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We give a detailed analysis of the origin of spurious divergences and finite steps that have been
recently identified in particle-number restoration calculations within the nuclear energy density func-
tional framework. We isolate two distinct levels of spurious contributions to the energy. The first
one is encoded in the definition of the basic energy density functional itself whereas the second one
relates to the canonical procedure followed to extend the use of the energy density functional to
multi-reference calculations. The first level of spuriosity relates to the long-known self-interaction
problem and to the newly discussed self-pairing interaction process which might appear when de-
scribing paired systems with energy functional methods using auxiliary reference states of Bogoli-
ubov or BCS type. A minimal correction to the second level of spuriosity to the multi-reference
nuclear energy density functional proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041]
is shown to remove completely the anomalies encountered in particle-number restored calculations.
In particular, it restores sum-rules over (positive) particle numbers that are to be fulfilled by the
particle-number-restored formalism. The correction is found to be on the order of several hundreds
of keVs up to about 1 MeV in realistic calculations, which is small compared to the total binding
energy, but often accounts for a substantial percentage of the energy gain from particle-number
restoration and is on the same energy scale as the excitations one addresses with multi-reference
energy density functional methods.

PACS numbers: 21.10.Re, 21.60.Ev, 71.15.Mb

I. INTRODUCTION

Methods based on the use of energy density function-
als (EDF) [1] currently provide the only set of theoretical
tools that can be applied to all nuclei but the lightest ones
in a systematic manner irrespective of their mass and
isospin. Nuclear EDF methods coexist on two distinct
levels. On the first level, that is traditionally and inap-
propriately called ”self-consistent mean-field theory” or
Hartree-Fock (HF) or Hartree-Fock-Bogoliubov (HFB), a
single product state provides the normal and anomalous
density matrices the energy is a functional of. We will
call this type of method a single-reference (SR) EDF ap-
proach. On the second level, traditionally and inappro-
priately called ”beyond-mean-field methods”, i.e. sym-
metry restoration and configuration mixing in the spirit
of the Generator Coordinate Method (GCM), the set
of transition density matrices defined from an appro-
priate ensemble of product states enter the EDF. We
will call such a method a multi-reference (MR) EDF ap-
proach. Although SR EDF calculations have many sim-
ilarities with Density Functional Theory (DFT) which
is widely used in atomic, molecular and condensed mat-
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ter physics [2–8], they also present key differences, which
prohibit the straightforward mapping of the concepts of
electronic DFT to the nuclear case [9–11].

The reference state entering a SR EDF calculation usu-
ally breaks several symmetries of the exact eigenstates of
the nuclear Hamiltonian. This is done on purpose, as it
allows one to incorporate so-called static correlations as-
sociated with collective modes [12–15] at moderate com-
putational cost. One of the most important categories of
correlations which can be grasped this way are those asso-
ciated with the formation of neutron and proton Cooper
pairs in the medium.

In a SR EDF approach, pairing correlations are incor-
porated by making the energy a functional of the anoma-
lous density matrix in addition to the normal one. This
amounts to using an independent quasi-particle state
(which will be called a quasi-particle vacuum in what fol-
lows) of BCS or Bogoliubov type as a reference state in-
stead of a Slater determinant. The price to pay is break-
ing the U(1) symmetry in gauge space that is a feature of
eigenstates of the particle-number operator. As a result
the SR state is spread in particle-number space, and one
cannot associate the computed energy, even implicitly,
to a state belonging to a specific irreducible represen-
tation of U(1). In condensed matter physics, for which
the BCS method was originally designed [16], this is usu-
ally not much of a problem. Nuclei, however, are small
finite quantum many-body systems for which two prob-
lems arise in this context: (i) the SR approach does not
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grasp the so-called dynamical pairing correlations associ-
ated with the fluctuations of both the magnitude and the
phase of the order parameter of the broken U(1) symme-
try. Correlations associated with this zero-energy mode
may affect any observable that probes the occupation
of levels around the Fermi surface in a significant way;
(ii) when the density of single-particle levels around the
Fermi energy is below a critical value, pairing correla-
tions are entirely dynamical and cannot be described by
the SR method, in most cases in contradiction with ex-
periment.

All of these limitations can be overcome by per-
forming multi-reference EDF calculations. Those al-
low in particular the restoration of particle number [17–
21]. It has been noticed for some time, however, that
particle-number restored energies might exhibit diver-
gences [18, 22, 23] and finite steps [24, 25] whenever a
single-particle level crosses the Fermi energy as a func-
tion of a collective coordinate. This problem is partic-
ular to energy density functionals, but absent in ap-
proaches based on the use of a genuine Hamiltonian
and a correlated wave function. As pointed out by An-
guiano et al. in Ref. [18], some of the common assump-
tions and approximations made in the construction of
nuclear EDFs unavoidably lead to such anomalies, and
these authors, as done earlier in Refs. [23, 24] in a dif-
ferent context, advocate to use strict antisymmetric two-
body vertices and to keep all exchange terms when com-
puting the energy. However, and contrary to what is
stated in Ref. [18, 26], using antisymmetric but density-
dependent two-body vertices is not free from patholo-
gies, even when the divergence introduced by the density-
dependent terms is integrable. There is an additional
problem that arises particularly when such a dependence
is taken under the form of a non-integer power of the
density (matrix) [25, 27].

Practitioners of EDF methods, however, recognize that
it is desirable to use more general energy functionals.
For those, Particle-Number Restoration (PNR), and the
MR formalism in general, still need to be formulated in
a consistent and unambiguous manner that is free from
pathologies. As a first step into that direction, a thor-
ough analysis has been recently given by Dobaczewski et

al. regarding the poles and steps contained in a particle-
number restored energy density functional [25]. In the
first of our companion papers [28], hereafter referred to
as Paper I, we could connect those pathologies to an un-
derlying level of spuriosity that is encoded in the SR en-
ergy functional. The associated spurious terms turn out
to relate to self-interaction processes well-known in DFT
for condensed matter [29], a problem which was actu-
ally studied beforehand in the nuclear context [30] but
was soon forgotten, as well as to spurious self-pairing

processes, whose notion is introduced in the present pa-
per. The common source of both pathologies is the
use of different and non-antisymmetric vertices at dif-
ferent places in the EDF violating in this way the ex-
change symmetry of Fermi statistics. The existence of

spurious self-interaction and self-pairing in the SR en-
ergy functional is indeed a prerequisite for the appear-
ance of divergences and steps at the MR level, but it is
not its origin as such. The pathologies that are partic-
ular to the MR level, e.g., particle-number restoration,
turn out to be caused by an unphysical contribution to
the weight of the self-interaction and self-pairing con-
tributions in multi-reference energy kernels. This is an
unforeseen consequence of the common practice of con-
structing the multi-reference energy functional kernel by
replacing the density matrices entering a given SR en-
ergy functional by transition density matrices [31, 32] in
analogy to the application of the Generalized Wick The-
orem (GWT) [33, 34] within a Hamiltonian- and wave-
function-based approach. Making reference to a Wick
theorem in an energy density functional without hav-
ing a genuine operator to relate to is necessarily out-
side the scope of that Wick theorem and might pro-
duce unexpected results. And indeed, using the stan-
dard [35] and generalized [33, 34] Wick theorems yields
different weights to self-interaction and self-pairing con-
tributions to the MR energy kernel as demonstrated in
Paper I. Only the GWT-motivated procedure produces
the poles that are at the origin of the divergences and
steps, thus introducing a second level of spuriosity. Us-
ing a Hamiltonian- and wave-function-based approach,
no problem arises; the vertices at play are either zero or
recombine in a particular way that cancels out danger-
ous poles. Our analysis in Paper I was made without
reference to a particular MR application and aimed at
the introduction of a proper framework to identify and
separate both levels of spuriosity within any MR EDF
calculation. It is the aim of the present paper to apply
the procedure proposed in Paper I to correct for the un-
physical weights in the special case of particle-number
restoration using a particular energy functional the cor-
rection can be applied to. In a third paper [27], hereafter
called Paper III, we analyze in detail in the context of
PNR the reasons why the pathologies associated with
more commonly used functionals containing non-integer
powers of the density (matrix) [25] are very likely to be
uncorrectable. Together with Ref. [25], Paper III demon-
strates that the density-dependent two-body forces that
are advertised by some authors to be free of pathologies
[18, 21, 26] also have their share of problems when used
in MR calculations.

The paper is organized as follows: In Section II, we
introduce single-reference EDF calculations, paying par-
ticular attention to resemblances and key differences with
the HFB method based on the use of a Hamilton opera-
tor. In Section III, we introduce multi-reference EDF
calculations appropriate to restoring particle number,
paying particular attention to resemblances and key dif-
ferences with the strict particle-number projected HFB
(PNP-HFB) method based on the use of a Hamilton op-
erator. In Section IV, we discuss the occurrence of spuri-
ous self-interaction and self-pairing processes in SR and
MR calculations. Section V analyzes the occurrence of
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spurious self-interaction and self-pairing contributions to
the particle-number restored EDF using a complex plane
analysis and specifies the correction designed in Paper I
to that particular case. Section VI applies the correction
scheme to realistic calculations of finite nuclei. Finally,
conclusions are drawn in Section VII. Several appendices
complement the paper with derivations and formulas use-
ful for practical applications.

II. SINGLE-REFERENCE EDF APPROACH

Let us first present the basic elements of the single-
reference EDF method which will be needed for our dis-
cussion. The HFB implementation of the single-reference
EDF approach relies on the use of a quasi-particle vac-
uum |Φϕ〉 as a reference state from which the normal and
anomalous one-body density matrices entering the energy
density functional are calculated. In the canonical basis
{aµ, a+

µ } that diagonalizes its one-body normal density
matrix, the reference state reads

|Φϕ〉 =
∏

µ>0

(

uµ + vµ e2iϕ a+
µ a+

µ̄

)

|0〉 , (1)

where |0〉 is the particle vacuum. Throughout this pa-
per we limit ourselves to time-reversal invariant quasi-
particle vacua |0〉 with even-number parity and thus only
discuss explicitly the ground-state of even-even systems.
In addition, we do not mix protons and neutrons when
constructing quasi-particle operators. In particular, this
limits the pairing interaction to particles of the same
isospin. Identical assumptions are made in most, if not
all, published work performed using particle-number pro-
jected energy density functionals so far, and are sufficient
for the purpose of the present paper.

The single-particle wave functions associated with the
pair-conjugated canonical states (µ, µ̄) is denoted as φµ

and φµ̄. A quantum number ηµ can always be chosen
to separate the single-particle basis into two halves, the
”positive” and the ”negative” ones, with each partner of
a given conjugated pair associated to a different half. The
normalization of |Φϕ〉 gives |u2

µ| + |v2
µ e2iϕ| = 1. We use

phase conventions where the uµ and vµ are real numbers;
hence, u2

µ + v2
µ = 1, which also fixes the global phase of

|Φϕ〉. The angle ϕ in the remaining phase factor denotes
the orientation of the state in the U(1) gauge space.

The exact eigenstates of the nuclear many-body prob-
lem belong to a specific irreducible representation of the
U(1) group. By contrast, the product state |Φϕ〉 behaves
as a wave packet in gauge space as it mixes states be-
longing to different irreducible representations. The use
of such Bogoliubov product states is at the heart of the
symmetry-breaking description of static pairing correla-
tions based on a single reference state. In spite of the
broken symmetry of the product state, all observables
that are scalars in gauge space still have to be indepen-
dent on its orientation in gauge space. This allows one

to choose a convenient angle on the level of SR calcula-
tions that simplifies the calculations, a procedure similar
to choosing a major axis system for quadrupole deformed
product states. In the case of gauge symmetry, a conve-
nient orientation is provided by ϕ = 0. States at different
angles are obtained from this state applying the rotation

operator eiϕN̂ in gauge space

|Φϕ〉 = eiϕN̂ |Φ0〉 = eiϕN̂
∏

µ>0

(

uµ + vµ a+
µ a+

µ̄

)

|0〉 . (2)

A. Energy in the strict HFB approach

As a strict HFB approach, we denote the method that
determines the energetically most favored quasi-particle
vacuum |Φϕ〉 through the minimization of the expecta-

tion value of a given Hamiltonian Ĥ in that product state,
without any approximations or generalizations. For the
sake of transparency, the Hamiltonian

Ĥ =
∑

ij

tij c+
i cj + 1

4

∑

ijkl

v̄ijkl c+
i c+

j cl ck (3)

is assumed to be given by the sum of kinetic energy term
and a two-body interaction. In Eq. (3) {c+

i } defines a
complete set of single-particle states whereas v̄ijkl de-
notes antisymmetric matrix elements (or vertices) of the
two-body interaction in that basis. The discussion be-
low can be extended without difficulty to a Hamiltonian
containing three-body or higher-body forces, but this be-
comes cumbersome and is not necessary for the purpose
of this paper.

An important point is that in the context of the strict
HFB approach, we assume that the vertex v̄ijkl does not

depend on density. So-called density-dependent vertices
of Skyrme and Gogny type are widely used in the liter-
ature. However, as pointed out in Ref. [25], discussed in
the present paper and insisted on further in Paper III,
any density-dependent effective vertices do provide MR
energies with (at least) spurious finite contributions, even
though the vertex is antisymmetric with respect to the
remaining single-particle degrees of freedom and all as-
sociated exchange terms are exactly accounted for in the
MR energy kernels.

Using the Standard Wick theorem (SWT) [35–37], the

expectation value of Ĥ in the product state |Φϕ〉 can be
evaluated as

E [ρϕϕ, κϕϕ, κϕϕ ∗] ≡
〈Φϕ| Ĥ |Φϕ〉

〈Φϕ|Φϕ〉

=
∑

µ

tµµ ρϕϕ
µµ +

∑

µν

[

1
2 v̄µνµνρϕϕ

µµρϕϕ
νν + 1

4 v̄µµ̄νν̄κϕϕ ∗
µµ̄ κϕϕ

νν̄

]

=
∑

µ

tµµv2
µ +

∑

µν

[

1
2 v̄µνµν v2

µv2
ν + 1

4 v̄µµ̄νν̄ uµvµ uνvν

]

(4)
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where ρϕϕ and κϕϕ are the normal density matrix and
anomalous density matrix (pairing tensor) constructed
from |Φϕ〉, respectively. In the canonical basis of the
Bogoliubov transformation defining |Φϕ〉, these take the
simple form

ρϕϕ
µν ≡

〈Φϕ|a
†
νaµ|Φϕ〉

〈Φϕ|Φϕ〉
= v2

µ δµν , (5)

κϕϕ
µν ≡

〈Φϕ|aνaµ|Φϕ〉

〈Φϕ|Φϕ〉
= uµvµ e2iϕ δνµ̄ , (6)

κϕϕ ∗
µν ≡

〈Φϕ|a
†
µa†

ν |Φϕ〉

〈Φϕ|Φϕ〉
= uµvµ e−2iϕ δνµ̄ . (7)

The expectation value given in Eq. (4) can be seen as a
particular functional of ρϕϕ, κϕϕ and κϕϕ ∗. The sym-
metries of the Hamiltonian lead of course to a number of
specific properties of this functional. In particular, since
the Hamiltonian commutes with the particle-number op-
erator, one finds that

E [ρϕϕ, κϕϕ, κϕϕ ∗] = E
[

ρ00, κ00, κ00 ∗
]

, (8)

which underlines that all states that differ only by a ro-
tation in gauge space are degenerate. In other words, the
energy functional behaves as a scalar in gauge space as
expected.

B. Energy in the SR energy functional approach

In nuclear physics, strict HFB-type approaches are
frequently applied in a restricted shell-model space us-
ing parametrized single-particle energies and an effective
Hamiltonian as a residual interaction [38–40]. For a mul-
titude of reasons outlined in Paper I and references given
therein, methods using the full model space of occupied
particles had to resume so far to the use of (phenomeno-
logical) density-dependent effective interactions [41, 42],
which sets the stage for what is nowadays recognized as
an approximation to a more general single-reference EDF
formalism. This framework shares many features with
the Density Functional Theory (DFT) widely used for
description of electronic many-body systems [2–8], but
also displays key differences, which prohibit the straight-
forward mapping of all concepts of electronic DFT to the
nuclear case [9–11].

In the DFT for many-electron systems, constructive
schemes have been established to design the energy func-
tional, see for instance Ref. [5] and references given
therein. In nuclear physics, such a procedure that would
suggest the structure of the functional is still missing, al-
ready on a qualitative level. The reasons are the complex-
ity of the nucleon-nucleon interaction on the one hand,
and that in-medium correlations are never small correc-
tions on the other hand. In the absence of a construc-
tive scheme, all widely used nuclear energy functionals
were set up keeping an underlying two-body and some-
times three-body interaction as guiding principle, mak-

ing generalizations suggested by phenomenology and ap-
proximating or even omitting terms that are small, but
difficult to evaluate. As a consequence, the structure of
these functionals resembles that of Eq. (4), except that
the expectation value E [ρ, κ, κ∗] is replaced by a func-
tional E [ρ, κ, κ∗]. Considering the simple case of a bi-
linear functional for simplicity and comparison purposes,
such a functional can be written as

E [ρ, κ, κ∗] ≡ Eρ + Eρρ + Eκκ

=
∑

µ

tµµv2
µ + 1

2

∑

µν

v̄ρρ
µνµν v2

µ v2
ν

+ 1
4

∑

µν

v̄κκ
µµ̄νν̄ uµ vµ uν vν . (9)

This might appear as an unsusual way to write standard
energy functional, but will turn out to be very useful be-
low. The corresponding explicit expressions for a Skyrme
energy functional are given in Appendix A. The crucial
point for our discussion is that the matrix elements of
the effective vertex v̄ρρ are in general not necessarily anti-
symmetric for these energy functionals. Also, for Skyrme
functionals, one almost always chooses different vertices
in the particle-hole (v̄ρρ

µνµν) and particle-particle (v̄κκ
µµ̄νν̄)

channels, and exploits broken antisymmetry of v̄ρρ
µνµν to

obtain a more versatile effective interaction, for exam-
ple in the spin-orbit [43, 44] or spin-spin parts [45]. The
situation is similar for the functionals by Fayans et al.

[46]. By contrast, the philosophy of the Gogny force is to
use the same antisymmetrized density-dependent vertex
anywhere, although in actual calculations terms that are
very small in SR calculations and at the same time very
time-consuming to evaluate are often omitted [47]. As
all standard parameterizations of the Skyrme and Gogny
interactions use density-dependent vertices, they cannot
be mapped on a functional that is the strict expectation
value of a many-body Hamiltonian (4). Almost all rela-
tivistic mean-field models that are widely used in the lit-
erature are explicitly set up as Hartree approaches [1, 48]
without any explicit exchange terms at all, using phe-
nomenological density dependencies and non-relativistic
pairing energy functionals.

Note that any local or non-local energy functional that
contains only terms proportional to integer powers of the
density matrices can be put into the form of Eq. (9) plus
similar higher-order terms. For the rest of this paper,
however, we will assume idealized energy functionals that
are linear and bilinear in the density matrix of a given
isospin projection, and possibly trilinear with the two
isospin projections necessarily involved. We postpone the
discussion of functionals with non-integer powers of the
density matrices to Paper III.

We will not assume antisymmetry of v̄ρρ in the for-
mal manipulations throughout the paper. Owing to the
intrinsic antisymmetry of κ, however, only the antisym-
metric part of the vertex is probed in the last term of
Eq. (9) and one can always take v̄κκ to be antisymmet-
ric, which we do here. The results based on a strict HFB
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method can always be easily recovered from those derived
for a more general bilinear functional simply by enforcing
the antisymmetry of v̄ρρ and by taking v̄ρρ = v̄κκ = v̄.

III. PARTICLE NUMBER RESTORATION

In order to restore good particle number and in-
clude the correlations associated with the corresponding
Nambu-Goldstone mode, it is necessary to extend the
EDF framework to a multi-reference formalism. This
extension requires the explicit treatment of the fluctu-
ations of the gauge angle of the gap field. This is partic-
ularly crucial for situations where the symmetry breaking
is weak or even absent at the SR level, as it is the case for
instance around closed shells or at high spin. The Vari-
ation After Projection (VAP) method [18, 26, 49–52] is
superior in that respect to the Projection After Varia-
tion (PAV) one since the latter cannot compensate for
the spurious sharp phase transition occurring at the SR
level in the weak symmetry-breaking regime [18, 36, 50–
52]. An intermediate treatment consists of performing
a projection after a SR+Lipkin-Nogami (HFBLN) cal-
culation [17, 19, 20, 50]. This corrects for the princi-
pal defect of the PAV method as it guarantees the pres-
ence of pairing correlations in the SR state in the weak-
pairing regime. However, some doubts have been raised
in the literature about the quantitative reliability of this
method [50, 53]. The MR calculation could be extended
further to incorporate dynamical pairing correlations as-
sociated with fluctuations of the magnitude of an order
parameter that quantifies the amount of pairing correla-
tions present in the SR state [53–56].

An operator that projects out an eigenstate of the par-
ticle number operator N̂ with an eigenvalue N from any
many-body wave function is provided by [57]

P̂N =
1

2π

∫ 2π

0

dϕ eiϕ(N̂−N) . (10)

For the purpose of the present paper, it is sufficient to
consider the simple case of particle number restoration af-
ter variation. For the sake of transparent notation we dis-
cuss the formal framework assuming one type of particles
only. The extension to two types of particles is straight-
forward and will be mentioned only whenever necessary.
A normalized projected HFB state is given by

|ΨN 〉 =

∫ 2π

0

dϕ
e−iϕN

2π cN
|Φϕ〉 , (11)

where the real and positive cN = 〈Φ0|Ψ
N 〉 that reads

c2
N = 〈Φ0|P̂

N |Φ0〉 =
1

2π

∫ 2π

0

dϕ e−iϕN 〈Φ0|Φϕ〉(12)

provides the weight of the normalized projected state in
the normalized SR state it is projected from, whereas

〈Φ0|Φϕ〉 =
∏

µ>0

(

u2
µ + v2

µ e2iϕ
)

(13)

denotes the overlap of a gauge-space rotated state with
the unrotated one. The integration interval in Eq. (11)
can be reduced to [0, π] using symmetries of the integral
whenever the SR state |Φϕ〉 has a good number parity
quantum number [36, 39, 58].

A. Energy in the strict PNP-HFB approach

In the strict PNP-HFB method, the energy is calcu-
lated as the expectation value of the Hamilton operator
in the normalized projected state |ΨN〉

EN = 〈ΨN | Ĥ |ΨN〉 =

∫ 2π

0

dϕ
e−iϕN

2π c2
N

E[ϕ] 〈Φ0|Φϕ〉 ,

(14)

where we have used that Ĥ and N̂ commute and that
P̂N is a projector P̂N P̂N = P̂N . The energy kernel E[ϕ]
can be easily evaluated with the help of the Generalized
Wick Theorem (GWT) [33, 34], which in the canonical
basis of |Φ0〉 gives

E[ϕ] ≡
〈Φ0| Ĥ |Φϕ〉

〈Φ0|Φϕ〉

=
∑

µ

tµµ ρ0ϕ
µµ + 1

2

∑

µν

v̄µνµν ρ0ϕ
µµ ρ0ϕ

νν

+ 1
4

∑

µν

v̄µµ̄νν̄ κϕ0 ∗
µµ̄ κ0ϕ

νν̄ . (15)

In this expression, the normal and anomalous transition

density matrices between the ket |Φϕ〉 and the bra 〈Φ0|
are defined as

ρ0ϕ
µν ≡

〈Φ0|a
†
νaµ|Φϕ〉

〈Φ0|Φϕ〉
=

v2
µ e2iϕ

u2
µ + v2

µ e2iϕ
δνµ , (16)

κ0ϕ
µν ≡

〈Φ0|aνaµ|Φϕ〉

〈Φ0|Φϕ〉
=

uµvµe2iϕ

u2
µ + v2

µ e2iϕ
δνµ̄ , (17)

κϕ0 ∗
µν ≡

〈Φ0|a
†
µa†

ν |Φϕ〉

〈Φ0|Φϕ〉
=

uµvµ

u2
µ + v2

µ e2iϕ
δνµ̄ . (18)

The functional kernel E[ϕ] defined by Eq. (15) has the
exact same form as the strict HFB energy functional
E[ρ, κ, κ∗] given by Eq. (4) except that the SR density
matrix and pairing tensor (5-7) have been replaced by
the transition ones (16-18). Also, the HFB functional is
recovered from Eq. (15) for ϕ = 0, which amounts to con-
necting the SR energy and MR energy kernels through
E[0] = E[ρ, κ, κ∗].

B. Energy in the PNR energy functional approach

Difficulties arise when trying to construct the multi-
reference energy kernel E [ϕ] within a true functional
framework and connect it to the single-reference one. At
present, there is no ab-initio formalism to derive MR en-
ergy functional kernels, of which the SR functional would
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be a special case, and one can only reverse engineer the
procedure and extend the SR energy density functional
to the MR level by analogy with the strict Hamiltonian
case. Based on the strict HFB and PNP-HFB methods
described above, EDF practitioners have used a proce-
dure where E [ϕ] ≡ E [ρ0ϕ, κ0ϕ, κϕ0 ∗] is postulated to be
the MR energy kernel that corresponds to a given SR
functional [17, 18, 20, 21, 25]. In this case, the MR en-
ergy corresponding to particle number restoration takes
the form

EN ≡

∫ 2π

0

dϕ
e−iϕN

2π c2
N

E [ϕ] 〈Φ0|Φϕ〉 , (19)

where E [ϕ] denotes the set of MR energy functional ker-
nels associated with each gauge angle ϕ. A kernel E [ϕ] is
a functional of the bra 〈Φ0| and of the ket |Φϕ〉, in such
a way that EN depends only implicitly on the projected
state [59] and cannot be factorized into a form similar to
the left-hand side of Eq. (14). We will call this procedure
the ”use of the GWT” below, although strictly speaking
it is not the GWT that is applied, but a formal analogy
to the extension at play in the strict Hamiltonian case
when using the GWT that is exploited.

On the one hand, the standard strategy based on the
GWT analogy to define the non-diagonal functional en-
ergy kernel E [ϕ] from the single-reference functional re-
placing SR density matrices by the transition ones guar-
antees that the MR energy functional passes all consis-
tency requirements thought of so far [21]. On the other
hand, this procedure is also at the origin of the diver-
gences and finite steps discussed in Ref. [18, 25]. In Pa-
per I we proposed the general formalism appropriate for
a remedy of these problems. The remedy is valid for any
type of multi-reference calculation but is limited to EDFs
depending on integer powers of the density matrices as is
further elaborated on in Paper III. The goal of the follow-
ing sections is to discuss the origin of the problem further
and to illustrate the general regularization procedure in
its application to PNR.

We note in passing that in PNR and all other MR-
EDF calculations the energy is the only observable that
is currently determined from a functional; all other ob-
servables that are routinely calculated within such an
approach are obtained as matrix elements of the corre-
sponding operator between projected states, such that
they do not contain spurious contributions.

IV. SELF-INTERACTION AND SELF-PAIRING

A. Single-Reference level

1. Self-interaction

Microscopic methods for low-energy nuclear structure
physics usually describe a self-bound nucleus in terms of
nucleons characterized by their experimental mass. In

such an approach, a nucleon should not gain energy by
interacting with itself. Its so-called self-interaction en-
ergy, which can be extracted from the one-orbital limit
of the interaction part of the energy functional Eµ ≡
E
[

ρϕϕ
µµ , 0, 0

]

in the canonical basis, should be strictly
zero. This requirement is, however, not fulfilled for most
functionals used in electronic DFT [5, 6, 29, 60–62] or nu-
clear EDF methods [30]. Energy functionals with higher-
order density dependencies than those discussed here
might also exhibit multi-particle self-energies, not having
the proper n-particle limit of the energy functional [62].

Let us consider the energy Eµ of a single Fermion occu-
pying the canonical state φµ, divided by the probability
ρϕϕ

µµ = v2
µ of this state to be occupied in the auxiliary

state |Φ0〉

Eµ

v2
µ

= tµµ + 1
2 v̄ρρ

µµµµ v2
µ . (20)

This expression shows that a self-interaction arises when-
ever the vertex v̄ρρ is not antisymmetric, v̄ρρ

µµµµ 6= 0,
which is impossible when calculating the exact matrix
element of a Hamilton operator, but happens for gen-
eral energy density functionals. The total one-body self-
interaction energy is obtained summing all individual
contributions Eµ.

2. Self-pairing

Beyond the well-known problem of spurious self-
interactions, there exists a similar problem of spurious
self-pairing processes which may arise whenever superflu-
idity is incorporated into an energy functional in a DFT
or EDF framework. The rationale behind it is that two
Fermions occupying a pair of conjugated states should
not gain extra binding through the pairing interaction by
scattering onto themselves. This requirement constrains
the two-particle limit of the theory and the contribution
of a conjugated pair to the many-body energy. To the
best of our knowledge, the possibility of self-pairing has
never been addressed before.

Self-pairing can be easily identified when isolating the
energy of two Fermions occupying a pair of conjugated
states {φµ, φµ̄} in the canonical basis. We define the
direct interaction energy of such a pair by removing
the one-body contributions defined through Eq. (20) to
Eµµ̄ ≡ E

[{

ρϕϕ
µµ , ρϕϕ

µ̄µ̄

}

,
{

κϕϕ
µµ̄ , κϕϕ

µ̄µ

}

,
{

κϕϕ ∗
µµ̄ , κϕϕ ∗

µ̄µ

}]

and

by dividing the result by the probability PΦ
µµ̄ to occupy

the pair in the auxiliary state |Φ0〉

Eµµ̄ − Eµ − Eµ̄

PΦ
µµ̄

= 1
2

(

v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

v2
µ + v̄κκ

µµ̄µµ̄ u2
µ .

(21)
The probability PΦ

µµ̄ to occupy the pair

PΦ
µµ̄ ≡

〈Φϕ|a
†
µa†

µ̄aµ̄aµ|Φϕ〉

〈Φϕ|Φϕ〉
= v2

µ (22)
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is equal to the probability of each state to be occu-
pied, which is a particularity of fully paired quasipar-
ticle vacua, Eq. (1). In the strict HFB case where
v̄ρρ

µµ̄µµ̄ = v̄ρρ
µ̄µµ̄µ = v̄κκ

µµ̄µµ̄ ≡ v̄µµ̄µµ̄, the two terms on the
r.h.s. of Eq. (21) combine into

Eµµ̄ − Eµ − Eµ̄

PΦ
µµ̄

= v̄µµ̄µµ̄ , (23)

using u2
µ + v2

µ = 1. The same result is obtained in a
strict HF method without explicit treatment of pairing
correlations. The equality of the two-body interaction
energy (23) in the HF and HFB case means that a con-
jugated pair of states {µ, µ̄} does not gain extra direct

binding by scattering onto itself. Genuine pairing cor-
relations originate from scattering to different pairs of
conjugated states and back.

For most of the standard SR energy density function-
als used for nuclear structure calculations, however, the
three terms in Eq. (21) can in general not be recom-
bined into a single one because the vertices entering Eρρ

and Eκκ are not related, either by construction or due to
approximations. Consequently, the direct interaction en-
ergy of the conjugated pair is not equal to its zero-pairing
limit as it should be, which gives rise to a spurious self-
pairing interaction where one has a contribution to the
energy functional from the scattering of a pair of conju-
gated states onto itself.

3. Further discussion

In a composite system consisting of two particle species
such as atomic nuclei, the like-particle self-interaction for
a given particle species is obtained as the one-particle
limit of the interaction energy for this particle species,
while keeping the particle number of the other parti-
cle species unchanged. Otherwise self-interactions in the
terms that couple the two particle species will be missed.

The existence of spurious self-interactions was first
recognized in Kohn-Sham DFT for electronic systems
[29]. In this context, the construction of self-interaction-
free functionals has been studied in some detail, see
Refs. [6, 29, 60–62] and references given therein. It
turns out to be not trivial at all knowing that the stan-
dard correction method is formulated within the frame
of so-called orbital-dependent energy density function-
als [63, 64] and significantly complexifies the calcula-
tions through the modification of both the total energy
and the single-particle equations of motion. The (un-
known) exact Hohenberg-Kohn functional of DFT is of
course self-interaction free. The spurious terms arise
when constructing approximate energy functionals that
are tractable for the use in actual calculations; i.e. self-
interaction is one of the prices to pay for replacing the
exact many-body problem by a much simpler set of cou-
pled one-body problems. It is of course desirable to work
within a theory that conserves the Pauli principle, but

its restoration is mandatory only when its violation af-
fects observables of interest on a scale comparable with
or larger than the precision desired and reachable within
a given method. The situation is thus similar to the
necessity to restore other broken symmetries. As a mat-
ter of fact, the merits of self-interaction corrected energy
functionals for electronic DFT are still debated from a
phenomenological point of view, as they improve some
observables, but at the same time degrade others when
compared to uncorrected functionals; see Ref. [62] and
references given therein.

The same remarks apply to self-pairing. Both self-
interaction and self-pairing processes are actually rooted
in a violation of the Pauli principle at the level of the
two-body (or even higher-order) density matrix in the
definition of the energy functional. It is important to
stress that they are solely a shortcoming of common en-
ergy functionals and not of the auxiliary states of refer-
ence used, as the latter are set up as antisymmetrized
product states. In particular, all observables other than
the energy, which are customarily calculated as expecta-
tion values of the corresponding operators, do not exhibit
any explicit spurious contributions, although they might
be indirectly affected through the use of density matri-
ces that are determined from the solution of a variational
equation that uses an energy functional containing spu-
rious contributions as an input.

In the nuclear context, the possible contamination
of nuclear energy density functionals by spurious self-
energies has been noticed before [1, 30, 65, 66], but was
never studied in quantitative detail so far.

It has to be stressed that using self-interaction and self-
pairing free energy functionals is not per se equivalent to
the use of an effective Hamilton operator. Indeed, self-
interaction, as usually characterized, and self-pairing, as
presently defined, probe only the exchange symmetry of
a particle in the canonical basis with itself and its con-
jugate partner, not the exchange symmetry between all
particles. Asking for a full restoration of the Pauli prin-
ciple necessarily leads to using a genuine Hamilton oper-
ator [30].

B. Multi-Reference level

The appearance of self-interaction and self-pairing pro-
cesses persists to MR calculations whereas new spurious
contributions particular to the MR level arise from the
construction of non-diagonal energy kernels. The ex-
tension of the self-interaction and self-pairing concepts
to the multi-reference framework, however, is not at all
straightforward. For instance the very notion of ”occu-
pied” orbitals is ill-defined for transition density matri-
ces between arbitrary quasiparticle vacua. In the case of
particle-number restoration, the situation is significantly
simplified owing to the fact that all vacua entering the
PNR energy (19) share the same canonical single-particle
basis, which consequently also is the canonical basis of
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the Bogoliubov transformation linking any pair of these
vacua. As demonstrated in Paper I it is precisely the
latter canonical basis of the transformation connecting a
given pair of mixed vacua that must be used to mean-
ingfully identify self-interaction and self-pairing contribu-
tions to the corresponding multi-reference energy kernel.

1. ”Naive” extension of self-interaction

In the context of PNR multi-reference calculations, the
energy of a single Fermion occupying the canonical or-

bital φµ divided by the probability ρΨN

µµ to occupy that

orbital in the projected state |ΨN〉 is given by

EN
µ

ρΨN

µµ

= tµµ + 1
2 v̄ρρ

µµµµ

1

ρΨN

µµ

∫ 2π

0

dϕ
e−iϕN

2π c2
N

v4
µ e4iϕ

u2
µ + v2

µ e2iϕ

∏

ν>0

ν 6=µ

(u2
ν + v2

ν e2iϕ) . (24)

The one-body density matrix ρΨN

of the projected state

ρΨN

µµ ≡
〈ΨN |a†

µaµ|Ψ
N〉

〈ΨN |ΨN〉
=

∫ 2π

0

dϕ
e−iϕN

2π c2
N

ρ0ϕ
µµ 〈Φ0|Φϕ〉 = v2

µ

∫ 2π

0

dϕ
e−iϕN

2π c2
N

e2iϕ
∏

ν>0

ν 6=µ

(u2
ν + v2

ν e2iϕ) , (25)

is diagonal in the canonical basis of the HFB state it is
projected from, which means that the canonical basis of
the underlying HFB state is also the natural basis of the
projected one.

As for the SR case, the energy (24) reduces to kinetic
energy when antisymmetric vertices v̄ρρ are used. How-
ever, an important aspect specific to the MR case is that
the integrand appearing in Eq. (24) contains a potential
(simple) pole for ϕ = π/2 and v2

µ = u2
µ = 1/2, i.e. when

the state µ is located at the Fermi level and is not more
than twofold degenerate in terms of occupation numbers

v2
µ. If the states present a higher degree of degeneracy,

an additional factor in the norm overlap will cancel out
the dangerous denominator.

2. ”Naive” extension of self-pairing

In multi-reference EDF calculations, the direct inter-
action energy of a conjugated pair as defined above takes
the form

EN
µµ̄ − EN

µ − EN
µ̄

PΨN

µµ̄

=

∫ 2π

0

dϕ
e−iϕN

2π c2
N PΨN

µµ̄

[

1
2

(

v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

v2
µe2iϕ + v̄κκ

µµ̄µµ̄ u2
µ

] v2
µ e2iϕ

u2
µ + v2

µ e2iϕ

∏

ν>0

ν 6=µ

(u2
ν + v2

ν e2iϕ) , (26)

where

PΨN

µµ̄ =
〈ΨN |a†

µa†
µ̄aµ̄aµ|Ψ

N 〉

〈ΨN |ΨN〉
= ρΨN

µµ (27)

is the occupation probability of the pair (µ, µ̄) in the pro-

jected HFB state. The probability PΨN

µµ̄ is equal to the

probability ρΨN

µµ of each state to be occupied as we assume
the underlying SR state to be a fully-paired quasiparticle
vacuum with even number parity.

Using a genuine Hamilton operator, for which v̄ρρ
µµ̄µµ̄ =

v̄ρρ
µ̄µµ̄µ = v̄κκ

µµ̄µµ̄ ≡ v̄µµ̄µµ̄ the matrix elements entering
Eq. (26) can be recombined in such a way that the poten-
tial pole disappears [18] and that the zero-pairing limit
is again recovered

EN
µµ̄ − EN

µ − EN
µ̄

PΨN

µµ̄

= v̄µµ̄µµ̄ . (28)
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In the EDF formalism, however, the recombination of
terms in Eq. (26) that gives Eq. (28) cannot be achieved
anymore. In this case, the integrand in Eq. (26) contains
the same kind of pole as the integrand in Eq. (24).

C. Poles versus ”true” self-interaction and

self-pairing

In the previous section, we have shown how the self-
interaction and self-pairing persist to the multi-reference
EDF framework in the case of particle-number restora-
tion. What cannot be deduced from such an exten-
sion of the single-reference case, Eqns. (20) and (21), to
the multi-reference case, Eqns. (24) and (26), is if self-
interaction and self-pairing processes are actually respon-
sible for the poles. Indeed, recalling our general analysis
of possible spurious terms in MR energy density func-
tionals from Paper I, there are in fact two distinct levels
of spuriosity contained in Eqns. (24) and (26), which are
of different origins.

The first level is a consequence of using effective ver-
tices that are not antisymmetrized, and/or that are dif-
ferent on the particle-hole and particle-particle channels.
In the MR framework, such spurious contributions ap-
pear in the diagonal energy kernels, which are equivalent
to the self-interaction and self-pairing contributions to
the SR energy density functional discussed in Sec. IVA,
and also enter the off-diagonal kernels. Neither contain
poles; hence they cannot be at the origin of the diver-
gences and steps which are the target of the present work.

In addition to that, a second level of spuriousity arises
as a consequence of constructing non-diagonal energy
kernels in analogy with the generalized Wick theorem,
although strictly speaking the GWT applies only to ma-
trix elements of operators. As a matter of fact, and as
demonstrated in Paper I, using a SWT-motivated proce-
dure rather than a GWT-motivated one does not lead to
the second level of spuriosity. Taking the example of a
bilinear EDF, the use of the GWT instead of the SWT
gives an additional contribution of the form

EN
CG ≡

∫ 2π

0

dϕ
e−iϕN

2π c2
N

(

Eρρ
CG[ϕ] + Eκκ

CG[ϕ]
)

〈Φ0|Φϕ〉 (29)

=
∑

µ>0

[

1
2

(

v̄ρρ
µµµµ + v̄ρρ

µ̄µ̄µ̄µ̄ + v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

− v̄κκ
µµ̄µµ̄

]

(uµvµ)
4
∫ 2π

0

dϕ
e−iϕN

2π c2
N

(

e2iϕ − 1
)2

u2
µ + v2

µ e2iϕ

∏

ν>0

ν 6=µ

(u2
ν + v2

ν e2iϕ)

that is absent in a SWT-motivated procedure and which contains a pole clearly similar to those discussed in connection
with Eqns. (24-26). Having identified the contribution (29) caused by the use of the GWT, we defined in Paper I the
regularized MR energy and energy kernels, respectively, as

EN
REG ≡ EN − EN

CG , (30)

EREG[ϕ] ≡ E [ϕ] − ECG[ϕ] . (31)

Removing EN
CG from Eqns. (24) and (26), one obtains the ”true” MR self-interaction

EN
SI ≡

∫ 2π

0

dϕ
e−iϕN

2π c2
N

Eρρ
SI [ϕ] 〈Φ0|Φϕ〉

=
∑

µ>0

1
2

(

v̄ρρ
µµµµ + v̄ρρ

µ̄µ̄µ̄µ̄

)

∫ 2π

0

dϕ
e−iϕN

2π c2
N

[

v4
µ

(

uµ
2 + vµ

2e2iϕ
)

+ 2 u2
µv4

µ(e2iϕ − 1)
]

∏

ν>0

ν 6=µ

(u2
ν + v2

ν e2iϕ) . (32)

and the ”true” self-pairing contribution

EN
SP ≡

∫ 2π

0

dϕ
e−iϕN

2π c2
N

Eκκ
SP [ϕ] 〈Φ0|Φϕ〉

=
∑

µ>0

[

v̄κκ
µµ̄µµ̄ − 1

2

(

v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

]

∫ 2π

0

dϕ
e−iϕN

2π c2
N

[

u2
µ v2

µ

(

uµ
2 + vµ

2e2iϕ
)

+ (u4
µv2

µ − u2
µv4

µ)
(

e2iϕ − 1
)

]

×
∏

ν>0

ν 6=µ

(

u2
ν + v2

ν e2iϕ
)

. (33)

both of which belong to the first level of spuriosity and do not contain any dangerous poles. The expressions
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FIG. 1: (Color online) Particle-number restored deformation
energy surface of 18O calculated with SLy4 and a density-
dependent pairing interaction and the corresponding single-
particle spectra of protons and neutrons as a function of the
axial quadrupole deformation for L = 5 and 199 discretiza-
tion points of the integral over the gauge angle (lowest panel).
There are clear anomalies that appear when either a proton or
neutron single-particle level crosses the Fermi energy. The di-
mensionless quadrupole deformation β2 is defined in Eq. (66).

(32) and (33) could also have been obtained directly from
Eqns. (79) and (80) of Paper I.

D. Impact of the poles on PNR energies

In the previous section, we demonstrated that the spu-
rious contribution EN

CG contains poles. Figure 1 illus-
trates, through a realistic calculation of the particle-
number restored deformation energy surface of 18O, the
impact of such poles for a functional containing a frac-
tional power of the density matrix. The SLy4 parameter-
ization of the standard Skyrme EDF is used in connec-
tion with a density-dependent pairing energy functional,
which was used in many MR calculations before [67–73].
In practice, the integral over the gauge angle appearing
in Eq. (19) is discretized into a sum using the Fomenko
expansion, as will be explained in Sec. VI B below. It is
important to stress that all observables calculated as op-

erator matrix elements, e.g. particle number, quadrupole
moment, radius, etc., are converged using five integra-
tion points. The particle-number restored energy func-
tional, however, does not converge. Instead, one observes
the development of several localized divergences as one
increases the precision of the calculation, which appear
exactly where neutron or proton levels cross the Fermi en-
ergy; i.e. where their occupation probability is v2 = 0.5.
In spite of the evidence for their appearance presented in
Refs. [18, 23–25], the divergences remained undetected
so far in our PAV calculations, because on the one hand
the appearance of the divergence requires a number of in-
tegration points far above the one used in practical cal-
culations, and beyond what is tractable in connection
with other projections and mixing of different deforma-
tions, and because on the other hand the divergences are
sufficiently localized in deformation space that the area
obviously affected by the pathology is smaller than the
typical distance of states commonly used when calculat-
ing energy surfaces and when mixing states with different
deformations.

At this point, three questions arise (1) do the diver-
gences seen in Fig. 1 constitute the only pathological
manifestation of the poles? (2) Do divergences mani-
fest for any type of functional, i.e. irrespective of the fact
that it is bilinear, trilinear or contain non-integer powers
of the density matrices? (3) Is the spurious contribution
isolated in Eq. (29) responsible for all problems associ-
ated with the poles; i.e. would removing it from PNR
energy kernels properly regularize the MR EDF calcu-
lation? Answering theses questions will be the aim of
Sec. VI. Before discussing the results obtained using the
method proposed in Paper I to regularize MR energy
kernels, we discuss the pathological manifestations of the
poles in more detail through a complex plane analysis,
following Ref. [25].

V. COMPLEX PLANE ANALYSIS

The integral over the real gauge angle can be reformu-
lated as a contour integral in the complex plane, which
allows the analysis of the energy functional in terms of
its poles within the integration contour [25]. In fact,
particle-number projection was first introduced through
such complex contour integrals [57, 74]. It was only af-
ter Fomenko [75] demonstrated that a simple trapezoidal
rule gives a very efficient discretization of integrals over
the gauge angle that Eq. (11) became the standard way
to formulate and evaluate PNR observables.

A. Analytic continuation

To that aim, one introduces the complex variable z =
eiϕ. As a result, quantities used in the PNR method
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z+µ = +i
|uµ|

|vµ|

z−µ = −i
|uµ|

|vµ|

eiϕN̂

eηN̂

FIG. 2: Schematic view of the analytical structure of the tran-
sition densities defined in Eqs. (38-40) and of the PNR func-
tional energy kernel E [ϕ] in the complex plane. Poles marked
with filled circles are within the standard circular integration
contour of radius R = 1, while those outside are marked with
open circles. The cross marks the location of the SR energy

functional at z = 1. The operator eiϕN̂ produces a rotation

in gauge space, while eηN̂ is a shift transformation as defined
in Eq. (45).

involve an integration over the unit circle C1 (|z| = 1) 1

|ΨN〉 =

∮

C1

dz

2iπcN

1

zN+1
|Φz〉 , (34)

EN =

∮

C1

dz

2iπc2
N

E [z]

zN+1
〈Φ1|Φz〉 , (35)

c2
N =

∮

C1

dz

2iπ

1

zN+1
〈Φ1|Φz〉 , (36)

whereas the overlap now reads

〈Φ1|Φz〉 =
∏

µ>0

(

u2
µ + v2

µ z2
)

. (37)

Finally, the transition density matrix and pairing tensor
extended to the complex plane become

ρ1z
µν =

v2
µ z2

u2
µ + v2

µ z2
δνµ , (38)

κ1z
µν =

uµvµ

u2
µ + v2

µ z2
δνµ̄ , (39)

κz1 ∗
µν =

uµvµ z2

u2
µ + v2

µ z2
δνµ̄ . (40)

1 We abusively replace the gauge angle ϕ by the complex variable
z in all our expressions; i.e. SR states characterized by the gauge
angle ϕ, |Φϕ〉, are extended into |Φz〉 to denote SR states any-
where on the complex plane. In particular, the unrotated SR
state, denoted as |Φ0〉 when using ϕ as a variable, is written as
|Φ1〉 when using z as a more general variable.

B. Energy functional kernels

Taking advantage of the Cauchy residue theorem, go-
ing to the complex plane allows the calculation of all
quantities of interest in terms of poles of the integrand
located inside the integration contour. For the norm

c2
N = Res(0)

[

1

zN+1

∏

µ>0

(

u2
µ + v2

µ z2
)

]

(41)

or any other operator matrix elements between projected
states, only the pole at z = 0 contributes.

The situation is different for the PNR energy as addi-
tional poles at finite z±µ = ±i|uµ|/|vµ| enter the energy
kernel E [z]. Thus, Eq. (35) takes the form

EN =
∑

zi=0,|z±
µ |<1

1

c2
N

Res(zi)

[

E [z]

zN+1

∏

µ>0

(

u2
µ + v2

µz2
)

]

(42)

with contributions from the pole at the origin and from
all pairs of ”hole-like” poles at z±µ . The situation is
schematically depicted on Fig. 2. The location of the
pole associated to a given pair (µ, µ̄) moves along the
imaginary axis as the occupation v2

µ changes with defor-
mation. When the corresponding pole crosses the unit
circle, either entering or leaving the Fermi sea, the in-
tegrand is non-analytical on the integration contour and
the integral diverges.

The point has now come to realize that the divergences
constitute the most obvious part of the problem, but do
not contain the entire problem. As can be seen from
Eq. (42), the poles at |z±µ | < 1 contribute to the en-
ergy when using an energy functional that contains self-
interactions and self-pairing. On the other hand, only
the pole at the origin contributes in the strict PNP-
HFB/Hamiltonian framework as the poles at |z±µ | do not
exist in this case. Consequently, one has to ask the ques-
tion whether or not the contributions from the poles at
0 < |z±µ | < 1 to the projected energy are physical, in par-
ticular when realizing that the contribution of a given
pole can be many orders of magnitude larger than the
total energy gain from PNR [25]. In addition, a pole
at finite |z±µ | entering or leaving the integration circle
does not only provoke a divergence but also provides the
PNR energy with a finite step after the crossing is com-
pleted [25]. Looking carefully at the potential energy
surface obtained using L = 199 integration points, such
a step can be seen in Fig. 1; i.e. compare the energy be-
fore and after the crossings at β2 = +0.22 and β2 = −0.3.
As a matter of fact, the binding energy jumps from one
potential energy surface to another.

C. Spurious contributions

In Section IV C, we have identified EN
CG as the only

possible source of spurious poles. In order to obtain a
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deeper insight to its content, we rewrite Eq. (29) as

EN
CG

≡

∮

C1

dz

2iπc2
N

ECG [z]

zN+1

∏

µ>0

(u2
µ + v2

µ z2)

=
∑

µ>0

[

1
2 (v̄ρρ

µµµµ + v̄ρρ
µ̄µ̄µ̄µ̄ + v̄ρρ

µµ̄µµ̄ + v̄ρρ
µ̄µµ̄µ) − v̄κκ

µµ̄µµ̄

]

×
(uµvµ)4

2iπc2
N

∮

C1

dz

zN+1

(

z2 − 1
)2

u2
µ + v2

µ z2

∏

ν>0

ν 6=µ

(u2
ν + v2

ν z2) ,

(43)

and define in passing the spurious contribution ECG [z]
to the MR energy kernel over the entire complex plane.
From Eq. (43), the spurious contribution of each pole to
the PNR energy can be calculated. As for the total en-
ergy, the poles of the integrand are located at z0 = 0 and
z±µ = ±i|uµ|/|vµ|. This has the important consequence

that removing EN
CG from EN does not only extract the

contribution of the poles at |z±µ | < 1 but also a spurious
contribution of each conjugated pair (µ, µ̄) to the physi-
cal pole at z0 = 0. The latter could not have simply been
guessed from the analysis of the analytical structure of
E [z] in the complex plane. As a matter of fact, the spu-
rious contribution from the pole at z0 = 0 is absolutely
essential for the internal consistency of EN

CG. On the one
hand, it was shown in Ref. [25] that the energy associ-
ated with a single pole at |z±µ | < 1 can be gigantic (away
from where it might be divergent). On the other hand,
the total spurious energy hidden in a PNR method can-
not be larger than the energy gain from particle number
restoration itself, which is on the order of at most a few
MeV. It is only the combined contribution from the poles
at z0 = 0 and z±µ , which nearly cancel each other, that
will give reasonable values to the total spurious energy
EN

CG as will be exemplified below.
The residue for the pair of poles at |z±µ | contained in

Eq. (43) can be evaluated analytically

ReN
CG(z±µ )

≡
∑

zi=z±
µ

Res(zi)





(

z2 − 1
)2∏

ν>0

ν 6=µ
(u2

ν + v2
ν z2)

v2
µ zN+1

(

z − i
|uµ|
|vµ|

)(

z + i
|uµ|
|vµ|

)





= −
1

v6
µ

(

vµ

uµ

)N+2
1 + (−1)N

2 iN

∏

ν>0

ν 6=µ

u2
νv2

µ − v2
νu2

µ

v2
µ

. (44)

Note that ReN
CG(z±µ ) is zero if projecting on an odd par-

ticle number N as the underlying reference state (1) has
been chosen to have an even number-parity quantum
number [39, 58]. The generalization of the present dis-
cussion to the case one- (or 2n + 1) quasiparticle states
with an odd number-parity is straightforward, but not
important for the purpose of this paper.

The total contribution from the pair of poles 0 <
|z±µ | < 1 to the PNR energy is then obtained by re-

placing the integral in Eq. (43) by 2iπReN
CG(z±µ ), where

ReN
CG(z±µ ) is given by Eq. (44). We will discuss the in-

dividual contributions from the poles in Sec. VI below.
Note that calculating the residue of the pole at z0 is much
more involved because it is a pole of order N + 1. Its
residue can in fact be calculated analytically through a
recursive formula, which, however, involves a sum over
such a large number of terms that it is of no practical
use and is not reported here. In any case, one can access
the spurious contribution from the pole z0 by subtract-
ing the analytic expression of Eq. (44) from a numerical
evaluation of the full expression given by Eq. (29).

D. Properties under shift transformation

The interpretation of the poles at z±µ 6= 0 becomes
clearer when looking at the properties of the PNR energy
functional under a so-called shift transformation [25]. In
the present paper, we choose a slightly different definition
of the shift transformation from the one used in Ref. [25]

|Φϕ−iη〉 ≡ eηN̂ |Φϕ〉 , (45)

such that the shift transformation operator e(η+iϕ)N̂ used
in [25] is the product of ours (45) and a rotation in gauge
space2. In contrast to a gauge-space rotation that is
unitary, the shift transformation (45) is non-unitary and
changes the norm of the product state.

In the complex plane, the shift transformation (45)
corresponds to a radial shift of z from z = eiϕ to z′ =
eη eiϕ, see Fig. 2. Thus, projecting a shifted HFB state
on particle number amounts to changing the radius of
the integration circle from R = 1 to R = eη [25]

P̂N |Φϕ−iη〉 =

∮

C1

dz′

2iπ

1

(z′)N+1
|ΦRz′〉

=

∮

CR

dz

2iπ

RN

zN+1
|Φz〉 , (46)

where we have made the substitution z′ = eiϕ in the first
line and the substitution z = Rz′ in the second one. Both
expressions will turn out to be useful below. The overlap
between the non-normalized projected SR state and its
counterpart shifted along the real axis is given by

c2
N (R) ≡ 〈Φ1|P̂

N |ΦR〉 = c2
N RN (47)

with c2
N as defined through Eq. (12); i.e. c2

N ≡ c2
N (1).

All normalized projected matrix elements are shift in-
variant if the operator Ô in question commutes with N̂ .
Just as the exact ground-state energy, its approximation

2 Starting from a circular contour, the additional rotation in the
definition of Ref. [25] does not make any difference. The situation
would have been different if we had started from a non-circular
contour.
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obtained through the particle-number restored expecta-
tion value of the Hamilton operator is shift invariant. On
the other hand, this is not the case for standard particle-
number restored energy density functionals [25]. The vio-
lation of shift invariance is obviously a consequence of the
presence of the poles at finite z±µ contained in the PNR
energy kernel constructed on the basis of the GWT. For
a given spectrum of poles z±µ the energy EN changes by
a finite quantity whenever the integration circle crosses a
pair of poles |z±µ | in the course of a shift transformation.
As a result, the PNR-EDF is shift invariant only over a
finite range of values of the shift parameter η [25]. This
result clearly points to the unphysical nature of these
poles.

E. Sum rules

One might wonder where the energy that is
added/removed when crossing a pole with the integra-
tion contour comes from/goes to. In the present section,
two different sum rules involving PNR energies EN ex-
tracted from a given SR functional are carefully derived
and discussed to answer such a question.

1. Radius-weighted sum rule

As it is introduced in Ref. [25], we first discuss
the characteristics of the radius-weighted sum rule
∑

c2
N (R) EN (R), although we already insist here that the

physical sum rule of interest is the non-radius-weighted
one discussed in Sec. VE2 below. The number R ap-
pearing in the sum rule is taken to be real even though it
is possible to formulate the sum rule using an arbitrary
complex number of norm R [25]. Our conclusions will be
insensitive to this detail.

First, let us recall how such sum rules arise in the
operator- and wave-function-based context. Inserting
the complete set of normalized particle-number projected
states3

∑

N≥0

|ΨN 〉〈ΨN | =
∑

N≥0

P̂N = 1 (48)

into an unprojected shifted matrix element of an operator

3 The fact that one does not need to sum over N < 0 can be seen
as a consequence of the fact that |ΨN 〉 = 0 for N < 0 as a result
of the disappearance of the physical pole at z = 0 in the contour
integral of Eq. (34). Note that the normalized projected-state on
N = 0 is |Ψ0〉 = |0〉.

Ô that commutes with N̂ gives

〈Φ1|Ô|ΦR〉 = 〈Φ1|ÔeηN̂ |Φ1〉

=
∑

N≥0

〈Φ1|ÔeηN̂ |ΨN 〉 〈ΨN |Φ1〉

=
∑

N≥0

c2
N (R)ON , (49)

where we have used that eηĤ |ΨN 〉 = RN |ΨN〉 and define

ON = 〈Φ1|Ô|ΨN〉/〈Φ1|Ψ
N〉. Equation (49) expands the

shifted SR matrix element O[R] ≡ 〈Φ1|Ô|ΦR〉 in terms of
average values ON of the operator in all normalized pro-
jected states. Applied to the Hamilton operator, Eq. (49)
reads

E[R] =
∑

N>0

c2
N(R)EN , (50)

and provides for η = 0 (R = 1) that the strict HFB
energy decomposes into strict PNP-HFB energies (with
N > 0) weighted by the probability to find the normal-
ized projected states into the SR state. In Eq. (50),
the sum could be further reduced to N > 0 as the
contribution from the term N = 0 is strictly zero, i.e.
c2
0 E0 = E[z = 0]

∏

ν>0 uν = 0. Such a result relies on
the fact that only the physical pole at z = 0 contributes
to the integral providing EN .

Let us now come to the EDF context and lay out some
specificities that are crucial to provide a meaningful dis-
cussion of sum rules. (i) In Eq. (50), it was not neces-
sary to specify the integration contour used to calculate
EN as the latter is shift invariant. In the EDF context
where the shift invariance might be broken, it is manda-
tory to specify the contour employed. Consequently, the
notation EN (R) is used whenever necessary to character-
ize that a circular contour CR of radius R is employed
to calculate PNR energies. (ii) There is no equivalent
to ”inserting a complete set of states” in the EDF con-
text as one directly postulates the PNR energy under the
form of a functional built from one-body transition den-
sity matrices and integrated over the gauge angle, and
not from the expectation value of a Hamilton operator in
projected many-body wave functions. As a consequence,
the existence of a sum rule similar to the one discussed for
operators is neither obvious nor trivial. By contrast to
the above derivation, one has to start from the weighted
sum over PNR energies and see if and how it recombines
in the same manner as for an operator matrix element.
To obey a sum rule analogous to the one provided by
Eq. (50) can thus be demanded as a consistency require-
ment for MR energy density functionals. To recover the
SR energy from such a sum rule, it is a necessary condi-
tion (but not sufficient) that the MR energy kernel E [z]
is set up such that it gives back the SR energy functional
E [ρ, κ, κ∗] for z = 1, as assumed throughout this paper.
(iii) The sum rule considered in the present section actu-
ally differs from the one discussed in Ref. [25]. Indeed, it
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is mandatory in the EDF context to make the sum run-
ning over both positive and negative ”particle numbers”.
As will be shown below, the latter is crucial to establish
the expected sum rule when individual particle-number
restored energies EN are not shift invariant, i.e. when MR
energy kernels E [z] possess spurious poles at finite z±µ . In-

deed, the product c2
N (R) EN (R) is different from zero in

this case for N ≤ 0 because, although the physical pole
at z = 0 disappears from the integrand as it should, the
poles at finite z±µ contribute. This is certainly the most
direct proof of the non-physical nature of such poles and
non-regularized energy functionals. In the context of the
real-space derivation of Ref. [25], obtaining the appropri-
ate sum rule calls for using the correct Fourier decompo-
sition of the periodic delta function over all irreducible
representations of U(1) including those characterized by

negative integers N ; i.e.,
∑+∞

N=−∞ e−iϕN = 2π δ2π(ϕ). In
the following we proceed in the complex plane to estab-
lish the needed sum rules.

First, the change of variable z = R z′ is performed in
order to recover an integration over the unit circle

+∞
∑

N=−∞

c2
N (R) EN (R) =

+∞
∑

N=−∞

∮

C1

dz

2iπ

E [Rz]

zN+1
〈Φ1|ΦRz〉 .

(51)
We recall that EN (R) is proportional to 1/c2

N(R),
Eq. (19). As a consequence, c2

N (R) = 0 alone is not a
sufficient condition that the contribution of a given N
to the l.h.s. of Eq. (51) vanishes, as c2

N (R)EN (R) might
remain finite. We will come back to this below.

To invert the summation and the integral in Eq. (51)
and perform the summation explicitly, the power series
must be (uniformly) converging on the integration con-
tour. To ensure this property, one has to separate the
sums over positive and negative N and use the (local)
shift invariance of EN to scale the integration radius ap-
propriately in each of the two terms thus generated. Us-
ing two infinitesimal shift transformations characterized
by η+ > 0 (η− < 0) for N > 0 (N ≤ 0), the right-hand-
side of Eq. (51) splits into two geometric series converging
separately and uniformly on the corresponding integra-
tion contours C1+ (C1−). Performing the summation of
both geometric series, one obtains

+∞
∑

N=−∞

c2
N (R) EN (R)

=

[

∮

C
1+

−

∮

C
1−

]

dz

2iπ

E [Rz]

z(z − 1)
〈Φ1|ΦRz〉 . (52)

The physical pole at z = 0, which is of order N + 1
in EN , has transformed into two simple poles at z = 0
and z = 1 in both integrals in Eq. (52). Note in passing
that the pole at z = 0 would have not appeared if we had
grouped the component N = 0 to the sum over positive
numbers. The pole at z = 1 is on the unit circle and is
thus located inside of C1+ , but outside of C1− . Thus, it
contributes to the first integral only in Eq. (52) and pro-
vides the sum rule with the contribution E [R] 〈Φ1|ΦR〉
which represents the transition kernel involving the orig-
inal HFB state |Φ1〉 and the state |ΦR〉 shifted along the
real axis to z = R.

In the strict PNP-HFB method, this is the only con-
tribution to Eq. (52) as the residue of the simple pole
at z = 0, which corresponds to the contribution from the
N = 0 component, is zero for the reason explained earlier.
In any case, such a pole contributes to both integrals in
Eq. (52) such that any finite residue would have canceled
out anyway. Thus, the sum rule (50) is recovered.

The question is whether this still holds in the EDF
context As a matter of fact, the contribution from the
poles of E [z] at z±µ depends on the original contour CR

and on the infinitesimal shift transformations leading to
Eq. (52). If the shift transformations are such that no
pole appears in between the two contours C1− and C1+ ,
all poles with |z±µ | < R contribute to both integrals and

cancel out in Eq. (52) whereas all poles with |z±µ | > R
do not contribute to either of them. This proves that,
except for the ill-defined case of a pair of poles sitting on
the original integration circle CR, one can always perform
two infinitesimal shift transformations to prove that

+∞
∑

N=−∞

c2
N (R) EN (R) = E [R] 〈Φ1|ΦR〉 . (53)

Equation (53) thus expresses that the expected sum rule
is found to be valid, even for contaminated and yet un-
corrected EDFs, i.e. using energy kernels constructed on
the basis of the GWT, at the price of including the con-
tributions from unphysical components (N ≤ 0).

Applying the same derivation as above to the spurious
contribution isolated in Eq. (43), one obtains
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+∞
∑

N=−∞

c2
N (R) EN

CG(R) = ECG[R] 〈Φ1|ΦR〉 (54)

=
(

R2 − 1
)2∑

µ>0

[

1
2

(

v̄ρρ
µµµµ + v̄ρρ

µ̄µ̄µ̄µ̄ + v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

− v̄κκ
µµ̄µµ̄

] (uµ vµ)
4

u2
µ + R2 v2

µ

∏

ν>0

ν 6=µ

(

u2
ν + R2 v2

ν

)

,

which is zero for R = 1 as z = 1 is the only point in the
complex plane where the GWT-related spurious contri-
butions to the MR energy kernel is zero.

It is crucial to analyze further the cancellation of the
contribution of spurious poles in Eqs. (52-53). Indeed,
such a cancellation relies on the original summation over
both positive and negative ”particle numbers” in the def-
inition of the sum rule. If one sums over positive particle
numbers only, all pairs of poles situated inside CR con-
tribute to the sum rule. This is puzzling as it is clearly
unphysical to consider negative ”particle numbers”. In-
deed, one necessarily has c2

N (R)EN (R) = 0 for N ≤ 0
when employing a genuine Hamiltonian. However, the
product c2

N (R) EN (R) is different from zero for N ≤ 0
if E [z] possesses poles at finite |z±µ | < R. This is to our
opinion the most direct way of stating the non-physical
nature of those poles. In any case, and as proven above,
one can at least recover a sum rule for uncorrected func-
tionals at the price of summing over both positive and
negative particle numbers. If summing over positive val-
ues only, one obtains, using our example of a bilinear
functional,

∑

N>0

c2
N (R) EN (R) − E [R] 〈Φ1|ΦR〉

=
∑

|z±
µ |<R

Res(z±µ /R)

[

E [Rz]

z(z − 1)

∏

µ>0

(

u2
µ + v2

µR2z2
)

]

=
∑

µ>0

|z±
µ |<R

[

1
2

(

v̄ρρ
µµµµ + v̄ρρ

µ̄µ̄µ̄µ̄ + v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

− v̄κκ
µµ̄µµ̄

]

×
u2

µ R2 v2
µ

u2
µ + R2 v2

µ

∏

ν>0

ν 6=µ

u2
νv2

µ − v2
νu2

µ

v2
µ

, (55)

which shows that the physical sum rule (N > 0) is broken
by a finite amount that relates directly to the presence
of spurious poles at finite z±µ inside the original integra-
tion circle CR. Note again that the simple pole at z = 0
does not contribute as its residue is zero. Equation (55)
proves that the sum rule derived in Ref. [25] is incor-
rect for the cases of interest. In particular, computing
Eq. (55) for R = 1 provides the non-zero amount by
which the decomposition of the SR EDF into its physi-

cal PNR components (N > 0) is broken, already for the
standard integration circle. However, as we will show in
Sec. VI D4 below, the contribution from N ≤ 0 is sev-

eral orders of magnitude smaller than the contribution
from N > 0 in realistic cases, such that it might pass as
numerical noise to the unsuspecting eye.

Subtracting Eq. (54) from (53) provides the quan-

tity
∑+∞

−∞ c2
N (R) [EN (R) − EN

CG(R)] by which the sum
rule is modified when regularizing the MR energy ker-
nels. One observes that the non-physical components
are zero, i.e. c2

N (R) EN
REG(R) = 0 for N ≤ 0, and that

the sum rule matches the regularized kernel at z = R
EREG[R] 〈Φ1|ΦR〉.

2. Non-radius-weighted sum rule

The sum rule (53) is of particular interest when the
unit circle C1 is used as an integration contour to define
PNR energies. Indeed, Eq. (53) reduces in this case to

+∞
∑

N=−∞

c2
N EN (R=1) = E [z=1] = E [ρ, κ, κ∗] , (56)

which expresses that the SR EDF decomposes into PNR
energies obtained for all possible ”particle numbers”
N ≷ 0. This decomposition actually relies on the (re-
quired) connection between the SR EDF and the MR en-
ergy functional kernel; i.e. E [z = 1] = E [ρ, κ, κ∗]. Equa-
tion (56) is valid prior to any regularization of the PNR
energy kernel, as long as the sum runs over both positive
and negative particle numbers. The null sum rule (54)
at R = 1 shows that regularizing the PNR EDF method
through the removal of EN

CG from EN consists, for this ra-
dius, of reshuffling contributions among different particle-
number restored energies, in such a way that the decom-
position of the SR EDF into its physical PNR compo-
nents (N > 0) is fulfilled. Note that the regularized sum
rule matches the SR EDF precisely because the regular-
ization does not modify the energy kernel E [z] for z = 1.

Still, the radius-weighted sum rule considered in
Sec. VE2 and in Ref. [25] does not allow us to study the
shift invariance of Eq. (56), which is the real question
of interest. Indeed, what matters is whether or not the
standard decomposition of the SR EDF into c2

N -weighted
PNR energies is valid independently on the radius of inte-
gration chosen initially to compute EN . In a Hamiltonian
and wave function based framework, such an invariance
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reflects the trivial identity

〈Φ1|Ĥ |Φ1〉 =
∑

N>0

〈Φ1|Ĥ |ΨN 〉

〈Φ1|ΨN〉
|〈Φ1|Ψ

N〉|2

=
∑

N>0

〈Φ1|ĤeiηN̂ |ΨN〉

〈Φ1|eiηN̂ |ΨN〉
|〈Φ1|Ψ

N 〉|2 .(57)

Translated to the functional framework, this amounts to
considering the non-radius-weighted sum rule

+∞
∑

N=−∞

c2
N (1) EN (R) =

+∞
∑

N=−∞

∮

CR

dz

2iπ

E [z]

zN+1
〈Φ1|Φz〉 ,

(58)
where c2

N (1) = c2
N and where the circle of integration

CR is the one chosen to calculate PNR energies. Again,
the power series must be split into two parts to perform
the summation over particle numbers explicitly. The ini-
tial circle of integration CR being above/below the unit

circle, one needs to perform a finite shift transforma-
tion to bring the circle associated with negative/positive
particle numbers on the other side of the unit circle, in
order to make the corresponding series convergent. If
particle-number restored energies are shift invariant, one
can proceed without any difficulty and obtain the trivial
result that the sum rule

∑+∞
N=−∞ c2

N EN (R) = E [ρ, κ, κ∗]
is valid independently on the original radius R. This is
of course the case for a Hamiltonian- and wave-function-
based PNR method which, once again, would only require
the summation over positive particle numbers in the first
place.

Of course, problems arise if particle-number restored
energies are not invariant as the shifted circle crosses a
spurious pole at z±µ , i.e. if there are poles z±µ located in
between CR and C1. Indeed, proceeding to the required
shift transformation brings an extra contribution to the
sum rule in this case. Exemplifying the problem for a bi-
linear functional and an initial radius R > 1, one obtains

+∞
∑

N=−∞

c2
N EN (R) =

[

∮

CR

−

∮

C
1−

]

dz

2iπ

E [z]

z(z − 1)
〈Φ1|Φz〉 + 2iπ

0
∑

N=−∞

∑

1<|z±
µ |<R

Res(z±µ )

[

E [z]

zN+1

∏

µ>0

(

u2
µ + v2

µz2
)

]

= E [ρ, κ, κ∗] +

+∞
∑

N=−∞

c2
N EN

CG(R) , (59)

with

+∞
∑

N=−∞

c2
N EN

CG(R) =
∑

µ>0

1<|z±
µ |<R

[

1
2

(

v̄ρρ
µµµµ + v̄ρρ

µ̄µ̄µ̄µ̄ + v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

− v̄κκ
µµ̄µµ̄

]

u2
µ v2

µ

∏

ν>0

ν 6=µ

u2
νv2

µ − v2
νu2

µ

v2
µ

+
∑

µ>0

1<|z±
µ |<R

[

1
2

(

v̄ρρ
µµµµ + v̄ρρ

µ̄µ̄µ̄µ̄ + v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

− v̄κκ
µµ̄µµ̄

]

(uµvµ)
4

0
∑

N=−∞

ReN
CG(z±µ ) , (60)

where ReN
CG(z±µ ) is given by Eq. (44) and where the sums

run over all pairs of poles located in between the unit cir-
cle C1 and the integration circle CR. Note that, in agree-
ment with Eq. (54), the sum rule (60) is zero for R = 1 as
no pole resides between CR and C1 in this case. However,
it is easy to see from Eq. (44) that

∑

N≤0 ReN
CG(z±µ ) is a

diverging geometric series of common ratios |z±µ | > 1 for
R > 1; i.e. the sum rule is broken by a diverging amount
as soon as poles are located in between the integration
circle CR and the unit circle C1. One can check that the
situation is similar if R < 1 and the conclusion identi-
cal. Regularizing the PNR EDF through the removal of
EN

CG(R) amounts to transferring the second term in the
right-hand side of Eq. (59) to the left-hand side. Doing

so restores the physical value (E [ρ, κ, κ∗]) and the shift
invariance of the sum rule as the shift invariance of each
individual PNR energy EN (R) is actually restored. As
c2
N EN

REG(R) = 0 for N ≤ 0, the sum rule is in fact re-
stored and made shift invariant by summing over positive
particle numbers only

∑

N>0

c2
N EN

REG(R) = E [ρ, κ, κ∗] . (61)

Last but not least, it is of interest to look at the non-
regularized sum rule obtained by summing over physical
components only (N > 0). In this case, the physical sum
rule calculated for R > 1 is broken by a finite amount
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+∞
∑

N=1

c2
N EN (R) =

∮

CR

dz

2iπ

E [z]

z(z − 1)
〈Φ1|Φz〉 = E [ρ, κ, κ∗] +

+∞
∑

N=1

c2
N EN

CG(R) , (62)

with

+∞
∑

N=1

c2
N EN

CG(R) =
∑

µ>0

|z
±
µ |<R

[

1
2

(

v̄ρρ
µµµµ + v̄ρρ

µ̄µ̄µ̄µ̄ + v̄ρρ
µµ̄µµ̄ + v̄ρρ

µ̄µµ̄µ

)

− v̄κκ
µµ̄µµ̄

]

u2
µ v2

µ

∏

ν>0

ν 6=µ

u2
νv2

µ − v2
νu2

µ

v2
µ

, (63)

where the sum runs over all pairs of poles located inside
the integrations circle CR. This time, however, and as
already made clear above, the sum rule (56) is not even
recovered for R = 1 as the last term of Eq. (62) does not
go to zero. Regularizing the PNR EDF through the re-
moval of EN

CG amounts to transferring the second term in
the right-hand side of Eq. (62) to the left-hand side. Once
again, doing so restores the physical value, i.e. E [ρ, κ, κ∗],
and the shift invariance of the sum rule.

3. Main conclusions

The first conclusion is that the decomposition of the
SR energy E [ρ, κ, κ∗] into its physical (N > 0) particle-
number restored components is (i) always fulfilled for
a Hamiltonian- and wave-function-based method, what-
ever the chosen integration circle is, while it is (ii) broken
by an amount that depends on the chosen integration
contour for an EDF-based PNR method if MR energy
kernels E [z] contain poles at finite z±µ , but (iii) recov-

ered for any value of R after regularizing EN through the
removal of EN

CG.
The second conclusion is that the decomposition of

E [ρ, κ, κ∗] involving unphysical components (N ≤ 0) is
(i) always fulfilled in a Hamiltonian- and wave-function-
based PNR method as unphysical components do not
contribute anyway (ii) fulfilled in the EDF context if in-
tegrating over the unit circle C1, even for MR energy
kernels E [z] plagued by poles at finite z±µ (iii) fulfilled for
any integration circle CR by the regularized EDF-based
PNR method, noticing in addition that unphysical com-
ponents do not contribute anymore.

VI. APPLICATIONS

A. General remarks

As seen in Sec. IV there are two distinct classes of
spurious contributions to a multi-reference energy den-
sity functional. The first one represents the ”true” self-
interaction and self-pairing processes which already ap-
pear at the single-reference level. It does not provide MR

energy kernels with poles; hence, it does not cause diver-
gences or steps in the PNR energy and does not break
its shift invariance. The second one is due to the use of
the GWT out of its context to define MR energy func-
tional kernels from an underlying SR EDF that contains
self-interaction and self-pairing contributions.

As outlined in Sec. IVA1, correcting consistently for
the standard (true) self-interaction EN

SI , Eq. (32), is not
an easy task; the correction enters the variational equa-
tions already on the single-reference level and leads to
a state-dependent single-particle field [29, 60–62]. The
same would hold regarding the correction for true spu-
rious self-pairing EN

SP , Eq. (33). For that reason, and
because such spurious contributions are not responsible
for divergences and steps in the PNR energy, we concen-
trate here on EN

CG, Eq. (29) which is at the origin of the
specific and dramatic pathologies encountered in PNR
EDF calculations. Note that subtracting EN

CG from the
PNR energy will also modify the variational equations
of a VAP calculation. Here, we confine ourselves to an
analysis of the poles and of their impact on the particle-
number restored energy after the variation. In this case,
EN

CG is easily subtracted a posteriori.

There is one important limitation to the applicability
of the regularization method proposed in Paper I and
applied in the present work. Although it is straight-
forward to extend Eq. (29) to an EDF depending on
any integer powers of the density matrices, this is not
the case for EDFs depending on non-integer powers of
the densities. This is a significant limitation, consider-
ing that most successful modern functionals use density
dependencies of non-integer power4. Indeed, this allows
them to provide a good description of the most impor-
tant nuclear matter properties with a very small num-
ber of terms and coupling constants to be adjusted phe-
nomenologically [1]. Also the widely used Slater approx-
imation to the Coulomb exchange term falls into the cat-
egory of a density dependent term of non-integer power.
We analyze the spurious contributions to such category
of functionals in Paper III, complementing the study of

4 An exception is the relativistic functional [76] used in the MR
calculations of Nikšić et al. [20].
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Dobaczewski et al. [25]. In the present work, however, we
use instead the particular early parameterization SIII [77]
of the Skyrme EDF that contains only bilinear and trilin-
ear terms in the normal density matrix. We complement
the SIII energy functional with a density-independent lo-
cal pairing functional that is bilinear in either the neutron
or proton anomalous density matrix. For the Coulomb
energy functional, we only consider the direct term and
neglect the approximate exchange term that was consid-
ered in the fit of SIII. As a consequence, all calculated
nuclei will be underbound by a few MeV, but this is of no
importance for the purpose of the present paper. Hav-
ing said that, it is clear that the construction of high-
precision correctable EDFs, i.e. only containing integer
powers of the density matrices, represents an important
task for the future5 .

The calculation of the various contributions to the cor-
rection EN

CG is outlined in Appendix A. The trilinear
terms in the SIII functional are motivated by a local zero-
range three-body force which excludes terms of third or-
der in the same nucleon density; it only contains terms
of the kind ρ2

n(r)ρp(r) and ρ2
p(r)ρn(r). From a practi-

cal point of view, the absence of a genuine term of third
power in the same density matrix has the advantage that
we do not have to invoke the corresponding correction
term outlined in Paper I. Instead, the correction of the
trilinear terms has the structure of the one of bilinear
terms times the projected density of the other species as
outlined in Appendix B 2.

B. Numerical Implementation

In practice, the integrals over gauge angles are dis-
cretized with a simple n-point trapezoidal formula

1

π

∫ π

0

dϕ f(eiϕ) ⇒
1

L

L
∑

l=1

f
(

ei πl
L

)

(64)

where we assume the projection of a state with even num-
ber parity on even particle number to reduce the integra-
tion interval to [0, π]. As was shown by Fomenko [75], this
simple scheme eliminates exactly all components from the
SR state which differ from the desired particle number
N by up to ±2(L−1) particles. Although the spread in
particle number is large compared to the total particle
number, already small values for L, ranging from 5 in
light nuclei to 13 in heavy ones, are sufficient to obtain
a converged projected state.

5 In practice, one will have to restrict the form to rather low or-
ders in the density matrices. For example, the EDF recently
proposed by Baldo et al. [78] includes terms up to fifth power
in the total density ρ(r), which clearly lead to self-interaction
terms [30] that will require a regularization containing quadru-
ple sums over single-particle states, which will be too costly in
realistic calculations.

It is customary to use an odd number of discretization
points L in the interval [0, π] to avoid numerical problems
that may appear at φ = π/2. This practice does not
relate to the real divergences of the energy functional
contained in EN

CG that we discuss here, but avoids the

implicit division of u2
µ + v2

µ eiπ/2 contained in an opera-
tor kernel by the same factor in the normalization factor
c2
N when evaluating projected operator matrix elements

(as, for example, particle number, deformation or radii),
which numerically will not give the analytical result 1
when u2

µ comes very close to v2
µ. Of course, the numer-

ical representation of the pole contained in the energy
functional would not be very precise in this case either.

With a small modification, the discretization (64) can
also be used to represent complex contour integrals with
an arbitrary radius R

∮

CR

dz

2iπ
f(z) =

∫ π

0

dϕ

π
f(R eiϕ) ⇒

1

L

L
∑

l=1

f
(

R ei πl
L

)

.

(65)
which we will use to examine the properties of the energy
functional under shift transformations.

For all results shown below, the SR calculations used
as a starting point were performed with an approximate
particle-number projection before variation within the
Lipkin-Nogami approach to ensure that pairing correla-
tions are present in all SR states. Otherwise, pairing cor-
relations would collapse in the SR state whenever there
is a large gap in the single-particle spectrum around the
Fermi surface.

The dependence of various quantities on axial
quadrupole deformation is shown in function of the di-
mensionless deformation of the mass density distribution
β2 defined as

β2 =

√

5

16π

4π

3R2A
〈2z2 − y2 − x2〉 , (66)

where R = 1.2 A1/3 fm.

C. 18O

As a first example we discuss 18O. It has the advantage
that the density of single-particle levels around the Fermi
energy is sufficiently low that the impact of the spuri-
ous contribution brought by each single-particle level to
the projected energy can be studied separately without
having them interfere too much. The integration radius
Rq = 1 is used until we come to discussing shift invari-
ance.

1. Convergence of Operator Matrix Elements

Before we enter the discussion of the energy functional,
we demonstrate the convergence of the particle-number
projection method for observables that are calculated as
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FIG. 3: (Color online) Dispersion of the proton and neutron
number of the unprojected SR state and the particle-number
projected SR using 3, 5 or 7 discretization points of the gauge-
space integrals as a function of their deformation. For 5 points
the projected state is sufficiently converged, for 7 and more
points (not shown) the dispersion cannot be distinguished
from numerical noise.

expectation values of the corresponding operators in the
projected states. In the context of particle-number pro-
jection, the most sensitive observable is the dispersion
of particle number 〈∆N2〉 = 〈N̂2〉 − 〈N̂〉2, a two-body
operator that provides a measure for the quality of the
particle-number projected state as it has to be zero for an
eigenstate of the particle-number operator. For an (un-
projected) SR state, 〈∆N2〉 is proportional to its spread
in particle-number space [79]. One can see in Fig. 3
that the Fomenko discretization converges quickly, al-
ready L = 5 gives excellent results for 18O, and for L ≥ 7
the dispersion of particle number cannot be distinguished
from numerical noise.

2. Regularized PNR Energy

Unlike any operator expectation value, particle-
number restored energies do not converge when increas-
ing the number of discretization points in the gauge-space
integrals, as already demonstrated in Fig. 1 for the pa-
rameterization SLy4. Figure 4 shows the projected de-
formation energy curve of 18O, now calculated with SIII.
What appears to be a smooth deformation energy curve
when calculating it with L = 5, develops steps and dis-
continuities when increasing the number of discretization
points to 199, i.e. when one starts to resolve the poles at
finite z±µ close to the integration contour [25]. For exam-
ple, at small prolate and oblate deformation β2 ≈ ±0.15,
the energy jumps from a lower deformation curve around
the spherical point to a higher-lying one at larger defor-
mation. Using a small number of discretization points
provides a curve that smoothly interpolates between the

.................. . ...............
....
..

FIG. 4: (Color online) Spectrum of poles zµ = |uµ/vµ| for
protons (top panel) and neutrons (middle panel), which for
levels in the vicinity of the Fermi energy resembles a stretched
and slightly distorted Nilsson diagram. The dashed red line
at z = 1 denotes the radius of the standard integration con-
tour R = 1. The bottom panel shows the particle-number
projected quadrupole deformation energy for L = 5 and 199
discretization points for the integral in gauge space. The in-
sert shows a close-up of the steps at small deformation.

two energy curves distinguished with L = 199. Figure 4
also displays, as a function of the deformation, the poles
at |z±µ | = |uµ/vµ| that enter uncorrected energy kernels
for protons and neutrons. We follow Dobaczewski et al.

[25] and plot z± instead of a Nilsson diagram of single-
particle energies, as divergences and steps appear where
poles cross the integration contour. Note again that the
radius of the latter can be chosen to be different from the
standard value Rq = 1 that is equivalent to the Fermi en-
ergy.

In Fig. 4, however, we do not yet make use of the
freedom to modify the integration contour and use the
standard values Rp = Rn = 1. It can be seen that the two
steps developing at β2 ≈ ±0.15 coincide with a pair of
neutron levels originating from the spherical ν d5/2+ shell
that enters the integration contour either at the prolate
or the oblate deformation. It is noteworthy that the steps
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FIG. 5: (Color online) Correction for neutrons (top panel) and
protons (middle panel) and energy gain from projection with-
out and with correction for 18O as a function of quadrupole
deformation for 5 and 199 discretization points for the inte-
grals in gauge space. The corrected energy gain in indepen-
dent on the discretization of the integrals when 5 or more
angles are used. All panels share the same energy scale.

are not completely sharp even when using L = 199 points
for the calculation, as can be seen from the markers in
the insert in the lowest panel. There also is a step at
β2 = −0.5 that coincides with a pair of proton levels
from the π p1/2− shell leaving the integration contour.
A particular case is the discontinuity at β2 = 0.7 that
coincides with the crossing of two different pairs of proton
levels right on the integration contour.

It is worth noting that no divergence is seen in the PNR
energy surface displayed in Fig. 4. This is at variance to
Fig. 1. Indeed, SIII corresponds to a specific functional
form such that poles at z = z±µ are simple poles. This is
due to the fact that the trilinear terms entering SIII do
not contain products of three density matrices referring
to the same isospin. As explained in Paper III, this leads
to a finite Cauchy principal value as the poles cross the
integration circle. Divergences appear only for poles of
higher order.

The effects of particle-number restoration on the en-
ergy is partly masked in Fig. 4 by the genuine evolution
of the energy with deformation. To obtain a clearer pic-
ture, we show in the lower panel of Fig. 5 the energy gain
from particle number restoration, obtained as the differ-
ence between the MR and SR energy functionals for a

given deformation of the SR state. For a cleaner com-
parison, the LN correction is removed from the SR en-
ergy. The steps and discontinuities already seen in Fig. 4
appear when increasing L from 5 to 199. The two upper
panels show the correction EN

CG, Eq. (29), separately for
protons and neutrons. The lower panel also shows the en-
ergy gain for the regularized PNR energy surface EN

REG
obtained by subtracting the neutron and proton correc-
tions EN

CG from the uncorrected PNR energy EN for a
given value of L. The correction has many interesting
and appealing features

• The regularized PNR energy EN
REG is independent

on the discretization of the integral; it is identical,
within the numerical accuracy, for L = 5 and 199.
As a result, only one curve is shown in Fig. 5.

• The previous result confirms that the entire depen-
dence of the (uncorrected) PNR energy on the dis-
cretization of the gauge space integral is contained
in EN

CG.

• Looking separately at protons and neutrons, the
corresponding correction EN

CG is largest when a pole
of a given nucleon species is close to the integration
contour (R = 1 here). However, the correction is
different from zero for the deformations in between;
i.e. the spurious nature of the poles is also felt when
being away from divergences and steps.

• All terms in the energy functional (central, spin-
orbit, pairing, Coulomb, etc) contribute to EN

CG,
with slightly different magnitudes and different
signs, so one has to strictly correct for all of them.
This is not unexpected as the source of the spurios-
ity we focus on here is the weight the matrix ele-
ments v̄ρρ and v̄κκ are multiplied with in Eq. (29),
not the matrix elements themselves.

• The correction depends strongly on the deforma-
tion and will have a non-negligeable impact on the
topology of the deformation energy curve. The
regularized energy gain from projection is a much
smoother function of deformation than the un-
corrected one, meaning that regularized particle-
number restoration will provide potential energy
surfaces with less pronounced structures than un-
corrected PNR.

• The correction EN
CG is of the order of 1 MeV. Of

course it has to be smaller than the energy gain
from particle number restoration, which is a few
MeV. For 18O however (and when calculated with
SIII), the spurious contribution to the uncorrected
energy can be as large as 50 % of the total energy
gain at some deformations. Also, one MeV error on
the mass is larger than the targeted accuracy from
EDF methods. In addition, and as exemplified be-
low, the correction to the mass varies from nucleus
to nucleus.
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FIG. 6: (Color online) Corrected (solid line) and uncor-
rected (dotted and dashed lines) particle-number projected
quadrupole deformation energy for 18O, calculated with L = 5
and 199 discretization points of the integral in gauge space.
The corrected curves are identical.

• The regularized PNR energy gain can be both
larger and smaller than the uncorrected one. In
all cases we have looked at so far, however, an in-
crease obtained from the correction rests always
very small, while a reduction from correction might
be quite substantial, but this might not always be
the case.

The corrected deformation energy surface of 18O is
shown in Fig. 6 together with the uncorrected ones ob-
tained with L = 5 and 199 as was already displayed in
Fig 4. It is striking to see that the corrected PNR energy
surface has less structure than the uncorrected ones; its
curvature changes now monotonically and the shoulder
at β2 = 0.6, that always appears as a secondary mini-
mum in SR calculations without pairing for oxygen iso-
topes, disappears completely. The latter does not mean a

priori that a regularized PNR plus configuration mixing
calculation will not give a collective state located at this
deformation anymore as it was obtained for 16O [71] and
20O [72] using SLy4. This question needs to be addressed
in the near future by performing regularized MR calcula-
tions including quadrupole shape configuration mixing.

D. Detailed analysis of spurious contributions

1. Contributions of individual poles

After discussing the behavior of the contaminated and
regularized PNR energies of a nucleus as a function of
its quadrupole deformation, it is instructive to investi-
gate the contribution εµ of each canonical pair (µ, µ̄) to
the unphysical energy EN

CG that contaminate uncorrected
MR energies EN . Formally, each pair of single-particle
levels provides a spurious contribution ε0

µ through the

pole at z = 0, in addition to the contribution ε±µ associ-

ated with the unphysical poles at finite z±µ = ±i|uµ/vµ|,
if the latter are located inside of the integration contour
of radius Rq. In the end, one can rewrite Eq. (43) as

EN
CG ≡

∑

µ>0

εµ ≡
∑

µ>0

ε0
µ +

∑

µ>0

|z±
µ |<R

ε±µ . (67)

The total contribution εµ is calculated numerically
through Eq. (29) and might depend on the number of
discretization points L used for the gauge-space inte-
gral. The partial contribution ε±µ can be evaluated us-
ing the analytical expression for the residue of the poles,
Eq. (44), which does not depend on the discretization of
the gauge-space integrals. Finally, ε0

µ is equal to εµ when

|z±µ | > R, while for |z±µ | < R it can be estimated through

ε0
µ = εµ − ε±µ . As ε±µ is calculated analytically while εµ

is obtained numerically, the values obtained for ε0
µ might

not be very precise when |z±µ | ≈ R.

It turns out that only a few pairs of levels located close
to the Fermi level give a non-zero contribution to EN

CG.
The relative size and behavior of these contributions as
the spectrum of poles changes can be understood by an-
alyzing Eqns. (43) and (44) for a few idealized cases. For
this discussion, the combination of matrix elements enter-
ing the expression of EN

CG can be ignored. The values of
the matrix elements depend of course on the actual pair
of conjugated states they refer to and thereby scale the
contribution of a given level to EN

CG. However, the matrix
elements do not show a particular dependence on µ that
determines the limit of εµ for completely occupied or un-
occupied levels. Therefore it is sufficient to concentrate
on the occupation-number dependent weight-factors in
Eqns. (43) and (44).

Figure 7 separates the various contributions to EN
CG

for the three pairs of canonical orbits that originate from
the spherical neutron d5/2+ level in 18O. The top panel of
Fig. 7 displays the location of the three poles of interest
on the imaginary axis. Those three pairs of poles are ex-
plicitly labeled by the jz quantum number denoting the
projection of the angular momentum on the symmetry
axis. Other poles are left unmarked. The three other
panels show εµ, ε0

µ and ε±µ for the three pairs of d5/2+

levels only, as these entirely determine the neutron con-
tribution to EN

CG for the deformations shown6.

The second panel from the top shows ε±µ . Solid lines

denote ε±µ when the corresponding pole is inside the inte-
gration contour (Rn = 1 here), while dotted lines denote
ε±µ when the pole is outside. Only the former of the two

contributes to EN
CG. As ε±µ is usually finite when the

6 At large oblate and prolate deformation, the ε±µ of the other lev-
els approaching z = 1 are of the same order as those shown, but
make the plot difficult to read and do not add crucial informa-
tion.



22

corresponding pole crosses the integration contour, its
size determines the step left in the PNR deformation en-
ergy curve. To understand how ε±µ changes as a function

of the location of the corresponding pole z±µ within the
spectrum of the other poles, Eq. (44) has to be analyzed
further. The product over ν 6= µ in this expression can
be estimated by first considering that there are kr pairs
of levels with |z±ξ | ≪ |z±µ |, such that their contribution
to the product can be approximated by

kr
∏

ξ=1

u2
ξv

2
µ − v2

ξu2
µ

v2
µ

≈ (−)kr |z±µ |2kr

kr
∏

ξ=1

v2
ξ . (68)

For a small number kf of pairs of levels, |z±ν | is of the
same order as |z±µ |, such that the full factor in the product
has to be kept. Finally, all remaining levels are such that
|z±µ | ≪ |z±λ | and the product can again be simplified

∞
∏

λ=kr+kf +1

u2
λv2

µ − v2
λu2

µ

v2
µ

≈
∞
∏

λ=kr+kf +1

u2
λ . (69)

In practical calculations one works with a limited number
of pairs of levels kt in the basis. This cutoff, however, has
no consequence for the contribution ε±µ from a pair of
levels (µ, µ̄) below the cutoff, as for all reasonable cutoffs
the discarded pairs of levels contribute a factor 1 to the
product in Eq. (44). Altogether one obtains

ε±µ ∝ u4
µv4

µ ReN
CG(z±µ )

≈ (−)kr+N/2+1 u2
µ |z±µ |2kr−N

kr
∏

ξ=1

|z±
ξ

|≪|z±
µ |

v2
ξ

×

kr+kf +1
∏

ν=kr+1

ν 6=µ

u2
ν

(

1 −
|z±µ |2

|z±ν |2

)

kt
∏

λ=kr+kf +1

|z±
µ |≪|z±

λ
|

u2
λ (70)

where we assume even particle number N . Equation (70)
allows for the complete explanation of the global behavior
of ε±µ seen in Fig. 7.

First, for a bilinear functional as discussed here, ε±µ
is zero whenever the pair of levels (µ, µ̄) is degenerate
with another pair (ν, ν̄), i.e. |z±µ | = |z±ν |, as in this case
the middle product in Eq. (70) contains a factor zero.
In fact, this is a direct consequence of the disappear-
ance of the pole at z±µ in the PNR energy kernel, as the
dangerous remaining denominator is now canceled by an
additional factor in the norm kernel7. This alone already
indicates that the contribution ε±µ of a given pair of lev-
els might fluctuate rapidly when the spectrum of poles

7 This results holds for any bilinear functional in the density ma-
trix of a given isospin, even if it is multiplied with the densities
of the other one. When allowing for higher-order functionals,
however, a term of order n in the density matrix can generate a
pole at z±µ of order (at most) (n − 1). In order for ε±µ to be 0,

FIG. 7: (Color online) Spurious energy from the single-
particle orbits that correspond to the spherical neutron d5/2+

level in 18O as a function of quadrupole deformation (see
text).

|z±µ | changes as a function of a collective coordinate. The

(−)kr factor in Eq. (70), whose sign depends on the num-

one needs the pole at z±µ to disappear altogether, which requires
(n − 1) additional factors from the norm kernel to cancel the
denominator (u2

µ + v2
µ z2)−(n−1). Thus, the pair of interest (µ,

µ̄) needs to be degenerated (at least) with (n−1) other pairs for
ε±µ to be 0. As a consequence, ε±µ will not be 0 at a simple level
crossing when working with a trilinear (or higher-order) energy
functional in the same isospin.
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ber of pairs of levels kr located below the pair (µ, µ̄),
makes ε±µ to change sign through a crossing with an-
other pair. Figure 7 contains several such examples. The
downsloping jz = 1/2+ substate from the d5/2 spherical
shell crosses with an upsloping level at large prolate de-
formation. There, ε±µ changes its sign as kr changes by
1 through the crossing. At spherical deformation, where
the three pairs of d5/2 levels are degenerate, each of them
crosses with the two others and kr changes either by 2 (for
the jz = 1/2+ and jz = 5/2+) or 0 (for the jz = 3/2+),
such that the corresponding ε±µ do not change their sign.
A very particular case is the subsequent crossing of the
upsloping jz = 5/2+ level with two other levels within a
very small interval around β2 ≈ 0.63. As the three levels
do not cross at exactly the same deformation, ε±µ changes
its sign twice in a tiny deformation interval, oscillating
between values far outside the vertical energy interval
shown, that cannot be resolved by what appears as a
single vertical (red) dotted line in the plot at β2 = 0.67.

Second, let us consider the case of a pair (µ, µ̄) that
is well separated from all others. Thus, there remains
only two categories of ”other” states in Eq. (70), kr pairs
of levels (ξ, ξ̄) with |z±ξ | ≪ |z±µ | and kt − kr − 1 pairs of

levels (λ, λ̄) with |z±λ | ≫ |z±µ |. One has still to distinguish

between the two cases where |z±µ | is larger or smaller than
1.

We start with the case |z±µ | = |uµ/vµ| > 1 for which

the u2
µ factor in Eq. (70) rapidly converges towards 1 as

|z±µ | increases. In this case, the number of pairs below
the pair (µ, µ̄) is larger than half the particle number; i.e.
kr > N/2. For kr = N/2+1,

∣

∣ε±µ
∣

∣ grows linearly with |z±µ |

for |z±µ | > 1, for kr = N/2+ 2 it grows quadratically etc,
but always only until it approaches another level, where
∣

∣ε±µ
∣

∣ goes back to 0 as a consequence of the degeneracy as

described above. After the crossing, however,
∣

∣ε±µ
∣

∣ grows

again, although one of the u2
λ ≈ 1 factors in Eq. (70) has

changed into a v2
ξ ≪ 1 factor at the crossing. At the

same time, the number of pairs kr below the pair (µ, µ̄)
has grown by one, such that after the crossing there is an
additional |z±µ |2 = u2

µ/v2
µ factor, that overcompensates

the effect of the occupation factor v2
ξ from the level just

crossed, as v2
ξ > v2

µ and v2
µ < 1/2 give v2

ξ u2
µ/v2

µ > 1. For
the simultaneous crossing with more than one level, the
net effect is the product of the change brought by each
crossed level. For poles far from the Fermi level, the val-
ues of ε±µ can be very large. For example, the ε±µ of the

jz = 5/2+ level reaches about 550 MeV around β2 = 0.42
where the corresponding pole |z±µ | is well isolated in the
spectrum, drops below zero and rises immediately back
when it crosses a pair from a higher-lying spherical j
shell, and quickly rises to values larger than 105 MeV,
dropping back to zero right away as the pole crosses the
next pair, and quickly gaining a value again several or-
ders of magnitude larger. The sheer size of these values
that quickly grow beyond any physical scale that appears
in the EDF description of nuclei clearly shows that ε±µ
alone cannot be a meaningful quantity in a well-defined

theory. The only reason why the ε±µ of these high-lying

levels with |z±µ | ≫ 1 do not make EN
CG incommensurably

large is that the corresponding poles are outside of the
standard integration circle and thus do not contribute.
We will come back to this when discussing PNR with
shifted contour integrals below.

For a sufficiently isolated level below the Fermi level,
|z±µ | = |uµ/vµ| < 1,

∣

∣ε±µ
∣

∣ also tentatively grows when |z±µ |
goes towards 0. This is now a consequence of the fact that
kr ≤ N/2, such that ε±µ scales with powers of the inverse

of |z±µ |. At each crossing with a lower lying pair of levels,

the additional u2
λ ≪ 1 factor is overcompensated by the

additional |z±µ |−2 factor from the decreasing number of

pairs kr below . Again, ε±µ goes to 0 at level crossings
and changes its sign depending on the number of pairs
crossed.

An important consequence of Eq. (70) and the discus-
sion above is that the ε±µ of an isolated pair is smallest
when there are exactly kr = N/2 pairs of other levels
below it, which is usually the case for a level with its
pole z±µ close to the Fermi level. A side effect is that the
spurious step due to a pair crossing the integration con-
tour remains rather small when the latter is chosen as the
unit circle. This is to put in perspective with the rather
small spurious steps observed in Fig. 5 and contaminat-
ing the unregularized PNR energy computed using a unit
integration circle. We will see in the following that the
situation would have been more dramatic if we had used
different contours.

As discussed in Sec. V, poles at finite z±µ entering or
leaving the integration contour are the origin of the spu-
rious steps in PNR energy surfaces, as the corresponding
(usually finite) ε±µ is suddenly added to or removed from

EN
CG, respectively. In the second panel of Fig. 7, contri-

butions from poles inside or outside the standard integra-
tion contour of radius R = 1 are plotted as solid or dotted
lines, respectively, to make this distinction. The third
panel from the top also shows ε±µ with solid lines, but

now only when it actually contributes to EN
CG. The dot-

ted lines represent −ε0
µ, such that the distance between

the curves for ε±µ and −ε0
µ provides the total contribution

εµ from the pair (µ, µ̄) to EN
CG

8.
The results for the neutron levels depicted in Fig. 7

suggest that ε±µ converges towards −ε0
µ when z±µ goes

to zero, i.e. for deeply-bound levels far below the Fermi
energy, such that the total contribution εµ is zero for
deeply-bound levels. When z±µ approaches the Fermi en-

ergy from below, ε±µ and −ε0
µ slowly grow apart. Still, for

all examples we have looked at, ε0
µ and ε±µ remain of simi-

lar size, but opposite sign, and have a similar dependence
on deformation around the Fermi energy, z±µ ≈ 1. They

do not cancel exactly when the pole at z±µ approaches

8 The spikes of ε0
µ at the deformations where the contribution from

ε±µ to EN
CG jumps to 0 are of numerical origin.
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the Fermi level but the difference between ε±µ and −ε0
µ

remains much smaller than the individual contributions
and provides the finite and smoothly varying spurious
energy EN

CG between the steps. For levels far above the
Fermi level, ε0

µ goes to zero. Also, the pole z±µ is beyond

the integration contour and ε±µ does not contribute to
εµ either. Consequently, levels far above the Fermi en-
ergy do not contribute to EN

CG for standard integration
contours at Rq = 1.

The behaviors described above can be understood as
limiting cases of the factor u4

µv4
µ times the contour inte-

gral in Eq. (43). Omitting unimportant prefactors, one
obtains for |z±µ | → 0, that is for u2

µ ≈ 0 and v2
µ ≈ 1, that

εµ = ε0
µ + ε±µ

∝ u4
µ v4

µ

∮

C1

dz

2iπ

1

zN+1

(z2 − 1)2

v4
µ z4

∏

ν>0

(u2
ν + v2

ν z2)

∝ |z±µ |4
(

c2
N − 2 c2

N+2 + c2
N+4

)

→ 0 , (71)

while for |z±µ | → ∞, that is for u2
µ ≈ 1 and v2

µ ≈ 0, one
has

εµ = ε0
µ

∝ u4
µ v4

µ

∮

C1

dz

2iπ

1

zN+1

(z2 − 1)2

u4
µ

∏

ν>0

(u2
ν + v2

ν z2)

∝ |z±µ |−4
(

c2
N−4 − 2 c2

N−2 + c2
N

)

→ 0 . (72)

where the cN denote in both cases the amplitudes of the
normalized projected states with particle number N in
the SR state, Eq. (42), all of which are usually non-zero
and independent of µ. The key element to obtain both
limits is that the integral over the gauge angle becomes
simply proportional to v−4

µ ≈ 1 or u−4
µ ≈ 1, respectively.

As a result, the prefactor u4
µ v4

µ dominates and drives εµ

towards zero in both cases. As a consequence, one indeed
finds as a general rule that

εµ = ε0
µ → 0 for z±µ → ∞ , (73)

εµ = ε±µ + ε0
µ → 0 for z±µ → 0 , (74)

as suggested by the numerical results in Fig. 7.

Unlike ε±µ , the contribution ε0
µ to the physical pole at

z = 0 is not a priori suppressed for degenerate levels and
might have a non-zero value. For deep-hole states, this
seems contradictory with the previous proof that εµ =
ε±µ +ε0

µ goes to zero. In fact, when the pair (µ, µ̄) crosses

another one (ζ, ζ̄), not only the pole at z±µ is removed
but the residue of the pole at z = 0 is strongly affected
by the disappearance of the corresponding denominator.
As a result, ε0

µ also goes towards zero as ε±µ goes to zero.

Indeed, εµ right at the crossing behaves as

εµ = ε0
µ

∝ u4
µ v4

µ

∮

C1

dz

2iπ

1

zN+1
(z2 − 1)2

∏

ν>0

ν 6=µ,ζ

(u2
ν + v2

ν z2)

= u4
µ v4

µ

(

c2
N−4[µ, ζ] − 2 c2

N−2[µ, ζ] + c2
N [µ, ζ]

)

,(75)

where c2
N [µ, ζ] denotes a modified norm obtained by re-

moving the contributions of both pairs (µ, µ̄) and (ζ, ζ̄)
from the usual norm kernel

c2
N [µ, ζ] ≡

∮

C1

dz

2iπ

1

zN+1

∏

ν>0

ν 6=µ,ζ

(

u2
ν + v2

ν z2
)

. (76)

Considering either rather deep-hole or highly-lying
single-particle states, the prefactor (uµ vµ)4 appearing in
Eq. (75) makes εµ = ε0

µ to be small.
The bottom panel of Fig. 7 shows the total contri-

bution εµ of each selected pairs to EN
CG. One can now

clearly see that there is more to the spurious energy than
just the steps and the divergences (the latter of which do
not appear for the particular functional used here). The
poles z±µ associated to the jz = 3/2+ pair remain out-
side the integration contour for all deformations. Thus,
it does not produce a step as the corresponding ε±µ never

contributes to EN
CG. Still, this level gives a small con-

tribution ε0
µ to the spurious energy through the pole at

z = 0, which happens to be slightly larger for prolate
deformations than for oblate ones.

Starting on the oblate side, only the pole at z = 0 con-
tributes at first to the spurious energy from the jz = 1/2+

pair of levels. The corresponding ε0
µ increases slowly from

zero with increasing β2. The moment the corresponding
poles z±µ enter the integration contour at β2 = 0.15, ε±µ
suddenly contributes to the spurious energy. We already
saw that the finite value of ε±µ at this point determines

the step. As ε±µ approaches −ε0
µ when the 1/2+ levels

become more and more occupied with increasing prolate
deformation, the total contribution εµ of the 1/2+ pair to
EN

CG now decreases after the step. With the total contri-
bution εµ increasing on one side of the step and suddenly
decreasing on the other, the curvature of the spurious
energy is different on both sides of a step. As a conse-
quence, removing EN

CG modifies the improper curvature of
the uncorrected deformation energy surface that is vis-
ible in Fig. 6, even when the steps themselves are not
numerically resolved. The regularized deformation en-
ergy surfaces show much less structure; in 18O to the ex-
treme that the curvature of the corrected energy surface
is now positive for all deformations as shown in Fig. 6.
The contribution from the 5/2+ levels to the spurious
energy behaves very much as the one from the 1/2+ lev-
els with oblate and prolate sides exchanged. The sum
of the three individual contributions gives the neutron
correction shown in the top panel of Fig. 5 for L = 199.

We have seen that for a bilinear functional, the steps
are always the consequence of a pair of single poles z±µ
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FIG. 8: (Color online) Same as Fig. 7, but for the proton
1/2+ and 1/2− levels that give the dominant contributions to
the proton correction at prolate deformation and cross at the
Fermi energy at β2 = 0.67.

crossing the integration contour and have the size of the
corresponding ε±µ at that crossing. The steps cannot add
up for a bilinear functional as, for degenerate poles with
µ 6= µ′, z±µ = z±µ′ directly lead to ε±µ = ε±µ′ = 0. This
does not mean, however, that there is no spurious con-
tribution to the PNR energy when two poles cross the
integration contour simultaneously, as the corresponding
ε0

µ and ε0
µ′ are in general non-zero. In fact, Fig. 5 demon-

strates clearly that, in our calculation of 18O with SIII,
the spurious energy EN

CG is largest exactly where two pro-
ton levels cross at the Fermi energy at β2 = 0.67. The
contribution of these two pairs of levels to EN

CG, which
also happen to be the only proton levels that have a
finite contribution at prolate deformation, is analyzed
in Fig. 8. There is a number of interesting differences
with Fig. 7: (i) The contribution ε±µ does not vanish at

spherical shape for the 1/2− levels for a bilinear func-
tional. Indeed, the spherical p1/2 shell is only doubly
degenerate, which does not suppress the corresponding
ε±µ . In fact, only s1/2 and p1/2 levels with poles z±µ below

the integration contour provide non-zero ε±µ at spherical

shape. (ii) Both pairs cross right at the Fermi energy at
β2 = 0.67. For the standard choice Rp = 1, their poles
z±µ thus cross on the integration contour. As a result, ε±µ
from both pairs are zero, and change sign at the crossing.
(iii) The derivative of ε±µ is not zero for both pairs when
they simultaneously cross the Fermi energy. By contrast,
ε0

µ slowly approaches zero such that the total contribu-
tion εµ is quite large for the two proton pairs. When the
poles z±µ approach the integration contour from below,

the distance between ε±µ and ε0
µ grows for both pairs.

After the poles have crossed the contour, only the ε0
µ

contribute. Finally, the total contribution εµ from each
pair that crosses with another at the integration contour
is largest at the crossing, and decreases towards zero on
both sides. The sum of the two individual contributions
gives the proton correction shown in the middle panel of
Fig. 5 for L = 199; all other proton levels are too far away
from the Fermi level to provide any visible contribution.

One can take advantage of the fact that only a very
limited number of levels actually contributes to EN

CG in
order to reduce the numerical effort. Evaluating the nec-
essary matrix elements v̄ρρ and v̄κκ only for those levels
for which the weight is significantly different from zero is
particularly welcome for the expensive contribution from
the Coulomb interaction.

2. Shift Invariance

In their recent paper, Dobaczewski et al. [25] pointed
out that the (uncorrected) PNR energy density func-
tional is not shift invariant, i.e. PNR energies depend
on the radius chosen for the contour integral in the com-
plex plane. As outlined in Secs. VD and VE, the source
of violation of the shift invariance is the contribution ε±µ
from the poles at z±µ inside the integration contour CR

to the spurious energy EN
CG in Eq. (67). Each time a pole

z±µ enters or leaves the integration contour when chang-

ing its radius, EN
CG changes by the amount ε±µ . This is

illustrated in Fig. 9 for 18O at β2 = 0.371. The radius
of the contour used for neutrons is held fixed at Rn = 1,
while the radius of the contour used for the protons is
varied. The three steps visible in Fig. 9 correspond to
the three proton poles located at 0.1 < z±µ < 10 visible
in Fig. 4 for the deformation of interest.

An interesting feature of the steps is that their size
grows as the integration contour is shifted away from
Rp = 1 [25], i.e. away from the Fermi level. The reason
is easy to understand from the discussion of Eq. (70)
given in the previous section: ε±µ increases as |z±µ | moves
away from 1 (as long as it is separated from other poles)
and as the difference between the number kr of pairs of
states below (µ, µ̄) and half the number of particles N/2
one is restoring grows.

Using the small number of L = 5 discretization points
for the gauge-space integral does not resolve the steps
in the uncorrected PNR energy; only with much larger
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FIG. 9: (Color online) Projected energy for 18O at the de-
formation β2 = 0.371 as a function of the radius Rp of the
integration contour calculated without and with correction
using 5 and 199 angles. The energy scale on the left gives the
absolute energy, the scale on the right the energy gain from
projection. The insert magnifies the curves around Rp = 1.
The regularized PNR energy in independent on the discretiza-
tion of the integrals when 5 or more angles are used. The in-
tegration contour for projection on neutron number is Rn = 1
in all cases.

L one obtains sharp steps. By contrast, and as seen in
Fig. 9, the regularized PNR energy is constant within a
numerical precision of the order 1 keV as Rp is modified
and L increased beyond 5.

3. Distribution of weighted PNR energies

As a next step, we analyze how the spurious energy
EN

CG(R) affects the distribution of non-normalized PNR
energies c2

N (R) EN (R) and c2
N (1) EN (R) as a function of

the particle number one restores. Of course, restoring
other particle numbers than the one that the underly-
ing SR state was constrained in average to is not very
useful for practical applications. The purpose of the ex-
ercise, however, is to shed further light on the nature of
the spurious energy EN

CG(R), especially through testing
sum rules associated with such a decomposition over N .
For the latter test to be meaningful, and as motivated
in Sec. VE, it is essential to include zero and negative
particle numbers in the analysis.

Starting with a SR calculation for 18O, the average
proton and neutron number are small enough that non-
zero values of the quantities of interest for negative par-
ticle numbers can be unambiguously detected in the tail
of the distribution when performing a numerical calcu-
lation. Of course, a SR state with even number-parity
quantum number, as assumed here, can only be projected
on even particle number, such that the weight c2

N (R) and
any operator matrix elements are obviously zero for odd
N . In addition, the contributions to EN (R) from the spu-

FIG. 10: (Color online) Weight c2
Z(Rp = 1) = |〈ΨZ |Φ1〉|

2

of the normalized proton-number projected states in the
SR HFB state (upper panel), the weighted spurious energy
c2
Z(Rp = 1) EZ

CG(Rp = 1) (middle panel), the non-regularized
weighted PNR energies c2

Z(Rp = 1) EZ(Rp = 1) and regular-
ized c2

Z(Rp = 1) EZ
REG(Rp = 1) (lower panel). All results are

obtained using the same SR state calculated for 18O at a
deformation of β2 = 0.371 as auxiliary state. The neutron
number is not restored.

rious poles, see Eq. (44), and from the physical pole9 are
zero for odd N when restoring particle number from a
SR state with an even-number parity quantum number.
As a consequence, we can limit ourselves here to looking
at even particle numbers.

For the sake of transparency, and to avoid double sums
over N and Z as well as the interference of the corre-
sponding terms when analyzing the sum rules, we limit
ourselves to the restoration of proton number in this sec-
tion and in the following one. We start with the same SR
state calculated for 18O with β2 = 0.371 as in Fig. 9 but
without restoring neutron number, which is constrained
to an average value of N = 10. The restoration of proton
number is performed using L = 199 integration points. In
what follows, we discuss the interaction part of the EDF
only, i.e. the EDF without kinetic energy and without
the one-body center of mass correction used in connec-
tion with SIII. Both are expectation values of one-body
operators and therefore free of spurious contributions. As

9 The Laurent series centered at z = 0 of the integrand in Eq. (35)
does only contain even powers for odd N . As a result, such a
pole does not contribute to EN (R).



27

before, the Coulomb exchange term is omitted from the
energy functional.

First, we discuss the standard case with an inte-
gration contour at Rp = 1. The upper panel of
Fig. 10 displays the distribution of the weights c2

Z(Rp =
1) = |〈ΨZ |Φzp=1〉|

2, Eq. (12), of the normalized proton-
number projected states in the SR state. As expected,
c2
Z(1) is peaked at Z = 8 and falls off quickly to numeri-

cal noise. Components with Z > 14 and Z < 2 cannot be
numerically distinguished from zero. In the former case
and for Z = 0 it is a consequence of these proton num-
bers being too far from the average proton number such
that c2

Z(1) becomes too small to be distinguished from
zero within the numerical precision of our code, while
for Z < 0 the proton-number projected states |ΨZ〉 are
strictly zero for analytical reasons.

The lower panel of Fig. 10 shows the interaction part
of weighted PNR energies before and after applying the
regularization method. The distribution of absolute val-
ues of c2

Z(1) EZ(1) does not follow the distribution of the
weights c2

Z(1) displayed in the upper panel. Instead, it
has a long tail that spreads visibly to Z = −20 and
Z = 34, before it cannot be distinguished from numerical
noise anymore. In these tails, the values of c2

Z(1) EZ(1)
have alternating signs, which is clearly unphysical. Only
the regularized quantity c2

Z(1) EZ
REG(1) falls off in the

same manner as c2
Z(1) does and is numerically zero for

Z ≤ 0. This underlines again the spurious nature of EZ
CG,

that is shown separately in the middle panel of Fig. 10. In
the present example, c2

Z(1) EZ
CG(1) has alternating signs

throughout the entire interval of Z. This must not al-
ways be the case; in some other examples we have looked
at, this happens only for particle numbers that are a at
least a few units away from the average particle number
of the underlying SR state.

For Z ≤ 0, non-zero c2
Z(1) EZ(1) are entirely spurious

with EZ(1) = EZ
CG(1); i.e. they originate entirely from

spurious poles at finite z±µ . The same situation applies

to the tail of the distribution of c2
Z(1) EZ(1) for large

positive Z.
As a second example, we show in the three upper

panels of Fig. 11 the same quantities as in Fig. 10,
but obtained employing an integration contour of radius
Rp = 2.5. By contrast to before (Rp = 1), the poles z±µ
from the 1/2+ substate of the π d5/2+ shell are located
inside the integration contour, see Fig. 8. As a result,
the spurious contribution ε±µ from those poles increases

EZ by about 4 MeV when projecting on Z = 8 using a
non-regularized functional, see Fig. 9. We analyze now
if and how the energy restored on other proton numbers
are affected compared to using Rp = 1.

Compared to Fig. 10, the distribution of weights
c2
Z(2.5) is distorted by the additional RZ

p = (2.5)Z fac-
tor such that absolute values change by several orders
of magnitude, and the maximum of the distribution is
shifted to Z = 10. The main difference to the case us-
ing the standard integration contour Rp = 1 is that the
distribution of the spurious energy c2

Z(2.5) EZ
CG(2.5) is

FIG. 11: (Color online) Weight c2
Z(Rp = 2.5) = |〈ΨZ |ΦRp〉|

2

of the normalized proton-number projected states into the ra-
dially shifted SR HFB state at Rp = 2.5 (upper panel), the
weighted spurious energy c2

Z(Rp = 2.5) EZ
CG(Rp = 2.5) (upper

middle panel), the non-regularized EZ(Rp =2.5) and regular-
ized EZ

REG(Rp = 2.5) PNR energies weighted by c2
Z(Rp = 2.5)

(lower middle panel) and by c2
Z(Rp = 1) (lower panel). All

results are obtained using the same SR state calculated for
18O at a deformation of β2 = 0.371 as auxiliary state. The
neutron number is not restored.

distorted in a different manner than the distribution of
the norm, such that it falls off quicker for Z > 8, but
much slower for Z < 8, including negative Z. Again,
only the distribution of the regularized MR energy func-
tional EZ

REG(2.5) follows that of the weights c2
Z(2.5).

The lowest panel of Fig. 11 shows the contributions
to the non-radius-weighted energy sum rule discussed
in Sec. VE2. The distribution c2

Z(1) EZ(Rp) is even
more distorted than for the contributions to the radius-
weighted sum rule shown in the panel above. For Rp > 1,
c2
Z(1) EZ(Rp) falls off much quicker than c2

Z(Rp) E
Z(Rp)

for Z > 8, but much slower for Z < 8. For negative val-
ues of Z the missing factor (2.5)Z makes c2

Z(1) EZ(Rp)
to grow so fast that it will be impossible to safely evalu-
ate numerically the sum rules including negative particle
numbers.
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For Rp < 1, a case not discuss here, the situation
is reversed such that c2

Z(1) EZ(Rp) falls off faster than
c2
Z(Rp) E

Z(Rp) for Z < 8, but slower for Z > 8, now
with the impossibility to safely evaluate the sum rule
when including positive Z.

To summarize, the contamination of the PNR EDF
by spurious contributions originating from the use of
the GWT impacts the decomposition of the (shifted)
SR functional energy (kernel) into weighted PNR en-
ergies with different particle numbers such that energy
is shifted out of the physical subspace corresponding to
positive particle numbers. The impact of this finding on
the fulfillment of basic sum rules is examined in the next
section.

4. Sum rules

Now we turn to the sum rules, which are obtained by
summing the weighted PNR energies shown in Figs. 10
and 11. Numerical summation is performed on a subset
of even proton numbers in the interval −20 ≤ Z ≤ 40.

Again we begin with the case Rp = 1, for which the
radius-weighted and non-radius-weighted sum rules are
identical. The SR energy10 that sets the reference is given
by

E [ρ, κ, κ∗] = −410.3403 MeV . (77)

In agreement with Eq. (52), the sum of c2
Z(1) EZ(1) over

positive and negative Z reproduces this value better than
0.1 keV

+∞
∑

Z=−∞

c2
Z(1) EZ(1) = −410.3403 MeV . (78)

When limiting the sum to ”physical” proton numbers
Z > 0, however, we obtain instead

∑

Z>0

c2
Z(1) EZ(1) = −410.3550 MeV . (79)

With 14.7 keV, the numerical difference between Eq. (78)
and (79), which constitutes the breaking of the physical
sumrule, is quite small. Using the standard integration
contour of Rp = 1, we find similar values for other de-
formations in 18O, whereas for heavier nuclei this quan-
tity becomes rapidly suppressed, such that it cannot be
unambiguously detected in a numerical calculation any-
more.

The largest individual sum-rule breaking contribution
is that for Z = 0, for which we obtain

c2
Z(1) EZ=0(1) = c2

Z(1) EZ=0
CG (1) = 0.0189 MeV , (80)

10 We recall that quoted energies are without the kinetic and center-
of-mass correction energies.

which is slightly larger than the entire sum over Z ≤ 0.
This is not unexpected in view of the alternating signs of
the contributions pointed out in the previous section.

For Z ≤ 0, non-zero c2
Z(1) EZ(1) are of course entirely

spurious, such that they equally contribute to the sum
rule of c2

Z(1) EZ
CG(1). For Rp = 1, the right-hand-side of

Eq. (54) is zero, such that the sum of c2
Z(1) EZ

CG(1) over
all Z is zero as well, which we do find numerically

+∞
∑

Z=−∞

c2
Z(1) EZ

CG(1) = 0.0000 MeV . (81)

Although the alternating sign of c2
Z(1) EZ

CG(1) with Z
indicates that a cancelation effect is at play, the result
of Eq. (81) is not so obvious when looking at the middle
panel of Fig. 10. Summing up c2

Z(1) EZ
CG(1) for positive

values of Z gives −0.0146 MeV, which precisely is the
difference between Eqns. (77) and (79).

The regularized energy c2
Z(1) EZ

REG(1) is numerically
zero for Z ≤ 0 as any meaningful particle-number re-
stored observable should be. The same holds for those
large positive values of Z where c2

Z > 0. As a conse-
quence, the sum over c2

Z(1) EZ
REG(1) can be limited to

”physical” particle numbers. The numerical value for
this sum

+∞
∑

Z=−∞

c2
Z(1)EZ

REG(1) =
∑

Z>0

c2
Z(1)EZ

REG(1)

= −410.3403 MeV (82)

gives back the SR energy, Eq. (77), within 0.1 keV as
expected from Eq. (61).

When shifting one of the states to Rp = 2.5, the norm
kernel is 〈Φ1|Φ2.5〉 = 2816.9760, and the corresponding
transition energy kernel is E [2.5] = −830.2386 MeV. The
reference for the radius-weighted sum rule is thus pro-
vided by

E [2.5] 〈Φ1|Φ2.5〉 = −1266844 MeV , (83)

where we limit ourselves again to seven digits. Summing
c2
Z(2.5) EZ(2.5) over all Z reproduces this value with the

same precision, while summing over positive Z only gives
−1266546 MeV, which differs from the above value by
−298 MeV, which is of similar order as in case of the the
unshifted integration contour.

In the case of shifted contours, the non-radius-weighted
sum rule is more interesting to look at. As became clear
from the bottom panel of Fig. 11, the sum over all Z
cannot be evaluated numerically. Let us anyway focus on
the sum rule over positive Z only; i.e. Eq. (62). In this
case, summing c2

Z(1) EZ(2.5) gives −309.4217 MeV which
indeed decomposes into E [ρ, κ, κ∗] = −410.3403 MeV
plus the sum-rule breaking term obtained (either nu-
merically or analytically through Eq. (63)) by sum-
ming c2

Z(1) EZ
CG(2.5) over Z > 0 and which equates

+100.9189 MeV. Thus, one realizes that the most essen-
tial non-radius-weighted sum rule performed over physi-
cal components (Z > 0) is broken and not shift invariant.
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FIG. 12: (Color online) Weight of the normalized state pro-
jected on various values of Z in the SR vacuum (top panel)
and decomposition of the energy into Z components for three
different radii of the integration contour for protons (bottom
panel) for 18O at a deformation of β2 = 0.371. All states
are projected on the same neutron number N = 10 with an
integration contour of radius Rn = 1, using L = 199 integra-
tion points for both protons and neutrons. Corrected PNR
energies are the same for all values of Rp within numerical
accuracy.

In particular, the breaking term can be very large as soon
as the integration radius differs from 1. Of course, the
small (non-zero) value of that sum-rule breaking term
obtained from using the unit circle as an integration con-
tour has masked the contamination of energy functionals
with spurious terms for many years. Indeed, practition-
ers naturally interpreted that very tiny breaking as due
to numerical noise.

5. Energies of physical systems

After looking into the contributions to the sum rules,
we now turn our attention to normalized PNR energies
pertaining to the physical subspace, i.e. addressing only
those particle numbers that give a non-zero norm. Fig-
ure 12 shows PNR energies (now again completed by ki-
netic energy and c.m. correction) for three values of the
integration contour radius Rp. With each step in the un-
corrected projected energy of the Z = 8 component seen
for Rp = 1.9 and Rp = 8.2 in Fig. 9, the energy of all
other Z components changes as well. For each radius of
the integration contour there is at least one Z compo-
nent that has an obviously unphysical uncorrected PNR
energy.

The breaking of the physical sum rule for the non-

regularized PNR EDF discussed above is much smaller
then the energy scale of the changes we observe in Fig. 9
when shifting Rp. Still, we can argue with the help of the
sum rules for the regularized and non-regularized PNR
EDF that any small spurious energy in a Z component
with large weight c2

Z might have to be compensated by a
very large spurious energy in a Z component with small
weight, as it happens in Fig. 12 for the Z = 12 compo-
nent at Rp = 1.0 and the Z = 6 component at Rp = 4.0.
As a consequence, the moderate energy scale found for
the spurious energy along a deformation energy surface
when projecting on the same nucleon number that SR
vacua were constrained to does not apply to the spurious
energies entering other Z components. While this usu-
ally has no particular consequences for particle restora-
tion calculations where one is in most cases interested
in projecting out the one particle number that the SR
HFB state was constrained to and which can be expected
to have a comparatively small contamination of spurious
energy, the spurious redistribution of energy might seri-
ously compromise angular-momentum restoration, where
one is often interested in producing the entire spectrum
of low-lying states.

E. 76Kr

With the next example 76Kr, a medium heavy nucleus
located in a region of shape coexistence, we examine
how the spurious contributions to the particle-number
restored energy evolve when increasing the density of
single-particle levels. This nucleus is one out of the series
of neutron-deficient Kr isotopes that were recently stud-
ied [73] with GCM mixing of quadrupole deformed axial
particle-number and angular-momentum restored states
using SLy6.11

Figure 13 shows the location of the poles at z±µ for
protons and neutrons, the energy gain from PNR and
the absolute PNR energy as a function of quadrupole de-
formation, both with and without correction and both
calculated with L = 9 and 99 discretization points of
the gauge-space integrals. We have checked that all ob-
servables calculated as operator matrix elements are con-
verged for L = 9. The main difference to 18O is the
much larger overall density of poles. This has two con-
sequences. (i) It increases the number of poles crossing
the integration contour when deforming the nucleus and
thus the number of steps. (ii) Poles crossing the Fermi
level are hardly isolated from other poles which limits the
size of the steps through the factors entering the middle

11 The deformation energy surface obtained with SIII also displays
shape coexistence, although its topography is quite different from
the one obtained with SLy6. With SIII, the deformed minima
are much more pronounced and lower in energy compared to
the spherical one. However, this is irrelevant for the present
discussion.
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FIG. 13: (Color online) Spectrum of poles zµ = |uµ/vµ|
for protons and neutrons, the uncorrected and corrected en-
ergy gain from projection and the particle-number projected
quadrupole deformation energy for L = 9 and 99 discretiza-
tion points of the integral in gauge space for 76Kr.

product in Eq. (70). As a consequence, most of the steps
visible in Fig. 13 are much smaller than those found for
18O in Fig. 4. Notable exceptions are the ones on both
sides of the prolate minimum at β2 ≈ 0.43, which in-
deed correspond to the crossings of proton levels that are
well separated from other poles. The correction is not of
the same magnitude in the various minima; in fact, the
variation of the correction between the various minima
is of the same order as the difference in total energy of
the latter. Correcting for spurious energies might have a
visible impact on the excitation spectrum of this nucleus
obtained from a GCM mixing over quadrupole shapes of
particle number and angular momentum restored states.

E

FIG. 14: (Color online) Spectrum of poles zµ = |uµ/vµ| for
protons and neutrons, the correction to the particle num-
ber restored EDF separately for protons and neutrons, the
uncorrected and corrected energy gain from projection, and
the particle-number projected quadrupole deformation energy
without and with correction for L = 13 and 99 discretization
points of the integral in gauge space for 186Pb.

F. 186Pb

As the last example, we present in Fig. 14 results ob-
tained for 186Pb, a nucleus exhibiting triple shape co-
existence of spherical, oblate and prolate states studied
earlier in Refs. [68, 69] in a method that includes particle-
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number restoration using the Skyrme EDF SLy612. In
this heavy nucleus, the number of neutron poles z±µ in
the vicinity of the Fermi level is even larger than for
76Kr. When crossing the standard integration contour
Rn = 1, those poles generate many steps which are,
however, almost always of tiny size due to the close-
ness of other poles; the sole exception being the step
at β2 = 0.4. This is different for protons. As a conse-
quence of the magic proton number Z = 82, the density
of proton poles around the Fermi level is quite low for
most deformations, such that the few proton poles that
cross in these regions have a much larger impact. This
is illustrated by the second panel in Fig. 14 that shows
the correction EN

CG separately for protons and neutrons.
The narrow peak at small oblate deformation β2 = 0.11
is not a divergence, but stems from the crossing of two
proton levels at the Fermi energy in analogy to the struc-
ture found in 18O around β2 = 0.67. In both cases the
double-crossing is a direct consequence of the shell clo-
sure: With all other levels being too far above or below to
have occupation numbers significantly different from 0 or
1, the constraint on the average particle-number dictates
that two pairs of levels in the gap have an occupation of
v2

µ = 1/2 simultaneously. Interestingly, the uncorrected
deformation energy curve does not change much when in-
creasing the number of integration points from L = 13 to
99. As for 18O and 76Kr, the correction varies strongly
with deformation, has a different value in the various
minima, and, most importantly, is on the same energy
scale as the energy difference between those minima.

VII. SUMMARY, CONCLUSIONS AND

OUTLOOK

In the present paper, we introduce the notion of spuri-
ous self-pairing. It appears as a generalization of spurious
self-interaction processes, a well-known problem in elec-
tronic density-functional theory [6, 29, 60–62], to systems
with pairing correlations that are modeled within EDF
approaches using independent quasiparticle BCS states
as auxiliary states of reference. Self-interaction and self-
pairing processes appear for any energy functional that
uses different vertices in the particle-hole and particle-
particle channels, and/or not fully antisymmetric ver-
tices; e.g., as due to density-dependencies. Neither self-
interaction nor self-pairing appear when the many-body
energy is strictly calculated as the expectation value of a
Hamilton operator. Both are a price to pay when replac-
ing the exact nuclear many-body problem by a system of
coupled one-body problems in a EDF calculation, model-
ing higher-order in-medium correlations through a simple

12 The deformation energy surface obtained with SIII is at variance
with the experimental finding that the ground state is spherical
with low-lying prolate and oblate bands seen as excitations [68,
69]. However, this is irrelevant for the present discussion.

energy functional depending on one-body densities and
currents. On the single-reference level, self-pairing gives
a spurious contribution to the pairing field (and therefore
influences all quantities it determines) and to the total
binding energy.

Energy density functionals extended to perform multi-
reference calculations, i.e. symmetry restoration or
GCM-type configuration mixing, also contain unphysi-
cal contributions: First, the previously discussed self-
interaction and self-pairing processes that continuously
extend from SR energy functional to off-diagonal energy
kernels, as well as a second and much more dangerous
category of spuriosity that appears when the off-diagonal
kernels are evaluated on the basis of the generalized Wick
theorem. The use of a Wick theorem to evaluate a func-
tional energy kernel that does not originate from a gen-
uine Hamilton operator is not justified. Relying on the
generalized Wick theorem to construct off-diagonal func-
tional energy kernels has the unexpected particularity
to provide previously discussed self-interaction and self-
pairing contributions with unphysical weights that con-
tain poles leading to divergences [18] and steps in the
energy [25]. The latter have been noticed recently in
the context of particle-number restoration whenever a
single-particle level crosses the Fermi energy. As demon-
strated in Paper I [28], the weights of self-interaction and
self-pairing terms obtained on the basis of the standard
Wick theorem are different and do not present any prob-
lematic contributions. This feature can be exploited to
unambiguously isolate the dangerous spuriosities and set-
up a correction scheme that regularizes unphysical di-
vergences and steps in MR energy kernels [28]. In the
present paper, we have applied this correction scheme to
the simplest and formally most transparent MR case of
particle-number restoration after variation.

The complex-plane analysis performed in the present
work reveals that each conjugated pair of single-particle
levels (µ, µ̄) provides an unphysical contribution to the
physical pole at z = 0, in addition to generating unphys-
ical poles at z±µ = ±i|uµ|/|vµ|. The latter cause the steps
as they cross the integration contour [25]. The unphysi-
cal poles are also at the origin of the breaking of the shift
invariance of PNR energies [25]. However, removing only
the contribution from the poles at z±µ to the energy func-
tional kernel leads to unphysical results. Instead, the
spurious contribution from a given pair of single-particle
levels to the pole at z = 0 has to be removed simultane-
ously, as both are very large, of opposite sign, and nearly
cancel.

The correction scheme proposed in Paper I does indeed
remove both contributions; thereby it eliminates the di-
vergences and steps and restores the shift invariance of
PNR energies EN as well as standard sum rules that they
can be expected to fulfill. The correction to EN is of the
order of 1 MeV, and in most cases reduces the energy
gain from PNR. On the one hand, the correction is suffi-
ciently small that PNR EDF results published earlier are
not meaningless. On the other hand, in extreme cases the
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correction might be as large as 50 % of the energy gain
from PNR, which casts some doubt on the reliability of
published calculations performed within the EDF frame-
work. The correction is also of the same order as the rms
error of the mass residuals reached with the best avail-
able particle-number restored EDF mass fits [19]. The
correction varies rapidly with deformation and affect sig-
nificantly the structure of complex nuclei presenting soft
deformation energy surfaces and coexisting minima.

In the present paper, we do not attempt to correct for
the ”true” self-interaction and self-pairing processes that
contaminate the single-reference energy density function-
als. This amounts to modify the underlying functional
which we postpone to later works. In addition, a self-
consistent correction is very cumbersome, as documented
in the literature for self-interaction in the context of elec-
tronic DFT [6, 29, 60–62].

Particle-number restoration is not the only type of
MR-EDF calculation where using the GWT as a ba-
sis to construct non-diagonal functional energy kernels
causes problems. In fact, any symmetry restoration or
GCM-type configuration mixing calculation is expected
to be contaminated with similar spurious contributions;
e.g., anomalies were encountered in Ref. [80] in angular-
momentum restoration calculations of cranked states
without pairing and using a Skyrme EDF. The correction
scheme proposed in Paper I can be applied to any type of
MR-EDF calculation. However, all others but particle-
number restoration require the numerical construction of
the canonical basis of the Bogoliubov transformation con-
necting the two different quasi-particle bases associated
with the two vacua entering the construction of the func-
tional energy kernel [28]. Work towards the numerical
implementation of such a scheme is underway.

In the present study, we have limited ourselves to par-
ticle number restoration after variation, where the cor-
rection can be subtracted from energy kernels a posteri-

ori. With variation-after-symmetry-restoration EDF cal-
culations becoming available [26, 52], and the variational
equations sometimes running into the divergences [25],
setting up a correction scheme for those variational equa-
tions becomes an important issue and will be addressed
in a forthcoming study [81].

The correction proposed in Paper I [28] and discussed
in the present one is limited to energy functionals de-
pending on integer powers of the density-matrices. Most
functionals used in the literature, however, have a den-
sity dependence of non-integer power, both in the func-
tional modeling the effective strong interaction and as
an approximate Coulomb exchange term. Compared to
the functionals discussed here, such non-integer powers
of the density matrix pose two additional types of diffi-
culties when extended to non-diagonal energy kernels on
the basis of the GWT: (i) as transition densities are com-
plex, taking their fractional power is ambiguous [25], and
(ii) there is no well-defined basis at present to remove the
spurious branch cuts that are generated by such terms.
Both points are illustrated and examined further in Pa-

per III of this series [27].

In our opinion, the particular difficulties of functionals
with non-integer density dependencies constitute a strong
motivation to construct energy functionals with integer
powers of the densities only in view of performing mean-
ingful MR-EDF calculations in the future. At present,
there are no such non-relativistic functionals of high per-
formance. Relativistic functionals have been constructed
along these lines recently [76] with a different motiva-
tion, and have already been used in PNR-EDF calcula-
tions [20]. The construction of correctable energy func-
tionals for multi-reference applications becomes an ur-
gent task for the future. A particular problem will be
to find a suitable functional for the Coulomb interaction,
as using the exact exchange term is incommensurately
expensive in multidimensional MR-EDF calculations.
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APPENDIX A: THE ENERGY FUNCTIONAL

The energy is given as the sum of the non-interacting
kinetic energy, the Skyrme energy functional that mod-
els the strong particle-hole interaction, a pairing func-
tional that models the particle-particle interaction and
the Coulomb energy functional

E = Ekin + ESkyrme + ECoulomb + Epair + Ecorr . (A1)

The kinetic energy is the mean value of a one-body op-
erator; hence it does not pose problems. From the point
of view of establishing the correction to the MR energy
kernel, we identify in the following

Eρρ ≡ Eρρ
Skyrme + Edirect

Coulomb , (A2a)

Eρρρ ≡ Eρρρ
Skyrme , (A2b)

Eκκ ≡ Eκκ
DI , (A2c)

making explicit the power of the density matrices enter-
ing a given term. Let us now specify these terms more
explicitly.
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1. The Skyrme energy functional

We restrict ourselves here to those terms of the Skyrme
EDF depending on time-even densities and currents that
contribute to the ground states of even-even nuclei in SR
and MR-PNR calculations. Also, the functional given
below corresponds to the particular Skyrme interaction
SIII used throughout this paper. For SIII, there are
no density-dependent coupling constants, but the energy

functional can be divided into a bilinear Eρρ
Skyrme and a

trilinear term Eρρρ
Skyrme. The Skyrme energy functional

is usually represented either in terms of isoscalar and
isovector densities [82] or in terms of the total density
and the densities of the nucleon species [83]. In the con-
text of particle-number restoration, the most convenient
representation separates contributions which are bilinear
in densities of the same isospin from those that are bilin-
ear in densities of different isospin

Eρρ
Skyrme =

∫

d3r

{

∑

q=p,n

[

Aρρ ρ2
q + Aρτ ρqτq + Aρ∆ρ ρq∆ρq + Aρ∇Jρq∇ · Jq

]

+
∑

q,q′=p,n

q 6=q′

[

Bρρ ρqρq′ + Bρτ ρqτq′ + Bρ∆ρ ρq∆ρq′ + Bρ∇J ρq∇ · Jq′

]

}

, (A3)

Eρρρ
Skyrme =

∫

d3r
∑

q,q′=p,n

q 6=q′

Aρρρρ2
q ρq′ . (A4)

The Aff ′

and Bff ′

denote the coupling constants,13 none
of which is density dependent for SIII. In the canonical
basis, the local densities entering the energy functional
(A3-A4) are given by

ρq(r) = 2
∑

µ>0

φ†
µ(rq)φµ(rq) ρµµ

τq(r) = 2
∑

µ>0

[

∇ϕ†
µ(rq)

]

·
[

∇φν(rq)
]

ρµµ (A5)

Jq(r) = −i
∑

µ>0

{

ϕ†
µ(rq)

[

∇× σ̂ φµ(rq)
]

− h.c.
}

ρµµ

and denote, for the isospin q = n, p, the matter density,
the kinetic density and the spin-orbit current, respec-
tively. The operator σ̂ is the vector built out of the three
cartesian Pauli matrices. The density matrix ρµµ is ei-
ther given by Eq. (5) for the SR EDF, or by Eq. (16) or
(38) for the PNR MR EDF. One can see from the ex-
pressions given above that any local density fq(r) can be
written as:

fq(r) ≡ 2
∑

µ>0

W f
µµ(rq) ρµµ , (A6)

where f ∈ {ρ, τ,J} and where the explicit form of each
W f

µµ(rq) can be easily extracted from Eq. (A5). This will

13 Superscripts ff ′ and fff ′ used on the r.h.s. of Eqs. (A3-A4)
refer to the local densities that appear in the functional, while
the superscripts ρρ, κκ, ρρρ, . . . on the l.h.s. of Eqs. (A3), (A4),
and (A8) correspond to the powers in the density matrices.

facilitate the construction of the matrix elements needed
to evaluate the correction EN

CG.

2. The Coulomb energy functional

The standard Coulomb energy functional that is used
in connection with most parameterizations of the Skyrme
energy functional is given by

ECoulomb =
e2

2

∫∫

d3r d3r′
ρp(r)ρp(r

′)

|r − r′|

−
3

4
e2

(

3

π

)1/3 ∫

d3r ρ4/3
p (r). (A7)

The proton density entering Eq. (A7) is calculated as
described in the preceding section. The energy func-
tional (A7) provides the textbook example of an energy
functional that is not self-interaction free [29].

The Coulomb exchange term in the Slater approxi-
mation, represented by the second term on the r.h.s. of
Eq. (A7), resembles the density-dependent terms of mod-
ern parameterizations of the Skyrme functional. As, at
present, we do not have a correction scheme for terms
depending on non-integer powers of the density, we drop
it and consider the direct term only in the present work.
Concerning absolute binding energies, the Coulomb ex-
change term is the smallest of all contributions to the
energy functional for nuclei and states considered here;
it does not exceed 2 % of the total binding energy even
in very heavy nuclei with a strong Coulomb field. What
is even more important for the present study is that its
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value changes also by at most 2 % when deforming a nu-
cleus; its influence on potential energy surfaces is smaller
than what can be resolved in the plots shown in Sec. VI.

3. Pairing energy functional

For pairing, we choose a local energy functional de-
duced from a simple delta interaction (DI), often referred
to as ”volume pairing”

Eκκ
DI =

∑

q

∫

d3r Aρ̃ρ̄ ρ̄∗q(r) ρ̃q(r) . (A8)

More elaborate parameterizations of the pairing energy
functional are frequently used in the literature. When
enforcing time-reversal invariance as done here, the local
pair densities entering the pairing functional are related
to the pairing tensor through

ρ̃q(r) ≡ 2
∑

µ>0

W ρ̃
µµ̄(rq)κϕϕ′

µ̄µ , (A9)

ρ̄∗q(r) ≡ 2
∑

µ>0

W ρ̄
µµ̄

∗(rq)κϕ′ϕ ∗
µ̄µ , (A10)

where κϕϕ′

µµ̄ and κϕ′ϕ ∗
µµ̄ are given by Eqns. (6) and (7) for

SR-EDF calculations with ϕ′ = ϕ, and by Eqns. (17)
and (18), or Eqns. (39) and (40), respectively, for PNR
MR-EDF calculations. In the case of SR EDF and PNR
MR EDF calculations, W ρ̃

µµ̄(rq) and W ρ̄
µµ̄(rq) are equal

and given by

W ρ̃
µµ̄(rq) = W ρ̄

µµ̄(rq) = gµ

∑

σ=±1

σ φµ(rσq)φµ̄(r − σq) ,

(A11)
and represent the spin-singlet part of the two-body wave
function. This does not hold for other MR EDF calcula-
tions. The notation σ = ±1 denotes the spinor compo-
nent with spin projection ±1/2. The functions W ρ̃

µµ̄(rq)

and W ρ̄
µµ̄(rq) incorporate a cutoff gµ to regularize the

pairing problem, which is otherwise divergent in a vari-
ational calculation. In the SR calculations, we use the
smooth phenomenological cutoff proposed in Ref. [84],
while in the PAV-PNR MR calculations it is set to gµ = 1.

APPENDIX B: CORRECTION TERM

1. Bilinear terms

a. Matrix elements

We focus here on the case where the system is time-
reversal invariant, which leads to

W f
µµ = W f

µ̄µ̄ (B1)

for the time-even densities contributing to the Skyrme
and Coulomb functionals. There is a minus sign in the

l.h.s. of Eq. (B1) when considering time-odd ones that
we do not have to take into account here as the corre-
sponding contributions from the two states (µ, µ̄) cancel
out both in the total energy and in the correction given
by Eq. (29). For the state-dependent function entering
the pair density we have

W ρ̃ ∗
µµ̄ (rq) = W ρ̃

µµ̄(rq) = −gµW ρ
µµ(rq) . (B2)

For the SIII energy functional, the matrix elements that
match the definition of the bilinear part as given by
Eq. (9) read as

v̄ρρ
µνµν = 2

∫

d3r
∑

f,f ′

Aff ′

W f
µµ(rq)W f ′

νν(rq) , (B3)

where the sum over f , f ′ runs over all terms appearing
in Eq. (A3). The quasi-local form of the Skyrme energy
functional simplifies the construction of the matrix ele-
ments v̄ρρ

µνµν in two ways: on the one hand, they involve
one triple integral only, and on the other they contain
products that are separable in µ and ν. This is of great
help from the numerical point of view when coding the
correction to the PNR energy as defined by Eq. (29).

The situation is different for the direct Coulomb term.
Indeed, the corresponding matrix elements (not antisym-
metric as Coulomb exchange was dropped all together)
are not separable

v̄ρρ
µνµν = 2 e2

∫∫

d3r d3r′
W ρ

µµ(rp)W ρ
νν(r′p)

|r − r′|
. (B4)

and they involve a six-fold integral. This considerably
complicates their calculation compared to the matrix el-
ements of the Skyrme functional. Instead, the Poisson
equation for the Coulomb potential generated by the
source W ρ

λλ(rp)

Uρ
λλ(r) = −4πe ∆W ρ

λλ(rp) , (B5)

is solved first using boundary conditions constructed
from the lowest-order terms in a multipole expansion of
the state-dependent field W ρ

λλ(rp), and then the Coulomb
energy of the other density in this field is obtained as

v̄ρρ
µνµν = 2 e2

∫

d3r W ρ
µµ(rp)Uνν(r) . (B6)

For all but very light nuclei, the calculation of the correc-
tion is much more costly than the calculation of the PNR
direct Coulomb energy itself, as the correction Uρ

µµ(r)
has to be determined for each single-particle state solv-
ing Eq. (B5), while for the total Coulomb energy the
Coulomb potential has to be determined only for the
summed up total charge density. However, Uρ

µµ(r) en-
tering the correction is independent of the gauge an-
gle, while the Coulomb potential has to be determined
for each gauge angle when calculating the total PNR
Coulomb energy.

Last, but not least, the matrix elements entering the
pairing functional are given by

v̄κκ
µµ̄νν̄ = 4

∫

d3r Aρ̃ρ̃ W ρ̃ ∗
µµ̄ (rq)W ρ̃

νν̄ (rq) . (B7)
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b. Correction

Let us now write the spurious contribution EN
C G that

must be removed from the MR-PNR energy, defined by
Eq. (29), for the functional introduced in Appendices A 1,
A 2 and A3.

The spurious contributions only originate from inter-
actions between particles of the same isospin. All contri-
butions from the bi-linear part of the energy functional
to the correction contain the same occupation factor, for

which we introduce the shorthand notation

VN
SG µ ≡ (uµvµ)4

∫ 2π

0

dϕ
e−iϕN

2π c2
N

(

e2iϕ − 1
)2

(

u2
µ + v2

µ e2iϕ
)2

×
∏

ν>0

qν=qµ

(u2
ν + v2

νe2iϕ) . (B8)

Hence, we obtain

EN
CG = 4

∫

d3r
∑

µ>0

VN
SG µ

[

∑

{f,f ′}

Aff ′

W f
µµ(rq)W f ′

µµ(rq) − Aρ̃ρ̃ W̃µµ̄(rq) W̃µµ̄(rq) + e2 W ρ
µµ(rp)Uµµ(r)

]

, (B9)

where it is understood that the Coulomb term only contributes to the sum over proton pairs. In the MR-PNR code,
the calculation of Eq. (B9) constitutes an effort similar to the evaluation of a local one-body operator, as it can be
reduced to a single sum over half of the single-particle states adding up a local function in space that is integrated
over afterwards.

2. Trilinear terms

a. General expression

We have restricted ourselves here to the special case of the Skyrme SIII functional. The zero-range three-body force
that it originates from has the particular property that it gives an energy functional composed of terms which are
bilinear in densities of one isospin times a density of the other isospin. The absence of terms trilinear in densities of
one isospin greatly simplifies the correction term (see Paper I), which reduces to

EN
CG =

1

6

∑

µ>0

∑

λ≷0

qλ 6=qµ

(

v̄ρρρ
µµλµµλ + v̄ρρρ

µ̄µλµ̄µλ + v̄ρρρ
µµ̄λµµ̄λ + v̄ρρρ

µ̄µ̄λµ̄µ̄λ + v̄ρρρ
µλµµλµ + v̄ρρρ

µ̄λµµ̄λµ

+ v̄ρρρ
µλµ̄µλµ̄ + v̄ρρρ

µ̄λµ̄µ̄λµ̄ + v̄ρρρ
λµµλµµ + v̄ρρρ

λµ̄µλµ̄µ + v̄ρρρ
λµµ̄λµµ̄ + v̄ρρρ

λµ̄µ̄λµ̄µ̄

)

V
Nµ

SG µ

× v2
λ

[
∫ 2π

0

dφ
e−iφNλ

2πc2
Nλ

e2iφ

u2
λ + v2

λe2iφ

∏

ν>0

qν=qλ

(u2
ν + v2

νe2iφ)

]

(B10)

where (Nλ = N , Nµ = Z) or (Nλ = Z, Nµ = N) depending on the isospin of the states (µ, µ̄).

b. Matrix elements

The matrix elements of the trilinear term appearing in the SIII Skyrme functional are given by

v̄ρρρ
µνλµνλ = 6

∫

d3r Aρρρ W ρ
µµ(rqµ)W ρ

νν(rqν)W ρ
νν(rqλ) . (B11)

c. Correction

Finally, the spurious term to be removed from the trilinear part of the SIII Skyrme functional is

EN
CG = 12

∑

µ>0

V
Nµ

SG µ

∫

d3r
[

W ρ
µµ(rqµ)

]2
[
∫ 2π

0

dφ
e−iφNλ

2πc2
Nλ

ρqλ
(rφ)

∏

ν>0

qν=qλ

(u2
ν + v2

νe2iϕ)

]

, (B12)
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where the last term in square brackets [· · · ] is nothing but the particle-number projected local density of nucleons
with isospin qν 6= qµ.
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