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10Christopher Newport University, Newport News, Virginia 23606

11University of Connecticut, Storrs, Connecticut 06269

12Edinburgh University, Edinburgh EH9 3JZ, United Kingdom

13Fairfield University, Fairfield CT 06824

14Florida International University, Miami, Florida 33199

15Florida State University, Tallahassee, Florida 32306

16The George Washington University, Washington, DC 20052

17University of Glasgow, Glasgow G12 8QQ, United Kingdom

18Idaho State University, Pocatello, Idaho 83209

19INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy

20INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy

21Institut de Physique Nucléaire ORSAY, Orsay, France
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Abstract

The exclusive reaction γp → pπ+π− was studied in the photon energy range 3.0 - 3.8 GeV and

momentum transfer range 0.4 < −t < 1.0 GeV2. Data were collected with the CLAS detector

at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated

luminosity was about 20 pb−1. The reaction was isolated by detecting the π+ and proton in

CLAS, and reconstructing the π− via the missing-mass technique. Moments of the di-pion decay

angular distributions were derived from the experimental data. Differential cross sections for the

S, P , and D-waves in the Mπ+π− mass range 0.4−1.4 GeV were derived performing a partial wave

expansion of the extracted moments. Besides the dominant contribution of the ρ(770) meson in

the P -wave, evidence for the f0(980) and the f2(1270) mesons was found in the S and D-waves,

respectively. The differential production cross sections dσ/dt for individual waves in the mass

range of the above-mentioned mesons were extracted. This is the first time the f0(980) has been

measured in a photoproduction experiment.
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¶Current address:College of William and Mary, Williamsburg, Virginia 23187-8795
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I. INTRODUCTION

The two pion channel offers the possibility of investigating various aspects of the meson

resonance spectrum. It couples to the scalar-isoscalar channel that contains the σ, f0(980)

and possibly a few more resonances with masses below 2 GeV. It is the main decay mode of

the lowest isoscalar-tensor f2(1270) resonance and it is the only decay mode of the isovector-

vector resonance, the ρ(770). Among all these, the ρ-meson is by far the most prominent

and most extensively studied, both from the point of view of its production mechanisms

and its internal properties. Nowadays the other resonances too are subjects of extensive

theoretical and experimental investigation. The σ meson is now established with pole mass

and width determined with good accuracy [1–3]. However, its microscopic structure seems

to be quite different from that of the ρ and it is the subject of theoretical debate [4]. The

f0(980) is even a more enigmatic state: its experimental determination is complicated by its

proximity to the KK̄ threshold, and its QCD nature still awaits an explanation [5]. Finally,

the f2(1270) has been represented so far as a Breit-Wigner resonance [2] and appears to fit

well into the quark model spectrum [6].

In this paper we focus on the scalar sector, using the ρ meson as a benchmark for the

analysis procedure. The KK̄ channel from the same data set is currently being analyzed

and in the near future a coupled-channels analysis will provide further constraints on the

extraction of the meson properties.

For a long time most of our knowledge on the scalar meson spectrum was obtained from

hadron-induced reactions, γγ collisions and studying the decays of various mesons, e.g. φ,

J/Ψ, D and B. Very few studies were attempted with electromagnetic probes, in particular

real photons, since their production cross sections are relatively small compared to the

dominant production of vector mesons. On one hand, through vector meson dominance,

the photon can be effectively described as a virtual vector meson. On the other hand,

quark-hadron duality and the point-like-nature of the photon coupling make it possible to

describe photo-hadron interactions at the QCD level. Recently, high-intensity and high-

quality tagged-photon beams, as the one available at JLab, have opened a new window into

this field.

In photoproduction processes, information about the S-wave strength can be extracted

by performing a partial wave analysis. Angular distributions of photoproduced mesons and
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related observables, such as the moments of the angular distributions and the density matrix

elements, are the most effective tools to look for interference patterns. An interference be-

tween the S-wave and the dominant P -wave was discovered in the moment analysis of K+K−

photoproduction on hydrogen, analyzing the data collected in the experiments performed

at DESY [7] and Daresbury [8]. In two-pion production experiments, such as reported in

Refs. [9–11], moments and density matrix elements were used to analyze the properties of

helicity amplitudes describing the photoproduction process. Unfortunately, only the dom-

inant spin-1 partial wave of the π+π− pair was taken into account. No attempt to obtain

information about the S-wave amplitude was made. More recently, the HERMES experi-

ment at DESY [12] investigated the interference of the P -wave in the π+π− system with the

S and D-waves in the π+π− electroproduction process, and showed that such interference

effects are measurable. The large photon virtuality Q2 >3 GeV2 is, however, a crucial factor

that distinguishes this analysis from the photoproduction analysis [9, 10].

Theoretical models for π+π− photoproduction have been investigated in a series of ar-

ticles. A very successful approach is the one by Söding [13] and its numerous modifica-

tions [14–17]. These models were able to describe the shift of the maximum of the π+π−

effective mass distribution with respect to the nominal ρ mass and the asymmetric shape

observed in SLAC [9, 10] and DESY [11, 18] data. These properties are attributed to the

interference of the dominating diffractive ρ meson production, with its subsequent decay

into π+π−, with the amplitudes corresponding to Drell-type diagrams in which the pho-

ton dissociates into π+ and π−, and one of the pions is elastically scattered off the proton.

More recently, Gómez Tejedor and Oset [19] applied an effective Lagrangian to construct the

photoproduction amplitudes. Their approach is limited to photon energies below 800 MeV

and effective masses Mππ smaller than 1 GeV. A two-stage approach for the π+π− S-wave

photoproduction was proposed in the model of Ref. [20]. First, a set of Born amplitudes,

corresponding to photoproduction of π+π−, π0π0, K+K− and K0K̄0 pairs is calculated.

Then the photoproduced meson pairs are subject to final-state interactions resulting in the

π+π− system [21–24]. The coupled-channels calculations were separately performed for all

isospin I components of the transition matrix. Thus the S-wave amplitudes in that model

account for the existence of the isoscalar σ, f0(980) and f0(1500), and the isovector a0(980)

and a0(1450) resonances. The coupling of the KK̄ isovector channel with the πη amplitude

is described in Ref. [25].
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All theoretical approaches described above do not consider explicitly the s-channel pro-

duction of baryon resonances contributing to the pππ final state. Data from Refs. [9, 11, 18],

as well as from more recent experimental studies [26], indicate that the contribution of baryon

resonances, such as ∆++ and ∆0, dominate at lower incident photon energies (below 2 GeV).

Furthermore, data obtained with the SAPHIR detector at ELSA for photon energies between

0.5 GeV and 2.6 GeV show that the contribution of baryonic resonances to the π+p and π−p

mass distributions gradually decreases with photon energy.

In this paper we review the results of the analysis of π+π− photoproduction in the pho-

ton energy range 3.0 - 3.8 GeV and momentum transfer squared −t between 0.4 GeV2 and

1 GeV2, where the di-pion effective mass Mππ varies from 0.4 GeV to 1.4 GeV. The main

results were previously reported in Ref. [27]. We are not aware of any previous evidence

of scalar mesons, in particular of the f0(980), in photoproduction of pion pairs. This ef-

fective mass region is dominated by the production of the ρ(770) resonance in the P -wave.

From other experiments, such as pion-nucleon collisions π−p → π+π−n [28, 29] or nucleon-

antinucleon annihilation [30], there is some evidence that resonant states are formed in the

S-wave. These resonances have been neglected in previous experimental analyses of π+π−

photoproduction and, to our knowledge, the current analysis is the first one that explicitly

takes into account the possibility that the S-wave is produced in the π+π− system.

In the following, some details are given on the experiment and data analysis (Sec. II),

on the extraction of the angular moments of the di-pion system (Sec. III), and the fit of

the moments using a dispersion relation (Sec. IV). Results of the partial wave analysis

(differential cross section for each partial wave and the spin density matrix elements) and

the physics interpretation are reported in Sec. V.

II. EXPERIMENTAL PROCEDURES AND DATA ANALYSIS

A. The photon beam and the target

The measurement was performed using the CLAS detector [31] in Hall B at Jefferson

Lab with a bremsstrahlung photon beam produced by a continuous 60-nA electron beam of

energy E0 = 4.02 GeV impinging on a gold foil of thickness 8 × 10−5 radiation lengths. A

bremsstrahlung tagging system [32] with a photon energy resolution of 0.1% E0 was used
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to tag photons in the energy range from 1.6 GeV to a maximum energy of 3.8 GeV. In this

analysis only the high-energy part of the photon spectrum, ranging from 3.0 to 3.8 GeV, was

used. e+ e− pairs produced by the interaction of the photon beam on a thin gold foil were

used to continuously monitor the photon flux during the experiment. Absolute normalization

was obtained by comparing the e+ e− pair rate with the photon flux measured by a total

absorption lead-glass counter in dedicated low-intensity runs. The energy calibration of

the Hall-B tagger system was performed both by a direct measurement of the e+e− pairs

produced by the incoming photons [33] and by applying an over-constrained kinematic fit to

the reaction γp → pπ+π−, where all particles in the final state were detected in CLAS [34].

The quality of the calibrations was checked by looking at the mass of known particles, as well

as their dependence on other kinematic variables (photon energy, detected particle momenta

and angles).

The target cell, a Mylar cylinder 4 cm in diameter and 40-cm long, was filled by liquid

hydrogen at 20.4 K. The luminosity was obtained as the product of the target density, target

length and the incoming photon flux corrected for data-acquisition dead time. The overall

systematic uncertainty on the run luminosity was estimated to be in the range of 10%,

dominated by the uncertainties on the photon flux.

MX
2(γp→pπ+X) (GeV2)

C
ou

nt
s 

x 
10

3 /(
0.

07
 G

eV
2 )

0

50

100

150

200

250

300

-0.3 -0.2 -0.1 0 0.1 0.2

FIG. 1: Missing mass squared for the reaction γp → pπ+X and the π− peak. The shaded area

indicates the retained events.
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B. The CLAS detector

Outgoing hadrons were detected in the CLAS spectrometer. Momentum information

for charged particles was obtained via tracking through three regions of multi-wire drift

chambers [35] within a toroidal magnetic field (∼ 0.5 T) generated by six superconducting

coils. The polarity of the field was set to bend the positive particles away from the beam

line into the acceptance of the detector. Time-of-flight scintillators (TOF) were used for

charged hadron identification [36]. The interaction time between the incoming photon and

the target was measured by the start counter (ST) [37]. This is made of 24 strips of 2.2-

mm thick plastic scintillator surrounding the hydrogen cell with a single-ended PMT-based

read-out. A time resolution of ∼300 ps was achieved.

The CLAS momentum resolution, σp/p, ranges from 0.5 to 1%, depending on the kinemat-

ics. The detector geometrical acceptance for each positive particle in the relevant kinematic

region is about 40%. It is somewhat less for low-energy negative hadrons, which can be

lost at forward angles because their paths are bent toward the beam line and out of the

acceptance by the toroidal field. Coincidences between the photon tagger and the CLAS

detector triggered the recording of the events. The trigger in CLAS required a coincidence

between the TOF and the ST in at least two sectors, in order to select reactions with at

least two charged particles in the final state. An integrated luminosity of 70 pb−1 (∼ 20

pb−1 in the range 3.0< Eγ <3.8 GeV) was accumulated in 50 days of running in 2004.

C. Data analysis and reaction identification

The raw data were passed through the standard CLAS reconstruction software to deter-

mine the four-momenta of detected particles. In this phase of the analysis, corrections were

applied to account for the energy loss of charged particles in the target and surrounding

materials, misalignments of the drift chamber’s positions, and uncertainties in the value of

the toroidal magnetic field.

The reaction γp → pπ+π− was isolated detecting the proton and the π+ in the CLAS spec-

trometer, while the π− was reconstructed from the four-momenta of the detected particles

by using the missing-mass technique. In this way the exclusivity of the reaction is ensured,

keeping the contamination from the multi-pion background to a minimum. Figure 1 shows
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FIG. 2: Two dimensional plot of the invariant masses obtained combining pairs of particles of the

exclusive reaction γp → pπ+π−.

the π− missing mass squared. The background below the missing pion peak appears as a

smooth contribution in the ππ invariant mass without creating narrow structures.

To avoid edge regions in the detector acceptance, only events within a fiducial volume

were retained in this analysis. In the laboratory reference system, cuts were defined for

the minimum hadron momentum (pproton > 0.32 GeV and pπ+ > 0.125 GeV), and the

minimum and maximum azimuthal angles (θproton,π+ > 10◦ and θπ+ < 120◦). The fiducial

cuts were defined comparing in detail the experimental data distributions with the results

of the detector simulation. The minimum momentum cuts were tuned for different hadrons

to take into account the energy loss by ionization of the particles.

After all cuts, 41M events were identified as produced in the exclusive reaction γp →
pπ+π−. The other event topologies, with at least two hadrons in the final state (pπ−, π+π−,

pπ+π−), were not used since in the kinematics of interest for this analysis (−t < 1 GeV2),

the collected data are about one order of magnitude less due to the detector acceptance.

Figures 2 and 3 show the invariant mass spectra of the different combinations of particles

in the final state. The ρ(770) dominates the ππ spectrum and the ∆(1232)++ peak is clearly

visible in the pπ+ invariant mass. Figure 2 shows a small overlap between the ∆(1232)++

and the ππ spectrum. Baryonic resonances in the pπ− invariant mass spectrum are less
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FIG. 3: Invariant masses obtained combining pairs of particles of the exclusive reaction γp →

pπ+π−. Upper panel Mπ+π− ; lower panel left Mpπ+; lower panel right Mpπ− . Spectra are not

corrected for the detector acceptance.

pronounced. It has to be noted that the projection of the baryon resonance peaks in the ππ

spectrum results in a smooth contribution and cannot create narrow structures. The effect

of this background was extensively studied as discussed in Sec.VC.

III. MOMENTS OF THE DI-PION ANGULAR DISTRIBUTION

In this section we consider the analysis of moments of the di-pion angular distribution

defined as:

〈YLM〉(Eγ, t, Mππ) =
√

4π
∫

dΩπ

dσ

dtdMππdΩπ

YLM(Ωπ), (1)

where dσ is the differential cross section (in momentum transfer t and di-pion invariant mass

Mππ), YLM are spherical harmonic functions of degree L and order M , and Ωπ = (θπ, φπ)

are the polar and azimuthal angles of the π+ flight direction in the π+π− helicity rest frame.

For the definition of the angles in the di-pion system we follow the convention of Ref. [9].

It follows from Eq. 1 that, for a given Eγ , t and di-pion mass Mππ, 〈Y00〉 corresponds to the

di-pion production differential cross section dσ/dtdMππ.

There are many advantages in defining and analyzing moments rather than proceeding
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via a direct partial wave fit of the angular distributions. Moments can be expressed as

bi-linear in terms of the partial waves and, depending on the particular combination of L

and M , show specific sensitivity to a particular subset of them. In addition, they can be

directly and unambiguously derived from the data, allowing for a quantitative comparison

to the same observables calculated in specific theoretical models.

Extraction of moments requires that the measured angular distribution is corrected by the

detector acceptance. We studied three methods for implementing acceptance corrections.

In the first two methods, the moments were expanded in a model-independent way in a set

of basis functions and, after weighting with Monte Carlo events, they were compared to the

data by maximizing a likelihood function. The first of these two parametrizes the theory in

terms of simplified amplitudes, while the second uses directly moments as defined above.

The approximations in these methods have to do with the choice of the basis and depend on

the number of basis functions used. The systematic effect of such truncations was studied

and the main results are reported below. In the last method, data and Monte Carlo were

binned in all kinematical variables. The data were then corrected by the acceptance defined

as the ratio of reconstructed over generated Monte Carlo events in that bin. Since it was

found to be not reliable in bins where the acceptance was small or vanishing, this method

was only used as a check of the others and was not included in the final determination of

the experimental moments.

A. Detector efficiency

The CLAS detection efficiency for the reaction γp → pπ+π− was obtained by means of

detailed Monte Carlo studies, which included knowledge of the full detector geometry and a

realistic response to traversing particles. Events were generated according to three-particle

phase space with a bremsstrahlung photon energy spectrum. A total of 4 billion events were

generated in the energy range 3.0 GeV < Eγ < 3.8 GeV and covered the allowed kinematic

range in −t and Mππ. About 700M events were reconstructed in the Mππ and −t ranges

of interest (0.4 GeV < Mππ < 1.4 GeV , 0.1 GeV2 < −t < 1.0 GeV2). This corresponds

to more than fifteen times the statistics collected in the experiment, thereby introducing a

negligible statistical uncertainty with respect to the statistical uncertainty of the data.
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B. Extraction of the moments via likelihood fit of experimental data

Moments were derived from the data using detector efficiency-corrected fitting functions.

As mentioned above, the expected theoretical yield was parametrized in terms of appropriate

physics functions: production amplitudes in one case and moments of the cross section in

the other. The theoretical expectation, after correction for acceptance, was compared to the

experimental yield. Parameters were extracted by maximizing a likelihood function defined

as:

L ∼ Πn
a=1

[

η(τa)I(τa)
∫

dτη(τ)I(τ)

]

. (2)

Here a represents a data event, n = ∆N is the number of data events in a given (Eγ ,−t, Mππ)

bin (i.e. the fit is done independently in each bin), τa represents the set of kinematical

variables of the ath event, η(τa) is the corresponding acceptance derived by Monte Carlo

simulations and I(τa) is the theoretical function representing the expected event distribution.

The measure dτ includes the phase space factor and the likelihood function is normalized

to the expected number of events in the bin

n̄ =
∫

dτη(τ)I(τ). (3)

The advantage of this approach lies in avoiding binning the data and the large uncertainties

related to the corrections in regions of CLAS with vanishing efficiencies. Comparison of the

results of the two different parametrizations allows one to estimate the systematic uncer-

tainty related to the procedure. In the following, we describe the two approaches in more

detail.

1. Parametrization with amplitudes

The expected theoretical yield in each bin is described as:

I(τa) = 4π

∣

∣

∣

∣

∣

∣

Lmax
∑

L=0

L
∑

M=−L

aLM(Eγ ,−t, Mππ)YLM(Ωπ)

∣

∣

∣

∣

∣

∣

2

. (4)

This parametrization has the benefit that the intensity function I(τa) is by construction

positive. However, it can lead to ambiguous results since it has more parameters than can

be determined from the data. In addition, for practical reasons, the parametrization involves

a cutoff, Lmax, in the maximum number of amplitudes. For a specific choice of Lmax, the
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number of fit parameters is given by 2(Lmax + 1)2. We also note that these amplitudes are

not the same as the partial wave amplitudes in the usual sense of a di-pion photoproduction

amplitude, since the latter depends on the nucleon and photon spins.

After removing the irrelevant constants, the fit is performed minimizing the function:

− lnL = −
∆N
∑

a=1

ln η(τa)I(τa) (5)

+ ∆N ln
∑

L′M ′;LM

ã∗
L′M ′ ãLMΨL′M ′;L,M ,

where we have introduced the rescaled amplitudes ãLM(Eγ ,−t, Mππ) defined by:

ãLM =
√

ηaLM , (6)

and the acceptance matrix Ψ(Eγ,−t, Mππ) was computed using Monte Carlo events as:

ηΨL′M ′;LM =
4π

∆NGen

∆NRec
∑

a=1

Y ∗
L′M ′(Ωπ)YLM(Ωπ), (7)

where ∆NGen and ∆NRec are the number of generated and reconstructed events, respectively.

Fits were done using MINUIT with the analytical expression for the gradient, and using

the SIMPLEX procedure followed by MIGRAD [38]. After each fit, the covariance matrix

was checked and if it was not positive definite, the fit was restarted with random input

parameters. At the end, the uncertainties were computed from the full covariance matrix.

2. Parametrization with moments

The expected theoretical yield in each (Eγ,−t, Mππ) bin is described as:

I(τa) =
√

4π
Lmax
∑

L=0

L
∑

M=0

〈ỸLM〉 ReYLM(Ωπ). (8)

The parametrization in terms of the moments directly gives the quantities we are interested

in (moments 〈ỸLM〉). However, the fit has to be restricted to make sure the intensity is

positive. As in the amplitude parametrization, a cutoff Lmax in the maximum number of

moments has to be used. The number of fit parameters is given by (Lmax+1)(Lmax+2)/2. As

Lmax increases, moments with L close to Lmax show a significant variation, while moments

with the lowest L remain unchanged.

14



The expected (acceptance-corrected) distribution is then given by:

I(τa) =
√

4π
∑

L,M

[ηLM ReYLM(Ωπ)] 〈ỸLM〉. (9)

The function to be minimized with respect to 〈ỸLM〉 (L > 0) is then given by:

−2 lnL = −2
∆N
∑

a=1

ln I(τa), (10)

with the coefficients ηLM(Eγ ,−t, Mππ) computed using Monte Carlo events

ηLM =

√
4π

∆NGen

∆NRec
∑

i

ReYLM(Ωi)

ǫL

, (11)

where ǫL = 1 for L = 0 and 1/2 for all other (LM). For Lmax ≤ 4, the results are similar

to what was obtained with the previous method, showing the same stability against Lmax

truncation and a similar goodness of the fit. To check the sensitivity of the likelihood fit

to the parameter initialization, moments were extracted in three different ways: 1) using

random initialization for all parameters; 2) fixing the parameters up to L = 2 to the ones

obtained from a fit with Lmax = 2, and randomly initializing the others; 3) starting with

parameters obtained in 2) and then releasing all parameters. The three different methods

gave consistent results and the difference of moments obtained using the different procedures

was used to evaluate the systematic uncertainty related to the fit procedure.

3. Methods comparison and final results

Moments derived by the different procedures agreed qualitatively. The most stable results

were obtained by using the first parametrization, although we do find occasionally large

bin-to-bin fluctuations. However, there are no a priori reasons to prefer one of the two

methods and we consider the discrepancies between the fit results as a good estimate of

the systematic uncertainty associated with the moments extraction. The final results are

given as the average of the first method (parametrization with amplitudes) and the second

method (parametrization with moments) with the three fit initializations:

Yfinal =
1

4

∑

i=1,4 Methods

Yi, (12)

where Y stands for 〈YLM〉(Eγ, t, Mππ).
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FIG. 4: Moments of the di-pion angular distribution in 3.2 < Eγ < 3.4 GeV and −t = 0.45 ±

0.05 GeV2 (black), −t = 0.65 ± 0.05 GeV2 (red) and −t = 0.95 ± 0.05 GeV2 (blue). Error bars

include both statistical and systematic uncertainties as explained in the text.

The total uncertainty on the final moments was evaluated adding in quadrature the

statistical uncertainty, δYMINUIT as given by MINUIT, and two systematic uncertainty

contributions: δYsyst fit related to the moment extraction procedure, and δYsyst norm, the

systematic uncertainty associated with the photon flux normalization (see Sec. II).

δYfinal =
√

δY 2
MINUIT + δY 2

syst fit + δY 2
syst norm (13)

with:

δYsyst fit =

√

√

√

√

∑

i=1,4 Methods

(Yi − Yfinal)2

4 − 1
(14)

δYsyst norm = 10% · Yfinal. (15)
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FIG. 5: Moments of the di-pion angular distribution in 3.2 < Eγ < 3.4 GeV and −t = 0.45 ±

0.05 GeV2 (black), −t = 0.65 ± 0.05 GeV2 (red) and −t = 0.95 ± 0.05 GeV2 (blue). Error bars

include both statistical and systematic uncertainties as explained in the text.

For most of the data points, the systematic uncertainties dominate over the statistical

uncertainty. Samples of the final experimental moments are shown in Figs. 4, 5, 6, and 7.

The whole set of moments resulting from this analysis is available at the Jefferson Lab [39]

and the Durham [40] databases.

As a check of the whole procedure, the differential cross section dσ/dt for the γp →
pρ(770) meson has been extracted by fitting the 〈Y00〉 moment in each −t bin with a Breit-

Wigner plus a first-order polynomial background. The agreement within the quoted uncer-

tainties with a previous CLAS measurement [41], as well as the world data [11], gives us

confidence in the analysis procedure.

17



Mππ (GeV)

<Y
30

> 
(µ

b/
G

eV
3 )

-1

0

1

2

3

0.4 0.6 0.8 1 1.2 1.4

Mππ (GeV)

<Y
31

> 
(µ

b/
G

eV
3 )

-1.5

-1

-0.5

0

0.5

1

0.4 0.6 0.8 1 1.2 1.4

Mππ (GeV)

<Y
32

> 
(µ

b/
G

eV
3 )

-1

-0.5

0

0.5

1

0.4 0.6 0.8 1 1.2 1.4

FIG. 6: Moments of the di-pion angular distribution in 3.2 < Eγ < 3.4 GeV and −t = 0.45 ±

0.05 GeV2 (black), −t = 0.65 ± 0.05 GeV2 (red) and −t = 0.95 ± 0.05 GeV2 (blue). Error bars

include both statistical and systematic uncertainties as explained in the text.

IV. PARTIAL WAVE ANALYSIS

In the previous section we discussed how moments of the angular distribution of the

π+π− system, 〈YLM〉, were extracted from the data in each bin in photon energy, momentum

transfer and di-pion mass. In this section we describe how partial waves were parametrized

and extracted by fitting the experimental moments.

Moments can be expressed as bi-linear in terms of the amplitudes alm =

alm(λ, λ′, λγ, Eγ , t, Mππ) with angular momentum l and z-projection m (in the chosen refer-

ence system m coincides with the helicity of the di-pion system) as:

〈YLM〉 =
∑

l′m′,lm,λ,λ′

C(l′m′, lm, LM) × alm a∗
l′m′ , (16)
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FIG. 7: Moments of the di-pion angular distribution in 3.2 < Eγ < 3.4 GeV and −t = 0.45 ±

0.05 GeV2 (black), −t = 0.65 ± 0.05 GeV2 (red) and −t = 0.95 ± 0.05 GeV2 (blue). Error bars

include both statistical and systematic uncertainties as explained in the text.

where C are Wigner’s 3jm coefficients, λγ is the helicity of the photon, and λ and λ′ are

the initial and final nucleon helicity, respectively. The explicit forms of the moments with

L ≤ 4 in terms of amplitudes with l = 0 (S-wave), l = 1 (P -wave), l = 2 (D-wave), and

l = 3 (F -wave) are given in Appendix A.

A. Helicities, isospin and coupled-channels dependence

The photon helicity was restricted to λγ = +1 since the other amplitudes are related by

parity conservation. In addition, some approximations in the parametrization of the partial

waves were adopted to reduce the number of free parameters in the fit and are discussed
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below.

• The number of waves was reduced restricting the analysis to |m| ≤ 1 since m = 2

is only possible for l ≥ 2 (D and F waves), which are expected to be small in the

mass range considered [9, 10]. In the chosen reference system, m coincides with the

helicity of the di-pion system and, since we used as a reference the wave with λγ = +1,

the three values of m have a simple interpretation in terms of helicity transfer from

the photon to the ππ-system: m = +1 corresponds to the non-helicity-flip amplitude

(s-channel helicity conserving) that is expected to be dominant [10], while m = 0,−1

correspond to one and two units of helicity flip, respectively. In the case of the S-wave

(l = m = 0), only one amplitude is considered.

• The dependence on the nucleon helicity was simplified as follows. For a given l, m, Eγ , t

set, there are four independent partial wave amplitudes corresponding to the four com-

binations of initial and final nucleon helicity, λ and λ′. It is expected that the dominant

amplitudes require no nucleon helicity flip [10]. Without nucleon polarization informa-

tion it is not possible to extract all four amplitudes. Thus our strategy is to consider

in the analysis only the dominant ones or to exploit possible relations among them.

For example, in the Regge ρ and ω exchange model, the following relations are sat-

isfied by the S-wave amplitudes: (λλ′) = (++) = (−−) and (+−) = −(−+), where

± corresponds to helicity ±1/2. More generally, by examining the experimental mo-

ments, we observe that the interference between the dominant P -wave, seen in the

〈Y21〉 moment in the ρ region, indicates that the Pm=+1 and the Pm=0 amplitudes are

out of phase. For a single nucleon-helicity amplitude, this would imply a difference

between the 〈Y11〉 and 〈Y10〉 moments, arising primarily from the interference between

the S-wave and the Pm=+1 and Pm=0 waves, respectively, in the ρ region where the S

amplitude does not vary substantially. The data suggests, however, that both 〈Y11〉
and 〈Y10〉 peak near the position of the ρ. A possible explanation for the behavior

of the data is the following: the dominant Pm=+1 amplitude may originate from the

helicity-non-flip diffractive process and the Pm=0 amplitude from a nucleon-helicity-flip

vector exchange, which is also expected to contribute to the S-wave production. This

would also explain why the 〈Y11〉 and 〈Y10〉 moments have comparable magnitudes.

To accommodate such behavior, at least two nucleon-helicity amplitudes are required.
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In addition, since strong interactions conserve isospin, it is convenient to write the

ππ amplitudes in the isospin basis. Each amplitude was then expressed as a linear

combination of ππ amplitudes of fixed isospin I (with I = 0, 1, 2).

• The coupling of the ππ system to other channels was taken into account introducing

a multi-dimension channel space: for a given isospin I in the partial wave l, the

amplitudes depend also on an index α that runs over different di-meson systems. For

example, α = 1 corresponds to ππ, α = 2 to KK̄, α = 3 to ηη, etc. In the subsequent

analysis we will restrict the channel space to include the ππ and KK̄ channels, which

are the only channels relevant in the energy range considered.

According to these considerations, the moments were fitted to a set of amplitudes

given by:

aI,α
lm,i(Eγ , t, Mππ) (17)

for each l, m, |m| ≤ 1, with i = 1, 2 corresponding to the nucleon helicity non-flip and

helicity-flip of one unit, isospin I = 0, 1, 2 and channel α.

B. Amplitude parametrization

For each helicity state of the target λ, recoil nucleon λ′, and ππ system m, in a given

Eγ and t bin, the corresponding helicity amplitude alm(s = M2
ππ), was expressed using a

dispersion relation [42–48] as follows:

alm,I(s) =
1

2
[I + Slm,I(s)]ãlm,I(s) (18)

− 1

π
D−1

lm,I(s)PV
∫

sth

ds′
Nlm,I(s

′)ρ(s′)ãlm,I(s
′)

s′ − s
,

where PV represents the principal value of the integral and ρ corresponds to the phase space

term. In this expression, I and Slm,I are matrices in the multi-channel space (ππ, KK),

as mentioned above. Nlm,I and Dlm,I can be written in terms of the scattering matrix of

ππ scattering, chosen to reproduce the known phase shifts, inelasticities [49, 50], and the

isoscalar (l = S, D), isovector (l = P, F ) and isotensor (l = S, D) amplitudes in the range

0.4 GeV <
√

s < 1.4 GeV. Finally, the amplitude ãlm,I represents our ignorance about the

production process.
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FIG. 8: Fit result (black line) of the final experimental moments (in red) for 3.2 < Eγ < 3.4 GeV

and 0.5 < −t < 0.6 GeV2. The systematic uncertainty and fit uncertainty are added in quadrature

and are shown by the gray band.

As a function of s = M2
ππ, alm,I have cuts for s > 4m2

π (right-hand cut) and for s < m2
π

(left-hand cut). The left-hand cut reflects the nature of particle exchanges determining

the ππ photoproduction amplitude, while the right-hand cut accounts for the final-state

interactions of the produced pions. In Eq. 18, these discontinuities are taken into account

by the functions Nlm,I and Dlm,I , while ãlm,I(s) does not have singularities for s > 4m2
π and

can be expanded in a Taylor series:

ãlm,I =
[

A + Bs + Cs2 + · · ·
]

[k] (19)

with A,B, . . . being matrices of numerical coefficients to be determined by the simultaneous

fit of the angular moments defined in Eq. 16 and [k] = kl
αδα,β used to take into account

the threshold behavior in the l-th partial wave. All amplitudes but the scalar-isoscalar are
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FIG. 9: Fit result (black line) of the final experimental moments (in red) for 3.2 < Eγ < 3.4 GeV

and 0.5 < −t < 0.6 GeV2. The systematic uncertainty and fit uncertainty are added in quadrature

and are shown by the gray band.

saturated by the ππ state. For the scalar-isoscalar amplitude, the KK̄ channel was also

included. In addition, to reduce sensitivity to the large energy behavior of the (ππ,KK̄)

amplitudes, the real part of the integral was subtracted and replaced by a polynomial in s,

whose coefficients were also fitted.

V. RESULTS

A. Fit of the moments

Using the parametrization of the partial waves described in the previous section, we fitted

all moments 〈YLM〉 with L ≤ 4 and M ≤ 2 using amplitudes with l ≤ 3 (up to F -waves).
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FIG. 10: Fit result (black line) of the final experimental moments (in red) for 3.2 < Eγ < 3.4 GeV

and 0.5 < −t < 0.6 GeV2. The systematic uncertainty and fit uncertainty are added in quadrature

and are shown by the gray band.

In Figs. 8, 9, 10, and 11 we present a sample of the fit results for Eγ = 3.3 ± 0.1 GeV and

0.5 < |t| < 0.6 GeV2.

To properly take into account the statistical and systematic uncertainty contributions to

the experimental moments described in Sec. III, the four sets of moments resulting from the

different fit procedures were individually fitted and the results were averaged, obtaining the

central value shown by the black line in the figures. The error band, shown as a gray area,

was calculated following the same procedure adopted for the experimental moments. The

final uncertainty was computed as the sum in quadrature of the statistical uncertainty of

the fit and the two systematic uncertainty contributions. The first is related to the moment

extraction procedure and is evaluated as the variance of the four fit results. The latter is
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FIG. 11: Fit result (black line) of the final experimental moments (in red) for 3.2 < Eγ < 3.4 GeV

and 0.5 < −t < 0.6 GeV2. The systematic uncertainty and fit uncertainty are added in quadrature

and are shown by the gray band.

associated with the photon flux normalization and is estimated to be 10%. The central

values and uncertainties for all the observables of interest discussed in the following sections

were derived from the fit results with the same procedure.

The moment 〈Y00〉, corresponding to the differential production cross section dσ/dtdM ,

shows the dominant ρ(770) meson peak. In the 〈Y10〉 and 〈Y11〉 moments, the contribution

of the S-wave is maximum and enters via interference with the P -wave. In particular the

structure at Mππ ∼ 0.77 GeV in 〈Y11〉 is due to the interference of the S-wave with the

dominant, helicity-non-flip wave, Pm=+1. In the 〈Y10〉 moment the same structure is due to

the interference with the Pm=0 wave, which corresponds to one unit of helicity flip. A second

dip near Mππ = 1 GeV is clearly visible and corresponds to the production of a resonance
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FIG. 12: S-wave cross section derived by the fit in the 3.2 < Eγ < 3.4 GeV and 0.5 < −t < 0.6 GeV2

bin. The systematic and the fit uncertainties are added in quadrature and are shown by the gray

band.

that we interpret as the f0(980).

B. Partial wave amplitudes

The square of the magnitude of the S-, P -, D- and F -waves resulting from the fit, summed

over the nucleon spin projections, is given by:

Ilm =
∑

i=1,2

|alm,i(Eγ, t, Mππ)|2.

(20)

When summed over the di-pion helicity, this can be written as:

Il =
∑

m

∑

i=1,2

|alm,i(Eγ , t, Mππ)|2,

(21)

where the sum is limited to m = −1, 0, 1 for l > 0 and to m = 0 for l = 0.

The resulting partial wave cross sections are shown in Figs. 12, 13, 14, and 15, for a

selected photon energy and −t bin. The whole set of partial wave amplitudes resulting from

this analysis is available at the Jefferson Lab [39] and the Durham [40] databases.

As expected, the dominant contribution from the ρ meson is clearly visible in the P -

wave, whose contribution is about one order of magnitude larger than the other waves.

In particular the main contribution comes from Ilm=1,+1, corresponding to a non-helicity
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FIG. 13: P -wave cross section derived by the fit in the 3.2 < Eγ < 3.4 GeV and 0.5 < −t <

0.6 GeV2 bin. Bottom plots: the same amplitudes for the three possible values of λππ (from left to

right -1, 0 and +1). The systematic and fit uncertainties are added in quadrature and are shown

by the gray band.

flip (s-channel helicity conserving) transition. In the S-wave, a strong interference pattern

shows up around Mππ = 980 MeV, which reveals contributions from the f0(980) production.

The contribution from the f2(1270) tensor meson is apparent in the D-wave, while no clear

structures are seen in the F -wave.

C. Systematic studies

The error bands plotted in Figs. 12, 13, 14, and 15 include the systematic uncertain-

ties related to the moment extraction and the photon flux normalization as discussed in

Sec. III B 3. In addition, for the S-wave, where the f0(980) contribution is strongly af-

fected by interference, detailed systematic studies using both Monte Carlo and data were

performed.

In order to test the approximation introduced by the truncation to Lmax=4 in the moment

extraction, we first verified the fit was able to reproduce the experimental distributions in

the kinematic range of interest. Figure 16 shows the comparison between data and fit
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FIG. 14: As Fig. 13 for D-wave.
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FIG. 15: As Fig. 13 for F -wave.

results for the decay angles in the helicity system with Mππ in the f0(980) mass region

(Mππ = 0.985 ± 0.01 GeV). Figure 17 shows the same comparison for the invariant mass

Mpπ+ when three different regions of Mππ (Mππ = 0.475±0.01 GeV, Mππ = 0.775±0.01 GeV,

Mππ = 1.295 ± 0.01 GeV) were selected. The good agreement proves the accuracy of the
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FIG. 16: Pion angles in the π+π− helicity rest frame for Mππ in the f0(980) mass region (Mππ =

0.985 ± 0.01 GeV). Experimental data are plotted in black and fit results in red.

approximation.

As a second check, we applied the fit to pseudo-data obtained with a realistic event

generator, processed with the CLAS GEANT-based simulation package and analyzed with

the same procedure used for the data. Since the event generator was tuned to previous

two-pion photoproduction measurements, it does not include any explicit limitation on the

number of waves. The reconstructed moments showed that, with the chosen Lmax, all fits

were capable of reproducing the generated moments up to Mππ ∼ 1.1 GeV. Finally, we

derived a quantitative estimate of the truncation effect on the S-wave squared amplitude as

follows. The results of a Lmax = 8 fit of the moments was used as input for a new Monte

Carlo event generator. After being processed in the same way as discussed above, pseudo-

data were fitted with Lmax = 4 and the S-wave amplitude was extracted. The difference

between the generated and the reconstructed partial wave cross section was found to be

of the order of 25% that, added in quadrature to the other systematic uncertainties, was

included in the gray band of Fig. 12.

We also demonstrated that no structures similar to the narrow interference pattern we

are interpreting as the evidence of the f0(980) were created by distortions induced by the
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FIG. 17: Mpπ+ distribution in three different Mππ mass regions (bottom: Mππ = 0.475±0.01 GeV,

middle: Mππ = 0.775 ± 0.01 GeV, top: Mππ = 1.295 ± 0.01 GeV). Experimental data are plotted

in black and fit results in red.

CLAS acceptance. This check was performed generating events after removing the f0(980)

contribution, and verifying that no spurious structures appeared in the spectra after the full

GEANT simulation and reconstruction.

In addition, the effects of baryon resonance contributions to the di-pion mass spectrum

were studied performing the fit of the moments with the inclusion of an incoherent back-

ground. In fact, the background in the di-pion mass spectrum introduced by the reflection of

the baryon resonances is expected to be smooth and structureless, contributing to all waves.

Therefore this was parametrized as a second-order polynomial in Mππ that was summed

to the parametrization of the moments in terms of partial waves used in the standard fits.

From this study we concluded that the background contribution is small, smooth and does

not affect the quality of the fit. The comparison of the fit results with and without the
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FIG. 18: S-, P - and D-wave cross sections in the 3.4 < Eγ < 3.6 GeV and 0.5 < −t < 0.6 GeV2

bin. The gray and red bands show the results of the standard fit and of the fit performed adding a

second-order polynomial to the partial wave expansion of the moments to account for the baryon

resonance contributions. The width of the bands represents the fit uncertainties only. Fit results

are shown for a specific parametrization of the moments (second method, see Sec. III B 3).

inclusion of this additional background indicates that the P -wave and the S-wave in the

f0(980) region are only slightly affected, as shown in Fig. 18. On the contrary, the low mass

S-wave, corresponding to the σ(600) region, and the D-wave, corresponding to the f2(1270)

region, show a significant variation and, therefore, a more complete analysis should be per-

formed to extract reliable information in these mass ranges. A similar conclusion was drawn

by comparing the analysis results excluding the ∆(1232), the dominant baryon resonance

contribution for this final state, with the cut M(pπ+) > 1.4 GeV. A negligible effect was

found on the rapid motion around the narrow f0(980) meson, while a larger variation was

observed at higher values of the M(ππ) mass.

To verify the stability of the fit of moments in the region of the f0(980), the whole analysis

was repeated reducing the Mππ bin size from 10 to 5 MeV. The results obtained in the two

cases were found to be consistent.
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FIG. 19: Spin density matrix elements for the P -wave in the 3.0 < Eγ < 3.2 GeV and 0.4 <

−t < 0.5 GeV2 bin. The black dots are data points from Ref. [9], taken in a similar kinematic bin

(Eγ ∼ 2.8 GeV and 0.02 < −t < 0.4 GeV2).

As a final check, the sensitivity to the specific choice of the number of terms used in the

Taylor expansion of the amplitudes ãL (see Eq. 19) was tested performing the partial wave

analysis fits both with a second- and fourth-order polynomial. The effect was found to be

negligible compared to the other systematic uncertainties.

D. The spin density matrix elements

From the production amplitudes derived by the fit, we calculated the spin density matrix

elements [51] for the P -wave and the interference between the S- and P -waves. Some selected

results are shown in Figs. 19, 20 and 21. Since these observables do not depend on the

photon flux normalization, the error bands do not include the 10% uncertainty mentioned

above. The whole set of spin density matrix elements resulting from this analysis is available

at the Jefferson Lab [39] and the Durham [40] databases.

Comparisons of our measurements at 3.0 < Eγ < 3.2 GeV and 0.4 < −t < 0.5 GeV2
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FIG. 20: Spin density matrix elements for the P -wave in the 3.2 < Eγ < 3.4 GeV and 0.5 < −t <

0.6 GeV2 bin.

with existing data from Refs. [9, 10] in a similar kinematic domain (Eγ ∼ 2.8 GeV and

0.02 < −t < 0.4 GeV2) are shown in Fig. 19. As expected, the two matrix elements

ρ10 and ρ11 agree very well since they have a weak dependence on −t, while ρ00 shows a

similar behavior, but with different values as it is more sensitive to the momentum transfer.

If one compares the larger −t bins we measured, the differences increase, showing that

extrapolating our data to lower −t would probably give good agreement with previous

measurements.

As shown in Fig. 21, around Mππ = 980 MeV an interference pattern clearly shows up in

the S-P wave interference term, corresponding to the contribution from the f0(980) meson.

E. Differential cross sections

The differential cross sections [dσ/dt]l−wave for individual waves and mass resonance re-

gions were obtained integrating the corresponding amplitudes. The cross sections in the

mass regions of the f0(980), ρ, and f2(1270) mesons were obtained integrating the S-, P -
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FIG. 21: Spin density matrix elements for the interference between S- and P -waves in the 3.2 <

Eγ < 3.4 GeV and 0.5 < −t < 0.6 GeV2 bin.

and D-waves in the mass ranges 0.98 ± 0.04 GeV, 0.4-1.2 GeV, and 1.275 ± 0.185 GeV, re-

spectively. These are shown in Figs. 22, 23 and 24 in the photon energy range 3.0-3.8 GeV.

As mentioned previously, the P -wave is completely dominated by the ρ meson production,

and therefore the integrated cross section can be directly compared to the world’s data for

the γp → pρ reaction [11, 41]. It should be noticed that the previous cross sections were

evaluated without performing a partial wave analysis but fitting the mass-dependent cross

section with a relativistic Breit-Wigner plus a smooth polynomial function to separate the

resonance from the background. The good agreement shown in Fig. 23 gives confidence in

the partial wave analysis. As expected, the S-wave photoproduction is suppressed compared

to the P -wave by more than an order of magnitude, reflecting the different mechanisms that

lead to scalar and vector meson photoproduction: in Regge theory the latter is dominated by

Pomeron exchange, while the former is dominated by the exchange of reggeons that become

suppressed as the energy increases.

VI. SUMMARY

In summary, we have performed a partial wave analysis of the reaction γp → pπ+π− in

the photon energy range 3.0-3.8 GeV and momentum transfer range −t = 0.4 − 1.0 GeV2.

Moments of the di-pion angular distribution, defined as bi-linear functions of partial wave
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amplitudes, were fitted to the experimental data with an unbinned likelihood procedure.

Different parametrization bases were used and detailed systematic checks were performed to

insure the reliability of the analysis procedure. We extracted moments 〈YLM〉 with L ≤ 4 and

M ≤ 2 using amplitudes with l ≤ 3 (up to F -waves). Using a dispersion relation, unitarity

constraint, and phase shifts and inelasticities of ππ scattering, the production amplitudes

were expressed in a simplified form, where the unknown part was expanded in a Taylor

series. The coefficients were fitted to the experimental moments to extract the S-, P -, D-,

and F -waves in the Mππ range 0.4-1.4 GeV.
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FIG. 22: Differential cross section dσ/dt for the S-wave in the Mππ range 0.98 ± 0.04 GeV and

photon energy range Eγ = 3.0 − 3.8 GeV.
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FIG. 23: Differential cross section dσ/dt for the P -wave in the Mππ range 0.4-1.2 GeV and photon

energy range Eγ = 3.0 − 3.8 GeV.
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FIG. 24: Differential cross section dσ/dt for the D-wave in the Mππ range 1.275 ± 0.185 GeV and

photon energy range Eγ = 3.0 − 3.8 GeV.

The moment 〈Y00〉 is dominated by the ρ(770) meson contribution in the P -wave, while

the moments 〈Y10〉 and 〈Y11〉 show contributions of the S-wave through interference with the

P -wave. The clear structure at Mππ ∼ 1 GeV seen in such experimental moments and in the

S-wave amplitude is evidence of a resonance contribution that we interpret as the f0(980).

This is the first observation of the f0(980) scalar meson in photoproduction. A contribution

from the f2(1270) tensor meson was observed in the D-wave, while no resonant structures

were seen in the F -wave. The cross sections of individual partial waves in the mass range of

the ρ(770), f0(980), and f2(1270) were computed. Finally, the spin density matrix elements

for the P -wave were evaluated, finding good agreement with previous measurements, and

for the first time, the S − P interference term was extracted.

VII. ACKNOWLEDGMENTS

We would like to acknowledge the outstanding efforts of the staff of the Accelerator and

the Physics Divisions at Jefferson Lab that made this experiment possible. This work was

supported in part by the Italian Istituto Nazionale di Fisica Nucleare, the French Centre

National de la Recherche Scientifique and Commissariat à l’Energie Atomique, the U.S.
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APPENDIX A

The explicit expressions for the moments, defined in Eq. 1 in terms of partial waves, given

Eq. 4, truncated to the L = 3 (F ) wave are given by,

〈Y00〉 = |S|2 + |P−|2 + |P0|2 + |P+|2 + |D−|2 + |D0|2 + |D+|2 + |F−|2 + |F0|2 + |F+|2

〈Y10〉 = SP ∗
0 + P0S

∗ +

√

3

5

(

P−D∗
− + P ∗

−D− + P+D∗
+ + D+P ∗

+

)

+

√

4

5
(P0D

∗
0 + D0P

∗
0 )

+

√

24

35

(

D−F ∗
− + F−D∗

− + D+F ∗
+ + F+D∗

+

)

+

√

216

280
(D0F

∗
0 + F0D

∗
0)

〈Y11〉 =
(

−P−S∗ − SP ∗
− + P+S∗ + SP ∗

+

)

+

√

1

20

(

P−D∗
0 + D0P

∗
− − P+D∗

0 − D0P
∗
+

)

+

√

3

20

(

−P0D
∗
− − D−P ∗

0 + P0D
∗
+ + D+P ∗

0

)

+

√

9

140

(

D−F ∗
0 + F0D

∗
− − D+F ∗

0 − F0D
∗
+

)

+

√

9

70

(

−D0F
∗
− − F−D∗

0 + D0F
∗
+ + F+D∗

0

)

〈Y20〉 = SD∗
0 + D0S

∗ +

√

1

5

(

2|P0|2 − |P−|2 − |P+|2 + |F−|2 + |F+|2
)

+

√

18

35

(

P−F ∗
− + F−P ∗

− + P+F ∗
+ + F+

+

√

27

35
(P0F

∗
0 + F0P

∗
0 ) +

√

5

49

(

|D−|2 + |D+|2
)

+

√

20

49
|D0|2 +

√

16

45
|F0|2

〈Y21〉 =
1

2

(

SD∗
+ + D+S∗ − SD∗

− − D−S∗
)

+

√

3

20

(

P0P
∗
+ + P+P ∗

0 − P−P ∗
0 − P0P

∗
−

)

+

√

9

140

(

P−F ∗
0 + F0P

∗
− − P+F ∗

0 − F0P
∗
+

)

+

√

6

35

(

P0F
∗
+ + F+P ∗

0 − P0F
∗
− − F−P ∗

0

)

+

√

5

196

(

D0D
∗
+ + D+D∗

0 − D0D
∗
− − D−D∗

0

)

+

√

1

90

(

F0F
∗
+ + F+F ∗

0 − F0F
∗
− − F−F ∗

0

)

〈Y22〉 =

√

3

10

(

P−P ∗
+ + P+P ∗

−

)

+

√

3

140

(

P−F ∗
+ + F+P ∗

− + P+F ∗
− + F−P ∗

+

)

+

√

4

30

(

−F+F ∗
− − F−F ∗

+

)

+

√

3

196

(

−D−D∗
+ − D+D∗

−

)

〈Y30〉 = SF ∗
0 + F0S

∗ +

√
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70

(

−P−D∗
− − D−P ∗

− − P+D∗
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√
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(P0D

∗
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∗
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+

√

2
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(
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)
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∗
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∗
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(
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+

√
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(
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∗
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〈Y32〉 =

√

3
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(

−P+D∗
− − D−P ∗
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−P+F ∗
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21
(P0F

∗
0 + F0P

∗
0 ) +

√
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√
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49
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√
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(

|F+|2 + |F−|2
)

〈Y41〉 =
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+ − P−F ∗

0 − F0P
∗
−

)

+
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(

P0F
∗
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D0D
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It follows from Eq. 1 that the 〈Y00〉 moment is normalized by the differential cross section

via,

〈Y00〉 =
∫

dΩπ

dσ

dtdMππdΩπ

. (A1)
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