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Abstract. We present the derivation of non force-free magneto-hydrostatic (MHS) equilibria in spherical geometry, supposing
any prescription for the toroidal current. This allows us tostudy the influence on the stellar structure of a large-scalemagnetic
field, both on the mechanical and on the energetical balances. Two cases illustrate this approach : (i) the field is buried below a
given radius, in order to model deep fossil magnetic fields insolar-like stars; (ii) the internal field matches at the surface with
an external potential magnetic field that corresponds to fossil fields in more massive stars. The stellar structure perturbations
are semi-analytically computed in both cases. This allows us to establish a hierarchy between the orders of magnitude ofthe
different terms. Finally, the limit of validity of the linear perturbation is discussed.
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1. INTRODUCTION

Considering stellar magnetic fields as one of the essential ingredients of stellar evolution is today a necessity, when
looking for answers to unsolved problems such as the flatnessof the rotation profile in the solar radiation zone, or the
discrepancy between the sound speed deduced from helioseismology observations and the one found using existing
stellar evolution codes [1, 2]. Hence more and more observations are one hand devoted to the external topology of
the magnetic field for very different types of stars thanks tothe development of spectropolarimetry [3, 4], whereas on
the other hand, neutrinos, gravity waves or gravity modes become very promising probes to improve our knowledge
on internal fields [5, 6]. In this context, a tremendous work is today being undertaken to implement the macroscopic
processes associated with the magnetic field in 2D models [7], but none of these works treat at the present date the
transport mechanism including both rotation and magnetisms in a self-consistent way, i.e. by solving the angular
momentum transport and the induction equations.
An alternative promising approach resids in the implementation of these 2D equations (in the axisymmetric case) in a
unidimensionnal code, looking then at their projections onthe spherical harmonics of low order [8, 9], which leads to
a spectral model including all the refinements of the microscopic physics contained in 1D stellar evolution codes. This
approach differs from what has been proposed so far in this domain [10, 11], where the impact of magnetic fields on
the stellar structure along the evolution appeared througha modification of the thermodynamics of the model, with a
magnetic field generally treated as an “effective magnetic pressure” and with some ad-hoc approximations concerning
its geometrical nature.
In this perspective, it is relevant to quantify the impact onthe stellar structure of a large-scale magnetic field, likely to
act over evolutionary timescales.
To model these magnetic fields, we derive the magneto-hydrostatic (MHS) configurations for any given azimuthal
current, by integrating a Grad-Shafranov-Poisson equation using a method based on Green’s functions. Two cases of
equilibria are analytically investigated for illustration purpose : (i) the case of a solar-like star, perturbed by a fossil
field buried below its convection zone and with a strength of 7MG [12]; (ii) the case of an Ap-type star, perturbed by
a field spanning across the star, and matching at its surface with a potential, dipolar field with a 10 kG strength [13].
The physical quantities likely to modify the stellar structure are then semi-analytically derived and computed in the
two cases of interest.



2. THE MODIFIED STELLAR STRUCTURE EQUATIONS

In this section we depict briefly how is the set of stellar structure equations modified when taking into account the
effects of the magnetic field. These ones are given by
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B being the magnetic field,j the current density,||η || the magnetic diffusivity tensor,µ0 the plasma magnetic perme-
ability, ρ the density,Pgas the gas pressure andχ = {Xi} the chemical composition vector. We introduced the mag-
netic pressurePmag= B2/2µ0, the magnetic tensionFT = −(B ·∇)B/2µ0, the Ohmic heatingQOhm= (1/µ0)||η ||⊗
(∇×B) · (∇×B), and the Poynting’s fluxFPoynt= (1/µ0)∇ · (E×B). The other quantities are denoted by their tra-
ditional abbreviations. The MHS equilibrium and the energyequations are considered radially, the two-dimensional
quantitiesZ(r,θ ) have therefore been latitudinally averaged according to< Z >θ (r) = (1/2)

∫ π
0 Z(r,θ )sinθdθ .

3. THE NON FORCE-FREE MHS EQUILIBRIUM

Let us express the magnetic fieldB(r,θ ) in the axisymmetric case as a function of a poloidal fluxΨ(r,θ ) and a toroidal
potentialF(r,θ ) such that it remains by construction divergence-free :

B =
1

r sinθ
∇Ψ×êϕ +

1
r sinθ

F êϕ . (7)

where in spherical coordinates the poloidal direction is inthe meridional plane (êr , êθ ) and the toroidal direction is
along the azimuthal onêeϕ . Notice thatBP ·∇Ψ = 0 , so the poloidal fieldBP = Br êr +Bθ êθ belongs to iso-Ψ surfaces.
Let us write the magneto-hydrostatic (MHS) equilibrium as follows:

ρ g−∇Pgas+ FL = 0, (8)

whereFL = j×B is the Lorentz force. We have to verify that its toroidal componentFLϕ vanishes everywhere,
since in lack of rotation there is no other force in this direction to compensate for the equilibrium deviation. This
condition writes as∂r Ψ∂θ F − ∂θ Ψ∂rF = 0 where the notation∂x = ∂/∂x has been used. The non trivial values for
F are therefore obtained by settingF(r,θ ) = F(Ψ), which for a regular function, can be written at first order as
F(Ψ) = α1Ψ. Therefore, the Lorentz force can be expressed concisely as
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1
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)
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Its poloidal component is non-zero a priori for any givenΨ; the pressure gradient and the density perturbation adjust
themselves in order to relax towards equilibrium. In the azimuthal direction the field is force-free.
The azimuthal component of Ampere’s law in the MHD classicalapproximation, together with the expression for the
poloidal component of the magnetic field leads to the following relation betweenjϕ andΨ:

∆∗Ψ = −µ0r sinθ jϕ , (10)

where we introduce the so-called Grad-Shafranov operator in spherical coordinates
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This a Grad-Shafranov-Poisson equation, to which we will refer hereafter as the GSP equation. Let us now prescribe
an azimuthal currentjϕ to study the effects of a magnetic field localized in a chosen region. Here, to illustrate our
purpose we choose a current densityjϕ(r,θ ) = jϕ0 jϕr (r) jϕθ (θ ) where the radial functionjϕr (r) = sin3

c [(2r/R−1)π ]
is regular and vanishes at the center and atr = R, the angular dependencejϕθ (θ ) = sinθ being dipolar whilejϕ0 is
calibrated for the field to have the imposed strength, i.e. atthe center in the case of the Sun or at the surface in the case
of the Ap star.

3.1. Solutions to the GSP equation

We solve the equation (10) using the Green’s functions method (cf. Morse and Feshbach [14], Payne and Melatos
[15]). The general expression for the flux functionΨ is then given by
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wheregl (r, r ′) is solution of the equationr2∂r2gl(r, r ′)− (l + 1)(l + 2) gl (r, r ′) = δ (r − r ′), for the given boundary

conditions atr = R, C3/2
l (cosθ ) is the Gegenbauer polynomial of order 3/2 and the normalization coefficient is

defined byNl = 2(l +1)(l +2)/(2l +3). For boundary conditions modeling a field buried in an inner radiation zone
(below the confinement radiusR= Rc) we setgl (0, r ′) = 0 andgl (Rc, r ′) = 0; we thus get the radial Green’s function
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at r = r ′. For a field matching at the stellar surface (atR = R∗) with a potential magnetic field we setgl (0, r ′) = 0
andgl(R∗, r ′) = gl ;pot, gl ;pot being such that the magnetic field verifies∇×B = 0. The corresponding radial Green’s
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4. INFLUENCE ON STELLAR STRUCTURE

4.1. Physical Quantities Modifying The Mechanical Balance

4.1.1. Lorentz Force

Lorentz force influences the stellar structure through modification of the hydrostatic balance in the meridional plane
(eq. 8). In Fig. 1 (left) is drawn the radial dependence of theaveraged Lorentz force for both cases studied here. It
appears that the Lorentz force is centrifugal within the internal third of the radius whereas it is centripetal in the external
part. We can then predict that its impact on the density redistribution throughout the evolution is to counteract the effect
of the gravity, owing to the fact that the mechanical balanceis biased by the density distribution which favours what
happens near the center. Furthermore, it stems from the latitudinal profile that the component of the Lorentz force
along this direction is directed towards the equator, so it will increase the density in the equatorial latitudes. Therefore
the sphere deformation is prolate.

4.1.2. Magnetic Pressure Force vs. Magnetic Tension Force

We can write the Lorentz force as the sum of the gradient of a magnetic pressure and of a magnetic tension force:

FL = FT −∇Pmag. (13)

The magnetic pressure gradient has a predominant role in theinternal part of the star over the magnetic tension.
However, the latter’s strength is of the order of the former in particular on the symmetry axis and in the vicinity of
the surface, where both ones counterbalance each other. This leads to a force-free state, that cannot be achieved by
considering the magnetic pressure as the only effect.

4.1.3. Lorentz Force Perturbations on the Stellar Structure

Let us then project the Lorentz force components on the Legendre polynomialsPl(cosθ ) (of orderl = 0 andl = 2
in the case of a dipolar field), assuming it is a perturbation around the stellar non-magnetic state:

FL ,r (r,θ ) = ∑
l

XFL ;l (r)Pl (cosθ ) , FL ,θ (r,θ ) = −∑
l

YFL ;l (r)∂θ Pl (cosθ ) (14)



FIGURE 1. Left: radial Lorentz force isocontours in the meridional plane, (up) for a 7 MG field buried below the convection
zone of the Sun; (down) for a 10 kG field in an Ap star. Middle andRight : perturbations (in log. scale) of model = 0 (middle) and
l = 2 (right) respectively for both cases above. Bold lines represent positive values whereas thin lines represent negative ones. The
spikes corresponds to the vanishing of source terms for the equations (15), (16) and (17).

which gives us at the surface the gravitational momentsJl = (R∗/GM∗) φ̂l (r = R∗). We can then deduce the gravita-
tional potential perturbation̂φl (r) to the non-magnetic stateφ0(r), from Sweet’s equation1
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whereg0 is the equilibrium gravity and where we haveφ (r,θ ) = φ0(r)+ ∑l φ̂l (r)Pl (cosθ ). After numerical integra-
tion, the density perturbation̂ρl and the pressure onêPl (where the density and the pressure have been expanded on the
Legendre polynomials as done for the gravitational potential) for the model , can respectively be computed according
to
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Diagnosis from the stellar radius variation induced by the magnetic field can be established. The radius of an isobar is
given by
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Finally, it can be interesting to look for temperature perturbations. Following [18], we introduce the general equation
of state for the stellar plasma dρ/ρ = αsdP/P−δsdT/T, whereαs=(∂ lnρ/∂ lnP)T,µs

, δs=−(∂ lnρ/∂ lnT)P,µs
and

where we neglected the mean molecular weight perturbation.For a perturbative Lorentz force, the stellar temperature
(T) can be expanded likeP, ρ andφ according toT (r,θ ) = T0 (r)+ ∑l≥0 T̂l (r)Pl (cosθ ). Linearizing the equation of
state, we finally obtain
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]
. (18)

Results for the normalized perturbations of gravitationalpotentialΦ̃l , densityρ̃l , pressurẽPl , temperaturẽTl and radius
cl are shown in Fig. 1 for the modesl = 0 andl = 2 (resp. middle and right panel). The surface values are given in
Table 1. It shows that the perturbative approach is suitablein the case of the Ap star for a 10 kG field strength at the
surface, while in the solar case, it cannot cope with fields whose maximum amplitude are higher thanB0,max= 240kG.
ForB0 = 7MG, we are hence much above the perturbative limit and no conclusion can be drawn in this case.

1 Let us recall that Sweet (1950) [16] was the first to derive this result for the most general perturbing force, Moss (1974) [17] having introduced
the special case of the Lorentz force in the case of a poloidalfield, while later Mathis & Zahn (2005) [9] treated the general axisymmetric case.



TABLE 1. (Left): normalized surface perturbations in solar case, for a field
buried below the convection zone with a maximum field strength of 7MG;
(right): in the case of the Ap type star for a field with a 10 kG amplitude at
the surface.

Sun Ap star

l = 0 l = 2 l = 0 l = 2

Jl 3.85×10−4 −6.31×10−6 1.14×10−7 −5.95×10−9

ρ̃l (−8.58) (0.14) −8.35×10−6 −2.41×10−4

P̃l (−4.04×10−1) 6.62×10−3 1.40×10−4 4.40×10−4

T̃l (8.18) (−1.34×10−1) −1.25×10−4 6.80×10−4

cl −7.95×10−5 1.30×10−6 6.86×10−8 2.25×10−7

4.2. Perturbation of the Energetic Balance

Here again a perturbative approach is adopted. The luminosity is expanded as

L(r) = L0(r)+ L̂tot(r). (19)

L̂tot is the luminosity perturbation due to the magnetic terms :L̂tot(r) = LOhm(r) + LPoynt(r) + L̂nuc(r) , which are
respectively the Ohmic heating contribution, the Poynting’s flux one, and the one related to the induced modification
of the specific energy production rate.
First, we integrate the Ohmic heating and the Poynting’s fluxover the spherical volume delimited byr

LOhm(r) =
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where dΩ = sinθ ′dθ ′dφ ′, r ′ thus ranging from 0 tor, θ ′ from 0 toπ andφ ′ from 0 to 2π .
The magnetic diffusivityη has been evaluated with the temperature-dependent law from[19] η = 5.2 ×
1011 logΛ T−3/2 cm2s−1 where we took for the coulombian logarithm logΛ ≈ 10. Then, to be able to conclude
we finally consider the modification of the specific energy production rate (ε), which depends onρ and T, due
to magnetic field. First, the logarithmic derivative ofε is expanded like the one ofρ (cf. the equation of state;
see Mathis & Zahn 2004 [8] and references therein): d lnε = λ dlnρ + ν dlnT, whereλ = (∂ lnε/∂ lnρ)T and
ν = (∂ lnε/∂ lnT)ρ . Then, likeρ andT, we expandε on the Legendre polynomials so that we finally end up with
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Then, the luminosity perturbation induced by the MHS equilibrium over the nuclear reaction rates is
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The values found at the stellar surface are given in Table 2 for both cases here considered.

5. CONCLUSION AND PERSPECTIVES

First, we emphasize the fact that one has to take into accountboth effects of magnetic pressure gradient and magnetic
tension when the magnetic field is included in the hydrostatic balance through the Lorentz force. In particular, in the
vicinity of the stellar surface (or near the confinement radius), the magnetic tension has an important qualitative role
since it allows to compensate the magnetic pressure gradient that leads to a force-free state; this is also the case near
the magnetic field axis where the two contributions are similar.
Then, a first order-perturbative treatment has been performed, which puts in evidence the perturbation in structural
quantities as a function of the radius. This approach is valid in high-β regimes and it has been applied to both cases
considered here. The modal fluctuations in structural quantities such as the gravific potential, the density, the pressure,
the temperature, the gravitational multipole moments and the isobar radius are computed. Nevertheless, this approach
fails to derive the perturbations associated with a strong magnetic field; in the case of the Sun it is suitable for fields



TABLE 2. Contribution of Ohmic heat-
ing (LOhm) and contribution of Poynting’s
flux

(
LPoynt

)
on the luminosity perturba-

tion for the model = 0 (in erg.s); contribu-
tion for the perturbation induced by the de-
viation to the hydrostatic equilibrium over
the nuclear efficiencŷLnuc; total luminosity
Ltot.

Sun Ap star

LOhm 5.81×1024 2.15×1027

LPoynt −1.01×1023 −2.90×1025

L̂nuc 1.49×1028 5.05×1030

Ltot 1.59×1035 3.85×1033

whose strengths are not higher than 240 kG. This justifies to solve the complete set of evolution equations taking into
account all the magnetic modifications directly. It is directly explained by the fact that the Lorentz force is a volumetric
quantity so when the density decreases, the relative magnetic effects are increased and become of the same order than
the gravity.
Next, the Poynting’s flux and the Ohmic heating contribute tothe modification of the energetic balance and influence
it with approximately the same order of magnitude. Nevertheless, we notice that their contributions remain weak in
the studied cases. Nevertheless, it has been shown straightforwardly that the energetic balance can be modified more
significantly by the nuclear production rates indirect changing through the modification of pressure and density when
the magnetic field modifies the hydro-static balance.
Finally, we have to emphasize that this study is the first stepin the implementation of global magnetic fields in stellar
models and the introduction of the different terms along theevolution in a 1D stellar evolution code. They may have a
greater impact especially in the early and late stages of theevolution.
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