
physics experiments can be used to set priors on cosmological neutrino bounds. Weak
lensing is a powerful probe of cosmological neutrino mass, since it is a direct measure
of the matter distribution which results from structure formation, which is affected by
neutrino properties. This thesis confirms the results in other weak lensing studies: Weak
lensing tomography, in combination with other probes, can constrain the total neutrino
mass mν and the number of massive neutrino species Nν , giving us a constraint on the
individual mass of the most massive species. In the modelling of neutrino behaviour in
cosmology, the strategy should be to seek a more accurate parameterisation of their mass
hierarchy, and of their contribution to the matter power spectrum.

The second sector that we focussed on was the primordial power spectrum. This is
probed in weak lensing through its effect as the initial condition for the evolution of the
matter power spectrum, and therefore weak lensing is less effective at constraining the
parameters in this sector than high-redshift probes such as the CMB. Nonetheless, we have
shown that weak lensing can constrain the scalar spectral index ns and its running α. In
combination with CMB priors, it can constrain both parameters to sub-percentage level.
We have introduced a third-order truncated Taylor series expression for the primordial

4www.lsst.org
5http://jdem.gsfc.nasa.gov
6www.snap.lbl.gov
7www.jwst.nasa.gov
8www.skatelescope.org
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power spectrum:
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1
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β ln
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k0

)2

, (6.1)

showing that the more relaxed hypothesis on the form of the primordial power spectrum
results in a weak degradation of our parameter constraints in all sectors. By adding CMB
priors, we have shown that the precision is almost completely recovered in the dark energy
sector, and also in other cosmological sectors. Our work highlights the complementarity
of cosmological probes. We have also studied another assumption in the primordial power
spectrum sector: the position of the pivot scale k0. We find that the optimum pivot
scale k0 for our all-sky weak lensing survey is different from the optimum value for CMB
anisotropy probes, and that it depends on the chosen parameterisation of the primordial
power spectrum.

The third sector of interest is dark energy. Perhaps the biggest unresolved question
in current cosmology are the following: What is dark energy? Why has it begun to affect
the expansion rate now? The question of the nature of dark energy can be subdivided
into two questions: Is dark energy a cosmological constant? If a cosmological constant is
ruled out, then what is dark energy? The first question is addressed in the formalism used
in this thesis, where we parameterise the dark energy equation of state w = pDE/ρDEc

2

by w(a) = w0 + wa(1 − a). As an example, if we have a result of w(z) = −0.8 ± 0.006
where a is any pivot redshift, then this would represent a 3σ deviation from a cosmological
constant model.

In this thesis we have studied the parameter constraints that can be obtained on
dark energy parameters, and we have shown that constraints on w(z) depend on the
fiducial value of this redshift-dependent parameter. Using a dynamical dark energy +
CDM + neutrino fiducial model, with a running of the spectral index, combining weak
lensing tomography and CMB priors, we have shown that the precision in all cosmological
sectors depends only weakly on the number of parameters we are trying to constrain
simultaneously. By adding CMB priors, a significant improvement can be made on our
forecasts, and stability of the error bounds against the addition of parameters is increased.

This thesis concludes that tomographic weak lensing in combination with CMB
anisotropy probes has the potential to constrain dark energy parameters to percent level,
and to simultaneously constrain the total neutrino mass and initial condition parameters.

6.4 Survey optimisation

In Chapter 5 we study the optimisation of an all-sky tomographic weak lensing survey.
Our analysis is similar to that of Amara & Réfrégier (2007) who use the dark energy
Figure of Merit as the measure of the precision of the survey, but we also examine the
constraints in other cosmological sectors, namely neutrinos and the primordial spectral
index, and extend the calculation to our 12-parameter νQCDM + α + β set. We find
that the dependence of the parameter precision on the survey geometry is very similar
for all parameters. This means that one can optimise a weak lensing survey of this type
to maximise the precision on the (w0, wa) parameter combination, and using the same
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configuration, also obtain the best precision in the other sectors.
We find that the dominant survey parameter is the survey area. Given a finite

observation time, the best strategy is therefore to have as wide a survey as possible. We
also examine the dependence of the survey precision on the maximum multipole. Our
results show that parameter precision is significantly improved in the region �max < 104,
but the gain in precision is negligible for �max > 104. This confirms the findings of Amara
& Réfrégier (2007), who use a smaller cosmological parameter set.

Given the agreement between our results are those in Amara & Réfrégier (2007),
this thesis concludes that the weak lensing optimisation strategy is largely independent
of the parameters we seek to constrain.

6.5 Further work

In this section we give a overview of the possible refinements of the methods used in this
thesis. Such effects become important as the measurement precision is improved, and will
certainly be required for Stage IV experiments.

6.5.1 Combining experiments

This thesis has used the techniques of weak lensing and cosmic microwave background
anisotropies to constrain cosmological parameters using the Fisher matrix framework. We
find that constraints are always improved when different probes are combined. This is not
just due to the addition of extra information in the Fisher matrix calculation. Different
experiments probe physics at different scales. This is especially true of weak lensing and
the CMB. The DETF report (Albrecht et al., 2006) finds that a combination of techniques
from one or more Stage III projects gives a factor of 3 improvement over Stage II in the
DETF Figure of Merit. A combination of Stage IV techniques in turn produces a factor
of 10 gain over Stage II.

In our thesis we simply added lensing and CMB Fisher matrices to obtain joint
constraints. However, this addition does not take into the covariances between probes.
CMB photons are lensed by large-scale structure along the line-of-sight. Even though
the effect is small since the the source redshift of CMB photons is much greater than
the source redshift of a background galaxy, it must be taken into account for a robust
combination of methods. Indeed the correlation between large-scale structure and the
CMB provides another cosmological probe via the integrated Sachs-Wolfe effect (see e.g.
Giannantonio et al., 2008). In a similar way, there is a correlation between lensing and
BAOs, since they are both measures of the matter power spectrum.

6.5.2 Systematic effects

This thesis has taken the approach of including only two statistical errors: the uncertaintly
in the photometric redshift error σ0, the uncertainty in the ellipticity measurement σε,
and the finite number density of galaxies. We have set these errors to a certain value in
the survey parameters, and then calculated our error forecasts. Systematic effects (e.g.
bias in photometric redshifts, intrinsic alignment of galaxies, PSF effects, etc.) have been
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ignored. A more robust formalism would include such parameters as elements in the
Fisher matrix and then fully marginalise over them. This approach is taken by Amara &
Réfrégier (2007), who include photometric redshift errors in their Fisher matrix in their
optimisation study, and by others (see e.g. Ma et al., 2006; Abdalla et al., 2008; Zhan
et al., 2009).

6.5.3 Beyond the Fisher matrix

The error forecasts in this thesis are based on the Fisher matrix formalism. This primary
advantage of the Fisher matrix is that it allows parameter errors to be estimated quickly
and accurately. For every parameter considered, we only need to calculate the covariance
of two points in parameter space. The disadvantage is that it is based on the assumption
of Gaussian likelihoods. At the other extreme are formalisms that calculate the likeli-
hood at every point in parameter space. These are computationally very expensive, but
are guaranteed to reproduce the exact constraint. One compromise is the Markov Chain
Monte-Carlo approach (see e.g. Verde et al., 2003), which is widely used in the determi-
nation of cosmological parameters from data, and in parameter prediction to predict the
correct shapes of likelihood surfaces.

6.5.4 Further diagnostics of dark energy

In this thesis we have assumed a slight generalisation of ΛCDM where the equation of
state of dark energy is allowed to vary. The dynamical dark energy parameterisation
adopted is that of Chevallier & Polarski (2001) and Linder (2003), where the variation
is a function of redshift or scale factor: w(a) = w0 + wa(1 + a). We probe the nature
of dark energy using weak lensing via its effect on the growth of structure and on the
geometry of the Universe. To distinguish between a constant-w model (equivalent to
ΛCDM) and deviations from this model, we therefore need to constrain w0 and wa. There
exist other diagnostics of dark energy, among them Om(z) and the q-probe, proposed by
Sahni et al. (2008), which can distinguish dynamical DE from a cosmological constant
without reference to the value of the matter density. It would be instructive to compare
constraints on Om(z) from weak lensing with those obtained using other probes.

6.6 Summary

This thesis acts as an indicator of the results that can be obtained using future weak
lensing surveys. We have started this chapter by discussing the current range of dark
energy theories. It may be possible to explain dark energy using a combination of some
of these theories. It may also be possible, as in multiverse theories, that there is no
particular theory for dark energy, and that the dark energy behaviour observed in our
Universe just one out of many. We shall end this thesis by emphasising the important
role of weak lensing in particular, and observational cosmology in general. To quote Ellis
(2009), “Overall: theory must be subject to experimental and/or observational test; this
is the central feature of science.”
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[55] Einstein, A., Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes, Ann.
Phys. (Germany), 1911, vol. 35, pp. 898–908

[56] Einstein, A., Die Feldgleichungen der Gravitation, Preuss. Akad. Wiss. Berlin, Sitzber.,
1915a, pp. 844–847

[57] Einstein, A., Zur Allgemeinen Relativitätstheorie, Preuss. Akad. Wiss. Berlin, Sitzber.,
1915b, pp. 799–801

[58] Einstein, A., Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin),
Seite 142-152., 1917, pp. 142–152

[59] Einstein, A., Fokker, A.D., The north current gravitation theory from the viewpoint
of absolute differential calculus, Ann. Phys. (Germany), 1914, vol. 44, p. 321

[60] Eisenstein, D.J., Hu, W., Baryonic Features in the Matter Transfer Function, ApJ,
1998, vol. 496, pp. 605–+, arXiv:astro-ph/9709112

[61] Eisenstein, D.J., Hu, W., Power Spectra for Cold Dark Matter and Its Variants, ApJ,
1999, vol. 511, pp. 5–15, arXiv:astro-ph/9710252

[62] Elgarøy, Ø., Lahav, O., Neutrino masses from cosmological probes, New Journal of
Physics, 2005, vol. 7, pp. 61–+, arXiv:hep-ph/0412075

[63] Ellis, G.F.R., Dark matter and dark energy proposals: maintaining cosmology as a
true science?, in EAS Publications Series, vol. 36 of EAS Publications Series, 2009 pp.
325–336
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atics Beyond Nuisance Parameters : Form Filling Functions, ArXiv e-prints, 2008a,
0812.1966

179



Bibliography

[128] Kitching, T.D., Heavens, A.F., Verde, L., Serra, P., Melchiorri, A., Finding
evidence for massive neutrinos using 3D weak lensing, Phys. Rev. D, 2008b, vol. 77,
no. 10, pp. 103 008–+, arXiv:0801.4565

[129] Kitching, T.D., Taylor, A.N., Heavens, A.F., Systematic effects on dark energy from
3D weak shear, MNRAS, 2008c, vol. 389, pp. 173–190, arXiv:0801.3270

[130] Kolb, E.W., Turner, M.S., The early universe., Frontiers in Physics, 1990, vol. 69

[131] Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B., Hinshaw, G.,
Jarosik, N., Larson, D., Limon, M., Page, L., Spergel, D.N., Halpern, M.,
Hill, R.S., Kogut, A., Meyer, S.S., Tucker, G.S., Weiland, J.L., Wollack,
E., Wright, E.L., Five-Year Wilkinson Microwave Anisotropy Probe Observations:
Cosmological Interpretation, ApJS, 2009, vol. 180, pp. 330–376, 0803.0547

[132] Kosowsky, A., Turner, M.S., CBR anisotropy and the running of the scalar spectral
index, Phys. Rev. D, 1995, vol. 52, pp. 1739–+, arXiv:astro-ph/9504071

[133] Kowalski, M., Rubin, D., Aldering, G., Agostinho, R.J., Amadon, A., Amanul-

lah, R., Balland, C., Barbary, K., Blanc, G., Challis, P.J., Conley, A., Con-

nolly, N.V., Covarrubias, R., Dawson, K.S., Deustua, S.E., Ellis, R., Fabbro,
S., Fadeyev, V., Fan, X., Farris, B., Folatelli, G., Frye, B.L., Garavini, G.,
Gates, E.L., Germany, L., Goldhaber, G., Goldman, B., Goobar, A., Groom,
D.E., Haissinski, J., Hardin, D., Hook, I., Kent, S., Kim, A.G., Knop, R.A.,
Lidman, C., Linder, E.V., Mendez, J., Meyers, J., Miller, G.J., Moniez, M.,
Mourão, A.M., Newberg, H., Nobili, S., Nugent, P.E., Pain, R., Perdereau,
O., Perlmutter, S., Phillips, M.M., Prasad, V., Quimby, R., Regnault, N.,
Rich, J., Rubenstein, E.P., Ruiz-Lapuente, P., Santos, F.D., Schaefer, B.E.,
Schommer, R.A., Smith, R.C., Soderberg, A.M., Spadafora, A.L., Strolger,
L.G., Strovink, M., Suntzeff, N.B., Suzuki, N., Thomas, R.C., Walton, N.A.,
Wang, L., Wood-Vasey, W.M., Yun, J.L., Improved Cosmological Constraints from
New, Old, and Combined Supernova Data Sets, ApJ, 2008, vol. 686, pp. 749–778,
0804.4142

[134] Kraichnan, R.H., Special-relativistic derivation of generally covariant gravitation the-
ory, Phys. Rev., 1955, vol. 55, pp. 1118–1122
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with the integrated-Sachs-Wolfe-galaxy correlation function, Phys. Rev. D, 2008,
vol. 77, no. 6, pp. 063 505–+, 0710.5525

[145] Lewis, A., Challinor, A., Lasenby, A., Efficient Computation of Cosmic Microwave
Background Anisotropies in Closed Friedmann-Robertson-Walker Models, ApJ, 2000,
vol. 538, pp. 473–476, arXiv:astro-ph/9911177

[146] Liddle, A.R., Lyth, D.H., COBE, gravitational waves, inflation and extended inflation.,
Physics Letters B, 1992, vol. 291, pp. 391–398, arXiv:astro-ph/9208007

[147] Liddle, A.R., Lyth, D.H., The cold dark matter density perturbation, Phys. Rep., 1993,
vol. 231, pp. 1–2, arXiv:astro-ph/9303019

[148] Liddle, A.R., Lyth, D.H., Cosmological Inflation and Large-Scale Structure, Cambridge
University Press: Cambridge, 2000

[149] Lidsey, J.E., Liddle, A.R., Kolb, E.W., Copeland, E.J., Barreiro, T., Abney, M.,
Reconstructing the inflaton potential-an overview, Reviews of Modern Physics, 1997,
vol. 69, pp. 373–410, arXiv:astro-ph/9508078

[150] Lifshitz, E.M., On the gravitational stability of the expanding universe, J. Phys.
(USSR), 1946, vol. 46, no. 116

[151] Limber, D.N., The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluc-
tuating Density Field., ApJ, 1953, vol. 117, pp. 134–+

[152] Linde, A., Inflation and Quantum Cosmology, New York: Academic Press, 1989

[153] Linder, E.V., Exploring the Expansion History of the Universe, Physical Review Letters,
2003, vol. 90, no. 9, pp. 091 301–+, arXiv:astro-ph/0208512

181



Bibliography

[154] Linder, E.V., Jenkins, A., Cosmic structure growth and dark energy, MNRAS, 2003,
vol. 346, pp. 573–583, arXiv:astro-ph/0305286

[155] Ma, C.P., Analytical Approximation to the Nonlinear Power Spectrum of Gravitational
Clustering, ApJ, 1998, vol. 508, pp. L5–L8, arXiv:astro-ph/9809267

[156] Ma, Z., Hu, W., Huterer, D., Effects of Photometric Redshift Uncertainties on Weak-
Lensing Tomography, ApJ, 2006, vol. 636, pp. 21–29, arXiv:astro-ph/0506614

[157] Marx, G., Szalay, A.S., Cosmological limit on the neutretto rest mass, in Proc. Neu-
trino 72, Technoinform, Hungary, vol. 1, 1972 p. 123
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