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Abstract

We study the couplings between collective vibrations such as the isovector dipole (GDR) and

isoscalar quadrupole (GQR) giant resonances in tin isotopes in the framework of the time dependent

Hartree-Fock theory with a Skyrme energy density functional. These couplings are a source of

anharmonicity in the multiphonon spectrum. In particular, the residual interaction is known to

couple the GDR with the GQR built on top of the GDR, inducing a non linear evolution of the

quadrupole moment after a dipole boost. This coupling also affects the dipole motion in a nucleus

with a static or dynamical deformation induced by a quadrupole constraint or boost respectively.

We propose three methods associated to these different manifestations of the coupling to extract

the corresponding matrix elements of the residual interaction. Numerical applications to 120Sn are

in good agreement. Finally, several tin isotopes are considered to investigate the role of isospin

and mass number on this coupling.
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I. INTRODUCTION

A particular interest in strongly interacting systems is their possibility to present disorder

or chaos, and, in the same excitation energy range, well organized motion. Atomic nuclei are

known to show both behaviors [1]. In particular, they exhibit a large variety of collective

vibrations, also called giant resonances (GR), with excitation energy usually above the

particle emission threshold [2]. The GR are associated to anomalously large cross sections

in some nuclear reactions.

Baldwin and Klaiber observed the isovector giant dipole resonance (GDR) in photo-fission

of uranium nuclei [3], interpreted as a vibration of neutrons against protons [4]. This GDR

has been investigated with several probes [2] and has also been observed on top of highly

excited states, e.g., in hot nuclei [5]. The survival of ordered motion in hot nuclei, i.e., in

a chaotic environment, is one of the most striking phenomena in nuclear physics. Other

kinds of GR have been discovered, such as the isoscalar giant quadrupole resonance (GQR),

associated to an oscillation of the shape between a prolate and an oblate deformation [6], and

the isoscalar giant monopole resonance (GMR) corresponding to a breathing mode [7–9].

The GR are usually associated to the first phonon of a small amplitude harmonic motion.

However, the proof of their vibrational nature came with the observation of their two-

and three-phonon states [10–12]. Multiphonon studies also provided a good test to the

harmonic picture. In particular, anharmonicity were found in an abnormally large excitation

probability of these states, indicating that different phonon states couple due to the residual

interaction [13, 14]. Microscopic investigations, such as the random phase approximation

(RPA) together with boson mapping techniques [15] and the non linear response to an

external field in the time-dependent Hartree-Fock (TDHF) theory [16, 17] showed, indeed,

that strong couplings between GMR, GQR and GDR occur. In particular, a GMR or a

GQR (resp. a GMR) can be excited on top of a GDR (resp. a GQR), leading to couplings

between one- and two-phonon states. As a consequence, GR cannot be described in a purely

harmonic picture. Anharmonicities have also been found to affect pygmy dipole resonances,

though depending on the choice of the nuclear functional [18].

The goal of the present work is to get a deeper understanding on the couplings between

various GR which represent a first step toward complexity and disorder in nuclei at high

excitation energies. As an example, we focus on the couplings between isovector dipole and
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isoscalar quadrupole vibrations. We make a clear link between the quadratic response of

the quadrupole moment to an external dipole excitation investigated in Ref. [16] and the

linear dipole motion on a deformed state. We use the TDHF theory to compute the matrix

element of the residual interaction coupling the one-phonon state of the GDR to the two-

phonon state with a GQR built on top of the GDR. Applications to spherical tin isotopes

are performed to investigate the role of the isospin and of the total number of nucleons on

these couplings.

We present the theoretical model describing the couplings between GR and their effect

on one-body observables in Sec. II. The TDHF formalism and its application to nuclear

vibrations are discussed in Sec. III. Numerical details on the 3-dimensional TDHF code are

also given. A detailed investigation of the couplings in 120Sn is presented in Sec. IV, together

with a more systematic analysis in tin isotopes. Finally, we conclude in Sec. IV.

II. THEORETICAL MODEL

A. Couplings between vibrational modes

Let us illustrate the effect of couplings between vibrational modes within a simple

schematic model introduced in Ref. [16]. We consider the Hamiltonian

Ĥ = Ĥ0 + V̂ (1)

where Ĥ0 corresponds to the harmonic (RPA) part and the residual interaction V̂ couples

collective modes. Eigenstates of Ĥ0 are one- and two-phonon states |ν〉 and |νµ〉 with

eigenenergies Eν = E0 + h̄ων and Eνµ = E0 + h̄ων + h̄ωµ respectively, E0 being the ground

state energy. In the following, we omit h̄ in the notation. We consider a coupling between

|ν〉 and |νµ〉 only. Such couplings between one- and two-phonon states have been proven to

be the most important one in nuclei [15]. We note vµ = 〈ν|V̂ |νµ〉 the matrix elements of

the residual interaction. At the first order in εµ = vµ

ωµ
, the eigenvalues of Ĥ are those of Ĥ0

with eigenstates |ν〉 ∼ |ν〉 − εµ|νµ〉 and |νµ〉 ∼ |νµ〉 + εµ|ν〉.
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B. Effects of the coupling on one-body observables

The couplings are expected to affect the evolutions of expectation values of one-body

observables such as the multipole moments Qν(t) ≡ 〈Q̂ν〉(t). We investigate three different

manifestations of the couplings on these evolutions. They will be used in the next section to

compute vµ from TDHF calculations in the case of couplings between dipole and quadrupole

giant resonances.

1. quadratic response

The effect of the coupling on the quadratic response has been introduced in Ref. [16].

Here we summarize the model. At initial time, the ground state |0〉 of the system is excited

by a boost with the one-body operator Q̂ν

|Ψ(0)〉 = exp(−ikνQ̂ν)|0〉. (2)

Developing the exponential up to second order in the boost intensity kν and considering an

evolution under the Hamiltonian defined in Eq. (1), the state at time t reads at first order

in εµ

|Ψ(t)〉 ≃ exp(−iE0t)

[(

1 − k2
νq

2
ν

2

)

|0〉 − ikνqνe
−iων t

(

|ν〉 − εµe
−iωµt|νµ〉

)

]

(3)

where qν = 〈ν|Q̂ν |0〉 is the transition amplitude which we assume to be real.

The expectation value of the one-body observable used in the boost exhibits oscillations.

Indeed, in case of no static deformation in the ground state, we have

Qν(t) = −2kνq
2
ν sin(ωνt) + O(k3

ν). (4)

In particular, its amplitude increases linearly with the boost intensity in the small amplitude

regime. In addition to this linear response, the coupling induces an oscillation of Qµ:

Qµ(t) ≃ 2k2
νq

2
νqµ

vµ

ωµ
[cos(ωµt) − 1] (5)

where we have assumed qµ = 〈µ|Q̂µ|0〉 = 〈µν|Q̂µ|ν〉. This oscillation is then quadratic

in kν . Moreover, we note that Qν(t) and Qµ(t) have different frequencies and start in phase

quadrature.
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2. linear response in an external static field

It is interesting to note that the coupling may also manifest itself in the linear response

to the boost (2) if an external static field is added to the Hamiltonian (1)

Ĥ(λ) = Ĥ(0) + λQ̂µ. (6)

We choose λ small enough to induce a linear static deformation

Q0
µ(λ) = 〈0(λ)|Q̂µ|0(λ)〉 ≃ λ

(

∂Q0
µ

∂λ

)

λ=0

(7)

where the ground state |0(λ)〉 of Ĥ(λ) contains a contribution of the one-phonon state |µ〉:

|0(λ)〉 ≃ |0〉 +
λ

2qµ

(

∂Q0
µ

∂λ

)

λ=0

|µ〉. (8)

The external potential modifies linearly the eigenenergies of the Hamiltonian and the fre-

quency of the linear response to a boost (2) on |0(λ)〉 follows

(

∂ων

∂λ

)

λ=0

=
vµ

qµ

(

∂Q0
µ

∂λ

)

λ=0

, (9)

providing another direct way to extract the matrix element vµ of the residual interaction. We

emphasize the fact that, here, the non linear response is not invoked and a RPA code allowing

static deformation in the ground state would be sufficient to compute such couplings.

3. response to two simultaneous excitations

We showed two manifestations of the coupling: in the quadratic response and in the linear

response under a static constraint. Let us now introduce a third one where the response

Qν(t) is studied after a double boost

|Ψ(0)〉 = e−ikµQ̂µe−ikνQ̂ν |0〉. (10)

The Q̂µ term modifies the response of Eq. (4) with an additional term

∆Qν(t) = 〈Q̂ν〉(t) − 〈Q̂ν〉kµ=0(t)

= 4kνkµq
2
νqµ

vµ

ωµ

[1 − cos(ωµt)] cos(ωνt). (11)
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It is convenient to write this evolution with the form

x(t) =
Qν(t)

Q̄ν

= sin ωνt − β cos ωνt +
β

2
cos(ωµ + ων)t +

β

2
cos(ωµ − ων)t (12)

where Q̄ν = −2kνq
2
ν and β = 2kµqµvµ/ωµ. In fact, we can show that x(t) is a solution of the

differential equation

ẍ

ω2
ν

+
[

1 − 2β
ωµ

ων
sin ωµt

]

x + β
ω2

µ

ω3
ν

ẋ cos ωµt = 0 (13)

if one keeps only the first order terms in β. The two first terms of the left hand side are

equivalent to a Mathieu’s equation. It is not surprising as the latter has been shown to qual-

itatively reproduce the preequilibrium dipole motion coupled to collective shape vibrations

of the system in N/Z asymmetric fusions [19, 20].

We see in Eq. (12) that the effect of the coupling produces vibrations at frequencies

|ων ±ωµ|. By analogy to the standard response function related to the strength distribution

(see, e.g., [21] and references therein) we introduce the coupling response function

Rc
ν(ω) =

−1

πkνkµ

∫

∞

0
dt cos(ωt)∆Qν(t) (14)

defined for ω ≥ 0. The latter can be used to investigate the coupling as it is linearly

proportional to vµ in the small amplitude limit:

Rc
ν(ω) ≃ q2

νqµvµ

ωµ
[−2δ(ων − ω) + δ(ων + ωµ − ω) + δ(|ων − ωµ| − ω)] . (15)

Note that the contributions to the coupling response function at ων and those at |ων ± ωµ|
have opposite signs and that the total area of the coupling response function is zero.

III. THE TIME DEPENDENT HARTREE-FOCK APPROACH

A. Applications to nuclear vibrations

Coherent motion of fermions such as collective vibrations in nuclei can be modeled by

time dependent mean field approaches like the time dependent Hartree-Fock theory (TDHF)

proposed by Dirac [22]. Indeed, in its linearized version, TDHF is equivalent to the Random
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Phase Approximation (RPA) which is the basic tool to understand the collective vibrations

in terms of independent phonons.

As we saw in the previous section, giant resonances properties can be investigated by

studying the response of the system to an external (collective) one-body field. In particular,

time evolution of one-body (collective) observables, which are well predicted by mean-field

approaches, contain the necessary information to investigate the couplings between collec-

tive modes. Indeed, TDHF takes into account the effects of the residual interaction if the

considered phenomenon can be observed in the time evolution of a one-body observable.

In particular, the non linear response in TDHF contains the couplings between one- and

two-phonon states coming from the 3-particle 1-hole and 1-particle 3-hole residual interac-

tion [16]. In that sense, it goes beyond the RPA which is a harmonic picture and contains

only 1-particle 1-hole residual interaction.

In its unrestricted form (i.e., with no constraint on spatial symmetry) TDHF authorizes

all possible spatial form of the nucleon wave functions which is crucial both because of

shell effects and of the wave dynamics. In addition, Landau spreading and evaporation

damping are well accounted for [23]. However, it does not incorporate the dissipation due to

two-body mechanisms [24–26]. Extension to theories going beyond the one-body limit such

as extended TDHF [26], the time dependent density matrix theory [27, 28] or stochastic

mean field approaches [29] should be considered for realistic description of giant resonance

properties [30].

Application of TDHF to nuclear dynamics has been possible thanks to the Skyrme-type

effective interaction [31, 32]. Early realistic TDHF codes have been applied to study col-

lective vibrations in nuclei with simplified Skyrme interactions [33]. Recent increase of

computational power allowed realistic TDHF description of giant resonances in 3 dimen-

sions with full Skyrme energy density functional (EDF) [16, 34–36]. In particular, TDHF

has been used to investigate non linear effects in nuclear vibrations [16, 37]. Inclusion of

pairing correlations responsible for superfluidity in nuclei have been done recently within the

time dependent Hartree-Fock-Bogolyubov theory to study pairing vibrations in nuclei [21].

However, realistic applications in three dimensions are not yet achieved and are beyond the

scope of this work.
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B. Formalism

The TDHF equation can be written as a Liouville-Von Neumann equation

i
∂

∂t
ρ = [h[ρ], ρ] (16)

where ρ is the one-body density matrix of an independent particles state with elements

ρ(rsq, r′s′q′) =
A
∑

i=1

ϕi(rsq)ϕ
∗

i (r
′s′q′) (17)

where A is the number of nucleons. The sum runs over all occupied single particle wave

functions ϕi and r, s and q denote the nucleon position, spin and isospin respectively. The

Hartree-Fock single particle Hamiltonian h[ρ] is related to the EDF, noted E[ρ], by its first

derivative

h[ρ](rsq, r′s′q′) =
δE[ρ]

δρ(r′s′q′, rsq)
. (18)

C. Numerical details

In this work, the TDHF equation (16) is solved iteratively in time on a spatial grid with

a plane of symmetry using the tdhf3d code built by P. Bonche and coworkers [38] with

the SLy4 parameterization of the Skyrme EDF [39]. Good convergences of the quadrupole

and dipole moments evolution is ensured with a lattice spacing ∆ r = 0.6 fm and a time

step ∆ t = 5× 10−25 s. The size of the half box where the single particle wave functions are

evolved is 80 × 80 × 40 ∆ r3 unless otherwise specified.

IV. RESULTS

Let us now investigate the couplings between isovector dipole and isoscalar quadrupole

vibrations in tin isotopes in the framework of the theoretical model presented in Sec. II where

|ν〉 ≡ |D〉 and |µ〉 ≡ |Q〉 denote a GDR and a GQR phonon respectively. The isovector

dipole moment is defined as

Q̂D =
NZ

A
(Ẑn − Ẑp) (19)
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FIG. 1: Time evolution of the dipole (a) and quadrupole (b) moments in 120Sn after a dipole boost

with an intensity kD = 0.01 fm−1.

where Ẑn,p measures the neutron and proton average position on the z-axis respectively.

The isoscalar quadrupole moment reads

Q̂Q =

√

5

16π

A
∑

i=1

(2ẑ2
i − x̂2

i − ŷ2
i ). (20)

The evolution of their expectation values is computed using the tdhf3d code after different

initial conditions as described in the following.

A. Non linear quadrupole motion induced by a dipole boost

We first investigate the quadratic response presented in Sec. II B 1 in the 120Sn nucleus.

Figure 1(a) shows the early time evolution of the dipole moment after a dipole boost accord-

ing to Eq. (2) in the small amplitude regime. The dipole moment follows a − sin function

as indicated by Eq. (4). Extracting the frequency from the first minimum of D(t) leads

to a GDR energy of ωD = 15.3 MeV. This value is in good agreement with experimental

data where a peak energy of Eexp.
GDR = 15.4 MeV has been obtained [40]. Note that such a

comparison is possible because almost all the strength is located around the GDR energy in

120Sn. To be more precise, the extraction method of ων from the first extremum of Qν(t) is,
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FIG. 2: Circles: First minimum and maximum of the dipole (a) and quadrupole (b) moments

evolution respectively in 120Sn as function of the dipole boost intensity kD. Dashed lines: linear and

quadratic extrapolations at kD → 0 of the dipole (a) and quadrupole (b) amplitudes respectively.

in first approximation, comparable to the ratio of the second over the first energy weighted

moments of the strength function m2/m1 [16].

We see in figure 1(b) that an oscillation of the quadrupole moment is induced by the dipole

boost. According to the theoretical model presented in Sec. II, this is a manifestation of the

residual interaction of Eq. (1) coupling the dipole and quadrupole vibrations. In particular

QQ(t) starts in phase quadrature with QD(t) and oscillates with a smaller frequency. These

observations are in qualitative agreement with the quadratic response in Eq. (5).

To get a deeper insight into this coupling, we have computed the TDHF response for

several dipole boost velocities kD. The first extrema of the dipole and quadrupole moments

are reported in figure 2(a) and (b) respectively. Whereas the dipole amplitude is indeed linear

in kD as expected from equation (4), indicating that these calculations are performed in the

small amplitude regime, the induced quadrupole motion is quadratic in kD, in agreement

with Eq. (5).

To obtain a quantitative estimate of the coupling, we first extract the transition amplitude

from a linear extrapolation of Qmin
D at kD → 0 in Fig. 1(a). According to Eq. (4), we get

qD = 6.73 fm. The same analysis with a quadrupole boost in the linear regime gives a
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transition amplitude qQ = 56.5 fm2 and an energy of the GQR ωQ = 13.3 MeV, in excellent

agreement with the experimental value Eexp.
GQR = 13.24 ± 0.13 MeV [41]. These quantities,

together with a quadratic extrapolation of the quadrupole maximum at kD → 0 in Fig. 1(b),

give, according to Eq. (5), a matrix element of the residual interaction v
(1)
Q = −0.68 MeV.

B. Dipole motion in a nucleus with a static quadrupole constraint

The formalism developed in Sec. II B 2, where the linear response is investigated in an

external potential, cannot be directly applied to study the coupling between the dipole and

quadrupole modes. The reason is that the external potential −λQ̂Q with the definition of

Eq. (20) is not bound by a minimum and its use in constrained HF calculations would lead

to unphysical results. It is then necessary to consider another external potential such as

λ(Q̂Q + κλQ̂M ) (21)

where

Q̂M =
1√
4π

A
∑

i=1

r̂2
i (22)

is the monopole moment and κλ =
√

5/2 if λ ≥ 0 and −
√

5 if λ < 0. The expression (21)

then reads

3

√

5

16π
λ

A
∑

i=1











ẑ2
i if λ ≥ 0,

−x̂2
i − ŷ2

i if λ < 0.
(23)

Such an external field allows to explore all quadrupole deformations from oblate (λ > 0)

to prolate (λ < 0) shapes as shown in figure 3(a) where the ground state quadrupole defor-

mation Q0
Q of the constrained HF solution is plotted as function of the Lagrange parameter

λ. The quadrupole deformation is clearly linear in this perturbative regime and its slope at

the origin is
∂Q0

Q

∂λ

∣

∣

∣

∣

λ→0
= −655.2 fm4.MeV−1.

As discussed in Sec. II B 2, such a static deformation is expected to change the dipole

frequency as compared to the one of the GDR excited on the spherical ground state. In

fact, the frequency of a dipole oscillation along the main quadrupole axis decreases (resp.

increases) with a prolate (resp. oblate) deformation. This is indeed what we observe in

figure 3(b) where the energy of the GDR is plotted as function of λ. Note that, according

to Eq. (9), this is consistent with the negative sign of the ratio vQ/qQ obtained in Sec. IVA.
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FIG. 3: (a) Static quadrupole moment from HF calculation (circles) under a quadrupole+monopole

constraint (see text) as function of the Lagrange parameter λ in 120Sn. (b) TDHF energy of

the GDR (circles) from the first minimum of the dipole moment after a dipole boost along the

deformation axis with an intensity kD = 0.01 fm−1. Dashed lines : linear extrapolations at λ → 0±

of the quadrupole moment (a) and GDR energy (b).

We also observe in Fig. 3(b) that the evolution of this energy is linear both for λ > 0 and

λ < 0, but the slopes are different in these two regimes. This is attributed to the presence of

the monopole moment in the constraint (21). Indeed, the monopole vibration is also coupled

to the dipole mode by a matrix element vM of the residual interaction [15, 16]. According

to Eq. (9), the dipole energy is expected to be modified as

ωD(λ) = ωD(0) + λ
vQ

qQ

(

∂Q0
Q

∂λ

)

λ=0

+ λκλ
vM

qM

(

∂Q0
M

∂λ

)

λ=0

. (24)

A compression of the nucleus increases the dipole frequency, which implies that vM/qM < 0.

As λκλ ≥ 0 for all λ, the monopole and quadrupole moments have an opposite effect on

ωD for λ < 0 and act in the same direction for λ > 0. This is indeed what we observe

in Fig. 3(b) where the effect of the constraint almost cancels on the prolate side while it

increases strongly the GDR energy in the oblate one.

Finally, starting from Eq. (24), it is trivial to isolate the coupling matrix element between
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the dipole and quadrupole modes

vQ =

(

∂Q0
Q

∂λ

∣

∣

∣

∣

∣

λ→0

)−1
qQ

3

(

∂ωD

∂λ

∣

∣

∣

∣

∣

λ→0−

+ 2
∂ωD

∂λ

∣

∣

∣

∣

∣

λ→0+

)

. (25)

Using the data extracted from Fig. 3 and the value of qQ obtained in Sec. IVA, we get

v
(2)
Q = 0.65 MeV. This result is in good agreement with the one obtained with the quadratic

response.

C. Response to a dipole+quadrupole boost

A third manifestation of the coupling between dipole and quadrupole motions occurs

when both a dipole and a quadrupole boost are performed at initial time. We showed in

Sec. II B 3 that, in such a case, the dipole motion is affected by the quadrupole vibration.

Such effect is not present in the linear response theory as the modifications are proportional

to kDkQ. According to Eq. (4), there is no other quadratic term affecting the dipole motion.

The basic tool to study the effect of the coupling on the dipole motion is the coupling

response function defined in Eq. (14). In principle, its calculation implies to follow the dipole

moment over an infinite time. However, we use a filtering procedure to avoid numerical

artefacts coming from the interaction of the nucleus with reflected nucleon wave functions

due to the hard box boundary conditions [42]. We perform the calculations over 1000

iterations in time. The dipole moment is multiplied by a filtering function exp
[

−1
2

(

t
τ

)2
]

with τ = 170 fm/c [35]. In addition to remove effects from reflection, the latter minimizes

those of the time gate on the Fourier transform. This procedure induces an additional width

of h̄
τ
∼ 1.2 MeV. According to Eq. (15), this additional width is sufficiently small for the

present discussion as the modes in the coupling response function are located at ωD − ωQ,

ωD, and ωD + ωQ. However, the low energy part of the spectrum, i.e., in the region of the

ωD − ωQ peak, is dependent on the choice of the filtering function within these numerical

conditions. We checked with other filtering functions, e.g., a cosine instead of a gaussian

function, that the higher part of the spectrum (above ∼ 10 MeV) is not affected. In addition,

the filtering function does not change the fact that the total area of the coupling response

function vanishes (see Sec. II B 3). The latter has been found to be a solid numerical property

of this function. Finally, we checked the convergence of the results presented in this section

by comparing with calculations performed in a bigger box of 120 × 120 × 60∆ r3.
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FIG. 4: Coupling response function of the dipole moment after a dipole+quadrupole boost with

intensities kD = 0.01 fm−1 and kQ = 0.001 fm−2 respectively.

Figure 4 shows the coupling response function for the dipole motion following a

quadrupole+dipole boost. We checked that, in the small amplitude limit, the coupling

response function is indeed independent of kQ and kD. As expected from Eq. (15), two

peaks are present in this energy range at ωD and ωD + ωQ with opposite signs. Moreover,

the integral of the positive peak at ωD is directly related to the coupling as

vQ = − ωQ

2q2
DqQ

∫

Rc
D

>0
dω Rc

D(ω). (26)

With the coefficients calculated in Sec. IVA, we obtain v(3) = 0.68 MeV, in good agreement

with the two previous methods.

Let us finally note that, in case of more complicated vibrations, e.g., achromatic oscil-

lations, the coupling response function can be used for a more detailed investigation of the

coupling. Indeed, it allows an analysis of the coupling effect at each energy whereas the two

previous methods give only access to a weighted sum of the matrix elements of the residual

interaction associated to each excited mode [16].

D. Evolution of the coupling with isospin and mass

We now repeat the study of the linear quadrupole motion induced by a dipole boost,

described in Sec. IVA, to the tin isotopic chain. The choice of this method to investigate

more systematically the coupling between dipole and quadrupole vibrations is motivated
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FIG. 5: Evolution of (a) the GQR energy and (b) the transition amplitude as function of the

number of nucleons in tin isotopes from TDHF linear response (circles). The lines represent a

A−1/3 (a) and a linear (b) fit of the TDHF results.

by its rather low computational time as compared to the two other methods. Our goal

is to understand the evolution of vQ as function of the isospin. To avoid any ambiguity

coming from possible static deformation in the ground states, we focus on some of the tin

isotopes which are spherical at the HF level: 100,106,114,120,132,140Sn. These isotopes allow for

an investigation of the coupling from the proton rich to the neutron rich side.

Let us first investigate the linear response to a quadrupole boost (Eq. (2)) in order

to compute the energies ωQ and transition amplitudes qQ from the first minimum of the

quadrupole moment (see Eq. (4)). These quantities are plotted in Fig. 5 as function of

the number of nucleons. The GQR energy shows the expected A−1/3 dependency [2]. The

evolution of the transition amplitude with A can be obtained from the energy weighted sum

rule (EWSR) for quadrupole vibrations which reads [43]

S1
Q =

∑

α

(Eα − E0)|〈α|Q̂Q|0〉|2

=
h̄2

m

5

4π
A〈r̂2〉 (27)

where {|α〉} is an eigenbasis of Ĥ . If all the strength is located at the GQR energy, which
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FIG. 6: Evolution of (a) the GDR energy and (b) the transition probability as function of the

number of nucleons in tin isotopes from TDHF linear response (circles). The lines represent a

A−1/3 (a) and a N
A2/3 (b) fit of the TDHF results.

is a rather good approximation for heavy nuclei [2], then the EWSR reduces to

S1
Q = ωQq2

Q. (28)

Using 〈r̂2〉 ∼ A2/3 and ωQ ∼ A−1/3, Eqs. (27) and (28) lead to

qQ ∼ A. (29)

This linear dependence is indeed what we observe in Fig. 5(b).

Let us now consider a dipole boost on these nuclei with a boost velocity kD = 0.01 fm−1.

This value is small enough to generate a linear response of the dipole moment and a quadratic

response of the induced quadrupole vibration in all considered isotopes. The GDR energy ωD

is shown as function of A in Fig. 6(a). It is compatible with the A−1/3 dependance expected

in heavy nuclei [2]. Similarly to the quadrupole case, the dependance of the transition

probability q2
D can be obtained from the dipole EWSR S1

D which is proportional to NZ/A.

Assuming all the strength in the GDR, we get

q2
D ∼ NZ

A2/3
(30)

This is also compatible with the TDHF results shown in Fig. 6(b).
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FIG. 7: Evolution of the coupling with mass number. The matrix element of the residual interaction

is plotted as function of 1/A. The line shows a linear fit of the TDHF results.

Finally, we investigate the couplings between the quadrupole and dipole vibrations from

the quadratic response. We have shown in Sec. II B 1 that, in the presence of a non zero

matrix element vQ of the residual interaction coupling the state |D〉 to the state |DQ〉, a

dipole boost is expected to generate an oscillation of the quadrupole moment. Prior to study

the evolution of vQ along the tin isotopic chain, it is mandatory to get a deeper insight into

the mechanism responsible for this induced quadrupole excitation.

In a macroscopic approach, the isovector GDR is interpreted by a combination of

the Steinwedel-Jensen model in which the total density is kept unchanged [44] and the

Goldhaber-Teller model where proton and neutron fluids are incompressible [4]. It is obvious

that the Steinwedel-Jensen model does not affect the quadrupole moment as any modifica-

tion of the density of one isospin specie is exactly compensated by the other in every point

of space. In the Goldhaber-Teller model, however, a displacement of the proton and neutron

spheres in opposite direction is considered. It produces a dipole moment QD = NZ
A

X where

X is the distance between their centers. This displacement also induces a prolate shape

with a quadrupole moment quadratic in X. Indeed, assuming a displacement of a proton

(resp. neutron) homogeneous sphere of density Zρ0/A (resp. Nρ0/A) by Xp = −XN/A

(resp. Xn = XZ/A) produces a quadrupole moment

QQ ∼ ZX2
p + NX2

n ∼ NZ

A
X2. (31)

Using Eqs.(4) and (30), one gets QQ ∼ NZ/A1/3.
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Finally, together with Eqs. (5), (29) and (30), the evolution of the coupling simply reads

vQ ∼ 1/A. This is, indeed, in agreement with the TDHF results as shown in Fig. 7. It

is interesting to note that, in this simple approach, the coupling does not depend on the

isospin of the nuclei, but only on their total number of nucleons. In fact, the decrease of the

absolute strength of the coupling with the number of nucleons is attributed to the fact that

these couplings are mediated by the surface [16]. One then expect less anharmonicities in

heavy nuclei.

V. CONCLUSIONS

We have shown that the residual interaction is responsible for anharmonicities in nuclear

vibrations using three different analysis of time evolutions of multipole moments. We inves-

tigated the coupling between one and two-phonon states using a 3-dimensional TDHF code

with a full Skyrme energy density functional. In particular, the excitation of a GDR couples

to a GQR built on top of it, inducing a quadratic response of the quadrupole moment. The

same coupling is responsible for the change of the GDR energy in static deformed states.

The latter could be investigated using deformed RPA codes. As a consequence, the dipole

frequency is modulated in case of dynamical deformation, e.g., induced by a quadrupole

boost. This last property, associated to a Fourier analysis, might be used to investigate

couplings when more than one mode is excited with the same quantum numbers. We finally

investigated these couplings with the quadratic response in several spherical tin isotopes.

As a result, no dependence with isospin were found while an overall decrease of the coupling

is obtained with increasing mass, showing that the couplings are mediated by the surface.

These observations are easily interpreted within the Goldhaber-Teller macroscopic model.
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18



Atomique.

[1] A. Bohr and B. Mottelson, Nuclear Structure (2 vol., W.A. Benjamin, Inc., 1975).

[2] M. N. Harakeh and A. van der Woude, Giant Resonances: Fundamental High-Frequency Modes

of Nuclear Excitations (Oxford University Press, New York, 2001).

[3] G. C. Baldwin and G. S. Klaiber, Phys. Rev. 71, 3 (1947).

[4] M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

[5] J. O. Newton, B. Herskind, R. M. Diamond, E. L. Dines, J. E. Draper, K. H. Lindenberger,

C. Schück, S. Shih, and F. S. Stephens, Phys. Rev. Lett. 46, 1383 (1981).

[6] S. Fukuda and Y. Torizuka, Phys. Rev. Lett. 29, 1109 (1972).

[7] N. Marty, A. Willis, V. Comparat, R. Frascaria, and M. Morlet, Orsay report IPNO76-03

(1976).

[8] M. N. Harakeh, K. van der Borg, T. Ishimatsu, H. P. Morsch, A. van der Woude, and F. E.

Bertrand, Phys. Rev. Lett. 38, 676 (1977).

[9] D. H. Youngblood, C. M. Rozsa, J. M. Moss, D. R. Brown, and J. D. Bronson, Phys. Rev.

Lett. 39, 1188 (1977).

[10] T. Aumann, P. F. Bortignon, and H. Emling, Ann. Rev. Nucl. Part. Sci. 48, 351 (1998).

[11] J. Scarpaci, Nucl. Phys. A731, 175 (2004).

[12] P. Chomaz and N. Frascaria, Phys. Rep. 252, 275 (1995).

[13] C. Volpe, F. Catara, P. Chomaz, M. V. Andrés, and E. G. Lanza, Nucl. Phys. A589, 521

(1995).

[14] P. F. Bortignon and C. H. Dasso, Phys. Rev. C 56, 574 (1997).

[15] M. Fallot, P. Chomaz, M. V. Andrés, F. Catara, E. G. Lanza, and J. A. Scarpaci, Nucl. Phys.

A729, 699 (2003).

[16] C. Simenel and P. Chomaz, Phys. Rev. C 68, 024302 (2003).

[17] P. Chomaz and C. Simenel, Nucl. Phys. A731, 188 (2004).

[18] E. G. Lanza, F. Catara, D. Gambacurta, M. V. Andrés, and P. Chomaz, Phys. Rev. C 79,

054615 (2009).

[19] C. Simenel, P. Chomaz, and G. de France, Phys. Rev. Lett. 86, 2971 (2001).

[20] C. Simenel, P. Chomaz, and G. de France, Phys. Rev. C 76, 024609 (2007).

19



[21] B. Avez, C. Simenel, and P. Chomaz, Phys. Rev. C 78, 044318 (2008).

[22] P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).

[23] P. Chomaz, N. V. Giai, and S. Stringari, Phys. Lett. B189, 375 (1987).

[24] M. T. M. Gong and J. Randrup, Z. Phys. A 335, 331 (1990).

[25] C. Y. Wong and H. H. K. Tang, Phys. Rev. Lett. 40, 1070 (1978).

[26] D. Lacroix, P. Chomaz, and S. Ayik, Phys. Rev. C 58, 2154 (1998).

[27] M. Tohyama, Phys. Rev. C 64, 067304 (2001).

[28] S. J. Wang and W. Cassing, Ann. Phys. (N.Y.) 159, 328 (1985).

[29] O. Juillet and P. Chomaz, Phys. Rev. Lett. 88, 142503 (2002).

[30] D. Lacroix, S. Ayik, and P. Chomaz, Prog. in Part. and Nucl. Phys. 52, 497 (2004).

[31] Y. M. Engel, Nucl. Phys. A249, 215 (1975).

[32] P. Bonche, S. Koonin, and J. W. Negele, Phys. Rev. C 13, 1226 (1976).

[33] J. Blocki and H. Flocard, Phys. Lett. B85, 163 (1979).

[34] A. S. Umar and V. E. Oberacker, Phys. Rev. C 71, 034314 (2005).

[35] J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, J. R. Stone, and M. R. Strayer, Phys. Rev.

C 71, 064328 (2005).

[36] T. Nakatsukasa and K. Yabana, Phys. Rev. C 71, 024301 (2005).

[37] P. G. Reinhard, L. Guo, and J. A. Maruhn, Eur. Phys. J. A 32, 19 (2007).

[38] K.-H. Kim, T. Otsuka, and P. Bonche, J. Phys. G 23, 1267 (1997).

[39] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A635, 231

(1998).

[40] B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975).

[41] M. M. Sharma, W. T. A. Borghols, S. Brandenburg, S. Crona, A. van der Woude, and M. N.

Harakeh, Phys. Rev. C 38, 2562 (1988).

[42] P.-G. Reinhard, P. D. Stevenson, D. Almehed, J. A. Maruhn, and M. R. Strayer, Phys. Rev.

E 73, 036709 (2006).

[43] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer Verlag, 1980).

[44] H. Steinwedel and J. H. D. Jensen, Z. Naturforsh. 5a, 413 (1950).

20


