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ABSTRACT

Aims. The aim of this paper is to study the vertical profile of small dust particles in protoplanetary discs in which angular momentum
transport is due to MHD turbulence driven by the magnetorotational instability. We consider particle sizes that range from approxi-
mately 1 micron up to a few millimeters.
Methods. We use a grid–based MHD code to perform global two-fluid simulations of turbulent protoplanetary discs which contain
dust grains of various sizes.
Results. In quasi–steady state, the gravitational settling of dust particles is balanced by turbulent diffusion. Simple and standard mod-
els of this process fail to describe accurately the verticalprofile of the dust density. The disagreement is larger for small dust particles
(of a few microns in size), especially in the disc upper layers (Z > 3H, whereH is the scale-height). Here there can be orders of
magnitude in the disagreement between the simple model predictions and the simulation results. This is because MHD turbulence is
not homogeneous in accretion discs, since velocity fluctuations increase significantly in the disc upper layer where a strongly mag-
netized corona develops. We provide an alternative model that gives a better fit to the simulations. In this model, dust particles are
diffused away from the midplane by MHD turbulence, but the diffusion coefficient varies vertically and is everywhere proportional to
the square of the local turbulent vertical velocity fluctuations.
Conclusions. The spatial distribution of dust particles can be used to trace the properties of MHD turbulence in protoplanetary discs,
such as the amplitude of the velocity fluctuations. In the future, detailed and direct comparison between numerical simulations and
observations should prove a useful tool for constraining the properties of turbulence in protoplanetary discs.
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1. Introduction

Thanks to the Spitzer Space Telescope, the last few years have
seen a dramatic improvement in our knowledge of dust emission
features arising at mid-infrared wavelengths from protoplanetary
discs surrounding brown dwarfs, T Tauri stars and Herbig Ae/Be
stars. The properties (size, composition) of these grains can be
studied in great detail by analyzing the shape and strength of
these emission features. The main result is that dust particles
have been significantly processed compared to their interstellar
medium cousins: grains are bigger (up to a few microns) and,
for reasons not yet fully understood, crystallinity appears to be
common among all observed spectral types (Apai et al. 2005;
Kessler-Silacci et al. 2006; Furlan et al. 2006). Because proto-
planetary discs are optically thick, this mid-infrared emission
mostly arises from the upper layers of the disc (van Boekel etal.
2003; Dullemond & Dominik 2004, 2008), in the so–called “su-
perheated” layer of Chiang & Goldreich (1997), and is attributed
to the disc inner radii. In the case of T Tauri stars of solar-type,
for example, the dust emission zone lies within a few tenths of an
astronomical unit (AU) of the central star (Kessler-Silacci et al.
2007).

The presence of solid particles high above the disc midplane
is the signature of the turbulent nature of the flow in protoplan-
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etary discs. Turbulent velocity fluctuations lift up dust particles
that would otherwise settle toward the disc midplane (Dubrulle
et al. 1995; Dullemond & Dominik 2004) because of the vertical
component of the central star’s gravitational potential. The ver-
tical profile of the dust density is thus determined by the balance
between gravitational settling toward the equatorial plane and
upward lift due to turbulence. Its typical scale-height is afunc-
tion of grain size. Small particles are well coupled to the gas,
and can be transported to higher altitudes (or smaller gas densi-
ties) above the equatorial plane than larger particles. Although
the issue is still under discussion (Dullemond & Dominik 2008),
this differential settling process can be inferred from a detailed
analysis of the observations. This is the case for observations
carried out by Spitzer alone (Furlan et al. 2005; Sicilia-Aguilar
et al. 2007), by combining Spitzer observations with observa-
tions at other wavelengths (Pinte et al. 2008) or even using com-
pletely different observational strategies (Pinte et al. 2007; Rettig
et al. 2006). Dust gravitational settling is also known to affect the
spectral energy distribution of protoplanetary discs, as shown for
example by Dullemond & Dominik (2004) or D’Alessio et al.
(2006).

In general, such observational diagnostics of gravitational
settling are inferred using simple parametric prescriptions of the
effect of turbulence or of its consequence. Pinte et al. (2007,
2008) assume that the vertical profile of the dust density is a
Gaussian (as is the case for the gas in the isothermal limit),



leaving open the possibility that the dust disc scale-height de-
pends on the size of the particles. The point of their analysis is to
demonstrate that this is indeed the case in GG Tau and IM Lupi.
Furlan et al. (2005) use the models developed by D’Alessio etal.
(2006) and assume a constant dust–to–gas ratio for two popula-
tions of solids, one consisting of small and well mixed particles,
the other composed of large particles. Using Spitzer spectra, they
demonstrate that the latter is depleted in the disc upper layers for
the vast majority of a sample of 25 stars in Taurus. Dullemond&
Dominik (2004) use a more physical approach in which turbu-
lence is modeled as a diffusive process with a spatially constant
diffusion coefficient (see also Dubrulle et al. 1995; Schräpler &
Henning 2004). Using this formulation, one can derive analytic
expressions for the dust density vertical profile. This is also the
approach followed by Rettig et al. (2006) who used the strong
settling (thin dust disc) limit of these formulae.

All of these approaches are very useful since they provide
analytical formulae or a small number of model parameters to
fit. They can thus be incorporated into radiative transfer tools,
which can then generate a large grid of models to be used for
interpreting the observations. All of them establish, at least qual-
itatively if not quantitatively, the basic result that differential
gravitational settling occurs in protoplanetary discs. However,
none of these derivations follows directly from first principles,
but instead rely at best on a set of unchecked assumptions con-
cerning the properties of the underlying turbulence. The origin
of the latter, however, is thought to be magnetohydrodynamic
in nature and driven by the magnetorotational instability (MRI,
Balbus & Hawley 1991, 1998). It is now possible to perform
global numerical simulations of turbulent protoplanetarydiscs,
including solid particles, and to use these simulations as atest of
the models described above. This is the purpose of the present
paper. Despite the recent increase in computational resources,
it is important to keep in mind that such simulations are still
extremely challenging and need to use as simplified a set-up
as possible. This is not without consequences for their realism.
Important issues related to the MRI, such as small scale dissi-
pation (Fromang et al. 2007; Lesur & Longaretti 2007) and the
possible presence of a dead zone (Gammie 1996) still have to be
ignored. We will return to these issues in the last section ofthe
paper when discussing the limits of our work.

Of course, the effect of MRI–induced MHD turbulence on
dust dynamics and dust vertical settling itself has alreadybeen
studied in numerical simulations, but this is the first time that
both effects are incorporated in a single global simulation that
takes vertical stratification into account. Barrière–Fouchet et al.
(2005) performed global simulations of dust settling but ne-
glected the effect of MHD turbulence. This prevents the system
from reaching a quasi–steady state. Other global simulations,
taking MRI–driven turbulence into account and including dust
particles, neglected gaseous vertical stratification (Fromang &
Nelson 2005) and instead focussed on the radial migration of
larger bodies. Lyra et al. (2008) also neglected the vertical com-
ponent of gravity acting on the gas, but included its effects on
the dust particles. While this approach produces settling of the
dust particles toward the midplane, its neglects the spatial in-
homogeneity of the turbulence induced by vertical stratification
of the gas. We shall see in the course of this paper that the lat-
ter is important when considering dust settling of small parti-
cles. The other published numerical simulations studying the ef-
fect of turbulence on dust dynamics were local simulations that
use the shearing box model (Goldreich & Lynden-Bell 1965).
A large number of them neglected density stratification in the
vertical direction (Johansen et al. 2006a; Carballido et al. 2005;

Johansen et al. 2006b) and thus only studied dust diffusion in
an homogeneous environment. Others (Fromang & Papaloizou
2006; Carballido et al. 2006) included vertical density stratifica-
tion but considered particles larger than one millimeter. Here, we
want to concentrate on smaller particles that produce an observa-
tional signature at mid–infrared wavelengths. We note thatsuch
a simulation could in principle be done in the framework of the
shearing box model. Indeed, this was done recently by Balsara
et al. (2008), although the vertical extent of their shearing box
is smaller than the simulations we present in this paper and thus
less appropriate to study the dust distribution in the disc corona
(i.e. above three scale-heights). However, since this workis in-
tended to mark the beginning of an effort to compare observa-
tions and numerical simulations directly, it makes more sense to
compute global models as these will be more readily comparable
with the observations as they become more realistic. Our strat-
egy in this paper will be simple. We will use exactly the set-up
presented by Fromang & Nelson (2006) for global simulations
of turbulent and stratified protoplanetary discs. Dust particles of
various sizes will be added to the disc and their subsequent evo-
lution will be analyzed and compared with simple models of dust
stratification in protoplanetary discs.

The plan of the paper is as follows. In Sect. 2, we introduce
the model we use for the disc as well as convenient dimension-
less parameters that appear in the problem. The relationship be-
tween these quantities and physical parameters in real systems
will be outlined. In Sect. 3, we describe more quantitatively the
different ways to model the quasi–steady state dust distribution
resulting from the balance between dust settling and turbulent
diffusion. These models are then compared with the results of
our numerical simulations in Sect. 4. Finally, in Sect. 5 we dis-
cuss the implications and limitations of our work, and pointthe
way toward future improvements.

2. Definitions

In this section, we describe the general properties of the disc
model and the dust parameters we used. We also introduce the
mathematical notation that will be required in the following sec-
tions.

2.1. Coordinate systems

In this paper, we will use both cylindrical and spherical coordi-
nate systems. The former will be denoted by (R, φ,Z), and will
be used mostly in the present Sect. 2 and in Sect. 3. Spherical
coordinates will be used when we describe the numerical simu-
lations and will use the notation (r, θ, φ).

2.2. Disc model

We consider a disc extending in radius between an inner radius
Rd,in and an outer radiusRd,out. For simplicity and computational
reasons we define the initial disc structure using straight-forward
analytic functions. The equation of state is locally isothermal:
the sound speed,cs, only depends onR and is constant in time.
Bothcs and the disc midplane gas density,ρm, obey power laws

c2
s(R) = c2

0

(

R
R0

)−1

, (1)

ρmid(R) = ρ0

(

R
R0

)−3/2

, (2)



wherec0 andρ0 are the sound speed and the midplane gas den-
sity at a radiusR0, respectively. The disc is initially axisymmet-
ric and in radial and vertical hydrostatic equilibrium. Thespatial
distribution of densityρ(R,Z) and angular velocityΩ(R,Z) can
thus be approximated by

ρ(R,Z) = ρmid(R)e−Z2/2H2
= ρ0
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e−Z2/2H2
, (3)
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in whichΩ0 =

√

GM/R3
0. The disc scale-height,H, is given by
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Ω
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)
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whereH0 = c0/Ω0 is the disc scale-height atR0.

2.3. Integrated quantities

The density distribution can be used to work out the surface den-
sity of the disc:
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where the second relation serves as a definition forΣ0. The total
disc massMd follows by radially integrating the surface density
betweenRd,in andRd,out:

Md =
4π
3
Σ0R2

0

(

Rd,out

R0

)3/2

, (7)

where we have assumedRd,in � Rd,out. This relation can be used
to express the disc surface density atR0 as a function of the disc
parameters andR0:

Σ0 =
3Md

4πR2
0

(

R0

Rd,out

)3/2

. (8)

2.4. Dust size

In this paper, we shall study the effect of MHD turbulence on the
dust. Gas affects solid body dynamics through the drag force it
exerts on the dust particles. In the Epstein regime we are inter-
ested in, this forceFd takes the simple form

Fd = −
v − vd

τs
, (9)

wherev andvd are the gas and dust velocities, respectively.τs is
the dust stopping time. This is the typical time it takes for dust
particles initially at rest to reach the local gas velocity.It depends
on the dust particle mass densityρs and its sizea through

τs =
ρsa
ρcs
. (10)

A relevant dimensionless parameter in the problem is the quan-
tity Ωτs. It compares the stopping time to the dynamical time.
WhenΩτs � 1, the stopping time is much smaller than the or-
bital periodTorb and the dust essentially follows the gas. When
Ωτs ∼ 1 or larger,τs becomes comparable toTorb and dust and
gas start to decouple. As pointed out by Dullemond & Dominik
(2004), this occurs at all radii for a given particle sizea provided

Z is large enough. Using the disc parameters introduced above,
Ωτs can be expressed as a function of position according to

Ωτs = Ω0
ρsa
ρ0c0

(
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)1/2

eZ2/2H2
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eZ2/2H2
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where the parameter (Ωτs)0 is the value ofΩτs at R = R0 in the
disc midplane. It can be expressed in terms of the disc surface
density atR0 using Eq. (6):

(Ωτs)0 =
√

2π
ρsa
Σ0
. (12)

Using this expression along with Eq. (8), it is possible to express
the dust size in term of (Ωτs)0, the disc parameters (mass and
radius) andR0:

a =
3Md

2
√

2πρsR2
0

(

Rd,out

R0

)−3/2

(Ωτs)0. (13)

2.5. Converting to physical units

Eq. (8) and (13) can be used to convert the dimensionless quanti-
ties describing the problem into physical quantities. Whendoing
so, the numerical simulations we will describe in Sect. 4 should
be thought of as covering a small fraction of the total disc, going
from Rin = R0 ≥ Rd,in to an outer radiusRout ≤ Rd,out.

The dimensionless parameters describing the disc and dust
particles, and the results of the numerical simulations presented
below, can be rescaled to any physical system upon specifying
the disc mass, the outer radius of the disc, and the value ofR0
(in astronomical units). For example, the disc surface density Σ0
can be written as

Σ0 = 4

(

Md

0.01M�

) (

Rd,out

300AU

)−3/2 ( R0

1AU

)−1/2

gcm−2. (14)

Likewise, takingρs = 1 gcm−3 and using Eq. (13), we obtain an
expression for the dust size:

a = 163

(

(Ωτs)0

0.01

) (

Md

0.01M�

) (

Rd,out

300AU

)−3/2 ( R0
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)−1/2

µm. (15)

In Sect. 4, we will describe the results of three simulations.
They are characterized by (Ωτs)0 = 10−2, 10−3 and 10−4. In a
disc of mass 0.01M� and 300 AU in size, they would correspond
to dust particles of size 163, 16 and 1.6 µm, respectively, if we
takeR0 = 1 AU. (This would mean that we consider the simu-
lation to cover the radial extent 1 to 8 AU.) For the same disc
mass and size, if we now takeR0 = 0.1 AU (i.e. we consider the
simulation to cover radii ranging from 0.1 to 0.8 AU), the three
sizes are 500, 50 and 5µm. Note, however, that these numbers
are only illustrative. In general, for a given value ofR0, the size
of the dust particles decreases when the disc mass is decreased
or its outer radius is increased.

3. Dust settling in turbulent discs

As pointed out in the introduction, a steady state is reachedin
a turbulent protoplanetary disc in which turbulent fluctuations
oppose and balance against dust settling. In this section, we de-
scribe three approaches that can be used to model the vertical
profile of the dust density.



3.1. A Gaussian profile

The simplest approach, and one that is commonly used when
attempting to interpret observations (Pinte et al. 2008), is to as-
sume that the dust density follows a Gaussian distribution,as the
gas does, but with a different vertical scale-heightHd:

ρd = ρd,mide
−Z2/2H2

d , (16)

whereρd,mid is the dust midplane density. In this approach,Hd is
different for each dust particle sizea. For example, while trying
to model the dust properties in the protoplanetary disc orbiting
the M dwarf IM Lupi, Pinte et al. (2008) foundHd ∝ a−0.05. One
purpose of this paper is to establish whether such a description is
supported by numerical simulations of turbulent protoplanetary
discs.

3.2. Turbulence as a diffusive process

A more physical approach is to describe the transport of the
dust particles by the turbulent fluctuations as a diffusion pro-
cess. This has been used commonly in the literature (Dullemond
& Dominik 2004). In this approach, the vertical evolution ofthe
dust density can be described by the following partial differential
equation (Schräpler & Henning 2004; Dubrulle et al. 1995):

∂ρd

∂t
−
∂

∂z
(zΩ2τsρd) =

∂

∂z

[

Dρ
∂

∂z

(

ρd

ρ

)]

, (17)

whereρd is the dust particle density andD is a diffusion co-
efficient that quantifies the turbulent diffusivity. This equation
models the balance between vertical settling and turbulentdif-
fusion. When looking for a steady state vertical profile for the
density, the time derivative vanishes. Upon integrating once and
rearranging terms, Eq. (17) gives

∂

∂z

(

ln
ρd

ρ

)

= −Ω
2τs

D
z. (18)

The vertical integration of the last equation requires the knowl-
edge of the diffusion coefficient as a function ofz. The simplest
solution is to assume that it is constant. This is the approach
described in the following subsection, while in Sect. 3.2.2we
outline a possible alternative.

3.2.1. A constant diffusion coefficient

When the dust diffusion coefficient D is constant, Eq. (18) can
be integrated to give

ρd = ρd,mid exp

[

− (Ωτs)mid

D̃

(

exp

(

Z2

2H2

)

− 1

)

− Z2

2H2

]

(19)

whereD̃ is a dimensionless diffusion coefficient defined asD =
D̃csH. The quantitiesρd,mid and (Ωτs)mid only depend onR and
are to be evaluated in the disc midplane. Note that, while deriv-
ing the last equation, we have assumed that the vertical distri-
bution of gas remains Gaussian at all times, in agreement with
local shearing box numerical simulations of the MRI (Miller&
Stone 2000).

A common practice in this context is to expressD̃ in units
of the standardα parameter introduced by Shakura & Sunyaev
(1973). D̃ is then written as follows (Dullemond & Dominik
2004; Schräpler & Henning 2004):

D̃ =
α

Sc
(20)

where Sc is the Schmidt number. In zero net flux MHD tur-
bulence, the Schmidt number has been measured to be of or-
der unity in local simulations of unstratified (Johansen & Klahr
2005; Johansen et al. 2006b) or stratified discs (Fromang &
Papaloizou 2006; Ilgner & Nelson 2008). In the present paper,
we will tune the Schmidt number in order to obtain the best
agreement with the numerical simulations.

3.2.2. A vertically varying diffusion coefficient

Dust particles are diffused away from the disc midplane by the
turbulent velocity fluctuations. Thus, the dust diffusion coeffi-
cient is intimately linked to the turbulence properties andpartic-
ularly to the gas velocity fluctuations. It would then seem natural
for D to be constant in space if the turbulence was homogeneous.
However, because of the vertical stratification, MHD turbulence
is not homogeneous in protoplanetary discs and it is very likely
that D varies withZ at a given radius (even in the absence of
a dead zone). Using local vertically stratified simulationsof the
MRI, Fromang & Papaloizou (2006) showed that the following
simple expression gives a fairly good estimate to the numerically
derived diffusion coefficient:

D = δv2
zτcorr . (21)

In this equation,δvz stands for the turbulent velocity fluctu-
ations andτcorr is the correlation time of these fluctuations.
Numerical estimates of both terms thus provide a path to cal-
culating the value ofD. Their vertical variations will be investi-
gated in Sect. 4.

Of course, the drawback of this approach is that it becomes
impossible to explicitly integrated Eq. (18). We cannot provide
an analytical expression for the vertical profile of the dustden-
sity and shall rely on a numerical integration once the vertical
profile for D is extracted from the numerical simulations.

4. Numerical simulations

4.1. Set-up

The simulations presented in this paper are run using the code
GLOBAL (Hawley & Stone 1995), which solves the ideal MHD
equations using a spherical coordinate system as defined in
Sect. 2.1. The set-up we used is exactly that of model S5 in
Fromang & Nelson (2006). Here, we describe it only briefly.

At the start of the simulation, the disc model presented
in Sect. 2.2 is initialized on the grid. The units are such that
GM = 1, c0 = 0.1 andρ0 = 1 (i.e. H/R = 0.1 throughout the
disc). The computational domain covers the rangeRin = R0 = 1
to Rout = 8 in radius and the interval [0, π/4] in φ. In the θ-
direction, the grid extends to 4.3 scale-heights on both sides of
the disc equatorial plane. The resolution for each simulation is
(Nr ,Nφ,Nθ) = (364, 124, 213). Following Fromang & Nelson
(2006), a weak toroidal magnetic field is added to the disc, and
small random velocity perturbations are also imposed. Timeis
measured in units of the orbital period at the inner edge of the
computational domain in the following sections.

Because of the MRI, the presence of a weak magnetic field,
together with the velocity perturbations, begins to drive MHD
turbulence and angular momentum transport through the disc
within a few orbits of the simulations starting. To reach a mean-
ingful quasi steady state, however, the model is first evolved for
430 orbits without dust particles. At that stage, the gas density
is reset to its initial distribution and dust particles are introduced



Fig. 1. Snapshots of the gas density (left panel) and the dust density (right panel) at t = 600 for the case (Ωτ)0 = 0.01.

such that the dust-to-gas ratio is uniform through the compu-
tational domain (note that we neglect the back reaction of the
solids onto the gas, so that the value of this ratio has no phys-
ical consequences). We ran three simulations for three different
particle sizes. The three values of (Ωτs)0 associated with these
sizes are 10−2, 10−3 and 10−4. All the simulations are further
integrated for about 200 orbits until the dust distributionitself
reaches a steady state in which gravitational settling is balanced
by turbulent diffusion. Examples of the disc structure at the end
of such a run are illustrated in Fig. 1. Two snapshots of the gas
(left panel) and dust (right panel) density in the (R,Z) plane are
shown in the case (Ωτs)0 = 0.01 at timet = 600. The dust disc
appears thinner than the gas disc, indicating that significant set-
tling has occurred.

In the following subsections, we will compare the dust dis-
tributions we obtained for the different sizes to the models de-
scribed in Sect. 3. To do so, all relevant physical quantities will
be averaged in time betweent = 550 andt = 600 using 50 snap-
shots so that they become statistically significant. We firststart
by describing the relevant properties of the turbulence that re-
sult from this procedure before concentrating on the degreeof
settling as a function of size.

4.2. Turbulence properties

The first relevant property of the turbulence is the vertically av-
eraged angular momentum transport it generates. It is commonly
measured using the parameterα. Following Fromang & Nelson
(2006), we calculatedα as a function of radius according to

α = αRey+ αMax = Σ
δvRδvφ −

BRBφ
4πρ

P
, (22)

whereαRey andαMax correspond respectively to the Reynolds
and Maxwell stress contributions toα. The overbar symbols
denote density-weighted azimuthal and vertical averages (see
Eq. (6) of Fromang & Nelson 2006). To reduce statistical noise,
α was further averaged in time betweent = 550 andt = 600. Its
radial profile is shown in Fig. 2 for the model having (Ωτ)0 =

Fig. 2. Radial profile ofα (solid line), αMax (dashed line) andαRey (dot-
ted line) for the case (Ωτ)0 = 0.001. The data have been averaged in
time betweent = 550 andt = 600.

0.001. The dashed and dotted lines, respectively, show the vari-
ations ofαMax andαRey, while the solid line representsα, the
sum of the two. As described in Fromang & Nelson (2006),α
presents large oscillations in space and time, but its time aver-
aged value is well behaved, varying between∼ 5 × 10−3 and
∼ 1.5×10−2, in agreement with the results of Fromang & Nelson
(2006). As is usually obtained in numerical simulations of this
type, the Maxwell stress dominates over the Reynolds stressby
a factor of about two to four. The volume averaged value ofα is
also in agreement with the results of Fromang & Nelson (2006).
Indeed, we obtainedα = 5.6 × 10−3, 5.5 × 10−3, 7.5 × 10−3,
7.1×10−3, 6.4×10−3 and 6.6×10−3 respectively at timest = 550,
560, 570, 580, 590 and 600. For the duration of the simulation,
the turbulence is clearly in a quasi steady state.

In this paper, we present three simulations for different par-
ticle sizes. Because these simulations were obtained underdif-



Fig. 3. Radial profile ofα (time averaged betweent = 550 andt = 600)
for the models (Ωτ)0 = 0.01 (solid line), 0.001 (dotted line) and 0.0001
(dashed line). Angular momentum transport is similar at all radii in
the three models, despite differences arising because of the stochastic
nature of MHD turbulence (see text for details).

Fig. 4. Vertical profile of the vertical velocity fluctuations (in units of the
speed of sound) for the model having (Ωτ)0 = 0.01 (solid line), 0.001
(dotted line) and 0.0001 (dashed line) atR= 2.93. The simulations data
have been averaged betweent = 550 andt = 600.

ferent computing set-ups (i.e. using different numbers of CPUs),
the details of the turbulent flows differ from one run to another.
This is simply due to the chaotic nature of turbulence (Winters
et al. 2003). However, the statistical properties of the turbulence
are similar. This is shown on Fig. 3 where we compare the radial
profile ofα for the models (Ωτ)0 = 0.01 (solid line), 0.001 (dot-
ted line) and 0.0001 (dashed line). For each case, the curves are
averaged in time betweent = 550 andt = 600. Fig. 3 demon-
strates that we obtain very similar values ofα in the different
simulations. Thus it is meaningful to compare the dust distribu-
tions in the three different models.

As explained in Sect. 3.2.2, the vertical velocity fluctuations
and the correlation timescale of the turbulence are also of im-
portance in affecting the diffusion of solid particles. In Fig. 4,
we show the vertical profile of the vertical velocity fluctuations
at R = 2.93, normalized by the speed of sound and averaged in

Fig. 5. Time variation of the correlation function of the vertical veloc-
ity fluctuations in the disc midplane (solid line) and in the disc corona
(dashed line). The dotted lines represent functions decreasing exponen-
tially toward zero with typical timesτ0 = 0.05,0.1, 0.15 and 0.2 orbit.
They can be used to estimate the typical correlation timescale of the
turbulence. At both locations, it is not far from the valueτcorr = 0.15
orbit we used when modeling the results of the numerical simulations.

time betweent = 550 andt = 600 for the models (Ωτ)0 = 0.01
(solid line), 0.001 (dotted line) and 0.0001 (dashed line). Again
the results are very similar for each model and in agreement with
those of Fromang & Nelson (2006): the averageδvz is of order
5% of the speed of sound in the disc midplane before rising up
to values of the order of 20 – 30% in the disc corona, where
weak shocks develop in locations where convergent flow speeds
exceed the sound speed (Fromang & Nelson 2006). These su-
personic turbulent motions are driven by magnetic stressesin
regions where the Alfvén speed exceeds the sound speed. Fig. 4
shows thatδvz varies by a factor of about 5 between the disc
midplane and its corona.

As expressed by Eq. (21), the dust diffusion coefficient also
depends on the turbulence correlation timescaleτcorr. Although
D depends on the value ofτcorr to the first power only, while it
depends on the velocity fluctuations to the second power, vertical
variations in the correlation timescale could still affect the nu-
merical estimate of the diffusion coefficient. We thus calculated
the value ofτcorr at two locations, one in the disc midplane and
the other in the disc corona. Following Fromang & Papaloizou
(2006),τcorr can be evaluated by monitoring the time variation
of the function

Szz(τ) =< vz(z, t)vz(z, t + τ) > , (23)

where< . > denotes an ensemble average. Szz(τ) is expected
to decrease toward zero from initially positive values in a time
τcorr. To estimate the later, the model in which (Ωτ)0 = 0.01 was
restarted at timet0 = 573. We then calculated and averaged the
functionvz(z, t0)vz(z, t0 + τ) at seven different radiiR = 2, 2.5,
3, 3.5, 4, 4.5 and 5 over a kernel of five cells in the radial di-
rection. At all radii, the function was further averaged over two
ranges in the meridional direction:|θ| ≤ 1.5H/R to produce the
function Szz1, and|θ| ∈ [1.5H/R, 3.5H/R] to produce the func-
tion Szz2. Szz1 thus represents the velocity correlation func-
tion near the disc midplane while Szz2represents the correlation
function in the upper layers including the corona. The two func-
tions are plotted as a function ofτ in Fig. 5, respectively, with



a solid and a dashed line (both curves are normalized by their
value atτ = 0). As expected, both display an initial decrease
toward zero around which they stabilize after a few tenths ofan
orbit. This qualitative trend is in agreement with the results of
Fromang & Papaloizou (2006). The dotted curves over plotted
on the same figure represent the functions Sτ0

zz = exp(−t/τ0) for
τ0 = 0.05, 0.1, 0.15 and 0.2 orbits. Although it is difficult to
measure the correlation timescale precisely given the large fluc-
tuations we obtained, these curves can still be used as a way to
estimate the correlation timeτcorr governing the functions Szz1
and Szz2. They indicate thatτcorr is ∼ 0.05− 0.1 in the corona
and∼ 0.1− 0.2 in the disc midplane. Both values are compara-
ble to the value of 0.15 orbit reported by Fromang & Papaloizou
(2006). Although these two timescales are different, their ratio is
at most two and certainly accounts for less variation in the dif-
fusion coefficient D than the variations in the vertical velocity
fluctuations described above. Therefore, when plugging numer-
ical estimates for the correlation time into Eq. (21), we will use
τcorr = 0.15 orbits in the remaining of this paper. This value is
such thatΩτcorr ∼ 1 and is in agreement with previously re-
ported results in the literature (Johansen et al. 2006b) andwith
values used to model the effect of turbulence in theoretical stud-
ies of planet formation (see for example Weidenschilling 1984),
thus giving additional support to such work.

4.3. Dust spatial distribution

For the three simulations we performed, we averaged the dust
density in azimuth and over time betweent = 550 andt = 600
orbits. The spatial distributions we obtained using this proce-
dure are shown in Fig. 6 for the models having (Ωτ)0 = 0.01
(left panel), 0.001 (middle panel) and 0.0001 (right panel). Note
that the radial extent of the snapshots is limited toR ≤ 6. At
larger radii, the outer buffer region we use (see Fromang &
Nelson 2006) starts to affect the dust distribution. As expected,
the smaller the dust particle sizes, the thicker the dust disc. This
is simply because smaller particles are better coupled to the gas
and can thus be lifted further away from the disc midplane by
the turbulence before they decouple from the gas. The left panel
also shows some sign of the dust disc flattening at large radii.
This is simply because the strength of the turbulence, as mea-
sured for example by the parameterα, decreases at large radii,
as seen in Figs. 2 and 3. It should not be confused with the ap-
parent dust disc flattening identified by Dullemond & Dominik
(2004), which occurs because of self–shadowing in the presence
of weak turbulence. Finally, Fig. 6 also highlights one of the lim-
itations of our work: with the set-up of the simulations presented
in this paper, we cannot easily extend our parameter survey to
smaller particles. Indeed, when (Ωτ)0 = 0.0001, the dust disc
already covers almost the entire computational domain in the
vertical direction. Reducing further the size of the dust particles
would require an increase in the size of the computational do-
main in the meridional region for the decoupling between gas
and dust to occur within the computational grid. This would re-
quire an increase in the computing time required for a simulation
performed with the same resolution. This will soon become pos-
sible as computational resources improve, but is currentlyvery
challenging.

To compare these results with the models presented in
Sects. 3.1, 3.2.1 and 3.2.2, we computed the expected 2D dust
distribution that each of them would predict. In doing so, we
used the same disc and dust parameters as in the simulations.

- For the first model (presented in Sect. 3.1), we fitted a
Gaussian profile to the vertical profile of the dust density
at each radius. This was done by performing a least squares
fit to the dust density profile over the entire vertical extent
of the disc. The resulting spatial distributions are plotted in
Fig. 7 using the same color table and spatial domain as in
Fig. 6.

- For the second model (presented in Sect. 3.2.1), we used
Eq. (19) to calculate the vertical profile of the dust density
at each radius. The numerical value of the dimensionless
diffusion coefficient D̃ at each radius was calculated using
Eq. (20) in which we plugged the value ofα calculated ac-
cording to Eq. (22). We used Sc= 1.5 as this value turns out
to provide the best fit to the simulations. Being of order unity,
it is also in agreement with the results of previous local nu-
merical simulations (Johansen & Klahr 2005; Johansen et al.
2006b; Fromang & Papaloizou 2006). The resulting spatial
distributions of the dust density are plotted in Fig. 8.

- For the third model (presented in Sect. 3.2.2), we integrated
Eq. (18) numerically, using at each disc altitude the estimate
for the diffusion coefficient D provided by Eq. (21). In this
equation, we used the azimuthally and time averaged vertical
profile of the vertical velocity fluctuations at each radius (as
shown on Fig. 4 for the special caseR = 2.93) and the cor-
relation timeτcorr = 0.15 orbit as explained in Sect. 4.2. The
resulting spatial distributions of the dust density are plotted
in Fig. 9.

The spatial distributions of the dust density obtained withthe
three different models are in rough agreement with the simula-
tions and with naive expectations: all predict that the dustcom-
ponent of the discs thicken as dust particles decrease in size,
in agreement with the MHD simulations. For the model having
(Ωτ)0 = 0.01 (i.e. for the largest particles), the agreement be-
tween the three models and the simulation is quite good. This
can be understood easily: in this model, the dust scale-height is
about 0.3H. In other words, the solid particles concentrate close
to the equatorial plane, where the turbulence properties are fairly
homogeneous (the vertical velocity fluctuations only startto rise
significantly above∼ 1.5H). Thus the diffusion coefficient cal-
culated according to Eq. (21) is roughly constant and the sec-
ond and third models (with constant and varying diffusion co-
efficient) give a similar result. Moreover, close to the equatorial
plane (i.e.Z� H), the leading order expansion to Eq. (19) turns
out to be Gaussian, which explains the similarities betweenthe
three models for large particles.

On the other hand, models having smaller dust sizes, i.e.
(Ωτ)0 = 0.001 and 0.0001, show differences between the differ-
ent approaches. The Gaussian fit to the simulations always over-
estimates the dust density in the disc corona (Z/H ≥ 2), showing
that in general the vertical profile of the dust density distribution
is non Gaussian. On the other hand, the model having a constant
diffusion coefficient always underestimates the dust density in
the disc corona. Only the model taking the vertical variation of
the diffusion coefficient into account gives a satisfactory fit to
the simulations, especially in the disc upper layers.

These differences can be made more quantitative by compar-
ing the vertical profile of the dust density between the simula-
tions and the models. This is done in Fig. 10. The left panel gath-
ers the results corresponding to the case (Ωτ)0 = 0.01, the mid-
dle panel shows results obtained when (Ωτ)0 = 0.001. Finally,
the right panel shows results obtained when (Ωτ)0 = 0.0001.
In each panel, the solid curves plot the vertical profile of the
dust density obtained in the MHD simulation by temporally, az-



Fig. 6. Dust density distribution in the (R,Z) plane in the numerical simulation for the model having (Ωτ)0 = 0.01 (left panel), (Ωτ)0 = 0.001
(middle panel) and (Ωτ)0 = 0.0001 (right panel). For all cases, the raw data have been first azimuthally averaged and then time averaged between
t = 550 andt = 600.

Fig. 7. Dust density distribution in the (R,Z) plane computed by fitting a Gaussian vertical profile to the simulation data (azimuthally and time
averaged) at each radii. As is the case for fig. 6, the left, middle and right panels respectively correspond to (Ωτ)0 = 0.01, 0.001 and 0.0001.

imuthally and radially averaging the results. The radial averag-
ing is performed over the rangeR ∈ [3, 5]. The dot–dashed,
dashed and dotted curves, respectively, correspond to the model
using a Gaussian fit to the data, a constant diffusion coeffi-
cient and a vertically varying diffusion coefficient. Again, the
left panel demonstrates the good agreement between all ap-
proaches in the case of large particles, as the curves used torep-
resent the results of the different models are almost undistigu-
ishable on that plot. It also provides, however, a first hint that
the Gaussian fit increasingly overestimates the dust density as
one moves away from the midplane, even for these larger parti-
cles. The middle and right panels confirm these results and show
that the model having a vertically varying diffusion coefficient
provides in general the best fit to the data in the disc corona.
For example, in the case (Ωτ)0 = 0.001, the three models give
a good fit to the data forZ ≤ 2H. For Z ≥ 2H, the Gaussian fit
to the data overestimates the density obtained in the simulations
(their ratio is about 103 at Z = 3H) and the model having a con-

stant diffusion coefficient underestimates that density (the ratio
at 3H is in excess of 106). The agreement between the simula-
tions and the model having a vertically varying diffusion coef-
ficient is better as the ratio between the predicted and observed
dust densities is always bounded by 10, despite the fact thatthe
dust density itself varies by more than 6 orders of magnitude. It
is interesting to point out, though, that the value of the density
predicted by this model close to the equatorial plane seems to
significantly underestimate the results of the simulations. This is
most likely because the correlation timescale we used in calcu-
lating the diffusion coefficient underestimates the midplane cor-
relation timescale of the turbulence (see section 4.2). Using a
varying correlation timescale would certainly further improve
the agreement with the numerical simulations, but such a level
of refinement is probably meaningless given the other approx-
imations involved in the simulations themselves. As shown on
Fig. 10, the situation is similar in the case (Ωτ)0 = 0.0001: the
best fit to the numerical simulations is provided by the final and



Fig. 8. Same as fig. 7 using the model that assumesD = constant.

Fig. 9. Same as fig. 7 using the model that assumesD = δv2
zτcorr.

more elaborate model. Indeed, atZ ≥ 2.5H, the dust density pre-
dicted by the model with a constant diffusion coefficient starts to
underestimate significantly the results of the numerical simula-
tions. AboveZ = 3H, the difference becomes enormous, as in
the case (Ωτ)0 = 0.001. The agreement, however, seems better
with the model that uses a Gaussian fit to the data than in the
case (Ωτ)0 = 0.001. The Gaussian fit indeed gives a good fit
up to Z = 3H. This apparent agreement would most probably
break down forZ ≥ 4.3, as the ratio with the simulated densities
is already greater than two orders of magnitude atZ = 4H and
increases with increasingZ.

5. Discussion and conclusions

In this paper, we have studied dust settling in turbulent proto-
planetary discs using global MHD numerical simulations per-
formed with the code GLOBAL using spherical coordinates. In
this section, we summarize our main findings and discuss the
limitations and future prospects of our work.

5.1. Dust density vertical profile

The first point that emerges is that Gaussian profiles fail badly
to reproduce the data extracted from the simulations. This point
is further illustrated by Fig. 11 where we compare the dust pro-
file in the case (Ωτ)0 = 0.001 (solid line) with a set of Gaussian
profiles (dotted lines) computed according to the following equa-
tion,

ρd,th = exp















− z2

2H2
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, (24)

in which we used the valuesHd,th/H = 0.4, 0.5, 0.6, 0.7, 0.8 and
0.9. None of the dotted lines is an acceptable fit to the data. Close
to the disc midplane, by eye inspection seems to suggest thatthe
dust disc scale-height is∼ 0.9H while one would estimate it to
be of order 0.6H at Z ∼ 3H. Both values are different from the
dust disc scale-height returned by the least squares fit to the data,
H f it

d,th/H = 0.84. The physical reason for this behaviour is clear:
close to the midplane, where the gas density is high, the gas-
dust coupling is strong and the dust traces closely the Gaussian



Fig. 10. Vertical profiles of the dust density, radially averaged between
R= 3 andR= 5. As shown by the legend displayed on the upper panel,
the different curves (normalized by their midplane values) were ob-
tained using the numerical simulations (solid line), by fitting a Gaussian
profile to the simulation data (dotted–dashed line), using a constant tur-
bulent diffusion coefficient (dashed line) and a vertically varying dif-
fusion coefficient (dotted line). The upper, middle and bottom panels
respectively correspond to (Ωτ)0 = 0.01, 0.001 and 0.0001. In the first
case, all models successfully reproduced the simulation, while for the
smaller dust sizes, only the later and more elaborate model produces
satisfactory results.

Fig. 11. This figure compares the dust density vertical profile (shown
with a solid line), in the case (Ωτ)0 = 0.001, with a set of Gaussian
profiles with different scale-heightsHd,th (shown with dotted lines). The
different values ofHd,th we used are 0.4H, 0.5H, 0.6H, 0.7H, 0.8H
and 0.9H. None of the dotted lines provides an acceptable fit to the
numerical dust density. This demonstrates that the dust vertical profile
is not Gaussian.

Fig. 12. Dust disc scale-heights obtained through a Gaussian fit to the
data are represented by the diamonds as a function of (Ωτ)0. The solid
line displays the best power law fit to the points and indicates that
Hd/H ∝ a−0.2.

profile of the gas, whereas in the disc upper layers the coupling
is weak and the dust-gas ratio decreases as one moves further
away from the midplane. These results emphasize the point that
estimates of the dust disc scale-height obtained using a Gaussian
fit may lead to incorrect conclusions.

Nevertheless, in order to compare with results published pre-
viously in the literature, we measured the dust disc scale-height
in our simulations using such a fit. We foundHd,th/H = 1.0,
0.84 and 0.40, respectively, for (Ωτ)0 = 0.0001, 0.001 and 0.01.
The variation ofHd,th/H as a function of (Ωτ)0 is shown by the
diamonds in Fig. 12. The dotted line displays the function

Hd/H = 0.7

(

(Ωτ)0

0.001

)−0.2

, (25)



which is the best fit to the data. Therefore, if we were to anal-
yse our simulations assuming that the dust density is Gaussian,
we would obtainHd ∝ a−0.2 since (Ωτ)0 ∝ a. Interestingly, this
is not too different from the results of Pinte et al. (2008) who
report an exponent equal to−0.05, although it is clear that our
results show a stronger relationship between the dust disc scale-
height and particle size. Both values are, however, largelydiffer-
ent from the value−0.5 which is often reported in the literature
(Dubrulle et al. 1995; Carballido et al. 2006). This is because
the latter is obtained when solving Eq. (17) in thestrong settling
limit Hd � H that is mostly relevant for large particles. In this
case, the vertical variation ofΩτs can be neglected, the vertical
profile is Gaussian and the exponent−0.5 is recovered. For the
small particles we study here, the dust disc is thick and these ver-
tical variations have to be taken into account, which leads to the
more complicated expression given by Eq. (19) and departure
from a Gaussian profile.

5.2. The Schmidt number

The second result that emerges from our work is that a model
having a constant diffusion coefficient increasingly underesti-
mates the dust density as the particle sizea is decreased. In
other words, the vertically averaged dust diffusion coefficient de-
creases witha. This is not unexpected, since the Schmidt number
introduced in Sect. 3.2.1 is known to be an increasing function
of Ωτ (Cuzzi et al. 1993; Schräpler & Henning 2004; Youdin
& Lithwick 2007). It is unclear, however, whether such studies,
which assume homogeneous Kolmogorov–like turbulence, are
applicable to the highly magnetised flow of the corona. This is
why we did not attempt to make a direct comparison between
our results and these theories. For the sake of completeness, it
is nevertheless instructive to report here the vertically averaged
Schmidt number we measured in each case. As described above,
Sc = 1.5 already provides a good fit of the dust density in the
case (Ωτ)0 = 10−2. For the cases (Ωτ)0 = 10−3 and 10−4, we
found that the vertically averaged Schmidt numbers that best fit
the data are respectively Sc= 0.4 and Sc= 0.031. Although
they indicate a scaling with (Ωτ)0 close to linear, these results
are not necessary in disagreement with the result of Youdin &
Lithwick (2007), who found a quadratic scaling, because of the
vertical average we made when doing such measurements. Note
also that these fairly low values of the Schmidt number indicate
that turbulent diffusion of the smallest dust particles can be much
more efficient than angular momentum transport. This difference
originates from their different physical origin: angular momen-
tum is transported radially by the Maxwell and Reynolds stresses
while dust diffuses away from the disc midplane because of the
vertical velocity fluctuations of the gas. The former quantities
decrease as one moves away from the disc midplane, (see Miller
& Stone 2000; Fromang & Nelson 2006) while the latter quatity
increases away from the disc midplane. This means that angular
momentum is inefficiently transported in the disc corona while
small dust particles are efficiently diffused at the same location.
As a consequence, the Schmidt number (i.e. the ratio of both dif-
fusion coefficients) is much smaller than unity for the smallest
of our particles.

1 The fact that we obtain Schmidt numbers lower than one, in con-
trast to Cuzzi et al. (1993), Schräpler & Henning (2004) andYoudin &
Lithwick (2007) is due to our definition being different to that used in
these theoretical studies, as discussed in detail by Youdin& Lithwick
(2007)

Fig. 13. Comparison between the dust density vertical profile (shownin
both panels with the solid line) in the case (Ωτ)0 = 0.001 with a simple
toy model in which the turbulent velocity distribution is a step function
(see text for details). In the upper panel, the velocity fluctuations are
taken to beδvz,up/cs ∼ 0.15 for |z| > 2H, while δvz,mid/cs = 0.025
(dotted line), 0.05 (dashed line) and 0.075 (dotted–dashed line) for |z| <
2H. In the lower panel, the velocity fluctuations areδvz,mid/cs = 0.05 for
|z| < 2H andδvz,up/cs ∼ 0.075 (dotted line), 0.15 (dashed line) and 0.30
(dotted–dashed line) for |z| > 2H. The results show that the dust density
vertical profile is fairly insensitive to the midplane velocity fluctuations
but more strongly depends on their amplitude in the disc upper layers.

5.3. A toy model

The main result of this paper is the construction of a simple
model that gives a reasonable fit to the simulations. In this
model, the dust particles are diffused away by turbulence with
a diffusion coefficient that scales with the square of the turbulent
velocity fluctuations. Accordingly, it should be possible in prin-
ciple to extract the vertical profile of the velocity fluctuations
from the dust density vertical profile. This is, however, an inver-
sion problem. As such, it is susceptible to being degenerateand
we shall see in this section that this is indeed the case.

The relevant question to ask in this context is the following:
provided we are able to measure the dust density vertical pro-
file, what is it mostly sensitive to? Can we hope to constrain the
velocity fluctuations in the disc midplane or is it mostly a conse-



quence of the amplitude of the fluctuations in the upper layers.
To answer that question, we designed the following toy model:
guided by the vertical profile of the velocity fluctuation ampli-
tudes shown in Fig. 4, we considered the following analytic ver-
tical profile for the velocity fluctuations:

δvz =















δvz,mid + [δvz,up− δvz,mid]
( |z|

2H

)2
if |z| < 2H

δvz,up otherwise
(26)

whereδvz,mid andδvz,up stand for the turbulent velocity fluctu-
ations in the disc midplane and in the disc corona. As shown
on Fig. 4, typical numerical values areδvz,mid/cs ∼ 0.05 and
δvz,up/cs ∼ 0.15. To investigate the sensitivity of the results to
the midplane velocity fluctuations, we calculated the dust den-
sity vertical profile in the case (Ωτ)0 = 0.001 by numerically
integrating Eq. (18), using Eq. (21) and (26) withδvz,mid/cs =

0.025, 0.05 and 0.075 andδvz,up/cs = 0.15 (i.e. we used in the
disc corona the value suggested by the simulation data) . There-
sults are summarized on the upper panel of Fig. 13, where the
dust density profile in the case (Ωτ)0 = 0.001 is shown with
the solid line, while the numerically integrated profiles are rep-
resented by dotted, dashed and dot–dashed lines forδvz,mid/cs =

0.025, 0.05 and 0.1, respectively. The last three curves are very
similar in this plot and all give a fairly good fit to the simulations,
especially in the disc upper layers. This shows that the dustden-
sity vertical profile is fairly insensitive to the midplane velocity
fluctuations. To estimate the sensitivity of the dust density pro-
file to the velocity fluctuations in the upper layers, we repeated
the same analysis usingδvz,mid/cs = 0.05 (i.e. we used in the
disc midplane the value suggested by the simulation results) and
δvz,up/cs = 0.075, 0.15 and 0.30. The results are shown on the
bottom panel of Fig. 13 with the same conventions as for the up-
per panel. In this case, the dust density vertical profile is seen to
be much more sensitive to the upper layer velocity fluctuations
and only the dashed curve, for whichδvz,up/cs = 0.15 (i.e. in
rough agreement with the numerical data), is in good agreement
with the data.

The implications of these results are twofold. First, the sim-
ple toy model described by Eq. (26) would be suitable to use
when trying to fit the observations as it reproduces the numer-
ical data fairly well if we choose the valuesδvz,mid/cs = 0.05
andδvz,up/cs = 0.15, compatible with the simulations. But these
results also show that such a fit would only provide sensitive
information about the turbulent velocity fluctuations in the disc
upper layers. The physical reason for this last point is thatsuch
a fit is mostly sensitive to the properties of the region wherethe
gas and dust decouple. For the small particles studied in this pa-
per (and observed using the Spitzer telescope), this regionturns
out to lie in the disc upper layers. When observing larger par-
ticles at longer wavelengths (for example with ALMA), it will
become possible to constrain the turbulent velocity fluctuations
of the disc closer to the midplane as such particles will settle and
decouple deeper in the disc.

5.4. Limitations and future prospects

Of course, there are strong limitations to our work due to the
complex and CPU-intensive nature of global simulations of pro-
toplanetary discs. On the purely numerical side, the limited res-
olution we used is of course an issue, as was pointed recently
in a number of studies (Fromang & Papaloizou 2007; Simon
et al. 2008). Proper simulations should include explicitlymi-
croscopic diffusion coefficients (viscosity and resistivity), as the
latter have been shown to be important in determining the sat-

uration level of the turbulence (Fromang et al. 2007; Lesur &
Longaretti 2007). However, the resolutions required to include
these processes in global simulations are currently out of reach
and one must instead rely on the subgrid model provided by nu-
merical dissipation to carry out global numerical simulations. On
a more physical side, there are also limitations due to the simple
disc model we used. The locally isothermal equation of statewe
used is not appropriate for the disc inner parts that we are sim-
ulating as the gas there is optically thick. This could have nu-
merous effects. For example, Dullemond (2002) and D’Alessio
et al. (1998) report a temperature increase in the inner discupper
layers. Such an increase would strengthen the coupling between
gas and grains in the disc corona (through a decrease in the local
value of the parameterΩτs). This would cause small particles to
settle less than reported in this paper and could change the re-
lationship betweenHd anda. Obviously, the significance of the
comparison we tentatively made between our simulations and
the observations of Pinte et al. (2008) should be taken with care.
Another topic of concern in our simulations is the assumption of
ideal MHD. It is indeed well known that protoplanetary discsare
so poorly ionized because of their large densities and low tem-
peratures that parts of the flow, refered to as dead zones, remain
laminar (Gammie 1996). We completely ignored the effects of
dead zones in the present paper. Clearly, future work shouldim-
prove the thermodynamic treatment of the gas, possibly includ-
ing radiative transfer and dead zones.

Nevertheless, we have shown in this paper that dust obser-
vations can be used in principle to constrain the propertiesof
MHD turbulence in discs. We have found that even the simplest
simulations provide disagreements with previously used fits and
diffusion models because of the nature of disc turbulence. This
illustrates even further the need to compare directly observations
and numerical simulations. It will be important in the future to
generate a grid of more realistic discs models (varying the disc
parameters, including dead zones, flaring discs, non isothermal
discs) and produce synthetic observations that could be com-
pared in the next few years with multiwavelengths observations.
This comparison would provide diagnostics of disc turbulence,
the existence (or not) of dead zones and thus constrain planet for-
mation models. The recent work of Pinte et al. (2008) shows that
such multiwavelengths observations are starting to becomefea-
sible. When combined with future instruments like Herscheland
ALMA, large samples will become available and will provide
a wealth of constraints on disc structure and properties when
combined with appropriate global numerical simulations ofpro-
toplanetary discs.
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