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ABSTRACT

We present kinematic simulations of a galactic dynamo model based on the large
scale differential rotation and the small scale helical fluctuations due to supernovae
explosions. We report for the first time direct numerical simulations of the full galactic
dynamo using an unparameterized global approach. We argue that the scale of helicity
injection is large enough to be directly resolved rather than parameterized. While the
actual superbubbles characteristics can only be approached, we show that numerical
simulations yield magnetic structures which are close both to the observations and to
the previous parameterized mean field models. In particular, the quadrupolar symme-
try and the spiraling properties of the field are observed. Moreover, our simulations
show that the gravitational inflow plays an essential role to increase the magnetic
growth rate. This observation appears to confirm the important role of the galactic

fountain in sustaining galactic magnetic fields.
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1 INTRODUCTION

It is widely accepted that magnetic fields of planets, stars
and galaxies are generated by dynamo action, i.e., by the
magnetic field amplification due to electromagnetic induc-
tion associated to the motion of an electrically conduct-
ing fluid (Moffatt 1978). The flow of gas in the interstellar
medium appears to convey the essential ingredients for such
dynamo action (Wielebinski 1990; Rosner & Deluca 1989).
Differential rotation in the galactic disk creates a strong
shear along the radial direction. This shear is very efficient at
stretching radial magnetic field lines in the azimuthal direc-
tion (this is known as the w—effect). In combination with this
large scale effect, the turbulent motions at small scales pro-
vide a cyclonic flow generating poloidal magnetic field (this
is the so—called a—effect). Together, both effects suggest the
possibility of an a—w type of dynamo that might be respon-
sible for generating the galactic magnetic field (Parker 1971;
Vainshtein & Ruzmaikin 1971). Let us note that alternative
models for dynamo action in galaxies have been proposed
through the action of cosmic rays (Hanasz et al. 2004) or in
a cosmological context (Wang & Abel 2007), which will not
be discussed here.

The apparent scale separation between the shear and
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the turbulent motions has often been invoked to introduce
a mean field approach for the galactic dynamo (Beck et al.
1996; Ferriere 1998). In such formalism, an equation for the
large scale magnetic field only is solved, the effect of small
scales being parameterized by an « term (and sometimes
higher order terms as well) (Krause & Raedler 1980). Rely-
ing on mean field equations has proven to be a very efficient
approach to the galactic dynamo problem (Ferriere 1992).
It is for example an efficient way to achieve moderate sim-
ulation time. However, the results of mean field simulations
are intrinsically limited by strong assumptions such as scale
separation or the statistical properties of turbulence. It is
thus interesting to study galactic dynamos with direct sim-
ulations of the full problem by properly treating the small
scale flow associated with the turbulence in the interstellar
medium and thus solve for the magnetic field at all scales.

It is often assumed that the most importance source
of turbulence in the interstellar medium comes from super-
novae explosions (McCray & Snow 1979). The positions of
these explosions are not completely random in the disk but
they often occur in cluster. This produces giant expanding
cavities of gas known as superbubbles. These explosions oc-
curring in a rotating galaxy, the expansion is affected by
a Coriolis force. This yields cyclonic motions and thus a
strong helicity in the magnetic field (Ferriere 1998). In such
a framework, however, it is worth noting that the scale sepa-
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Figure 1. Field lines of the magnetic field (blue) are represented for Rm = 7000. Both the spiral structure of the magnetic field and its
quadrupolar symmetry can be identified. Isosurface corresponding to 1% of the peak kinetic energy are also represented (red).

ration mentioned above is not dramatic. Superbubbles have
typical sizes of the order of ~ 150 parsecs (pc, see Oey &
Clarke 1997). This is smaller, but not dramatically smaller
than the typical scale of the galaxy (~ 1 kpc). Given modern
day computational resources, these numbers suggest that di-
rect numerical simulations (i.e. numerical simulations that
do not rely on an ad hoc parameterization of the small scales,
for example through the a—effect) are within reach. Indeed,
(Gressel et al. 2008) recently presented such simulations. To
cope with the large resolution still needed to address this
problem, they adopted a local approach based on the shear-
ing box model. Their results indicate a good agreement of
the local approach with mean field models. However, the
local approach they used precludes any global diagnostics,
such as the global structure of the field, to be established.

The purpose of this letter is to present such global nu-
merical simulations, resolving the magnetic field at all rel-
evant scales in the galaxy (i.e. from 100 parsecs to 10 kilo-
parsecs). To reduce the computational burden that would
be associated with full MHD simulations, we work in the
kinematic regime: we solve the induction equation using a
prescribed and time dependent gas flow. The later is set by
using an analytical velocity field which intends to reproduce
the large scale shear associated with rotation and the effect
of superbubbles explosions on the interstellar medium.

2 NUMERICAL MODEL

The direct numerical simulations presented in this letter
are fully three dimensional. We solve the induction equa-
tion governing the evolution of the solenoidal magnetic field
B in a cylindrical coordinate system (r, ¢, z):

0B
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written in dimensionless form using the advective timescale.
The magnetic Reynolds number Rm is defined as Rm =
poorolUo, where po is the permeability of vacuum, the typ-
ical length scale ro = 1 is the radius of the galactic disk,
the typical velocity scale Uy is the velocity of the large scale
flow (i.e. the differential rotation of the galaxy) and o is the
conductivity of the plasma. In our simulations the vertical
extend of the galactic disk is H = ro/10, z thus range from
—0.0579 to +0.05r79. We restrict our attention here to the
kinematic problem, ignoring the back reaction of the mag-
netic field on the flow. The velocity field u used in Eq. (1)
is analytical and represents the differential rotation of the
galaxy and the supernovae explosions. This approach also
means that we do not explicitly consider density stratifica-
tion in the vertical direction.

Eq. (1) is solved using a finite volume approach. The
method is described in details by (Teyssier et al. 2006): it
uses the MUSCL-Hancok upwind method. The solenoidal
character of the magnetic field B is maintained through the
constrained transport algorithm (Yee 1966; Evans & Hawley
1988). We rely here on the so-called pseudo-vacuum bound-
ary conditions for the magnetic field. This corresponds to
imposing B x n = 0 at all boundaries of the computational
domain. These boundary conditions are not fully realistic,
but they are very classical in parameterized models of galac-
tic dynamos and simple to implement. These boundary con-
ditions are known to modify quantitative results (such as
the threshold value for dynamo action) but not the global
qualitative solution (Gissinger et al. 2008).

We now turn into a detailed description of the velocity
field being used. It is the sum of two terms: rotation around
the vertical axis and modification of the flow by superbub-
bles. In our simulations, we use the following prescription for
the rotation: U = Uy es, with a constant Up. This is a good
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approximation since the angular velocity is observed to be
roughly proportional to 1/r in galaxies. The effect of super-
novae explosions is more subtle to implement. We decided to
consider the effect of superbubbles only and ignore here iso-
lated supernovae, as the energy input of the former is largely
dominant (Ferriere 1998). Considering superbubbles rather
than smaller isolated supernovae yields larger scales which
directly translates into resolutions affordable with modern
days computing resources.

Let us consider first the explosion of one superbubble,
in a local spherical coordinate system (r',60’,¢’). Following
the work of (Ferriere 1998), we work under the simplify-
ing assumption that each explosion has a perfectly spherical
profile. We thus use the simple radius evolution law (Weaver
et al. 1977):

T‘;b = AtV s (2)

During the expansion of each superbubble, the rotation of
the galaxy yields a Coriolis force which tends to deviate the
initially radial expansion and create cyclonic motions. This
is an essential step in classical mean field @ — w description
of the galactic dynamo (Ferriere 1998). This Coriolis effect
can be evaluated by solving the gas equation of motion:

aa—‘t’:Fe—Qvar/, 3)
where F is a force leading to the radial expansion described
by Eq. (2). Integrating Eq. (3) in the radial direction leads
to the expansion (2). The azimuthal velocity is obtained by
integrating the equation (3) in the azimuthal direction. In
do so, we made the approximation that the Coriolis force on
the superbubble is only due to the radial expansion of the
shell. Inside the superbubble, we assume a linear variation
of velocity in radius. An important parameter is r., the crit-
ical size reached by the superbubble for which the pressure
in the cavity becomes comparable to that of the surrounding
medium. At this point, we consider that the bubble merges
with the interstellar medium. This situation generally occurs
when the radial velocity of the shell become comparable to
the velocity of sound in the medium. In our modeling, this
critical velocity numerically determines the end of existence
of a superbubble. The velocity field associated with a su-
perbubble therefore vanishes when the radial velocity reach
this critical velocity v.. This radial expansion and the as-
sociated Coriolis force totally determine the flow at small
scales. In most observed galaxies, the spatial distribution
of explosions in the galaxy is rapidly decreasing away from
the mid plane of the disk. For simplicity, we will assume
here that all explosions occur in the mid plane only, but
with random position in the disk. In actual galaxies, there
is a large observed dispersion of data about superbubble, yet
averaged values for the explosions rate of superbubbles are
fo=4.5.10"7 kpc~?yr~! (Elmegreen & Clemens 1985) and
r., = 0.2 kpc. Such parameters, however, are still out of reach
of present computations (especially because of the high ex-
plosion rate which implies large numbers of superbubbles to
be handled at the same time). We use here a lower rate of
superbubbles, but more powerful explosions, thus leading to
a similar helicity input. In the simulations reported here,
f = fo/50, r, = 0.4 , A = 0.35 and v = 0.6. This corre-
sponds to about 150 superbubbles expanding in the galactic
disk at a given time in the simulations. In some cases, we
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Figure 2. Growth rate of the magnetic energy as a function of the
magnetic Reynolds number. Black dots correspond to simulations
without infall (v = 0), whereas the red dot corresponds to a
simulation with v = 0.03.

will also take into account the effect of gravitational forces
(and thus, indirectly, to vertical density stratification) in or-
der to account for the galactic fountain mechanism (Shapiro
& Field 1976; Bregman 1980). This effect can be modeled
by the following vertical inflow

__TE —z%/2p?
v:(2) NeroY) e . (4)
This is a simple expression taking into account the main
features of the gravitational infall: the flow is antisymmet-
ric with respect to the mid plane and vanishes for z = 0.
Moreover, the infall velocity decreases far away from the
mid plane. The parameter 3 controls the extension of the
infall region and we use here 8 = r./3 so that the maximum
of the infall is near the region where superbubble explosions
tend to accumulate the matter. « is a free parameter con-
trolling the amplitude of the vertical velocity. We will use
here v = 0.03 throughout this paper corresponding to a typ-
ical velocity of 6 km.s™'. Despite the simplifications implied
by working in the kinematic regime, large spatial resolutions
are still needed in order to correctly describe the evolution
of the superbubbles at small scales. In the runs presented
here, we used a resolution of N, = 200, Ny = 640, Nz = 36.

3 RESULTS
3.1 General features

We performed seven simulations for different magnetic
Reynolds number ranging from Rm = 100 to Rm = 10°.
‘We choose to stop the simulations after a few resistive times,
when the growth rate of the magnetic energy is statistically
invariant and the exponential growth well established.

For all of these simulations, we measure the growth rate
of the magnetic energy. It is displayed on figure 2 as a func-
tion of the magnetic Reynolds number Rm. It is negative
when the magnetic Reynolds number Rm is smaller than
Rm. ~ 500. It is positive for larger Rm, indicating exponen-
tial amplification in that case. For Rm = 10°, the growth
rate is ¢ = 0.6 Gyr~' . Such growth rates are comparable
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Figure 3. Structure of instantaneous magnetic field in (r, ¢)—
plane in the mid plane of the galaxy at z = 0. Magnetic field lines
projected in the (r,¢)-plane are represented by black lines and
the color code reflects the strength of Bz.

Figure 4. Magnetic field just before the top of the domain. Note
that the magnetic field is smooth due to the weak effect of the
superbubbles at this altitude. The sign of By is reversed compared
to the mid plane.

to the ones obtained by (Gressel et al. 2008), although they
seems to be larger in our case.

The result of a typical simulation (Rm = 10°) once
the exponentially growing phase is reached is illustrated in
figure 1 which shows simultaneously the structure of the
magnetic field and that of the flow. Many superbubbles (red
isosurfaces) are present at a given time in the model. We also
show field lines (plotted in blue) of the magnetic field. The
observed magnetic structure is the results of the combined
effects of the superbubbles explosions and the differential
rotation of the disk. The colored slice shows the magnetic
energy in the equatorial plane. It is strongly fluctuating due
to the complicated nature of the flow. The overall topology
of the magnetic field is complex. We now turn to a detailed
study of its structure.

3.2 Structure of the magnetic field

The structure in the (r, ¢)—plane is complicated and varies
with the altitude z. Figure 3 shows the magnetic field in
the mid plane of the galaxy (the solid lines represent field

Figure 5. Magnetic field at z = 20/2. Note that B, change sign
when the radius is increased.
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Figure 6. Magnetic structure of ¢-averaged magnetic field in the
(7, z)-plane for: Rm = 1000 (a.), Rm = 3000 (b.) and Rm = 10*
(c. and d.). Flux expulsion is clearly visible on plot c. Plot d.
corresponds to a simulation including gravitational infall. Flux
expulsion can thus be counteracted.

lines projected in this plane and the color code indicates the
strength of Bz).

In the mid plane, the field is organized in a spiral struc-
ture. The sign of By is constant along the radial direc-
tion. Near the axis of rotation of the disk, the azimuthal
field largely dominates all others components, but rapidly
goes to zero at the inner boundary in order to satisfy the
boundary conditions. At larger radii, the vertical field is neg-
ligeable while By and B, are now comparable. Their rela-
tive value is given by the magnetic pitch angle, defined as
pp = atan(Br/Bg). It is remarkable that, despite the fact
that numerical parameters are far from actual values, pp is
very close to the observations: except near the unrealistic
boundaries of the domain, the pitch angle is in general close
to 15°, which is in agreement with the range [—30°, —107]
observed in real galaxies (Shukurov 2007). An average of
the pitch angle in radius from r = 0.2 to » = 0.8 gives
pp ~ —15.05°. This is also in agreement with (Gressel et al.
2008) although smaller, as they report a pitch angle around
10°.

At higher altitudes, the structure of the field is much
more complicated. By increasing z, we observe that By can
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change sign. We always observe opposite sign of By between
the mid plane (z = 0) and the halo (2 = +20) (see figure 4).
At intermediate altitudes, By can also reverse sign along the
radial direction itself, as it is shown in figure 5.

While the structure in the (7, ¢)-plane is not very sen-
sitive to the resistivity, the magnetic field in the (r, z)—plane
presents different behaviors depending on the value of the
Reynolds number Rm, as shown in figure 6. A quadrupolar
structure is ubiquitous in all simulations but the location of
the magnetic loops does depend on Rm. Indeed, the effect
of superbubbles is located near the mid plane and produces
strong expulsion of magnetic field in the halo of the galaxy.
For weak Rm, the magnetic resistivity counteracts this effect
through vertical diffusion. For larger Rm, the weak mag-
netic resistivity cannot balance anymore the strong vertical
expulsion of magnetic field due to multiple explosions. As
a consequence, the quadrupole becomes unrealistically con-
fined to the halo of the galaxy (Fig. 6¢), far from the active
region. Although the creation of this external shell does not
totally inhibit dynamo action, it clearly decreases the mag-
netic growth rate.

3.3 Effect of gravitational infall

This behavior indicates how the diffusion of magnetic field
can play two opposite roles: on the one hand, it is obviously
defavorable to dynamo action by increasing resistivity in
the induction equation. On the other hand, diffusion can be
favorable by preventing magnetic flux expulsion away from
the mid plane region where the small scale flow is important.
However, for weak resistivity (as is the case in real galaxies),
superbubbles expulse the magnetic field out of the active
region of galactic disk, thus inhibiting dynamo action. In
that case, adding a gravitational inflow by using Eq. (4)
proved to be an essential ingredient to dynamo action. This
vertical flow indeed pumps the magnetic field from the halo
to the mid plane, which increases considerably the growth
rate of magnetic energy. For Rm = 10% for example, the
growth rate increases from o = 0.7 Gy~ ! without inflow to
o = 1.4 Gy~ ! with vertical inflow (red square on figure 2).
As seen on figure 6d, the magnetic field structure is again
quadrupolar in that case and is spread out over the whole
galaxy.

4 CONCLUSION

We have shown that according to our simple model, it is
possible to perform numerical simulations of the galactic dy-
namo without the need for a mean field formalism. We thus
avoid assumptions in the scale separation and can control
more rigorously the origin of the source term in the induc-
tion equation. Our simulations yield magnetic field with two
main characteristics: a quadrupolar symmetry in the (r, z)—
plane and a roughly axisymmetric spiral configuration in
the (7, ¢)-plane. Both characteristics are in good agreement
with observations and confirm previous studies that used a
mean field approach. A detailed study of the magnetic field
topology shows a complicated structure, with reversals of By
along the radial or vertical directions. Another interesting
features of the present work is the paradoxal role of super-
bubbles in the limit of very weak magnetic diffusion. Indeed,
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the turbulent flow due to explosions is, with the differential
rotation, an essential ingredient of the & — w dynamo but
also inhibits dynamo action by confining the magnetic field
in the halo of the galaxy. In this context, the vertical in-
flow of interstellar gas due to the gravitation appears as the
third main ingredient needed for dynamo action. The galac-
tic fountain observed in galaxies could thus be an essential
mechanism of galactic dynamo theory.
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