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Abstract

The structure of low-lying states in the light krypton isotopes 72Kr, 74Kr, and 76Kr has been studied with the finite-

range Gogny D1S effective interaction via Hartree-Fock-Bogolyubov based calculations within a configuration-mixing

formalism treating axial and triaxial quadrupole deformations. The good overall agreement with the experimental

low-lying excitation spectra and matrix elements supports the shape coexistence scenario and a transition of the

ground-state shape from oblate in 72Kr to prolate in 76Kr. The triaxial degree of freedom is shown to be crucial to

reproduce the experimental data in general and the inversion of the oblate and prolate configurations in particular.
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Most atomic nuclei are deformed in their ground
state, while spherical symmetry is usually only real-
ized in nuclei with closed proton or neutron shells.
Microscopically, nuclear deformation occurs if there
are sufficiently large energy gaps (compared to the
pair scatter energy) between the nucleon orbitals at
finite values of deformation. The stabilizing effect of
deformed shell gaps causes minima in the potential
energy surface (PES) at non-spherical shapes. The
deformation can be expressed in a multipole expan-
sion of the matter distribution or, alternatively, of
the charge distribution, which is more easily accessi-
ble experimentally. Quadrupole shapes are by far the
most important type of deformation and are conve-
niently described by the parameters β and γ for the
axial deformation and the deviation from axiality,
respectively [1]. The features of most deformed nu-
clei are consistent with an axially symmetric, elon-
gated (prolate) shape. Flattened (oblate) shapes are

less common, and only few nuclei are expected to be
oblate in their ground state [2,3].

The same nucleus can assume different shapes,
which can change dramatically with angular mo-
mentum and excitation energy, for example when a
deformed configuration becomes favored due to its
large moment of inertia. The energies of the differ-
ent configurations also change with proton or neu-
tron number, so that the nuclear shape, for example
for the ground state, can change from one nuclide
to another. Such shape transitions involving coex-
isting configurations of different shapes have to be
distinguished from shape changes due to an evolv-
ing mean-field potential, e.g. from spherical to de-
formed, as was already pointed out by Heyde et

al. [4].
We define shape coexistence as the existence of

states of the same spin and parity corresponding
to different shapes within the same nucleus. This
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is very common, as different configurations of the
nucleons, occupying different orbitals, will generally
lead to different equilibrium shapes. Nevertheless,
the shapes will be rather similar in most cases. We
therefore speak of shape coexistence in the proper
sense only if (i) the shapes involved are clearly dis-
tinguishable, e.g. spherical vs. deformed or prolate
vs. oblate, and if (ii) the energies of the states are
similar, but separated by a barrier, so that mixing
between the different components of the wave func-
tions is weak and the states retain their character.
This can occur if two distinct minima with similar
absolute energy coexist in the PES. Shape coexis-
tence has been predicted theoretically and observed
experimentally in several regions of the nuclear chart
[5]. Since the nuclear deformation is in general very
sensitive to the nuclear structure, shape coexistence
represents a particularly stringent test for nuclear
structure theory. In this letter we demonstrate the
importance of triaxiality for the coexistence of pro-
late and oblate shapes and their evolution with neu-
tron number in the light krypton isotopes.

Prolate and oblate configurations are competing
to form the ground state in the isotopes 72Kr, 74Kr,
and 76Kr. Shape coexistence was first suggested
to explain the irregularities in the ground-state
bands [6,7] and the origin of the low-lying 0+

2 states
in these nuclei [8,9]. The systematics of the exci-
tation energy of the 0+

2 states and their electric
monopole transition strength to the ground state
was interpreted as an indication for a transition
from a prolate ground-state shape in 76Kr to oblate
in 72Kr, with strongly mixed configurations for
74Kr [9]. The latter is supported by the compari-
son of the Gamow-Teller strength distribution in
the β decay of 74Kr with deformed Quasiparticle-
Random-Phase-Approximation calculations, sug-
gesting a strong prolate-oblate shape coexistence
in the ground state of 74Kr [10]. Recent results
from low-energy Coulomb excitation of 74Kr and
76Kr provide the sign of the electric quadrupole
moments for several low-lying states in these nuclei,
proving the prolate character of the states in the
ground-state band and oblate shapes for an excited
configuration [11]. Finally, the transition probabil-
ity B(E2; 0+

1 → 2+

1 ) in 72Kr has been determined
by Coulomb excitation at intermediate energy [12].
Comparing the relatively small value to theoreti-
cal calculations, this result has been interpreted as
supporting an oblate ground state in 72Kr.

Several theoretical approaches, such as shell-
model methods [13,14], self-consistent triaxial
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Fig. 1. Potential energy surfaces for 72Kr, 74Kr, and 76Kr.

mean-field models [15,16], or beyond-mean-field
models [17], predict shape coexistence at low excita-
tion energy in the light krypton isotopes. However,
the transition from a prolate ground-state shape in
76Kr and 74Kr to oblate in 72Kr has only been repro-
duced in the so-called excited VAMPIR approach,
which uses a valence space reduced to the fpg shells
and a modified G matrix with effective charges [14].
This approach has only limited predictive power
since the shell-model interaction is locally derived
for a given mass region. On the other hand, no
self-consistent mean-field (and beyond) calculation
with a globally derived interaction has reproduced
this feature of the light krypton isotopes so far. A
beyond-mean-field study of the low-lying states and
their configuration mixing in the light Kr isotopes
with the Skyrme interaction SLy6, restricted to
axial symmetry, found oblate ground-state shapes
coexisting with excited prolate configurations for
all light Kr isotopes [17] 1 .

In this letter we presentHartree-Fock-Bogolyubov
(HFB) based configuration-mixing calculations us-
ing the Generator Coordinate Method (GCM) with
Gaussian Overlap Approximation (GOA) for the
low-lying states in 72Kr, 74Kr, and 76Kr with the
finite-range, density-dependent Gogny D1S effec-
tive interaction [19,20] including axial and triaxial
quadrupole deformations and the rotational degrees
of freedom with no free parameters. It has already
been shown that such calculations reproduce the
experimental excitation energies and B(E2) tran-
sition strengths in this region of the nuclear chart
well [11,21]. Here we describe the calculations in
more detail and show that the five-dimensional na-
ture of the calculations is essential for the correct
description of the complex shape coexistence, and
that triaxial shapes play a crucial role for the tran-
sition from oblate ground-state shape in 72Kr to
prolate in 76Kr.

In the present GCM+GOA approach, the corre-
lated states are described as a superposition of the

1 This beyond-mean-field method based on Skyrme interac-
tions has recently been extended to triaxial degree of free-
dom [18].
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quasiparticle vacuum wave functions |φq〉 which are
obtained from the minimization of the energy func-
tional

δ〈φq|Ĥ −
∑

i

λiQ̂i − λZ Ẑ − λN N̂ |φq〉 = 0 , (1)

where Ĥ is the nuclear many-body Hamiltonian
built with the finite-range effective force D1S [20],
Q̂i is the set of external field operators, and Ẑ and
N̂ are the proton and neutron number operators,
respectively. The Lagrange multipliers λi, λZ , and
λN are determined by the constraints

〈φq|Q̂i|φq〉 = qi , 〈φq|Ẑ(orN̂)|φq〉 = Z(orN) . (2)

The correlated states write

|Ψk〉 =

∫

fk(q)|φq〉 dq , (3)

where q stands for a set of collective coordinates and
where the superposition amplitude fk(q) is the so-
lution of the Griffin-Hill-Wheeler equation [22,23].
This integral equation is transformed via the GOA
into a second-order differential equation, which
writes in the laboratory system of coordinates [24]

Ĥgk(q) = Ekgk(q) , (4)

with

Ĥ = −
~

2

2

∑

ij

∂

∂qi

[

M−1(q)
]

ij

∂

∂qj
+ V(q) . (5)

In the present work, the operator Ĥ is a micro-
scopic collective Hamiltonian relevant to the five
quadrupole coordinates, i.e. axial q0 and triaxial q2

deformation as well as the three Euler angles, gk(q)
is the Gauss transform of the amplitude fk(q), Mij

the tensor of inertia, and V(q) the PES corrected for
the zero-point energy

V(q) = 〈φq|Ĥ |φq〉 − ∆V (q), q = (q0, q2) . (6)

The zero-point energy correction ∆V (q) includes ro-
tational and vibrational components [25]. The col-
lective masses Bij entering the tensor of inertia are
calculated in the cranking approximation [26,27]. In
contrast, the moments of inertia Ji(q)(i = 1, 2, 3)
are calculated self-consistently at spin zero [28,29].
Changes of collective masses or moments of inertia
with the rotational frequency of the nucleus are not
considered in this approach, reducing the predictive
power of the model to low spins only.

The Schrödinger-like Eq. (4) has eigenstates
which may be expressed as

|IM〉 =

I
∑

K=0

gI
K(β, γ) |IMK〉 , (7)

where the deformation parameters β and γ are re-
lated to the coordinates q0 and q2 [24], |IMK〉 is a
linear combination of Wigner rotation matrices with
M and K being projections of the angular momen-
tum I onto the third axis in the laboratory and in-
ertia frame, respectively, and gI

K(β, γ) is interpreted
as vibration amplitude. It follows that the probabil-
ity density ρI(β, γ) of a state with angular momen-
tum I in the (β, γ) plane is

ρI(β, γ) =

I
∑

K=0

∣

∣gI
K(β, γ)

∣

∣

2
µ(β, γ) , (8)

where µ(β, γ) is the metric of the Hamiltonian Ĥ
[24,30]. By construction, ρI(β, γ) is normalized over
the sextant SI = {β ≥ 0, 0◦ ≤ γ ≤ 60◦}.

The PESs V(q) are shown in Fig. 1. Two distinct
minima of almost equal depth are observed for all
three Kr isotopes under study, separated by a tri-
axial barrier of approximately 2 MeV. For 74Kr and
76Kr the minima are found at axial shapes with large
prolate (β = 0.5, γ = 0◦) and smaller oblate defor-
mation (β = 0.2, γ = 60◦). For 72Kr the absolute
minimum is found at oblate deformation, while the
prolate minimum has moved to a triaxial shape with
γ ≈ 15◦, giving already a first hint of the impor-
tance of triaxial shapes for the description of low-
lying states in the Kr isotopes. Note, however, that
the location of a minimum in the PES does not yet
determine the nuclear shape, as correlations beyond
the mean field have to be taken into account.

The excitation energies and quadrupole moments
of the low-lying states in 72Kr, 74Kr, and 76Kr and
the transition probabilities between them were ob-
tained from the calculations after configuration mix-
ing following the method of Kumar [31]. Detailed ex-
perimental data are available for 74Kr and 76Kr, and
the excellent agreement with our calculations has al-
ready been demonstrated in Ref. [11]. Experimental
information on 72Kr, however, is sparse. A compar-
ison between experimentally known data and our
calculation is shown in Fig. 2. The only known tran-
sition probability is B(E2; 2+

1 → 0+

1 ) = 1000 ± 130
e2fm4 [12]. The calculated excitation energies are
higher than the experimental values, in particular
for the 0+

2 state. On the other hand, also the exper-
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Fig. 2. Experimental and calculated excitation spectrum of
low-lying states for 72Kr. The spin-parity and excitation
energy (in keV) is indicated for each state. The width of the
arrows is proportional to the reduced transition probability
B(E2), which is given in e2fm4.

imental excitation spectrum is stretched compared
to 74Kr and 76Kr, so that the systematic trend is
correctly reproduced by the calculations. The tran-
sition strength in the ground-state band is found to
increase with spin in all three isotopes, which is due
to the strong configuration mixing in the low-spin
states. The calculated energies of the 0+

2 states and
some selected B(E2) values, which are revealing for
the shape coexistence, are compared to experimen-
tal values in Table 1. The calculations overestimate
the excitation energies of the 0+

2 states in all three
isotopes, but the systematic trend is again correctly
reproduced with a minimum in 74Kr. At the same
time, the coupling between the 0+

2 and the 2+

1 states,
which is strong for all isotopes under study, has a
maximum for 74Kr. This supports the interpretation
of 74Kr showing the strongest configuration mixing.

Further information on the degree of shape mix-
ing can be derived from an evaluation of the elec-
tric monopole strength ρ2(E0; 0+

2 → 0+

1 ), which was
calculated as

ρ2(E0; 0+
2 → 0+

1 ) = |
〈0+

2 |
∑Z

i=0
r2
i |0

+

1 〉

R2
|2, (9)

with R = 1.2A1/3 fm. The results are shown in Fig. 3
together with experimental measurements [8,9,32]
and calculations based on mixing of axial mean-
field configurations using the SLy6 effective force
[17]. Even though the absolute values found in our
(parameter-free) calculations are too large by an al-
most constant factor of three, the systematic trend
is well reproduced. The increase of the ρ2(E0) value
from 78Kr to 74Kr indicates increased configuration
mixing, which is found lower again for 72Kr. These
results are consistent with a maximum configuration
mixing in 74Kr and an inversion of the ground-state
shape for 72Kr. While the absolute values from the
axial GCM calculations [17] are in better agreement

72
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Fig. 3. Electric monopole matrix elements ρ2(E0) for the
chain of light Kr isotopes in comparison with results from
the axial Skyrme GCM calculation [17] and experimental
values [8,9,32].

with experiment, they do not reproduce the system-
atic trend, consistent with the fact that they do not
find an inversion of prolate and oblate shapes.

The nature of the low-lying states and their asso-
ciated shapes can be understood by examining the
topology of the collective wave functions. The prob-
ability densities ρI(β, γ) (Eq. 8) for the states in
the ground-state bands of 72Kr, 74Kr, and 76Kr are
shown in Fig. 4. The spectroscopic quadrupole mo-
ment Qs (in the laboratory frame) and the relative
weight of K = 2 components are also given. Pro-
late (oblate) states with predominant K = 0 com-
ponents have negative (positive) Qs moments. Note,
however, that in our calculation K is always evalu-
ated with respect to the prolate axis, so that states
of axially symmetric oblate shapes have K 6= 0, and
a transformation of the spectroscopic quadrupole
moment into the intrinsic frame of reference with
this definition of K is not straight forward. States
with Iπ = 0+ have K = 0 and Qs = 0 by defini-
tion. It should be noted that ρI(β, γ) = 0 at γ =
0◦ and 60◦ due to the metric of the Hamiltonian
[24]. The spectroscopic quadrupole moments, which
are known experimentally (including their sign) for
several states in 74Kr and 76Kr, are in rather good
agreement with our calculations, as was already dis-
cussed in Ref. [11].

The ground-state wave function is strongly spread
out for all three isotopes. The 2+

1 states show a
shape transition from prolate in 76Kr to oblate in
72Kr, with 74Kr showing shape coexistence with a
dominating prolate and a smaller oblate component
of the wave function. This is also reflected in the
sign of the quadrupole moment Qs, which is nega-
tive for the 2+

1 states in 76Kr and 74Kr, but posi-
tive for 72Kr. The probability densities for the 4+

1

states are much more localized at prolate shape in
the case of 76Kr and 74Kr, whereas the 4+

1 state in
72Kr shows shape coexistence with two distinct pro-
late and oblate components. The 6+

1 states have pro-
late character in all three isotopes. The topology of
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Table 1
Comparison of calculated and experimental excitation ener-

gies of the 0+

2
states (in keV) [9,6], B(E2) values involving

both 0+

1
and 0+

2
states (in e2b2) [11,12], ρ2(E0; 0+

2
→ 0+

1
)

values [8,9,32], and charge radii (in fm) [34].

72Kr 74Kr 76Kr

ex. 671 508 770
E(0+

2
)

th. 1406 748 926

ex. 0.100(13) 0.122(2) 0.144(2)
B(E2; 2+

1
→ 0+

1
)

th. 0.063 0.104 0.117

ex. — 0.47(5) 0.241(11)
B(E2; 0+

2
→ 2+

1
)

th. 0.100 0.364 0.234

ex. 0.072(6) 0.085(19) 0.079(11)
ρ2(E0)

th. 0.116 0.263 0.228

ex. 4.164(7) 4.187(4) 4.202(3)
Rc

th. 4.145 4.179 4.198

the wave functions indicates hence a transition of the
ground-state shape with neutron number from pro-
late in 76Kr to oblate in 72Kr, as well as a shape tran-
sition with angular momentum for 72Kr from oblate
at the ground state to prolate above I ≥ 6. The
terms prolate and oblate, however, should be used
with caution, because for some cases the probability
densities extend strongly into the triaxial plane, and
the K = 2 contribution is large. This is in particular
true for the non-yrast states, for which the probabil-
ity densities are generally more complex and char-
acterized both by coexistence of prolate and oblate
shapes and by mixing of K = 0 and K = 2 com-
ponents. The transition from a prolate to an oblate
state (or vice versa) is thus understood as a transi-
tion via non-axial shapes, rather than along the ax-
ial path. A similar result was found in calculations
for 72Kr using the method of self-consistent adia-
batic large-amplitude collective motion [33].

The shape transition with neutron number is also
reflected in the mean-square charge radii for the
ground states. An increase in the charge radius is
observed experimentally from N = 50 to N = 40
[34], reflecting increasing deformation, but the ra-
dius drops sharply from 76Kr to 72Kr, consistent
with a shape transition from prolate to oblate. The
good agreement between experimental [34] and cal-
culated charge radii is illustrated in Table 1. It is also
consistent in this context that the axial GCM cal-
culations with Skyrme force by Bender et al., which
find oblate ground states for all light Kr isotopes, do
not reproduce the isotopic shift of the charge radii
[17].

72Kr74Kr76Kr
00 +0:2953 +0:2733 �0:092500 �0:4814 �0:984 �1:18300 0+1 �0:5110 2+1 �0:856 4+1 �1:017 6+1

Fig. 4. Probability density ρI (β, γ) for the collective wave
functions of the states in the ground-state bands of 72Kr,
74Kr, and 76Kr. The scale for the deformation parameters is
the same as for the potential energy surfaces in Fig. 1. The
values shown for each state give the spectroscopic quadrupole
moment Qs (eb) and the relative weight of K = 2 compo-
nents (in %) (see text).

The analysis of both the probability density of
the wave functions and of the mean-square charge
radii confirms the shape coexistence scenario in the
light krypton isotopes, with the oblate configuration
energetically lowest in 72Kr and the prolate config-
uration favored in 74Kr and 76Kr. A similar shape
transition is found in the light Se isotopes with an
oblate configuration dominating the ground state in
the N = Z isotope 68Se and a coexisting prolate
configuration, whose energy is decreasing with neu-
tron number [21]. As in the case of 72Kr, the oblate
shapes found in the Se isotopes turn prolate with in-
creasing angular momentum, with the critical spin
for this shape transition depending on the relative
energies of the oblate and prolate configurations [21].

To further investigate the role of triaxiality for
the shape transition in the light krypton isotopes,
calculations were performed for the 0+ states in the
three Kr isotopes using the same approach restricted
to axial shapes. Only the axial quadrupole moment
q0, here taken along the z-axis, was considered as
collective coordinate, which takes on negative and
positive values, thus covering both oblate (q0 < 0)
and prolate (q0 > 0) intrinsic shapes. A collective
Hamiltonian in one dimension - spanned by q0 - is
then defined. The potential energy ν(q0) is found as

ν(q0) = 〈Φq0
|Ĥ |Φq0

〉 − ∆V (q0), (10)

where ∆V (q0) is a short notation for the zero-point
energy correction including (i) the same rotational
component as previously, and (ii) the vibrational
component associated with q0. Also the collective
mass is only associated with the q0 coordinate. Solv-
ing the Hamiltonian in one dimension leads to eigen-
states characterized by I=K=0. The first and second
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Fig. 5. Nilsson diagrams for protons (left) and neutrons
(right) for 74Kr obtained in the Gogny D1S (full lines)
and Skyrme SLy6 (dashed lines) calculations [35]. The
quadrupole deformation β is proportional to the axial
quadrupole moment q0.

eigenstates are interpreted as ground and 0+

2 state,
respectively. The results still indicate shape coexis-
tence. However, the ground states were found to be
dominated by oblate shapes for all three Kr isotopes
under study, contrary to experimental results [11].
The average charge quadrupole deformation 〈q0〉 for
the ground states in 72Kr, 74Kr, and 76Kr is found
to be −308, −203, and −58 efm2, respectively. The
equivalent values from the axial Skyrme calculations
of Bender et al. are similar: −302, −124, and −154
efm2 [17,35]. In the latter work this deficiency was
attributed to an incorrect description of the single-
particle energies in the fp shell by the SLy effective
interactions. Our results, however, show that the re-
striction to axial shapes is responsible for favoring
the oblate configuration. In fact, the single-particle
energies obtained with the SLy6 and D1S interac-
tions are very similar, as illustrated in Fig. 5, show-
ing the consistency of the two calculations on the
mean-field level. It may then be concluded that tri-
axiality plays a key role for explaining shape transi-
tions in the light Kr isotopes.

In summary, we have performed HFB-based
configuration-mixing calculations with the finite-
range Gogny D1S interaction for the light krypton
isotopes, treating all quadrupole deformations in
a formalism using a Bohr-like Hamiltonian. Good
agreement is found with experimental excitation
energies, transition probabilities, quadrupole mo-
ments, and charge radii. The structure of the low-
lying states is dominated by the coexistence of
prolate and oblate shapes, which change rapidly
from one state to another, making the assignment
of band structures difficult. Even though differences
related to the choice of the effective interaction can-
not be excluded entirely, our results suggest that
it is essential to include non-axial shapes in GCM

calculations in order to correctly describe the shape
coexistence and shape transitions in the light Kr
isotopes. This question will be ultimately settled
once triaxial GCM calculations along the lines of
Ref. [18], both with Skyrme and Gogny interactions,
will become feasible in this mass region.

The authors would like to thank M. Bender for
enlightening discussions and providing unpublished
data.
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