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Received (received date)
Revised (revised date)

Configuration mixing calculations performed in terms of the Skyrme/Gogny Energy
Density Functional (EDF) rely on extending the Single-Reference energy functional into
non-diagonal EDF kernels. The standard way to do so, based on an analogy with the
pure Hamiltonian case and the use of the generalized Wick theorem, is responsible for the
recently observed divergences and steps in Multi-Reference calculations. We summarize
here the minimal solution to this problem recently proposed1 and applied with success to
particle number restoration2. Such a regularization method provides suitable corrections
of pathologies for EDF depending on integer powers of the density. The specific case of
fractional powers of the density3 is also discussed.

1. Energy Density Functional methods

The nuclear Energy Density Functional (EDF) method is a unique tool to study

static and dynamical properties of nuclei in a unified framework4. Although the

nuclear EDF shares several features with Density Functional Theory5 (DFT), the

strategy used is different as it embraces two successive levels of description.

On the first level, traditionally called ”self-consistent mean-field theory”,

Hartree-Fock (HF) or Hartree-Fock-Bogoliubov (HFB), a single product state Φ0

provides the normal ρ00 and anomalous κ00 density matrices the many-body energy

is a functional of. We call this method a single-reference (SR) EDF approach and

denote by ESR[Φ0] = ESR[ρ00, κ00, κ00 ∗] the actual EDF. Although such a restric-

tion is not necessary, one usually builds the EDF from an effective vertex (of the

Skyrme or Gogny type), whose parameters are adjusted to reproduce a selected set

of experimental observations. Independently of the starting point, the EDF can be
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written as in any arbitrary basis as

ESR[ρ00, κ00, κ00 ∗] =
∑

ij

tij ρ00
ji + 1

2

∑

ijkl

v̄ρρ
ijkl ρ00

ki ρ00
lj + 1

4

∑

ijkl

v̄κκ
ijkl κ00 ∗

ij κ00
kl (1)

+ 1

6

∑

ijklmn

v̄ρρρ
ijklmn ρ00

li ρ00
mj ρ00

nk + 1

4

∑

ijklmn

v̄ρκκ
ijklmn ρ00

li κ00 ∗
jk κ00

mn + . . . ,

where the first term accounts for the uncorrelated kinetic energy, whereas v̄ρρ, v̄κκ,

v̄ρρρ, . . . denote effective vertices associated with the different terms of the EDF.

There are a few important comments to be made at this point. First, and although

it formally resembles it, Eq. (1) should not be confused with the expectation value

of a Hamiltonian containing two-body, three-body, . . . interactions in the Hartree-

Fock-Bogolyubov state Φ0. For this to be true, specific properties, e.g. v̄ρρ
ijkl = v̄κκ

ijkl

and v̄ρρ
ijkl = −v̄ρρ

ijlk for all (i, j, k, l), would have to be satisfied, which is usually not

the case in the EDF context. Second, most popular and performing EDF cannot

be written under the form of Eq. (1) as they contain a dependence on a non-

integer power of the (local) normal density4. We anticipate, however, that future

EDFs will be constructed under such a form, typically truncated at forth or fifth

power. Indeed, the regularization procedure presented here is inapplicable to EDFs

containing non-integer powers of the density matrices3.

While static collective correlations, e.g. pairing and deformation, can be ac-

counted for within the SR EDF formalism through the symmetry breaking of the

auxiliary state Φ0, dynamical collective correlations requires to perform a so-called

Multi-Reference (MR) calculations, traditionally denoted as ”beyond-mean-field”.

Such an extension, built by analogy with the Generator Coordinate Method (GCM)

in the Hamiltonian formalism6, allows one not only to incorporate additional cor-

relations but also to describe low-energy spectroscopy and transition probabilities

between states characterized by symmetry-restored quantum numbers. In strict

analogy with the Hamiltonian formalism, the MR EDF is written as

E [Ψ] ≡

∑

{0,1}∈MR
f∗
0 f1 EMR[Φ0, Φ1] 〈Φ0|Φ1〉

∑

{0,1}∈MR
f∗
0 f1 〈Φ0|Φ1〉

, (2)

where non-diagonal matrix elements 〈Φ0|Ĥ |Φ1〉/〈Φ0|Φ1〉 have been replaced by

their EDF counterpart EMR[Φ0, Φ1]. The weight functions f are determined either

by symmetry considerations, by diagonalization, or both. The product states Φi

belonging to the MR set are chosen according to the collective modes one wants to

describe. In the absence of a well-founded prescription to build EMR[Φ0, Φ1], only

specific constraints can be imposed. For a number of reasons7, it is necessary to

impose that EMR[Φ0, Φ0] ≡ ESR[Φ0] and EMR[Φ1, Φ0] = E∗
MR[Φ0, Φ1]. Following the

Hamiltonian formalism, the most natural guidance is provided by the generalized

Wick theorem8 (GWT) which tell us that EMR[Φ0, Φ1] is obtained by replacing

SR density matrices by transition ones, i.e. [ρ01, κ01, κ10 ∗], in Eq. (1). However, we

have shown that the use of GWT-based functional energy kernels is the source of

the pathologies recently observed in MR-EDF calculations1,2,3.
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1.1. Pathologies observed in configuration mixing calculations

An example of deformation energy surface obtained through a MR calculation based

on Particle-Number Restoration (PNR) is given for 18O in Fig. 1 using the trilinear

SIII Skyrme EDF. Starting from a SR-EDF built from the auxiliary state Φ0 which

explicitly breaks the particle-number symmetry, in order to account for static pair-

ing correlations explicitly, dynamical pairing correlations associated with PNR can

be incorporated through a MR EDF calculation. Building the MR set from product

states rotated in gauge space |Φϕ〉 = eiϕN̂ |Φ0〉, Eq. (2) specified to PNR reads1

EN ≡

∫ 2π

0

dϕ
e−iϕN

2π c2
N

EMR[Φ0, Φϕ] 〈Φ0|Φϕ〉 . (3)

In practice, Eq. (3) is numerically estimated using the Fomenko10 discretization pro-

cedure. The left panel of Fig. 1 presents results obtained for two different numbers

of mesh points in the discretization (dotted and dashed lines). Obvious patholo-

gies are visible, i.e. (i) the estimate of the energy landscape does not converge

and (ii) non-physical steps appear at particular deformations as one increases the

number of mesh points used in the Fomenko procedurea. Authors have not only

also faced the problem for PNR11,12 but also when performing angular-momentum

restoration13. It has been recognized11 that divergences in PNR may appear when

either a proton or neutron single-particle level crosses the Fermi en energy, as pair

of states differing by π/2 are orthogonal in this case, i.e. 〈Φ0|Φϕ〉 = 0. When the

same (density-independent) vertices are used in the p-h and p-p channel and the

exchange is properly taken into account, problems were shown to disappear. The

problem has been characterized more precisely thanks to a complex plane analysis14,

demonstrating in particular the less obvious but more profound occurrence of steps.

This technique, however, cannot be extended to the restoration of other symmetries

and does not lead to a practical solution of the problem.

2. Minimal solution to the problem

We have recently shown that the origin of difficulties can be traced back to the

strategy used to design energy kernels entering the MR-EDF, i.e. the use of the

GWT as a guidance. An early hypothesis11 has been confirmed later12 by avoiding

the use of the GWT in the PNR case. More recently, a general solution which

applies to any type of configuration mixing has been formulated1. The technique

makes use of the following trick: given a pair of quasi-particle vacua, denoted by

|Φ0〉 and |Φ1〉 (with possibly 〈Φ0|Φ1〉 = 0), one can always find a simple ”BCS like”

expression connecting these two states, i.e.6:

|Φ1〉 = C̃01

∏

p>0

(

Ā∗
pp + B̄∗

pp̄ α̃+
p α̃+

p̄

)

|Φ0〉 . (4)

aThe fact that no divergence occurs is due to the particular form of the functional used which is
strictly bilinear in the same isospin3.
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In the quasi-particle basis where Eq. (4) is valid, GWT-based energy kernels read,

e.g. for a strictly bilinear EDF, as (omitting the kinetic term)

EMR[Φ0, Φ1] =
1

2

∑

νµ

v̄ρρ
ϕνϕµϕνϕµ

+
1

4

∑

νµ

v̄κκ
ϕνφν̄ϕµφµ̄

(5)

+
1

2

∑

νµ

v̄ρρ
ϕνϕµφνϕµ

Z̄νν̄ +
1

4

∑

νµ

v̄κκ
ϕνϕν̄ϕµφµ̄

Z̄νν̄ (6)

+
1

2

∑

νµ

v̄ρρ
ϕµϕνϕµφν

Z̄νν̄ +
1

4

∑

νµ

v̄κκ
ϕµφµ̄φνφν̄

Z̄νν̄ (7)

+
1

2

∑

νµ

v̄ρρ
ϕνϕµφνφµ

Z̄νν̄ Z̄µµ̄ +
1

4

∑

νµ

v̄κκ
ϕνϕν̄φµφµ̄

Z̄νν̄ Z̄µµ̄ , (8)

where (µ, µ̄) denote a canonical pair in the specific quasi-particle representation,

Z̄ν̄ν = (B̄ν̄ν/Ā−1
νν )∗ while ϕν and φµ stand for the upper and lower components

of the quasi-particle states1. Using expressions (5-8) is convenient as it separates

the contributions remaining in the SR limit (line 5) from the rest. It also allows

to identify the different sources of problems. (i) Self-interaction: Well-kown from

DFT, self-interaction relates to the fact that a particle should not interact with

itself, which, however, happens when the vertices v̄ρρ are not anti-symmetrized1.

This is almost always the case in actual EDFs at least because of the approxima-

tions used to treat Coulomb exchange. Such a self-interaction, if present at the SR

level, further contributes at the MR level (lines (6-7)). (ii) Self-pairing: this new

concept2 is specific to EDFs treating pairing correlations explicitly and relates to

the fact that two paired particles should not generate correlation energies, beyond

their direct interaction, by scattering onto themselves. Again, such a spurious con-

tribution appears at both SR and MR levels. (iii) Steps and divergences: As the

energy kernel is multiplied by 〈Φ0|Φ1〉 ∝
∏

ν Ā∗
νν in the MR energy (see Eq. (2)),

only terms with ν = µ or ν = µ̄ in line (8) can lead to divergences and steps when

Ā∗
νν = 0. In the pure Hamiltonian case, i.e. v̄ρρ

ijkl = v̄κκ
ijkl and v̄ρρ

ijkl = −v̄ρρ
ijlk for

all (i, j, k, l), the dangerous contributions coming from the two terms in Eq. (8)

exactly cancel out and no divergence or step occurs. However, when different or

non-antisymmetrized vertices are used, as in the EDF context, divergences and/or

steps are observed, as on the left panel of Fig. 1.

The quasi-particle basis introduced above allows one to proceed to the analogy

with the Hamiltonian formalism on the basis of the standard Wick theorem rather

than on the generalized one. Comparing the results of the two schemes, one proves1

that terms with ν = µ or ν = µ̄ in line (8) should be zero in the first place and

must be removed altogether. This not only solves problem (iii) entirely but also

remove finite spurious contributions to the MR energy kernel. Such a regularization

technique can be applied to any type of configuration mixing performed in terms

of an EDF depending on integer powers of the densities. It has been successfully

applied to PNR2, as is exemplified on the left panel of Fig. 1 using the SIII Skyrme

EDF. The correction not only removes the dependence on the number of mesh points
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Fig. 1. Left: Uncorrected (dotted and dashed lines) and corrected (solid line) particle-number
restored quadrupole deformation energy obtained for 18O with SIII and calculated with L = 5 and
199 discretization points of the integral in gauge space. The two corrected curves are superimposed.
Right: attempt to regularize the particle-number restored energy of 18O obtained with SLy4 that
contains a non-integer power of the (local) normal density.

and the non-physical steps, but also corrects the energy landscape away from those

steps. The case of EDFs depending on non-integer powers of the density matrix

has also been analyzed3. Although divergences can be removed using a variant of

the method proposed in Ref.1, the complex-plane analysis demonstrates that the

left-over fractional power ργ with 0 < γ < 1 is ill-defined as it generates cusps in the

PNR energy landscape, (see right panel of Fig. 1). Generally speaking, one cannot

use a functional that is multi-valued over the complex plane. This has important

consequences on the present and future of EDF methods.
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