Impact of a Large-Scale Magnetic Field on Stellar Structure
V. Duez, S. Mathis, A. S. Brun and S. Turck-Chieze

DSM/IRFU/SAp, CEA Saclay, F-91191 Gif-sur-Yvette Cedande;
AIM, UMR 7158, CEA - CNRS - Université Paris 7, France

Abstract. We present the derivation of non force-free magneto-hydticg MHS) equilibria in spherical geometry, supposing
any prescription for the toroidal current. This allows ustiady the influence on the stellar structure of a large-soalgnetic
field, both on the mechanical and on the energetical balafmeescases illustrate this approach : (i) the field is burielbly a
given radius, in order to model deep fossil magnetic fieldsoiar-like stars; (i) the internal field matches at the scefwith
an external potential magnetic field that corresponds tsilfislds in more massive stars. The stellar structure peations
are semi-analytically computed in both cases. This allesviowestablish a hierarchy between the orders of magnitutieeof
different terms. Finally, the limit of validity of the linegerturbation is discussed.
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1. INTRODUCTION

Considering stellar magnetic fields as one of the essentigédients of stellar evolution is today a necessity, when
looking for answers to unsolved problems such as the flatfebe rotation profile in the solar radiation zone, or the
discrepancy between the sound speed deduced from hefiadepy observations and the one found using existing
stellar evolution codes [1, 2]. Hence more and more obsenaare one hand devoted to the external topology of
the magnetic field for very different types of stars thankthedevelopment of spectropolarimetry [3, 4], whereas on
the other hand, neutrinos, gravity waves or gravity modesioe very promising probes to improve our knowledge
on internal fields [5, 6]. In this context, a tremendous warkoday being undertaken to implement the macroscopic
processes associated with the magnetic field in 2D model${if]none of these works treat at the present date the
transport mechanism including both rotation and magnetisma self-consistent way, i.e. by solving the angular
momentum transport and the induction equations.

An alternative promising approach resids in the implemt@naf these 2D equations (in the axisymmetric case) in a
unidimensionnal code, looking then at their projectionshanspherical harmonics of low order [8, 9], which leads to
a spectral model including all the refinements of the miapgcphysics contained in 1D stellar evolution codes. This
approach differs from what has been proposed so far in thisa@to[10, 11], where the impact of magnetic fields on
the stellar structure along the evolution appeared thr@ugiodification of the thermodynamics of the model, with a
magnetic field generally treated as an “effective magnetsgure” and with some ad-hoc approximations concerning
its geometrical nature.

In this perspective, it is relevant to quantify the impactioa stellar structure of a large-scale magnetic field, yiltel

act over evolutionary timescales.

To model these magnetic fields, we derive the magneto-hiatiogMHS) configurations for any given azimuthal
current, by integrating a Grad-Shafranov-Poisson equnatiing a method based on Green'’s functions. Two cases of
equilibria are analytically investigated for illustratipurpose : (i) the case of a solar-like star, perturbed byssilfo
field buried below its convection zone and with a strength i [12]; (i) the case of an frtype star, perturbed by

a field spanning across the star, and matching at its surfale@wwotential, dipolar field with a 10 kG strength [13].
The physical quantities likely to modify the stellar sturet are then semi-analytically derived and computed in the
two cases of interest.



2. THE MODIFIED STELLAR STRUCTURE EQUATIONS

In this section we depict briefly how is the set of stellar stuwe equations modified when taking into account the
effects of the magnetic field. These ones are given by
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B being the magnetic field the current density|n || the magnetic diffusivity tensopg the plasma magnetic perme-
ability, p the densityPyasthe gas pressure and= {X} the chemical composition vector. We introduced the mag-
netic pressurnag= B? /2o, the magnetic tensiof > = — (B - [0) B/2uo, the Ohmic heatin@onm = (1/o)||n|| ®
(OxB)-(O0xB), and the Poynting’s flu¥poynt= (1/Ho)0- (E x B). The other quantities are denoted by their tra-
ditional abbreviations. The MHS equilibrium and the eneegyations are considered radially, the two-dimensional
quantitiesZ(r, 8) have therefore been latitudinally averaged according B>g (r) = (1/2) [5'Z(r,0)sin6d6.

3. THE NON FORCE-FREE MHS EQUILIBRIUM

Let us express the magnetic fi@dr, 8) in the axisymmetric case as a function of a poloidal fié(x, 6) and a toroidal
potentialF (r, 8) such that it remains by construction divergence-free :
1

= ——[OWx& + ——=F &. 7

rsin@ ><edH—rsm@ © 0
where in spherical coordinates the poloidal direction ithe meridional plane§,&g) and the toroidal direction is
along the azimuthal oré . Notice thaBp-0W =0, so the poloidal fieldp = B, & + Bg&g belongs to isd¥ surfaces.
Let us write the magneto-hydrostatic (MHS) equilibrium akoiws:

whereFy = jxB is the Lorentz force. We have to verify that its toroidal campntFy, vanishes everywhere,
since in lack of rotation there is no other force in this dii@t to compensate for the equilibrium deviation. This
condition writes aglWdgF — dgWa.F = 0 where the notatiody = d/dx has been used. The non trivial values for
F are therefore obtained by settifir, 8) = F (W), which for a regular function, can be written at first order as
F (W) = a1W¥. Therefore, the Lorentz force can be expressed concisely as

B

Fy=a/ (r,0)0¥ where &(r,0)=— (a2¥+A"W). 9)
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Its poloidal component is non-zero a priori for any giventhe pressure gradient and the density perturbation adjust
themselves in order to relax towards equilibrium. In theraghal direction the field is force-free.

The azimuthal component of Ampere’s law in the MHD classaggroximation, together with the expression for the
poloidal component of the magnetic field leads to the follayvielation betweefy and4:

AW = —porsing jg, (10)
where we introduce the so-called Grad-Shafranov openatgpherical coordinates
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This a Grad-Shafranov-Poisson equation, to which we widlireereafter as the GSP equation. Let us now prescribe
an azimuthal currenfy to study the effects of a magnetic field localized in a chowi\on Here, to illustrate our
purpose we choose a current densigyr, 8) = jg, ig, (1) is, (8) Where the radial functioy, (r) = sirg [(2r/R— 1) 1]

is regular and vanishes at the center and-atR, the angular dependengg, (6) = sin6 be|ng dipolar whilejg, is
calibrated for the field to have the imposed strength, i.thetenter in the case of the Sun or at the surface in the case
of the A, star.

3.1. Solutions to the GSP equation

We solve the equation (10) using the Green’s functions nie(bb Morse and Feshbach [14], Payne and Melatos
[15]). The general expression for the flux functiéris then given by

W(r,0) = —uOZje/l{*lsinZGCI/z cose/g| (r',r) [/ i (', 6')C¥*(cose’) sin® 6'd6’ | r3dr’ (12)
=

whereg (r,r") is solution of the equation?d,2g;(r,r') — (I +1)(1 +2) g/ (r,r') = 6(r —r’), for the given boundary

conditions atr = R, C, 3/2 (cosh) is the Gegenbauer polynomial of ordef23and the normalization coefficient is
defined byA4{ = 2(1 + 1)(1 + 2) /(2 + 3). For boundary conditions modeling a field buried in an ineliation zone
(below the confinement radils= R:) we setg; (0,r') = 0 andg; (R, r’) = 0; we thus get the radial Green'’s function
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g.(rr) = (2|i3) [Qﬁ F‘_] rhif r<r org.(rr') = (2|—i3) [%’m—ﬂ%} r'+2if r > ', verifying the continuity

atr = r'. For a field matching at the stellar surface Rat R,) with a potential magnetic field we sgt(0,r') =0
andg;(R.,r") = gi;pot Oi;pot bEING such that the magnetic field verifigs< B = 0. The corresponding radial Green’s

. . 1+2 .
functions are they_(r,1') = — g s if r <1 org. (r.r') = —(Zl—ia% ifr>r.

4. INFLUENCE ON STELLAR STRUCTURE

4.1. Physical Quantities Modifying The Mechanical Balance
4.1.1. Lorentz Force

Lorentz force influences the stellar structure through fircation of the hydrostatic balance in the meridional plane
(eq. 8). In Fig. 1 (left) is drawn the radial dependence ofdheraged Lorentz force for both cases studied here. It
appears that the Lorentz force is centrifugal within theiinal third of the radius whereas it is centripetal in thesxl
part. We can then predict that its impact on the density tebligion throughout the evolution is to counteract theeff
of the gravity, owing to the fact that the mechanical balaisdsased by the density distribution which favours what
happens near the center. Furthermore, it stems from thedatal profile that the component of the Lorentz force
along this direction is directed towards the equator, sdliimcrease the density in the equatorial latitudes. Tfene
the sphere deformation is prolate.

4.1.2. Magnetic Pressure Force vs. Magnetic Tension Force

We can write the Lorentz force as the sum of the gradient of gneiic pressure and of a magnetic tension force:
Fy=F27—UPnag (13)
The magnetic pressure gradient has a predominant role imtbémal part of the star over the magnetic tension.
However, the latter’s strength is of the order of the fornmeparticular on the symmetry axis and in the vicinity of

the surface, where both ones counterbalance each otherleHuls to a force-free state, that cannot be achieved by
considering the magnetic pressure as the only effect.

4.1.3. Lorentz Force Perturbations on the Stellar Struetur

Let us then project the Lorentz force components on the Léigapolynomialdi (cos6) (of orderl =0 andl =2
in the case of a dipolar field), assuming it is a perturbatrouad the stellar non-magnetic state:

Fer(r,0)= Z%F'(f;l (r)R (cosh), Feo(r,0)= Z@F 1 (r) 9eR (cosh) (14)
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FIGURE 1. Left: radial Lorentz force isocontours in the meridionahmpe, (up) for a 7 MG field buried below the convection
zone of the Sun; (down) for a 10 kG field in an Ap star. Middle &ight : perturbations (in log. scale) of motle- 0 (middle) and

| = 2 (right) respectively for both cases above. Bold linesasent positive values whereas thin lines represent negaties. The
spikes corresponds to the vanishing of source terms forghat®ns (15), (16) and (17).

~

which gives us at the surface the gravitational moménts (R./GM,) @ (r = R,). We can then deduce the gravita-
tional potential perturbatioq (r) to the non-magnetic stag(r), from Sweet's equation

1d? / ~\ I(1+1)~ 4nGdpy~ 4nG d

() e e U [%qu(r%j;l)] (13)
wheregq is the equilibrium gravity and where we hagér, 8) = @(r) + 3| @ (r)R (cosB). After numerical integra-

tion, the density perturbatiqn and the pressure ofie(where the density and the pressure have been expanded on the
Legendre polynomials as done for the gravitational podéfibr the modd, can respectively be computed according

to
~ 1 deA d ~ ~
=5 { o At TRat g (r%u)] and B =—po@ — 1%, (16)
Diagnosis from the stellar radius variation induced by ttegnetic field can be established. The radius of an isobar is
given by ~
_ oo 1 A p (1 PFy
rp(r,0) _r{1+|;c|(r)H(cose)} with ¢ = FdRy/dr  dRo/dr (rqq + o ) (17)

Finally, it can be interesting to look for temperature parations. Following [18], we introduce the general equatio
of state for the stellar plasm@dp = asdP/P— &dT /T, whereas=(dInp/dInP); ., &=—(dInp/dInT)p,, and

where we neglected the mean molecular weight perturbdimna perturbative Lorentz force, the stellar temperature
(T) can be expanded like, p and¢ according toT (r,8) = To(r) + 350 Ti () B (cosB). Linearizing the equation of

state, we finally obtain - 8 5
o b
T=2as— — 2. 18
T l R po (18)

Results for the normalized perturbations of gravitatigruential®, , densityd;, pressurdd, temperaturd; and radius
¢ are shown in Fig. 1 for the modés= 0 andl = 2 (resp. middle and right panel). The surface values arengive
Table 1. It shows that the perturbative approach is suitiabtlee case of the Astar for a 10 kG field strength at the
surface, while in the solar case, it cannot cope with fieldesermaximum amplitude are higher ttBgnax = 240kG.
ForBy = 7MG, we are hence much above the perturbative limit and nolasion can be drawn in this case.

1 Let us recall that Sweet (1950) [16] was the first to derive thiult for the most general perturbing force, Moss (1924) having introduced
the special case of the Lorentz force in the case of a poléigldl while later Mathis & Zahn (2005) [9] treated the gehepdsymmetric case.



TABLE 1. (Left): normalized surface perturbations in solar case affield
buried below the convection zone with a maximum field striengft 7MG;
(right): in the case of the Atype star for a field with a 10 kG amplitude at
the surface.

Sun A, star
=0 =2 =0 =2
J 385x10*  —631x10°%  114x107 —595x107°
o (—8.58) (0.14) —-835x10°% —241x10*
A (—404x101) 6.62x10°3  140x10%  440x10°*
T (818) (—1.34x101) -125x10*%  6.80x107*
C —7.95x 1073 1.30x 1076 6.86x 1078 2.25x 1077

4.2. Perturbation of the Energetic Balance

Here again a perturbative approach is adopted. The luntyniestxpanded as
L(r) = Lo(r) + Lot(r). (19)

Lot is the luminosity perturbation due to the magnetic termig(r) = Lonm(r) + Lpoynt(r) + Lnuc(r) , which are
respectively the Ohmic heating contribution, the Poyrisifigx one, and the one related to the induced modification
of the specific energy production rate.

First, we integrate the Ohmic heating and the Poynting'sdiuer the spherical volume delimited by

Lonm(r) / /QOhmr 6')dQr'2dr’; Lpoyn(r) / /Fpoy,n(r 6')dQr2dr’, (20)

where d) = sin6’d6’d¢/, r’ thus ranging from 0 to, 6’ from 0 to rand¢’ from O to 2.

The magnetic diffusivityn has been evaluated with the temperature-dependent law fi®@h n = 5.2 x
10 logA T—%/2 cmPs 1 where we took for the coulombian logarithm lags 10. Then, to be able to conclude
we finally consider the modification of the specific energyduation rate £), which depends op and T, due
to magnetic field. First, the logarithmic derivative ofis expanded like the one ¢ (cf. the equation of state;
see Mathis & Zahn 2004 [8] and references therein):eddnA dinp + v dInT, whereA = (dIng/dInp); and
v=(dIng/d InT)p. Then, likep andT, we expand on the Legendre polynomials so that we finally end up with

(r,0)=¢(r)+ & (r)R (cosd) where &§ =g [A— Ay vTI (21)
=) po To
Then, the luminosity perturbation induced by the MHS eguilim over the nuclear reaction rates is
Louc(r / / &0 por’%dr'dQ = 4n/ {eo A go + vT— }por’zdr’. (22)
0

The values found at the stellar surface are given in Table Bdth cases here considered.

5. CONCLUSION AND PERSPECTIVES

First, we emphasize the fact that one has to take into acdmihteffects of magnetic pressure gradient and magnetic
tension when the magnetic field is included in the hydrostadiance through the Lorentz force. In particular, in the
vicinity of the stellar surface (or near the confinementuaylithe magnetic tension has an important qualitative role
since it allows to compensate the magnetic pressure gtatiisneads to a force-free state; this is also the case near
the magnetic field axis where the two contributions are simil

Then, a first order-perturbative treatment has been peddynvhich puts in evidence the perturbation in structural
guantities as a function of the radius. This approach ishialhigh3 regimes and it has been applied to both cases
considered here. The modal fluctuations in structural diessuch as the gravific potential, the density, the pressu
the temperature, the gravitational multipole moments aedgobar radius are computed. Nevertheless, this approach
fails to derive the perturbations associated with a stroagmetic field; in the case of the Sun it is suitable for fields



TABLE 2. Contribution of Ohmic heat-
ing (Lonm) and contribution of Poynting’s
flux (Lpoyny on the luminosity perturba-
tion for the modd = 0 (in erg.s); contribu-
tion for the perturbation induced by the de-
viation to the hydrostatic equilibrium over
the nuclear efficiencfcnuc; total luminosity
Liot.

Sun Ay star

Lohm 5.81x 1024 2.15x 1027
Lpoynt —1.01x 107 —2.90x 107
Lruc 1.49%x 10?28  5.05x 10%0
Lot 1.59x 10%° 3.85x 1033

whose strengths are not higher than 240 kG. This justifieslt@she complete set of evolution equations taking into
account all the magnetic modifications directly. It is dihngexplained by the fact that the Lorentz force is a voluricetr
guantity so when the density decreases, the relative miagifects are increased and become of the same order than
the gravity.

Next, the Poynting’s flux and the Ohmic heating contributth®dmodification of the energetic balance and influence
it with approximately the same order of magnitude. Nevdethe we notice that their contributions remain weak in
the studied cases. Nevertheless, it has been shown sfoaighitdly that the energetic balance can be modified more
significantly by the nuclear production rates indirect afiag through the modification of pressure and density when
the magnetic field modifies the hydro-static balance.

Finally, we have to emphasize that this study is the first stepe implementation of global magnetic fields in stellar
models and the introduction of the different terms alongaution in a 1D stellar evolution code. They may have a
greater impact especially in the early and late stages aftbkition.
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