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Extraction of the Compton Form Factor H from Deeply Virtual Compton Scattering
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In the framework of Generalised Parton Distributions, we study the helicity-dependent and in-
dependent cross sections measured in Hall A and the beam spin asymmetries measured in Hall B
at Jefferson Laboratory. We perform a global fit of these data and fits on each kinematic bin. We
extract the real and imaginary parts of the Compton Form Factor H under the main hypothesis of
dominance of the Generalised Parton Distribution H and twist 2 accuracy. We discuss our results
and compare to previous extractions as well as to the VGG model. We pay extra attention to the
estimation of errors on the extraction of H.

PACS numbers: 13.60.Fz, 14.20.Dh

Introduction

Since it was realised that Generalised Parton Distribu-
tions (GPD) were reachable through an harmonic analy-
sis of the Deeply Virtual Compton Scattering (DVCS)
process [1, 2], the study of the connection between
GPDs and DVCS has been a very active field of re-
search, concerning theoretical developments (see the re-
views [3, 4, 5, 6]) as well as experimental ones [7, 8, 9, 10,
11, 12, 13, 14, 15]. After the first dedicated experiments
and at the beginning of the experimental GPD program,
it is already worth trying to extract GPDs from measure-
ments.

The present work addresses this question, and illus-
trates it with recent JLab data, namely beam spin asym-
metries (BSA) [14] and helicity-dependent and indepen-
dent cross sections [12]. These data offer a large kine-
matic coverage and a fine kinematic binning, which are
interesting features for our purpose. However, the meth-
ods we use and the conclusions we come to are presum-
ably not restricted to JLab kinematics, and may be of
interest for other experimental set-up. Furthermore, this
is one of the first global fits of these measurements, and
such fits are necessary to the completion of the experi-
mental GPD program.

The harmonic analysis of ep → epγ cross-sections has
so far relied on the 2002 work of A.V. Belitsky, D. Müller
and A. Kirchner [16]. In this formalism, the interference
between the Bethe-Heitler (BH) and DVCS processes was
treated with a leading order approximation of the BH
part. This assumption was removed by A.V. Belitsky
and D. Müller in [17] in the case of a spinless target, and
by P.A.M. Guichon and M. Vanderhaegen in the case of
a proton target [18]. In all the following, we will use the
expressions from the latter.

The first section of this paper describes JLab data,
the difference of the evaluation of the ep → epγ cross
sections by [16] and [18], and outlines our hypothesis. In
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the second part we explain our fitting strategy, which is
twofold : we perform a global fit of the selected JLab data
and fits on each kinematic bin (which we will be refering
to as local fits). In the third section we systematically
compare the results of global and local fits, and keep the
output of the global fit as our best solution. We then
discuss the extracted values of H and compare them to
previous studies.

I. PRELIMINARY ANALYSIS

In this study, xB is the standard Bjorken variable, Q2

the virtuality of the initial photon and t the square mo-
mentum transfer between initial and final protons.

A. Description of the selected JLab data

C. Muñoz-Camacho et al. [12] published helicity-
dependent and helicity-independent cross sections for xB
= 0.36 and t between -0.33 and -0.17 GeV2. Helicity-
independent cross sections are given at Q2 = 2.3 GeV2

only while helicity-dependent cross sections are measured
for Q2 between 1.5 and 2.3 GeV2. Data come in 12 bins
(3 values of Q2 and 4 values of t). Helicity-dependent
cross sections are given with relatively large uncertain-
ties (from 20 % to 100 %, depending on the bins and
on the value of the angle between leptonic and hadronic
planes) while helicity-independent cross sections are usu-
ally accurate at the 5 % level.

F.-X. Girod et al. [14] released BSAs over a wide kine-
matic range (xB from 0.11 to 0.58, Q2 from 1 to 4.8
GeV2 and t from -1.8 to -0.09 GeV2, described by 62
multi-dimensional bins (5 values of t, 5 values of xB and
4 values of Q2). Their accuracy is 25 % on average, rang-
ing from 5 to 100 % depending on the bins and on the
value of the angle between leptonic and hadronic planes.

These two sets of measurements have kinematic con-
figurations in common, allowing us to perform cross-
checks by evaluating a BSA through the ratio of helicity-
dependent to helicity-independent cross sections. This
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simple exercise shows no unexpected discrepancy be-
tween Halls A and B measurements. This implies that
both sets of data are consistent and can be used in a
global fit.

B. DVCS at leading twist

Four GPDs H, E, H̃ and Ẽ appear at twist 2, but
the cross sections depend on the Compton Form Factors
(CFF). The convention of [16] is used to define the CFFs :

F =
∫ +1

−1

dxF (x, ξ, t)
(

1
ξ − x− iε

− 1
ξ + x− iε

)
(1)

(F = H or E)

F̃ =
∫ +1

−1

dx F̃ (x, ξ, t)
(

1
ξ − x− iε

+
1

ξ + x− iε

)
(2)

(F̃ = H̃ or Ẽ)

and ξ = xB
1+ t

2Q2

2−xB+
xBt

Q2
is the generalised Bjorken variable

[16], [18]. The complex integration kernel yields a real
and an imaginary part to the CFFs :

ReF = P
∫ +1

−1

dxF (x, ξ, t)
(

1
ξ − x

− 1
ξ + x

)
(3)

(F = H or E)

ImF = π
(
F (ξ, ξ, t)− F (−ξ, ξ, t)

)
(4)

(F = H or E)

and

ReF̃ = P
∫ +1

−1

dxF (x, ξ, t)
(

1
ξ − x

+
1

ξ + x

)
(5)

(F̃ = H̃ or Ẽ)

ImF̃ = π
(
F (ξ, ξ, t) + F (−ξ, ξ, t)

)
(6)

(F̃ = H̃ or Ẽ)

where the symbol P denotes the principal value of the
integral.

The real and imaginary parts of a CFF are related
by dispersion relations due to analyticity properties (see
[19, 20, 21, 22]). However the unknown subtraction (the
D-term [23]) and the limited kinematic range of our data
make this constraint rather weak. In this work we con-
sider the real and imaginary parts as independent (lo-
cal fits) except in the case where we use an explicit
parametrisation of the GPD H to compute the CFF
(global fit).

C. The formalism of P.A.M. Guichon and
M. Vanderhaeghen and its consequences

The recent work of P.A.M. Guichon and M. Vander-
haeghen (GV) gives analytic expression for the ep →

epγ cross section ; these formulae are embodied in a
Mathematica package [18], which we used to build a
C++/ROOT library.

The ep → epγ cross section is classically divided into
three parts, namely BH, VCS and interference between
the BH and VCS cross sections. The contribution of
the BH amplitude to the interference is treated exactly.
This introduces some differences with respect to the well-
known BMK expressions and two new important qualita-
tive features to the discussion of the measurements under
scrutiny.

Concerning Hall A measurements, the BMK formalism
restricted to twist 2 asserts that helicity-dependent cross
sections write :

1
2

[
d4σ+

d4Φ
− d4σ−

d4Φ

]
= C1 sin φ Im

(
H+

xB
2− xB

(1

+
F2

F1
)H̃ − t

4M2

F2

F1
E
)

(7)

where d4Φ = dQ2dxBdtdφ, F1 and F2 are the Dirac
and Pauli form factor, M the proton mass and C1 is
a constant irrelevant for our purpose. Since the Q2-
dependence of this cross section is factorised, this ex-
pression allows a study of scaling without having to dis-
entangle the different CFFs as in [12].

With the exact equations of [18], an helicity-dependent
cross section does not have such a simple form. It writes :

1
2

[
d4σ+

d4Φ
− d4σ−

d4Φ

]
= C2 sinφ Im

(
H+ cE E + cH̃ H̃

+cẼ Ẽ
)

+ . . . (8)

where C2 is a constant irrelevant for our purpose. The
dots stand for power-suppressed contributions. The test
of scaling is more involved now since the coefficients cE ,
cH̃ and cẼ do depend on Q2. At given xB and t, the
coefficients of Eq. (8) cE , cH̃ and cẼ vary respectively
at most by 20 %, 20 % and 30 %. If we only fit the
combination of CFFs appearing in Im(. . .) in Eq. (8), the
kinematic Q2-dependence of cE , cH̃ and cẼ may appear
as a scaling deviation of the same magnitude.

Differences also arise in the expression of a BSA. Its
dependence on the angle φ between the leptonic and
hadronic planes takes the following form :

BSA =
a sinφ+ b sin 2φ

1 + c cosφ+ d cos 2φ+ e cos 3φ
(9)

where a = O(Q−1), b = O(Q−4), c = O(Q−1) d =
O(Q−2) and e = O(Q−5) are real numbers. In the BMK
picture, the coefficients b, d and e are higher-twist contri-
butions. As a straightforward consequence, we see that
the 90◦ asymmetry is no longer proportional to the imag-
inary part of a linear combination of CFFs.

Moreover the coefficient c of Eq. (9) now depends on
the imaginary part of CFFs, and not only on the real
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part as in [16]. This precludes a clean separation of the
real and imaginary parts of

F1H+
xB

2− xB
(F1 + F2)H̃ − t

4M2
F2E

through the distinct measurements of the helicity-
dependent and helicity-independent cross sections as was
done previously [12].

D. Main assumptions

P.A.M. Guichon and M. Vanderhaeghen provide ex-
act analytical expressions of the ep → epγ observables
as functions of the DVCS amplitudes. The latter can be
written in terms of GPDs through the usual twist expan-
sion [1]. In this work we restrict ourselves to the twist
2 approximation. This is a reasonable assumption, since
C. Muñoz-Camacho et al. [12] claimed the observation of
early Q2-scaling.

As we are considering experiments on a proton target,
we neglect E, H̃ and Ẽ (H-dominance) for the follow-
ing reasons. Firstly, this is supported by kinematics : in
Eq. (8), the coefficient cE varies between 0.05 and 0.28,
cH̃ between 0.3 and 1., and cẼ between 2. 10−5 and 0.015
for the 52 kinematic configurations of Hall B data sat-
isfying |t|

Q2 < 1
2 . Secondly, for small t and ξ, we expect

H̃
H to be close to ∆q

q i.e. 1
4 . Thirdly, we can check, for

instance thanks to the VGG model [24, 26, 27, 28], that
the relative sizes of ImE and ImH̃ to ImH are similar :
ImE
ImH varies between 0.21 and 0.92, and ImH̃

ImH between 0.13
and 0.91 for the same set of 52 Hall B kinematic config-
urations. This indicates that the hierarchy between the
kinematic coefficients reflects the hierarchy of contribu-
tions to the interference.

Thus assuming H-dominance, we may hope to extract
information on H from BSAs or helicity-dependent cross
sections with a systematic error of 20 % to 50 %[44], this
approximation being better at small t. The advantage
of this approach is the dramatic decrease of the number
of degrees of freedom involved in fits. M. Guidal indeed
showed in a recent work [29] in the same kinematic re-
gion that it is not possible to extract sensible information
about the real and imaginary parts of H, E , H̃ and Ẽ by
direct fits of helicity-dependent and independent cross
sections. More specifically, keeping only the dominant
coefficients in Eq. (9) gives the minimal functional form :

BSA ' a sinφ
1 + c cosφ

(10)

A direct fit of BSAs to this reduced expression on each
(xB ,Q2,t)-bin, along the lines of [14], shows that the coef-
ficient c is compatible with 0 (while with a marked trend
to negative values) within error bars for 25 bins over the
52 bins for which |t|

Q2 is less than 1
2 . Extracting the real

part of the CFFs contained in the coefficient c of Eq. (10)
is thus a demanding task.

II. FITTING STRATEGIES

The possibility to study GPDs in DVCS rests on fac-
torisation theorems [30], which require a small value of
|t|
Q2 . In the following, we restrict ourselves to kinematic

configurations for which |t|
Q2 <

1
2 .

A. Local fits

There are at most 12 φ-bins in each Hall B (xB ,Q2,t)-
bin, and 24 φ-bins in each Hall A (xB ,Q2,t)-bin. ReH
and ImH are the free parameters of the fits.

We estimate the systematic errors associated to our
H-dominance hypothesis by first fitting data setting the
subdominant GPDs to 0, then fitting the same data set-
ting the subdominant GPDs to their VGG value, and
computing the difference.

B. Global fits

Turning to global fits will help to decrease the statisti-
cal uncertainties on the fitted parameters. Moreover, we
will benefit from the wide kinematic coverage of Hall B
data, and of the accuracy of Hall A measurements in the
same fit.

Since we are interested only in extracting values of
CFFs, we will not try to extrapolate outside the kine-
matic region of the measurements we consider. This al-
lows us to use a polynomial parametrisation to perform
the fits. The forthcoming difficulty will be the evaluation
of the systematic uncertainty related to that phenomeno-
logical choice.

1. A parametrisation of H from the dual model

The singlet combination H+ is :

H+(x, ξ, t, Q2) = H(x, ξ, t, Q2)−H(−x, ξ, t, Q2) (11)

This is the quantity which is accessible through DVCS.
In the framework of the dual model for a spin 1

2 tar-
get, and assuming H-dominance, H+ can be formally
expanded according to [31] :

H+(x, ξ, t, Q2) = 2
∞∑
n=0

n+1∑
l=0

Bnl(t, Q2)θ
(

1− x2

ξ2

)
×
(

1− x2

ξ2

)
C

3
2
2n+1

(
x

ξ

)
P2l

(
1
ξ

)
(12)

This formal expansion can be resummed as a Gegenbauer
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polynomial expansion [32, 33, 34, 35] :

H+(x, ξ, t, Q2) = 2(1− x2)
∞∑
n=0

An(ξ, t,Q2)C3/2
2n+1(x)

(13)
The coefficients An are defined by :

An(ξ, t,Q2) = − 4n+ 5
(n+ 1)(2n+ 3)

n∑
p=0

ξRnp(ξ)

× (p+ 1)(2p+ 3)
4p+ 5

p+1∑
l=0

Bpl(t, Q2)P2l

(
1
ξ

)
(14)

where P2l is a Legendre polynomial and Rnp(ξ) is a poly-
nomial the degree of which is 2n+ 1 :

Rnp(ξ) = (−1)(n+p+1) Γ
(

5
2 + n+ p

)
Γ(n− p+ 1)Γ

(
5
2 + 2p

)ξ(2p+1)

×2F1

(
p− n, 5

2
+ n+ p,

7
2

+ 2p, ξ2

)
(15)

with 2F1 the Gauss hypergeometric function.
The Q2-evolution of Bpl(t, Q2) is given at leading order

in [33] :

Bpl(t, Q2) = Bpl(t, Q2
0)

(
ln Q2

0
Λ2

ln Q2

Λ2

) γp
β0

(16)

where β0 = 11− 2
3nf and, for 0 ≤ p ≤ Nmax − 1 [35] :

γp =
4
3

(
3 +

1
(p+ 1)(2p+ 1)

− 4
(

Ψ(2p+ 2) + γE

))
(17)

where we note Ψ the Digamma function and γE the
Euler-Mascheroni constant. For the sake of clarity, note
that the coefficients Bnl, An, Rnp and γn are redefined
here. In fact they should have been labelled B2n+1 2l,
A2n+1, R2n+1 2p+1 and γ2n+1 to ensure a complete co-
herence with the traditional notations of the dual model.
However since Eq. (12), Eq. (13), Eq. (14), Eq. (15),
Eq. (16) and Eq. (17) are just intermediate steps in our
extraction of the CFF H we will not try to compare the
values of Bnl, An, Rnp and γn to those obtained in dual
model studies.

We use Λ = 373 MeV in the MS scheme with 3 flavours
of quarks. We obtained this value after a running of the
strong coupling constant computed at four loops [36],
starting from the 2008 world-averaged value of αS(MZ)
and crossing each quark threshold at (twice) its 2008 av-
eraged mass [37]. This evaluation is in good agreement
with a recent textbook one [38]. The reference scale Q0

has been set to Q2
0 = 3 GeV2.

2. Iterative fitting procedure

In practice we truncate Eq. (13) at some maximum
value Nmax of n and we assume the following form for

the coefficients Bpl :

Bpl(t, Q2
0) =

apl
1 + bpl(t− t0)2

(18)

with t0 a constant and apl and bpl the free parameters.
Their number is Nmax∗(Nmax+3). Due to the truncation
at n = Nmax the representation of the GPD that we get
from a fit of (apl, bpl) can hardly be trusted outside the
domain of the fit. We take it as a smooth parametrisation
of the data.

The selected JLab data consist in 1001 measurements
with |t|

Q2 <
1
2 . We fitted them with Nmax = 2, 3, 4 which

corresponds to 10, 18 and 28-parameter fits (performed
with Minuit [39]). To constrain the polynomial oscilla-
tions in ξ, we adopt an iterative fitting procedure. We
simplify the problem by first working with bins for which
we can neglect the t-dependence. Indeed, 40 % of the
data with |t|

Q2 < 1
2 satisfy 0.2 GeV2 ≤ −t ≤ 0.4 GeV2.

We choose t0 = -0.28 GeV2 in Eq. (18) and extract a
first value of the parameters apl. We then add bins with
−t between 0.09 and 0.2 GeV2, and between 0.6 and
1.0 GeV2, fitting both apl and bpl, initialising the fit at
the values of apl fitted at the previous iteration, and bpl
at 0. We then add the two last t-bins to the fit, using at
each step the previous extractions of apl and bpl.

3. Systematic uncertainties

The fits with Nmax = 2, 3, 4 are qualitatively simi-
lar. Their χ2/d.o.f. are respectively 1.73, 1.61 and 1.78.
The comparison of the values of the CFFs derived from
these fits gives an estimate of the systematic error on H
induced by the truncation. This truncation error is pre-
cisely defined at the beginning of the next section when
discussing the results of these fits.

Since we assume H-dominance, we must take into ac-
count the systematic error linked to the neglect of sub-
dominant GPDs. We proceed as in the case of local fits :
we fit the data with the subdominant CFFs set to 0 or to
their VGG value, and take the difference as an estimate
of the systematic uncertainty.

III. RESULTS

A. Extraction of ImH and ReH

The Fig. 1 and Fig. 2 display the effect of the trunca-
tion of the series in Eq. (13). When ξ is small, Nmax=2
is not enough to describe the BSAs. On the contrary,
when ξ is large, we cannot control the fit with Nmax=4.
This comes from the fact that statistical errors on BSAs
are getting larger when ξ grows. The fit with Nmax=3 is
always good, and close to the local fits, which are opti-
mal by construction. We also see that the VGG model
overestimates the data, which is a known feature [12]. It
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FIG. 1: The xB-range is divided into 5 bins. The BSAs are
displayed at the lowest Q2 and for the value of t used at
the first iteration of the fit : xB=0.13 and Q2 = 1.17 GeV2

(a), xB=0.18 and Q2 = 1.37 GeV2 (b), xB=0.25 and
Q2 = 1.69 GeV2 (c), xB=0.34 and Q2 = 1.99 GeV2 (d)
and xB=0.44 and Q2 = 2.70 GeV2 (e). In all cases t =
−0.30 GeV2. The results of the global fits with Nmax=2
(red, dotted), Nmax=3 (green, dot-dashed), Nmax=4 (blue,
dot-dot-dashed), the result of the local fits (magenta, plain)
and the prediction of the VGG code (cyan, dashed) are plot
for φ between 0 and 360 degrees and values of BSA between
-0.35 and +0.35.

presumably stems from an overestimation of the imagi-
nary parts of CFFs by VGG. At last, global and local
fits to helicity-dependent and helicity-independent cross
sections are all good, and almost indistinguishable.

We thus choose the fit with Nmax=3 as our nominal
solution. The systematic uncertainty on ImH and ReH
linked to the truncation of Eq. (13) is estimated as the
maximum of the (absolute values of the) difference be-
tween the results for the nominal solution and for the 2
other fits.

The Fig. 3, Fig. 4, Fig. 5 and Fig. 6 display our results
for ImH and ReH respectively. Both local fits and global
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FIG. 2: Helicity-dependent (up) and helicity-independent
(down) cross sections at xB = 0.36, Q2 = 2.3 GeV2 and
t = −0.17 GeV2 (a), t = −0.23 GeV2 (b), t = −0.28 GeV2 (c)
and t = −0.33 GeV2 (d). The results of the global fits with
Nmax=2 (red, dotted), Nmax=3 (green, dot-dashed), Nmax=4
(blue, dot-dot-dashed), the result of the local fits (magenta,
plain) and the prediction of the VGG code (cyan, dashed) are
plot for φ between 0 and 360 degrees. Helicity-dependent
cross sections range between -0.025 and +0.025 nb/GeV4,
and helicity-independent cross sections between 0.015 and
0.105 nb/GeV4.

fit give results with comparable accuracy for ImH, but
as expected the results of the global fits are smoother.
This is especially true concerning ReH : in this case the
local fits suffer from large fluctuations of ReH with values
which fall outside the plot range. However, we could not
reliably extract values of the CFFs for the larger values of
ξ with the global fit. This is reminiscent of the difficulty
in controlling the oscillating behaviour of the polynomial
expansion displayed in Fig. 1.

The results for local and global fits are almost al-
ways compatible, which is a strong consistency check.
Both rely on the assumptions of twist 2 accuracy and
of H-dominance. On one hand, local fits suffer from
numerical fluctuations (the 2-parameter local fits are
not constrained enough on some bins) but are almost
model-independent. On the other hand, global fits are
smoother, but suffer from oscillations. That both meth-
ods give the same results indicates that fluctuations and
oscillations are reasonably controlled in the bins for which
results are displayed. Since, in both cases, the total error
bars have the same size, we conclude that our estimation
of systematic uncertainties due to the truncation of the
series Eq. (13) is realistic.

All fits keep data satisfying |t|
Q2 < 1

2 . For local fits,

changing the maximal value of |t|Q2 amounts to dropping
points. For global fits, the whole results may be changed,
but the good agreement between the results of both types
of fits, and the slow Q2-evolution of the extracted CFFs,
indicate that this restricted kinematic region is suitable
for an analysis in the GPD framework.
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FIG. 3: Q2-behaviour (1 < Q2 < 4 GeV2) of the extracted
values of ImH of local fits (left) and global fit (right) on Hall B
kinematics : 0.09 < −t < 0.2 GeV2 (a), 0.2 < −t < 0.4 GeV2

(b), 0.4 < −t < 0.6 GeV2 (c), and 0.6 < −t < 1. GeV2 (d).
The error bars include both statistics and systematics. ImH
ranges between 0 and 10. The black full circles correspond
to xB=0.125, red squares to xB=0.175, green up triangles
to xB=0.250, blue down triangles to xB=0.360 and magenta
open circles to xB=0.491.

Nevertheless, we observe a sizeable scaling deviation
on ImH extracted from Hall A data for t = -0.17 GeV2.
The choice of the expression of ξ is also related to the
issue of scaling. Changing the exact expression of ξ to
its asymptotic form xB

2−xB induces differences on the ex-
traction of CFFs, the amplitudes of which depend on xB
and t. Deviations are noticeable but results with both
expressions of ξ are compatible within error bars. This
indicates an effect of higher-order power corrections. In
view of the whole set of data, the conclusion of early
Q2-scaling [12] presumably still holds but a higher-twist
study is needed to make it final.

Tab. I and Tab. II summarize our results. Our error
bars are dominated by systematic effects. Typically we
obtain a relative accuracy of 20 to 50 % on ImH, which is
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FIG. 4: Q2-behaviour (1 < Q2 < 4 GeV2) of the extracted
values of ReH of local fits (left) and global fit (right) on Hall B
kinematics : 0.09 < −t < 0.2 GeV2 (a), 0.2 < −t < 0.4 GeV2

(b), 0.4 < −t < 0.6 GeV2 (c), and 0.6 < −t < 1. GeV2

(d). The error bars include both statistics and systematics.
ImH ranges between -7.5 and +7.5. The black full circles
correspond to xB=0.125, red squares to xB=0.175, green up
triangles to xB=0.250, blue down triangles to xB=0.360 and
magenta open circles to xB=0.491.

quite satisfactory under the assumption of H-dominance
and given the statistical accuracy of JLab data. On the
contrary, ReH is still largely undetermined, and is never
extracted with a precision better than 50 %. But the
imaginary parts of CFF might be the quantities of prime
importance as stressed in [40] : it may be possible to
evaluate ReH (for instance) from the knowledge of ImH
on a wide kinematic range through the use of dispersion
relations.

B. Discussion

The Fig. 7 compares our results to a twist 2 model-
independent extraction [29] and an extraction with the
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Hall B kinematics

xB t (GeV2) Q2 (GeV2) ImH ReH
0.1342 -0.1337 1.1661 5.90 (0.01) (1.57) (1.01) -3.16 (0.04) (1.70) (4.11)

0.1763 -0.1346 1.3651 6.91 (0.02) (0.67) (0.72) -3.54 (0.03) (3.60) (2.66)

0.1767 -0.1376 1.5557 7.69 (0.02) (0.72) (0.72) -4.92 (0.03) (3.80) (2.47)

0.2350 -0.1465 1.6453 5.43 (0.03) (0.34) (0.42) -2.75 (0.04) (5.01) (1.41)

0.2377 -0.1448 1.8895 5.59 (0.03) (0.35) (0.46) -3.17 (0.04) (4.33) (1.28)

0.2460 -0.1442 2.1641 5.28 (0.03) (1.08) (0.57) -3.30 (0.04) (4.18) (1.16)

0.3205 -0.1705 1.9424 3.33 (0.05) (1.14) (1.64) -2.87 (0.04) (7.62) (0.94)

0.3215 -0.1719 2.2170 3.46 (0.05) (0.48) (1.74) -2.74 (0.04) (6.66) (0.87)

0.3213 -0.1743 2.5078 3.55 (0.05) (0.12) (1.81) -2.66 (0.04) (5.85) (0.82)

0.3211 -0.1753 2.7865 3.64 (0.05) (0.59) (1.89) -2.58 (0.04) (5.21) (0.79)

0.1341 -0.2840 1.1678 5.37 (0.01) (0.60) (1.82) -4.50 (0.03) (4.77) (5.48)

0.1764 -0.2798 1.3680 6.34 (0.01) (1.52) (1.54) -4.21 (0.03) (3.09) (3.39)

0.1772 -0.2819 1.5653 6.99 (0.01) (1.97) (1.55) -5.37 (0.03) (3.56) (3.26)

0.2466 -0.2842 1.6881 4.29 (0.02) (0.26) (0.46) -2.41 (0.03) (1.68) (0.72)

0.2487 -0.2809 1.9490 4.28 (0.02) (0.20) (0.43) -2.70 (0.03) (1.45) (0.62)

0.2525 -0.2814 2.2131 4.06 (0.02) (0.65) (0.41) -2.82 (0.03) (1.32) (0.50)

0.3399 -0.3062 1.9930 3.10 (0.04) (0.66) (0.77) -3.48 (0.03) (3.43) (0.06)

0.3431 -0.3012 2.3060 3.52 (0.04) (0.36) (0.82) -3.31 (0.03) (2.56) (0.02)

0.3447 -0.2966 2.6372 3.92 (0.05) (0.49) (0.84) -3.10 (0.03) (1.84) (0.09)

0.3480 -0.2942 2.9706 4.62 (0.05) (0.36) (0.78) -2.82 (0.03) (0.87) (0.15)

0.1331 -0.4929 1.1611 4.03 (0.01) (0.64) (2.01) -4.27 (0.02) (4.81) (6.03)

0.1750 -0.4910 1.3580 4.96 (0.01) (1.85) (2.03) -3.98 (0.02) (3.24) (4.14)

0.1765 -0.4909 1.5611 5.47 (0.01) (2.37) (2.04) -4.86 (0.02) (3.19) (3.99)

0.2524 -0.4875 1.7039 3.13 (0.02) (0.57) (0.84) -1.91 (0.02) (0.47) (0.77)

0.2486 -0.4873 1.9485 3.26 (0.02) (0.54) (0.87) -2.21 (0.02) (0.35) (0.83)

0.2504 -0.4883 2.2028 3.06 (0.02) (0.36) (0.81) -2.30 (0.02) (0.62) (0.73)

0.3443 -0.4964 2.0062 1.63 (0.03) (0.34) (0.26) -3.81 (0.02) (2.02) (0.41)

0.3501 -0.4938 2.3282 1.95 (0.04) (0.37) (0.19) -4.00 (0.02) (1.31) (0.28)

0.3555 -0.4889 2.6851 2.53 (0.04) (0.48) (0.02) -4.06 (0.02) (0.43) (0.13)

0.3600 -0.4854 3.0455 3.25 (0.04) (1.06) (0.25) -3.99 (0.02) (1.98) (0.03)

0.1753 -0.7741 1.5516 2.51 (0.01) (0.68) (0.63) -1.60 (0.02) (4.81) (1.75)

0.2493 -0.7731 1.6847 1.31 (0.01) (0.46) (0.05) -0.52 (0.02) (1.83) (0.25)

0.2476 -0.7694 1.9394 1.24 (0.02) (0.54) (0.03) -0.73 (0.02) (1.62) (0.21)

0.2494 -0.7689 2.1990 0.99 (0.02) (0.71) (0.14) -0.82 (0.02) (1.59) (0.13)

0.3516 -0.7752 2.0231 1.39 (0.03) (1.04) (0.68) -4.28 (0.02) (1.45) (0.26)

0.3597 -0.7684 2.3596 2.09 (0.03) (0.63) (0.71) -4.98 (0.02) (0.97) (0.49)

0.3607 -0.7623 2.7054 2.20 (0.03) (0.54) (0.56) -5.18 (0.02) (1.60) (0.66)

0.3582 -0.7573 3.0357 1.83 (0.03) (0.04) (0.39) -5.15 (0.02) (2.04) (0.76)

TABLE I: Global fit extraction of ImH and ReH on Hall B kinematics. The horizontal lines gather bins with common (xB , t)
and the horizontal double lines bins with common t. The errors are in parenthesis, the first one being statistical, the second
and third systematic (respectively truncation and subdominant CFFs).

BMK formalism [12]. Firstly, the use of the GV expres-
sions creates important deviations to the latter extrac-
tion. Since the extracted combinations of GPDs are not
the same, we will not make the argument more quanti-
tative. Secondly, we obtained results in very good agree-

ment with [29], but with errors considerably smaller.
For a given t, and at Q2 = 3 GeV2, the Fig. 8 dis-

plays the xB-dependence of the CFFs we extracted, and
compares them to the predictions of the VGG model. To
draw the authorised region for ImH and ReH we had to
estimate the systematic uncertainty induced by the ne-
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Hall A kinematics

xB t (GeV2) Q2 (GeV2) ImH ReH
0.3600 -0.1700 1.5000 4.73 (0.07) (0.53) (0.72) -1.35 (0.03) (3.62) (0.47)

0.3600 -0.1700 1.9000 5.87 (0.07) (0.12) (0.57) -0.39 (0.03) (1.33) (0.38)

0.3600 -0.1700 2.3000 7.05 (0.07) (0.31) (0.45) 0.36 (0.03) (0.51) (0.31)

0.3600 -0.2300 1.5000 5.03 (0.06) (0.94) (0.82) -2.77 (0.03) (2.92) (0.12)

0.3600 -0.2300 1.9000 5.83 (0.06) (0.36) (0.74) -2.04 (0.03) (1.08) (0.15)

0.3600 -0.2300 2.3000 6.67 (0.06) (0.19) (0.64) -1.46 (0.03) (0.32) (0.19)

0.3600 -0.2800 1.5000 4.75 (0.05) (0.99) (0.69) -3.45 (0.03) (2.51) (0.16)

0.3600 -0.2800 1.9000 5.32 (0.05) (0.43) (0.64) -2.90 (0.03) (0.97) (0.05)

0.3600 -0.2800 2.3000 5.94 (0.05) (0.20) (0.55) -2.45 (0.03) (0.20) (0.04)

0.3600 -0.3300 1.5000 4.30 (0.04) (0.95) (0.51) -3.86 (0.03) (2.20) (0.40)

0.3600 -0.3300 1.9000 4.68 (0.05) (0.52) (0.48) -3.47 (0.03) (0.91) (0.24)

0.3600 -0.3300 2.3000 5.11 (0.05) (0.15) (0.38) -3.12 (0.03) (0.15) (0.10)

TABLE II: Global fit extraction of ImH and ReH on Hall A kinematics. The horizontal lines gather bins with common (xB , t)
and the horizontal double lines bins with common t. The errors are in parenthesis, the first one being statistical, the second
and third systematic (respectively truncation and subdominant CFFs).

glect of subdominant CFFs for kinematic configurations
for which we have no measurements. According to Tab. I
and Tab. II, this error weakly depends on Q2 for fixed t
and xB . We averaged it over each (xB , t)-bin, and used it
to draw the colour band of Fig. 8. Doing so, we enhanced
the oscillating behaviour of the contours of the plot by
adding discontinuities. Since the errors are mostly due
to systematic effects, the points in the coloured domain
have the same probability.

This being stated, we notice that the extracted values
of ImH have an xB-dependence similar to that predicted
by the VGG model. We again observe that VGG tends
to overestimate ImH. The extracted CFFs are often
but not always compatible with VGG. The errors on the
extracted ReH and ImH in the hatched zone may be
underestimated. We already noticed that polynomial os-
cillations are more severe at large xB , where the data are
less accurate, as shown in Fig. 1 and Fig. 2. However,
from Fig. 3 and Fig. 4 we know that the extraction is
independent of the type (local or global) of the fit for
0.3 ≤ xB ≤ 0.4. Thus these data should not be rejected
but it is necessary to stay cautious when interpreting
them.

Conclusions

Working at leading twist, and assuming H-dominance,
we extracted ImH and ReH with two different meth-
ods. The local fits do not benefit from the wide kine-
matic coverage of Hall B data, and are bound to produce
rather large statistical uncertainties when fitting two in-
dependent parameters from an asymmetry measured at
(at most) twelve φ-bins. On the opposite, the global fit
dramatically decreases the systematic uncertainties and

uses the kinematic coverage to disentangle the contribu-
tions of the different CFFs at the expense of a fitting
Ansatz. The good agreement between the results of both
extractions is a strong consistency check. It demonstrates
that the extraction of ImH and ReH and the estimation
of the systematics related to this fitting procedure pro-
duce relatively model-independent results, at least for xB
not too large. This estimation of the systematics will be
refined but these first results are already encouraging.
One immediate advantage is the smoothness of the re-
sults. This comparison and the weak Q2-dependency of
the results also validates a posteriori the restriction to
kinematic configurations with −tQ2 <

1
2 .

It is one of the first global fits of measurements from
different experiments. In spite of the difficulty of con-
trolling polynomial oscillations, the (fitted) behaviour of
ImH and ReH versus xB is similar to the VGG model
prediction. The t-dependence of our global fit is also in
fair agreement with that obtained in the first GPD anal-
ysis of Hall A data in the BMK framework. As expected,
we find that the VGG model tends to overestimate the
physical value of ImH.

Our results are dominated by systematic uncertain-
ties. Their origin is twofold. Firstly, we assumed H-
dominance and neglected the contribution of E, Ẽ and
H̃. Secondly, the Gegenbauer and Legendre expansions
induce oscillations in the partial sums of the series. We
may hope to reduce these systematic uncertainties in
the near future using additional BSA measurements [41]
(unpolarised proton target) and [42] (longitudinally po-
larised proton target) which will put stronger constraints
on the global fits. The extension of our procedure to
smaller values of xB is in progress.

However, our total errors are already of reasonable size,
since they are comparable to, or smaller than those com-



9

1 1.5 2 2.5 1 1.5 2 2.5 3
2.5

5

2.5

5

2.5

5

2.5

5

7.5

(a)

(b)

(c)

(d)

Im
H

Im
H

Im
H

Im
H

Local Fits Global Fit

)2 (GeV2Q )2 (GeV2Q

1 1.5 2 2.5 3
2.5

5

7.5

1 1.5 2 2.5 3
2.5

5

7.5
1 1.5 2 2.5 3

2.5

5

7.5

1 1.5 2 2.5 3
2.5

5

7.5
1 1.5 2 2.5 3

2.5

5

7.5

1 1.5 2 2.5 3
2.5

5

7.5
1 1.5 2 2.5 3

2.5

5

7.5

1 1.5 2 2.5 3
2.5

5

7.5

FIG. 5: Q2-behaviour (1 < Q2 < 3 GeV2) of the extracted
values of ImH of local fits (left) and global fit (right) on Hall
A kinematics : t = −0.17 GeV2 (a), t = −0.23 GeV2 (b),
t = −0.28 GeV2 (c) and t = −0.33 GeV2 (d). In all cases xB

= 0.36. The error bars include both statistical and systematic
uncertainties. ImH ranges between 2.5 and 7.5.

ing from previous extractions. We typically obtain a 20
to 50 % accuracy on ImH, which is already good regard-
ing our hypothesis of H dominance.

At last, C. Muñoz-Camacho et al. [12] performed the
extraction of a combination of GPDs with the BMK for-
mulae. They concluded that Hall A data indicates twist
2 dominance of DVCS through early Q2-scaling. Using
the new GV formalism, we tend to come to the same
conclusion in this study, but we plan to work out a re-
fined analysis at twist 3 in the Wandura-Wilczek approx-
imation to make sure we distinguish between power law
(higher twist) and logarithmic (evolution) behaviours.

Note added During the writing of this paper,
K. Kumericki and D. Müller released a detailed model-
dependent fit of Hermes and JLab DVCS measurements
[43]. We will compare their results to ours (both present
results and the on-going extension to smaller xB) in a
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FIG. 6: t-behaviour (0.1 < −t < 0.4 GeV2) of the extracted
values of ImH (up) and ReH (down) of local fits (left) and
global fit (right) on Hall A kinematics (xB = 0.36 and Q2

= 2.3 GeV2). The error bars include both statistical and
systematic uncertainties. ImH ranges between 4 and 8, and
ReH between -4 and 1.
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FIG. 7: ImH (up) and ReH (down) vs t (0.1 < −t <
0.4 GeV2) on Hall A kinematics (xB=0.36 and Q2 =
2.3 GeV2). ImH ranges between 3 and 8, and ReH be-
tween -5 and 1. We compare our results (left column) to
those of M. Guidal [29] (middle column) and C. Muñoz-
Camacho et al. [12] (right column). In the latter column

H + xB
2−xB

“
1 + F2

F1
H̃

”
− t

4M2
F2
F1
E is plot, and not H. The

error bars include both statistical and systematic uncertain-
ties.
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FIG. 8: Comparisons of the extracted ImH (up) and ReH
(down) and the predictions of the VGG model (black circles)
for 0.1 < xB < 0.4 and 0.09 < −t < 0.2 GeV2 (a), 0.2 <
−t < 0.4 GeV2 (b), 0.4 < −t < 0.6 GeV2 (c), and 0.6 <
−t < 1. GeV2 (d). ImH ranges between 0 and 15, and ReH
between -10 and +7.5. The error bars include both statistical
and systematics contributions. Since our errors are dominated
by systematics, we can only say that the true value of ImH
and ReH lie in the coloured bands. Moreover, we estimated
the systematic errors due to the neglect of subdominant GPDs
by averaging over the points where measurements are made,
hence enhancing the oscillating behaviour of the fitting curve
(see text for more explanations).

future study.
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APPENDIX: GV EXPRESSIONS AT TWIST 2
ASSUMING H-DOMINANCE

We give the GV expressions used in the present work.
Hence we restrict ourselves to the case of an unpolarised
target and take into account only the GPD H. For the
sake of consistency and for future references, we adopt
the notations of [18].

1. Kinematics for ep→ epγ

We note k and p the 4-momentum of the initial lepton
and proton, and k′, p′ and q′ the 4-momentum of the final
lepton, proton and photon respectively. In the center of
mass frame the coordinate system is chosen such that
[24] :

p = (
√
M2 +−→q 2, 0, 0,−|−→q |) (A.1)

q = (q0, 0, 0, |−→q |) (A.2)

k = (
√
m2 +

−→
k 2, |
−→
k | sinα cosφ,

|
−→
k | sinα sinφ, |

−→
k | cosα) (A.3)

q′ = (q′0, q′0 sin θ, 0, q′0 cos θ) (A.4)

k′ = (
√
m2 +

−→
k′ 2, |

−→
k′ | sinα′ cosφ,

|
−→
k′ | sinα′ sinφ, |

−→
k′ | cosα′) (A.5)

with 0 ≤ α, α′, θ ≤ π and 0 ≤ φ ≤ 2π. M (resp. m)
is the hadron (resp. lepton) mass, q′⊥ = q′0 sin θ and
s = (p+ q)2. The parameter ω defined by :

coshω =
−Q2 + 4EMxB√
Q4 + 4M2Q2x2

B

(A.6)

sinhω =

√
−1 +

(−Q2 + 4EMxB)2

Q4 + 4M2Q2x2
B

(A.7)

contains all the dependence on the beam energy E. We
note he the helicity of the incoming lepton.

The BMK and GV formalisms thus use different defini-
tions for the angle φ between the hadronic and leptonic
planes, and these definitions do not follow the Trento
convention [25] chosen to describe the measurements :
φTrento = π − φBMK and φTrento = 2π − φ.

2. Bethe-Heitler process

The proton form factors are estimated according to the
following expressions :

GE =
1(

1− t
M2
V

)2 with M2
V = 0.71 GeV2 (A.8)

= F1 +
t

4M2
F2 (A.9)

GM = µpGE with µp = 2.79285 (A.10)
= F1 + F2 (A.11)

The amplitude MBH of the BH process writes :
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MBH = −σBH[0, 1] + cosh 2ω σBH[0, 2] + cosφ sinh 2ω σBH[0, 3]− cos 2φ (cosh 2ω − 1)σBH[0, 4]

4t2
(

1
4 (Q2 + t)2 −

(
Q2(Q2+t(2xB−1)) coshω

2
√
Q4+4M2x2

BQ
2
−Qq′⊥ cosφ sinhω

)2
) (A.12)

where

σBH[0, 1] =
1(

M4 + 2 (Q2 − s)M2 + (Q2 + s)2
)

(4M2 − t)
×
(
4G2

M t
(
6tM8 − 2

(
3Q4 − 11tQ2 + 6t(2s+ t)

)
M6

+
(
−8Q6 + (12s+ 25t)Q4 − 26t(s+ t)Q2 + 3t

(
12s2 + 10ts+ t2

))
M4 − 2

(
3Q8 + (6s− 5t)Q6

+
(
3s2 − 5ts+ 7t2

)
Q4 + t

(
7s2 + 2ts− 3t2

)
Q2 + 3st(2s+ t)2

)
M2 + t

(
3
(
Q4 + 2sQ2 + 2s2

) (
Q2 + s

)2
+2s

(
2Q2 + 3s

)
t
(
Q2 + s

)
+
(
3Q4 + 4sQ2 + 3s2

)
t2
))
− 32G2

EM
2
(
3tM8 + 3

(
Q4 + tQ2 − 4st

)
M6

+
(
4Q6 − (6s+ t)Q4 + t(3s+ t)Q2 + 3st(6s+ t)

)
M4 +

(
3
(
Q2 + s

)2
Q4 + 2

(
Q4 + sQ2 − 3s2

)
t2

−
(
Q2 + s

) (
Q4 + 3sQ2 + 12s2

)
t
)
M2 +

(
Q2 + s

)2
t
(
(3s+ t)Q2 + 3s(s+ t)

)))
(A.13)

σBH[0, 2] =
1(

M4 + 2 (Q2 − s)M2 + (Q2 + s)2
)

(4M2 − t)
×
(
4G2

M t
(
2tM8 − 2

(
Q4 − 9tQ2 + 2t(2s+ t)

)
M6

+
(
8Q6 + (4s+ 19t)Q4 − 2t(15s+ 7t)Q2 + t

(
12s2 + 10ts+ t2

))
M4 − 2

(
Q8 + (2s+ t)Q6

+
(
s2 − 7ts+ 5t2

)
Q4 − t

(
3s2 + 10ts+ t2

)
Q2 + st(2s+ t)2

)
M2 + t

((
Q4 + 2sQ2 + 2s2

)
(
Q2 + s

)2
+
(
Q4 − 4sQ2 + s2

)
t2 + 2s

(
−2Q4 − sQ2 + s2

)
t
))
− 32G2

EM
2
(
tM8

+
(
Q4 + tQ2 − 4st

)
M6 +

(
−4Q6 + (5t− 2s)Q4 + (s− t)tQ2 + st(6s+ t)

)
M4 +

((
Q2 + s

)2
Q4

−2
(
Q4 + sQ2 + s2

)
t2 +

(
Q2 − s

) (
Q2 + s

) (
5Q2 + 4s

)
t
)
M2

+
(
Q2 + s

)2
t
(
(s− t)Q2 + s(s+ t)

)))
(A.14)

σBH[0, 3] =
1√

M4 + 2 (Q2 − s)M2 + (Q2 + s)2 (4M2 − t)
×
(
16G2

MQq
′
⊥t
((

3t− 2Q2
)
M4 +

(
2Q4 + (2s+ 5t)Q2

−t(4s+ t))M2 + t
(
(s− t)Q2 + s(s+ t)

))
− 64G2

EM
2Qq′⊥

(
M2 −Q2 − s

)
×
(
2M2Q2 −

(
M2 +Q2 + s

)
t
))

(A.15)

σBH[0, 4] =
1(

M4 + 2 (Q2 − s)M2 + (Q2 + s)2
)

(4M2 − t)

(
−64G2

EQ
2
(
tM4 +

(
Q4 + tQ2 − 2st

)
M2

+st
(
Q2 + s+ t

))
M4 − 8G2

MQ
2
(
2M2 − t

)
t
(
tM4 +

(
Q4 + tQ2 − 2st

)
M2 + st

(
Q2 + s+ t

)))
(A.16)

3. Virtual Compton Scattering process

The amplitude MVCS of the VCS process writes :

MVCS =
σVCS[0, 1] + cosh 2ω σVCS[0, 2]

2Q2
(A.17)

where

σVCS[0, 1] =
1
4

(
48(xB − 1)2ImH2

(1− xB)(xB − 2)2
+

48(xB − 1)2ReH2

(1− xB)(xB − 2)2

)
(A.18)

σVCS[0, 2] =
1
4

(
16(xB − 1)2ImH2

(1− xB)(xB − 2)2
+

16(xB − 1)2ReH2

(1− xB)(xB − 2)2

)
(A.19)
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4. Interference

The amplitudeMI of the interference between the BH
and VCS processes writes :

MI =
1

Q2t

(
1
4 (Q2 + t)2 −

(
Q2(Q2+t(2xB−1)) coshω

2
√
Q4+4M2x2

BQ
2
−Qq′⊥ cosφ sinhω

)2
) × (coshω σI[0, 1] + cosh 3ω σI[0, 2]

+ cosφ sinhω σI[0, 3] + sinh 3ω σI[0, 4]) + cos 2φ coshω − cosh 3ω)σI[0, 5]

+
1
3

cos 3φ (3 sinhω − sinh 3ω)σI[0, 6] + he sinφ sinh 2ω σI[0, 7]− he(cosh 2ω − 1) sin 2φσI[0, 8]
)

(A.20)

where

σI[0, 1] = −8(xB − 1)ReHJ00U
r
40Q

4

√
1− xB(xB − 2)

− 8(xB − 1)ReHJ01U
r
46Q

4

√
1− xB(xB − 2)

(A.21)

σI[0, 2] = −8(xB − 1)ReHJ00U
r
2Q

4

√
1− xB(xB − 2)

− 8(xB − 1)ReHJ01U
r
10Q

4

√
1− xB(xB − 2)

(A.22)

σI[0, 3] = −8(xB − 1)ReHJ01U
r
47Q

5

√
1− xB(xB − 2)

− 8(xB − 1)ReHJ00U
r
41Q

3

√
1− xB(xB − 2)

(A.23)

σI[0, 4] = −8(xB − 1)ReHJ01U
r
49Q

5

√
1− xB(xB − 2)

− 8(xB − 1)ReHJ00U
r
43Q

3

√
1− xB(xB − 2)

(A.24)

σI[0, 5] = −8(xB − 1)ReHJ00U
r
3Q

2

√
1− xB(xB − 2)

− 8(xB − 1)ReHJ01U
r
11Q

2

√
1− xB(xB − 2)

(A.25)

σI[0, 6] = −8Q(xB − 1)ReHJ00U
r
42√

1− xB(xB − 2)
− 8Q(xB − 1)ReHJ01U

r
48√

1− xB(xB − 2)
(A.26)

σI[0, 7] =
8(xB − 1)ImHJ01U

r
51Q

5

√
1− xB(xB − 2)

+
8(xB − 1)ImHJ00U

r
45Q

3

√
1− xB(xB − 2)

(A.27)

σI[0, 8] =
8(xB − 1)ImHJ00U

r
44Q

2

√
1− xB(xB − 2)

+
8(xB − 1)ImHJ01U

r
50Q

2

√
1− xB(xB − 2)

(A.28)

The helicity currents J are :

J00 = −
F2
(
2M2 +Q2 + 2s

)√
−st cos

(
θ
2

) (√
p0 −M

√
p′0 −M −

√
M + p0

√
M + p′0

)
M
√
s
√
Q4 − 4st

−
8GMs

√
−t
(√

M + p0
√
p′0 −M +

√
p0 −M

√
M + p′0

) (
cos
(
θ
2

)
(q3 − q′3)− q′1 sin

(
θ
2

))
Q2
√
Q4 − 4st

(A.29)

J01 =
2
√

2F2
√
s cos

(
θ
2

) (√
p0 −M

√
p′0 −M −

√
M + p0

√
M + p′0

)
q3q′1

M
√
Q4 − 4st

+
2
√

2GM
√
s
(√

M + p0
√
p′0 −M +

√
p0 −M

√
M + p′0

)
(q3 + q′0) sin

(
θ
2

)√
Q4 − 4st

(A.30)
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and the kinematic coefficients Ur are :

Ur2 =

(
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

)
64Q2

√
s
√
−t
√
Q4 − 4stq3

((
Q4 + (t+ (q0 − q′0)(q0 − q3 + 2q′0))Q2

−4q′2⊥q
0q3 + t(q0 − q3)(q0 + q′0)

))
(A.31)

Ur3 =

(
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

)
64
√
s
√
−t
√
Q4 − 4stq3

((
Q4 + (t+ (q0 − q′0)(q0 + q3 + 2q′0))Q2

+4q′2⊥q
0q3 + t(q0 + q3)(q0 + q′0)

))
(A.32)

Ur10 = −
q′⊥
√
s
(
(t− (q0 − q3 − 2q′0)(q0 − q′0))Q2 + tq0(q3 + q′0)

)
4
√

2Q2
√
Q4 − 4stq3

(A.33)

Ur11 =
q′⊥
√
s
(
(t− (q0 + q3 − 2q′0)(q0 − q′0))Q2 + tq0(q′0 − q3)

)
4
√

2
√
Q4 − 4stq3

(A.34)

Ur40 = −
(
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

)
64Q2

√
s
√
−t
√
Q4 − 4stq3

×
(
Q4 +

(
16q′2⊥ + t+ (q0 − q′0)(q0 − q3 + 2q′0)

)
Q2 + 4q′2⊥q

0(4q0 + 3q3) + t(q0 − q3)(q0 + q′0)
)

(A.35)

Ur41 = −
q′⊥
(
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

)
128Q2

√
s
√
−t
√
Q4 − 4stq3

×
(
Q4 +

(
12(q0)2 + 16q3q0 − 22q′0q0 − 7t− 26q3q′0

)
Q2 + 4tq0(q0 + 4q3)

)
(A.36)

Ur42 = −
3Q2q′⊥

(
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

) (
Q2 + t+ 2(q0 − q3)q′0

)
128
√
s
√
−t
√
Q4 − 4stq3

(A.37)

Ur43 = −
q′⊥
(
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

) (
5Q4 −

(
3t+ 2

(
−6(q0)2 + 7q′0q0 + q3q′0

))
Q2 + 4t(q0)2

)
128Q2

√
s
√
−t
√
Q4 − 4stq3

(A.38)

Ur44 = −
(
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

)
32
√
s
√
−t
√
Q4 − 4stq3

×
(
Q4 +

(
2q′2⊥ + t+ (q0 − q′0)(q0 + q3 + 2q′0)

)
Q2 + (q0 + q3)

(
2q0q′2⊥ + t(q0 + q′0)

))
(A.39)

Ur45 =
q′⊥
(
2Q4 + q0(3q0 + q3 − 2q′0)Q2 + tq0(q0 + q3)

) (
Q4 + 2

√
s(q0 − q′0)Q2 − 4st

)
16Q2

√
s
√
−t
√
Q4 − 4stq3

(A.40)

Ur46 = −
q′⊥
√
s
(
(7t− 3(q0 − q3 − 2q′0)(q0 − q′0))Q2 + t

(
4(q0)2 + 3(q3 + q′0)q0 + 4q3q′0

))
4
√

2Q2
√
Q4 − 4stq3

(A.41)

Ur47 =
√
s

16
√

2Q4
√
Q4 − 4stq3

((
3Q6 +

(
12q′2⊥ + 3(q0)2 − 22(q′0)2 + 3t+ 7q0q3 + 35q0q′0 − 3q3q′0

)
Q4

+
(
2
(
22(q0)2 + (15q3 + 16q′0)q0 − 7q3q′0

)
q′2⊥ + 8(4q0 + q3)q′0

(
(q0)2 − (q′0)2

)
+t
(
3(q0)2 + 7(q3 + 5q′0)q0 + q′0(11q3 + 16q′0)

))
Q2 + 8q0(4q0 + q3)(q0 + q′0)

(
q0q′2⊥ + tq′0

)))
(A.42)

Ur48 = − 3Q2
√
s

16
√

2
√
Q4 − 4stq3

((
Q4 +

(
4q′2⊥ + t+ (q0 − q′0)(q0 + q3 + 2q′0)

)
Q2

+t(q0 + q3)(q0 + q′0) + 2q′2⊥
(
2(q0)2 + q3q0 − q3q′0

)))
(A.43)

Ur49 = −
√
s

16
√

2Q4
√
Q4 − 4stq3

((
Q6 +

(
4q′2⊥ + (q0)2 − 2(q′0)2 + t− 3q0q3 + q0q′0 − q3q′0

)
Q4

+
((

4(q0)2 − 22q3q0 + 6q3q′0
)
q′2⊥ + 8q3q′0

(
(q′0)2 − (q0)2

)
+ t
(
(q0)2 + (q′0 − 3q3)q0 − 7q3q′0

))
Q2

−8q0q3(q0 + q′0)
(
q0q′2⊥ + tq′0

)))
(A.44)

Ur50 =
q′⊥
√
s
(
(q0 + q3 − 2q′0)Q2 + t(q0 + q3)

)
(q0 − q′0)

4
√

2
√
Q4 − 4stq3

(A.45)

Ur51 = −
√
s

2
√

2Q4
√
Q4 − 4stq3

((
Q6 +

(
4q′2⊥ + (q0)2 − 3(q′0)2 + t+ 3q0q′0 + q3q′0

)
Q4

+
(
2q0(3q0 + 2q3 + q′0)q′2⊥ + 2(q0 + q3)q′0

(
(q0)2 − (q′0)2

)
+ t
(
(q0)2 + 3q′0q0 + q′0(q3 + q′0)

))
Q2

+2q0(q0 + q3)(q0 + q′0)
(
q0q′2⊥ + tq′0

)))
(A.46)
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