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The influence of Pauli-blocking medium effects on intermediate-energy one-nucleon removal cross
sections for sd-shell nuclei have been investigated using density-dependent nucleon-nucleon interac-
tion cross sections within the S-matrix formalism under the Glauber approximation. All considered
prescriptions for the density dependence result in a reduction of the one-nucleon removal cross sec-
tions. The effect is smaller than 20% for incident energies between 50 and 100 MeV/nucleon, and
smaller than a percent above 200 MeV/nucleon.

PACS numbers: 21.10.Jx, 24.10.-i, 24.50.+g, 25.60.Dz

I. INTRODUCTION

Direct nuclear reactions, i.e. collisions during which
very few nuclear degrees of freedom are modified, are
commonly used to access information on nucleonic shell
occupancies through the extraction of spectroscopic fac-
tors Sf . Spectroscopic factors are defined as the over-
lap between populated final states and the initial state
of the wave-function [1]. In the case of single-orbit nu-
cleon stripping reactions, they are determined as the
ratio of the measured cross section σexp to the theo-
retical single-particle cross section σsp, Sf ∝ σexp/σsp,
assuming the reaction mechanism is correctly modeled.
Several stripping processes have been used to study
ground-state properties across the nuclear chart. Pro-
ton shell structure has been largely studied via (e, e′p)
knockout reactions on stable nuclei [2]. Shell structure
of unstable nuclei can be investigated in inverse kine-
matics by low-energy transfer reactions analysed within
the Distorted Wave Born Approximation (DWBA) or
Coupled-Channel formalisms [3] and by intermediate-
energy nucleon-removal reactions usually analysed within
the Glauber approximation [4]. These reactions have
been shown to provide rather consistent spectroscopic
factors for stable or exotic nuclei [5–7]. The question
is still open regarding the stripping of deeply-bound nu-
cleons in very asymetric systems [8]. In any case, un-
certainties on the reaction mechanism impacts directly
the reliability of calculated single-particle cross sections,
limiting our capability to extract absolute spectroscopic
factors.

Among the above mentioned experimental probes,
intermediate-energy nucleon removal reactions are a
unique and robust tool to perform the spectroscopy of
very exotic nuclei that are produced at intensities as
small as a few particles per second [9]. These reac-
tions have been extensively used to study very asym-
metric systems displaying a large excess or a deficiency
of neutrons compared to stable isotopes. Single-particle
cross sections for such reactions can be evaluated using
the Glauber approximation. Such an approximation, for-

mulated within the S-matrix theory, is valid when the
intrinsic nucleon velocity is negligeable compared to the
projectile-target relative velocity. It is considered fulfilled
for energies above ∼30 MeV/nucleon [9]. Microscopic S-
matrix calculations rely essentially on two types of in-
put: (i) nuclear densities (target, projectile and single-
particle wave functions) and (ii) the in-medium nucleon-
nucleon (NN) cross sections [10, 11] or a nucleon-nucleon,
or nucleon-target, optical potential to account for the
stripping process [12]. The effect of the kind of den-
sities considered in S-matrix calculations on knockout
cross sections has been discussed for sd-shell nuclei [13].
When densities from Skyrme energy density functional
(EDF) calculations are used, the final one-nucleon knock-
out cross section may vary up to several percents depend-
ing on the parameterization used. Moreover, deformation
can modify the single-particle cross sections by up to 30%
for well deformed systems [14, 15].

The NN interaction to consider in the calculation is
expected to be modified in the nuclear medium com-
pared to the free case due to Pauli-blocking which par-
tially reduces the phase space of collisions, and due to
the modification of the single-particle properties of the
nucleon at finite density. Indeed, several authors have
studied the in-medium NN scattering problem using dif-
ferent approaches. There exists in the literature calcula-
tions of the in-medium NN cross sections based on the
non-relativistic Brueckner theory [16–22] as well as its
relativistic version, the Dirac–Brueckner theory [23–26],
or the variational method [27]. These medium effects can
be taken into account via a density dependence (DD)
of the NN interaction cross sections or of the effective
nucleon-nucleon optical potential. However, they are of-
ten disregarded in the calculation of one-nucleon removal
cross sections where mainly free-space NN cross sections
are considered. In the specific case of two-neutron halo
removal cross sections at intermediate energies and to-
tal reaction cross sections on light neutron-rich nuclei,
their effect has already been studied and shown to be
small [28].

Using in-medium NN cross sections based on a Brueck-
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ner calculation [22] and on two different parameteriza-
tions by G. Q. Li and R. Machleidt [24, 25], and by C. Xi-
angzhou et al. [29], we study in this article the effect of
the in-medium NN interaction on one-nucleon removal
reactions at intermediate energies on sd shell nuclei and
evaluate its impact on single-particle cross sections.

II. FORMALISM

A. S-matrix formalism

In order to implement density-dependent effective NN
interaction cross sections in the S-matrix formalism, we
have developped a dedicated code that calculates one-
nucleon removal cross sections within the Glauber ap-
proximation. Similar developments have been performed
to investigate the effect of density dependence on reaction
cross sections [28]. In the following, we assume inverse-
kinematics reactions. The one-nucleon removal cross sec-
tion is calculated using the eikonal formalism [10, 30]
and consists of a stripping and a diffractive part, i.e.
σ = σstr + σdiff . The projectile wave function |ψ〉 is de-
fined as a core wave function |φC〉 complemented with the
wave function of the removed nucleon |φN 〉. Calculations
are based on two main quantities: the elastic S matrices
for the core (SC) and the removed nucleon (SN ). In an
impact-parameter representation, the stripping part of
the cross section is calculated as

σstr = 2π
∫
bdb

∫
d~r |φN (~r)|2 |SC(~bC)|2 (1− |SN (~bN )|2)

(1)
where ~bC , ~bN are the impact parameters of the core and
of the removed nucleon respectively. The elastic S matrix
for the core-target system SC is defined from the target
(T) and core densities as well as from the in-medium
NN cross sections σNN (E, ρ) that depends on both the
incident energy and the total density of the system, i.e.
the sum of projectile and target densities ρ = ρP + ρT .
At an impact parameter ~b, the S matrix is defined as a
phase-shift SC(~b) = exp(iχC(~b)) with a complex phase

χC(~b) = −
∫
dz

∫
d~r′ σNN (E, ρ(~r′)) ρC(~r′) ρT (|~b− ~r′|)

(2)
where the density ρ is taken at point ~r′ and the trajectory
of the center of mass is considered as a straight line along
the z axis. We explicitly differentiate Tz = 0 and Tz = 1
interactions by considering proton and neutron densities
separately. The diffractive part is obtained from the same
S matrices as

σdiff = 2π
∫
bdb
{∫

d~r |φN (~r)|2 |(1− SC(~bC)SN (~bN ))|2

−
∣∣∣ ∫ d~r |φN (~r)|2(1− SC(~bC)SN (~bN ))

∣∣∣2 }
(3)

We restrict our calculations to a zero-range NN inter-
action in order to reduce the amount of space integrals
since we observe that the interaction range has a small
impact on the final nucleon-removal cross section for
the cases we studied in this work. In the case of the
free (density-independent) NN interaction cross section,
Eq. (2) reduces to the usual formulation. The SC ma-
trix for the core-target system is computed through the
full four-dimensional integral of Eq. (2), considering the
various density dependences of the in-medium NN inter-
action cross sections. The imaginary-to-real-part ratio
of the interaction cross section, dependent on the inci-
dent energy, is taken from Ref. [31]. For a 9Be target, a
density derived from quantum Monte-Carlo calculations
based on the AV18 potential is considered [32] but our
conclusions do not vary if we consider a Gaussian matter
density with a root mean square of 2.36 fm. For reac-
tions on a 12C target, we use a Gaussian matter density
with a root mean square of 2.32 fm. The core density is
obtained from a Skyrme-EDF calculation with the Sly4
zero-range effective interaction [33] using the HFBRAD
code [34]. The removed-nucleon wave function is cal-
culated in a Woods-Saxon potential whose depth and
radius are fixed to reproduce the experimental separa-
tion energy of the nucleon and mean-square radius of the
corresponding HF wave function. A similar equation to
Eq. (2) is used for the nucleon S matrix, exchanging the
target density ρT with the single-particle presence prob-
ability of the removed nucleon. The S matrices give also
access to reaction and elastic-scattering cross sections.

The calculation of the multi-dimensional integrals to
calculate the phase shifts χ of Eq. (2) has been com-
puted in a four-dimensional box of 20 fm4. These inte-
grals have been discretized on a regular mesh with a δx
= 0.2 fm integration step. The influence of the step size
on the reaction and one-nucleon removal cross sections
has been studied and showed, for the studied cases, to
be converged for δx = 0.4 fm with a precision smaller
than 1%. The numerical calculation of the spatial inte-
grals have been parallelized in order to be performed in
a reasonable time.

We first considered the free NN cross section from
Ref. [35] in order to determine the single-particle cross
sections for one-nucleon removal from 32Ar, 28S, 24Si,
46Ar and 12C and compared to corresponding published
theoretical results [6, 8, 13, 36]. Our calculation agrees
with the latter with a mean deviation of 2% and no sys-
tematic trend is observed. Discrepancies can be imputed
to the differences of the considered mean-field densities
and numerical uncertainties in the integral evaluations.

B. In-medium NN cross sections

In-medium NN interaction cross sections constitute
one of the basic ingredients in the calculation of the
nucleon-removal cross sections. In the present work, we
have considered three different sets of in-medium NN
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interaction cross sections: (i) a set based on a micro-
scopic non-relativistic Brueckner–Hartree–Fock (BHF)
calculation of isospin asymmetric nuclear matter per-
formed by us [22] that uses the realistic Argonne V18
nucleon-nucleon interaction [37] as an input in the Bethe–
Goldstone equation, (ii) a cross-section parameterization
based on the relativistic Dirac–Brueckner approach of
G. Q. Li and R. Machleidt (L & M) [24, 25] that uses the
Bonn nucleon-nucleon potential [38] as bare interaction,
and (iii) a phenomenological formula for in-medium NN
cross sections developed by C. Xiangzhou et al. (C.X)
[29]. The Coulomb force is neglected in the three sets of
calculations. We present in the following a short review
of our calculation and provide a few details about the
other two.

The scattering amplitude of two nucleons in the pres-
ence of a surrounding nuclear environment is given, in
the context of Brueckner theory, by the Brueckner reac-
tion matrix G which is obtained by solving the Bethe–
Goldstone equation

Gτ1τ2;τ3τ4(ω) = Vτ1τ2;τ3τ4

+
∑
ij

Vτ1τ2;τiτj
Qτiτj

ω − ετi − ετj + iη
Gτiτj ;τ3τ4(ω) , (4)

where τ = n, p indicates the isospin projection and the
linear momentum of a nucleon in the initial, intermediate
and final state, whereas V denotes the bare NN interac-
tion, in our case the Argonne V18 potential, and Qτiτj
the Pauli operator that allows only intermediate states
compatible with the Pauli principle. ω designates the
so-called starting energy that corresponds to the sum of
non-relativistic energies of the scattered nucleons. The
single-particle energy ετ of a nucleon with momentum ~k
is given by

ετ (~k) =
~2k2

2mτ
+Re[Uτ (~k)] , (5)

where the single-particle potential Uτ (~k) represents the
mean field “felt” by a nucleon due to its interaction with
the other nucleons of the medium. In the BHF approxi-
mation, U(~k) is calculated through the “on-shell energy”
G-matrix, and is given by

Uτ (~k) =
∑
τ ′

∑
|~k′|<kF

τ′

〈~k~k′ | Gττ ′;ττ ′(ετ (k)+ετ ′(k′)) | ~k~k′〉A

(6)
where the sum runs over all neutron and proton occupied
states and where the matrix elements are properly anti-
symmetrized. It is worth mentionning that in the case of
two reacting nuclei such as considered here, the relative
velocity of the target and projectile matter densities is
not considered in the microscopic determination of Pauli-
blocked states. Note that Eqs. (4) and (6) are coupled
due to the occurrence of Uτ (~k) in Eq. (5) and, there-
fore, they have to be solved self-consistently. Once self-
consistency is achieved, the total in-medium NN cross

section can be obtained from the G matrix as

σττ ′ =
m∗τm

∗
τ ′

16π2~4

∑
LL′SJ

2J + 1
4π

| GLL
′SJ

ττ ′;ττ ′ |2 (7)

where GLL
′SJ

ττ ′;ττ ′ is the partial-wave projection of the on-
shell G matrix evaluated at the collision energy of the
interacting nucleons in the laboratory frame.

It is clear from Eqs. (4) and (6) that medium effects on
the NN cross sections arise from Pauli-blocking and from
the dispersive effect of the single-particle potential. In
our BHF calculation, however, we have considered only
medium effects associated with Pauli-blocking in order to
make the analysis of the results simpler. We have solved
the Bethe–Golstone equation taking into account only
kinetic energies in the particle-particle propagator, and
the effective masses appearing in Eq. (7) have been taken
equal to the bare nucleon mass. It is expected that the
use of the effective masses will lower the in-medium NN
cross sections in comparison to the free case and in ad-
dition to the reduction induced by Pauli-blocking. How-
ever, evaluating the effect of the single-particle potential
is not so obvious, since, due to its momentum depen-
dence (see Eq. (6)) and the energy dependence of the G
matrix (see Eq. (4)), it can induce either an increase or
a decrease of the in-medium NN cross sections compared
to the free case. As this effect is not straightfoward, it
requires a more careful analysis that will be addressed in
a future work.

The second considered calculation, quoted as L & M
in this paper, uses the Bonn potential in a relativistic
Dirac–Brueckner calculation for symmetric nuclear mat-
ter in which the effective nucleon scalar and vector fields
are obtained in a self-consistent way together with the
so-called G̃ matrix by solving the in-medium Thompson
equation (relativistic Bethe–Goldstone equation). The
in-medium NN cross sections are then calculated in terms
of the partial-wave G̃ matrix elements and, finally, fitted
by a semi-empirical formula that includes the dependence
on the incident energy (ranging from 50 to 300 MeV) and
on the total density of nuclear matter (up to 2-3 ρ0).

The third considered calculation (C.X) uses a phe-
nomenological formula for the in-medium NN interac-
tion cross sections which combines the energy dependence
(from 10 MeV to 1 GeV) of the free-space NN interaction
cross section of S. K. Charagi and S. K. Gupta (C & G)
[35] with the L & M parameterizations.

Finally, we note here that the in-medium NN cross
sections based on our BHF calculation depend also on
the isospin asymmetry (i.e. different neutron and pro-
ton densities), whereas the other two sets do not include
such a dependence. In Fig. 1 we show for comparison the
results for the in-medium neutron-proton cross section
obtained from the three sets of calculations in function
of the incident energy. The full lines show the free-space
results, whereas the dashed ones correspond to a den-
sity of ρ= 0.1 fm−3. From 10 MeV to 300 MeV, our
calculations and the C.X parameterization are in good
agreement with the experimental data. In this region,
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FIG. 1: (Color online) Neutron-proton cross sections obtained
from our BHF calculation [22] and the parameterizations of
G. Q. Li and R. Machleidt [24, 25] and of C. Xiangzhou et al.
[29]. Top panel: from 10 to 100 MeV. Bottom panel: from
100 to 1000 MeV. Experimental data are taken from [39–41].

the L & M parameterization is, in comparison, quite far
from the experimental points. At higher energies the C.X
parameterization, that is obtained from a fit on experi-
mental data up to 1 GeV, sticks to the data whereas our
calculation shows a disagreement which increases with
energy. This disagreement is expected since our cal-
culation is based on the AV18 potential derived from
nucleon-nucleon experimental scattering data up to 300
MeV. The DD effect on the NN-interaction cross section
is also very different from one prescription to another.
The L & M parameterization shows a 50% reduction of
σnp from ρ= 0 fm−3 to ρ = 0.1 fm−3, whereas the DD
effect is more moderate for the two other prescriptions.
In our work, σnp does not depend significantly on the
density above 300 MeV meaning that there are no Pauli-
blocked states at these energies in our calculation. On
the contrary the C.X parameterization shows a constant
reduction of about 20% from ρ = 0 fm−3 to ρ = 0.1 fm−3

over the whole energy range from 10 MeV to 1 GeV.

III. RESULTS

FIG. 2: (Color online) (top) Reaction cross section of
24Si+9Be for different energies ranging from 30 MeV/nucleon
to 1 GeV/nucleon. (middle) One-neutron removal cross sec-
tion 24Si(9Be,X)23Al as a function of incident energy. (bot-
tom) Effect of the density dependence of the in-medium NN
interaction (in %) as a function of incident energy. Three
different density-dependent NN interaction cross section cal-
culations are compared (see text).

To illustrate generic trends due to the introduction of
density-dependent NN cross sections, we first detail the
specific case of the one-neutron removal from 24Si on a
9Be target. Nevertheless similar conclusions have been
obtained for other sd shell nuclei, for both proton and
neutron knockout, and are presented at the end of this
section.
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24Si has the particularity to be at the proton dripline.
The proton separation energy is Sp = 3.304 MeV,
whereas neutrons are well bound with a separation en-
ergy of Sn = 21.09 MeV. The variation with energy of
the reaction cross section σr is shown in panel (a) of
Fig. 2. All parameterizations, with the exception of the
one of L & M, are within a few percents of the reaction
cross sections calculated with the free NN interaction of
C & G [35] over the whole considered energy range. The
dominant part of the reactions occurs at the nuclear sur-
face where the density effects are negligeable. Such a
small impact on σr is consistent with the conclusions of
Ref. [28].

Single-particle one-neutron removal cross sections have
been calculated for a d5/2 neutron with a separation
energy Sn corresponding to the last filled orbital. For all
considered NN interaction cross sections the calculated
one-nucleon knockout cross sections increase with energy
up to ∼250 MeV/nucleon and remain almost constant
beyond (see panel (b) of Fig. 2), due to the slow increase
of σNN with energy beyond the two-pion production
threshold. At high energy, calculations based on L & M
and our BHF approach reach asymptotically the free
NN interaction case, as expected. On the other hand,
the calculations based on the C.X parameterization do
not converge to the free NN interaction case and it
seems to be linked to a limit of the parameterization
which does not converge to the predictions at ρ = 0 for
high incident energies, as previously mentioned. The
largest differences are observed at lower energies, below
200 MeV/nucleon. All density-dependent calculations
give cross sections below the free-interaction prediction.
For example, at 85 MeV/nucleon, the free calculation is
14.0 mb whereas DD predictions are 11.9, 12.9, 13.2 mb
for L & M, C.X and our BHF approach, respectively.
These differences between free and density-dependent
interaction predictions do not only come from the
density dependence but also from the initial differences
between the considered NN interaction cross sections at
zero density. In order to really pinpoint the effect of the
density dependence, we compared the variations of the
one-nucleon knockout cross sections, for each considered
NN interaction, with its full density dependence and
without, i.e. with the NN interaction cross section taken
at ρ = 0 (see panel (c) of Fig. 2). In all cases, the density
dependence lowers the knockout cross section but the
DD effect becomes negligeable at incident energies above
300 MeV/nucleon. Again, in the case of C.X parameter-
ization, the DD-effect does not vanish at large energies
because of the parameterization itself. In the case of
our BHF calculations, a good asymptotical behavior is
observed, thus we only focus on this prescription in the
following.

In order to illustrate the effect of Pauli-blocking
medium effects that one should expect on typical
intermediate-energy knockout experiment results, we
performed similar calculations for several other nuclei

TABLE I: Summary of the results for one-proton and one
neutron knockout calculations with σNN (E, ρ) based on our
BHF approach [22]. Given are the projectile type, its incident
energy, the ` of the removed nucleon, the single-particule cross
sections calculated with σNN (E, ρ) and with σNN (E, ρ = 0)
and the difference between both.

Projectile Target E n`j σsp σsp(ρ = 0) δ

(MeV/n.) (mb) (mb) (%)

Neutron Knockout
24Si 9Be 85.3 1d5/2 13.2 14.1 6.4
32Ar 9Be 65.1 1d5/2 8.4 9.5 11.2
46Ar 9Be 70.0 1f7/2 11.1 12.5 11.3
26Ne 9Be 83.0 2s1/2 24.9 28.4 12.3
16C 12C 55.0 1d5/2 30.8 38.8 20.6
20O 12C 62.0 1d5/2 18.9 23.2 18.5

Proton Knockout
24Si 9Be 85.3 1d5/2 21.1 23.3 9.6

within or close to the sd shell, considering the knock-
out of nucleons from orbitals with different ` values (s,
d or f). We restrict ourselves to systems studied at in-
termediate energies at the NSCL and GANIL in order
to evaluate the average impact of such density effects
on existing data. We gather in Tab. I our one-nucleon
knockout estimates with and without DD for a set of re-
actions. The same conclusions as for 24Si can be drawn.
At energies ranging from 55 to ∼90 MeV/nucleon, the
DD effect on one-nucleon knockout cross sections start
from 6% to 21%. The studied cases cover a large range of
asymmetry [42], from the removal of very weakly bound
to very well bound nucleons. No systematic trend with
asymmetry is observed.

Indeed, one may wonder how the density dependence
varies, at a given incident energy, for systems with dif-
ferent asymmetry. From a naive point of view, one could
expect the effect of the DD to be larger for deeply-bound
nucleon removal in exotic nuclei, i.e. from a wave func-
tion inside the core density. Single-particle removal cross
sections for d3/2 protons in Calcium isotopes ranging
from A = 40 to A = 52 at 80 MeV/nucleon are shown in
Fig 3 for all previously considered NN interaction cross
sections. As expected, the one-nucleon removal cross sec-
tion decreases with the mass of the isotopes since the
πd3/2 wave function is more and more embeded inside
the bulk of the nucleus. The DD effect is shown in the
bottom panel of Fig. 3 and has a mean effect of 10% ex-
cept for L & M parameterization (25%) as in the case of
24Si (see Fig. 2 panel (c)). Nevertheless, all DD calcula-
tions lead to the same conclusion: the reduction of the
one-proton knockout due to Pauli-blocking does not vary
over a mass range covering a twelve-neutron difference.
We therefore conclude that this effect does not play a role
in the reduction trend mentioned by A. Gade et al. [8].
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FIG. 3: (Color online) Evolution of the proton knockout cross
sections at 80 MeV/nucleon along the Calcium isotopic chain
for the different parameterizations of σNN .

IV. CONCLUSIONS

We have performed calculations of single-particle cross
sections for one-nucleon removal reactions at intermedi-
ate energies using in-medium NN cross sections based on
a BHF calculation of isospin asymmetric nuclear matter
[22], and on two different parameterizations from L & M
[24, 25] and C.X et al. [29]. The nucleon-removal cal-

culations have been performed within the S-matrix for-
malism under the Glauber approximation. In our BHF
approach, we have taken into account only kinetic ener-
gies when solving the Bethe–Goldstone equation as well
as bare nucleon masses in order to consider only medium
effects in the NN cross sections associated with Pauli-
blocking. The relative velocity of the two interacting
nuclei is not included in the determination of the Pauli-
blocked states when the NN interaction cross section is
derived. The effect of the single-particle potential, the
effective masses and the effect of the relative velocity be-
tween target and projectile matter densities on the Pauli-
blocked state distribution should be adressed in a future
work. Results obtained with our BHF approach show
the right asymptotic behaviour at high incident energy,
which validates this approach for forthcoming calcula-
tions. We have observed that in general the inclusion of
a realistic density-dependence in the NN interaction de-
creases the single-particle cross section up to 20% for in-
cident energies higher than 50 MeV/nucleon, which is of
the same order as the variation brought by other sources
of uncertainty. These effects are predicted to be reduced
to less than a few percents at higher incident energies >
200 MeV/nucleon. The present formalism allows to es-
timate the Pauli-Blocking medium effects in the extrac-
tion of absolute spectroscopic factors from one-nucleon
removal experiments at intermediate energies.
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