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CEA-Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
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Abstract. Results from the newly developed Gorkov self-consistent Green’s function approach
are presented. Ab-initio spectral strength distributions for one-nucleon addition or removal
calculated in doubly-closed shell 40Ca and in semi-magic 44Ca are briefly discussed. The object
of the present communication is to illustrate the potential spectroscopic reach of the method.

1. Introduction

In the last decade the reach of ab-initio nuclear structure calculations has extended up to the
region of medium-mass systems. Despite the significant progress both from the theoretical
and computational point of view, methods as coupled-cluster (CC) [1] or Dyson self-consistent
Green’s function [2] (Dyson-SCGF) are however currently limited to a few doubly-magic nuclei.
A few tens of neighbor isotopes with ±1 or ±2 nucleons can also be reached with particle
attachment or removal formalisms [3, 4].

One way of tackling truly open-shell nuclei may involve the development of a multi-reference
scheme, such as e.g. multi-reference CC [5]. Alternatively, one can build the correlated
many-body state starting from a reference state that already incorporates zeroth-order pairing
correlations, as in the case of e.g. Bogoliubov theory. We are currently following this second route
and developing [6] a many-body method based on the self-consistent Green’s function theory
in the Gorkov formalism. Such method explicitly accounts for pairing correlations through
the introduction of anomalous propagators, treated on the same footings as (and coupled to)
the normal propagators of Dyson theory. This generalization of the standard Green’s function
approach is then applicable to several hundreds of (semi-magic +/-1) nuclei, including systems
up to, e.g., the tin isotopic chain.

In the current implementation the method starts from realistic interactions and consists in the
self-consistent solution of Gorkov’s equations on the basis of first- and second-order self-energies.



2. Gorkov Green’s function theory

Let us introduce a basis {a†a} of the one-body Hilbert space H1 that can be divided into two
blocks according to the value (or more precisely to the sign) of an appropriate quantum number.
In the present calculations such a basis will be identified with the harmonic oscillator basis; notice
however that the formalism is more generally valid for any basis that possesses this property.

To any state a belonging to the first block, a single-particle state ā belonging to the second
block and having the same quantum numbers as a, except for the one differentiating the two
blocks, can be associated through a transformation, i.e. time-reversal in the present case. With

that in mind one can define a basis {ā†a} dual to the basis {a†a} through

ā†a(t) ≡ ηaa
†
ā(t) , āa(t) ≡ ηaaā(t) , (1)

which correspond to exchanging the state a by its partner ā up to the phase ηa. By convention
¯̄a = a with ηa ηā = −1.

Using the second quantized operators {a†a, aa} and their dual counterparts {ā†a, āa} one defines
an ”annihilation” column vector

Aa(t) ≡

(

aa(t)

ā
†
a(t)

)

, (2a)

and a ”creation” row vector
A†

a(t) ≡
(

a
†
a(t) āa(t)

)

. (2b)

The four Gorkov propagators [7] are then constructed by means of these generalized operators
through

iGab(t, t
′) ≡ 〈Ψ0|T

{

Aa(t)A
†
b(t

′)
}

|Ψ0〉 = i





G11
ab(t, t

′) G12
ab(t, t

′)

G21
ab(t, t

′) G22
ab(t, t

′)



 . (3)

Here |Ψ0〉 represents the ground state of the grand-canonical-like potential Ω = H − µN ,
where µ is the chemical potential and N the particle-number operator, having the number
N = 〈Ψ0|N |Ψ0〉 of particles in average. Notice that the state |Ψ0〉 is a priori not an eigenstate
of N , i.e. it is likely to break particle number symmetry.

Similarly to the Dyson case, self-consistent, i.e. dressed, Gorkov propagators are solution of
an equation of motion taking, in the energy representation, the typical form

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (4)

Here G
(0)
ab (ω) indicates the unperturbed Gorkov Green’s function associated with a reference

state of the Bogoliubov type, whereas Σ̃cd(ω) defines normal and anomalous irreducible self-
energies through

Σ̃ab(ω) ≡





Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)



 . (5)

Any actual solution of Gorkov equations involves a truncation of the diagrammatic expansion
of the irreducible self-energies. Such an expansion is performed in terms of dressed propagators,
which implies that at every order an infinite subset of self-energy insertions is implicitly
resummed. It is easy to see that such a prescription goes beyond perturbation theory. In
more practical terms, the solution of Gorkov equations is typically achieved via an iterative



procedure that ends when a suitably chosen quantity (e.g. the chemical potential) has reached
the desired degree of convergence.

Figure 1 (2) shows the corresponding diagrammatic contribution to the normal (anomalous)
self-energy. In such diagrams, double lines denote self-consistent normal (two arrows in the same
direction) and anomalous (two arrows in opposite directions) propagators solutions of Eq. 4. The
first- and second-order contributions to the self-energy are computed and inserted into Eq. 4,
which is then solved iteratively to convergence. Extensive details regarding both the formalism
and the computational scheme will be reported in a forthcoming publication [6].

Figure 1. First- and second-order contributions to the normal self-energy Σ11.

Figure 2. First- and second-order contributions to the anomalous self-energy Σ21.

3. Results

The knowledge of the single-particle propagator gives access not only to the total energy and to
all one-body observable of the targeted A-body ground state but also to one-nucleon separation
energies and spectroscopic amplitudes to eigenstates of A± 1 systems. In order to retrieve the
spectroscopic content of the one-body Gorkov Green’s function it is convenient to express it in
its so-called spectral or Lehmann representation [8, 6]

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − E+
k − µ+ iη

+
Y

k†
a Yk

b

ω − E−
k − µ− iη

}

, (6)

with X
k†
a ≡ 〈Ψk|A

†
a|Ψ0〉, Y

k
a ≡ 〈Ψk|Aa|Ψ0〉 and where E±

k represent one-nucleon addition and
removal separation energies. A pole’s position and residue of the Gorkov propagator therefore
carry information respectively on the separation energies to A ± 1 systems excited states and
the spectroscopic amplitudes associated with such states.

In the present calculations we restrict ourselves to the case of a JΠ = 0+ many-body target
state, with J being its total angular momentum and Π its parity. A natural choice for labeling
single-particle basis states in this context is a ≡ (na, πa, ja,ma, qa), where na represents the
principal quantum number, πa is the parity, ja is the total angular momentum, ma is the
projection of the total angular momentum along the z axis and qa is the isospin projection. In
this case all relevant objects in the theory turn out to be independent of m and block-diagonal
in j, π and q. In particular one can define block-diagonal spectroscopic amplitudes according to
Xk

a ≡ δακδmamk
X

nk

na[κ]
and Yk

a ≡ δακδmamk
Y

nk

na[κ]
, where we have introduced α ≡ {ja, πa, qa}.



Suitable quantities to analyze the spectroscopic information contained in the single-particle
Green’s function are the spectroscopic factors

F−
nk[κ]

≡
∑

na

∣

∣

∣
Y

nk

na[κ]

∣

∣

∣

2
, F+

nk[κ]
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∑

na

∣

∣

∣
X

nk

na[κ]

∣

∣

∣

2
, (7)

and the spectral strength distribution (SSD)

S[κ](ω) ≡
∑

nk

F−
nk[κ]

δ(ω − E−
k ) +

∑

nk

F+
nk[κ]

δ(ω − E+
k ) , (8)

that can be interpreted as a generalized probability distribution for adding/removing a nucleon
to/from the ground state while leaving the A±1 system in the many-body state κ with (relative)
energy ω.
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Figure 3. Neutron spectral strength distributions for different values of angular momentum
and parity in 40Ca (left) and 44Ca (right). Results are displayed for self-consistent first-order
(top) and second-order (bottom) approximations to the self-energy. The dashed vertical line
denotes the Fermi energy. Calculations are performed using the Λ = 500 MeV chiral two-nucleon
interaction [9] evolved down to Λ = 2.1 fm−1 through renormalization group technique [10].
Three-nucleon forces are omitted.

In Fig. 3 results for the normal neutron SSDs S11[κ](ω) in 40Ca and 44Ca are plotted for

different values of angular momentum and parity as a function of ω. SSDs are shown for two
different truncations of the self-energy expansion, i.e. at first and second order, respectively.



Calculations are performed using the Λ = 500 MeV chiral two-nucleon interaction [9] evolved
down to Λ = 2.1 fm−1 through renormalization group technique [10]; three-nucleon forces are
omitted. The model space consists of 7 major oscillator shells.

Both spectroscopic factors and SSDs represent an analysis tool to investigate correlations
arising in the many-body system. Spectral peaks close to unity denote states that possess a
single-particle character, i.e. that can be described to a good approximation as one nucleon
added to or removed from an A−particle core. This is the case of 40Ca when only first-order
self-energies are included (top left in Fig. 3). When going from a doubly-closed shell systems
as 40Ca to one with a genuinely open-shell structure as 44Ca, however, the arising of (static)
pairing correlations can be detected. This is evident when focusing on the f7/2 orbital in the top

plots of Fig. 3: the lowest quasiparticle peak in 40Ca breaks into two peaks of approximately
equal strength right across the Fermi surface in 44Ca, reflecting the partial filling of the neutron
shell that can not be described in a single quasi-particle picture. The inclusion of the energy-
dependent normal and anomalous second-order self-energies further fragment the single-particle
strength into many states distributed over a wide range of energies. In most cases a single
quasi-particle peak that carries 80 to 90 % of the strength is still visible. For the f7/2 orbital
the splitting of such main peak across the Fermi surface do not seem to be much affected by
dynamical pairing correlations and remains similar to the first-order case.

4. Conclusions

Spectral strength distributions for one-nucleon addition and removal in 40Ca and 44Ca
from Gorkov self-consistent Green’s functions calculations have been presented. Although
quantitatively not yet realistic due to the limited model space and the absence of three-nucleon
forces, such calculations already show many of the features one requires from an ab-initio method
that has access to spectroscopic quantities. The onset of static pairing correlations when filling
up the neutron f7/2 orbital going from 40Ca to 48Ca is reflected in the splitting of the quasi-

particle peak across the Fermi surface in 44Ca. The inclusion of energy-dependent self-energies
accounts for dynamical correlations that result into a diffused fragmentation of the single-particle
strength over a considerable range of energies.

More systematic application of Gorkov self-consistent Green’s functions method are in
progress [6] and will aim to describe for the first time in an ab-initio fashion the properties
of long isotopic chains in the medium-mass region.
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the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), France. C.B.
acknowledges support from the United Kingdom Science and Technology Facilities Council
(STFC) through grant No. ST/I003363.

References
[1] G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. C82, 034330 (2010).
[2] C. Barbieri, M. Hjorth-Jensen, Phys. Rev. C79, 064313 (2009).
[3] C. Barbieri, C. Giusti, F. D. Pacati, and W. H. Dickhoff, Phys. Rev. C70, 014606 (2004).
[4] G. R. Jansen, M. Hjorth-Jensen, G. Hagen, and T. Papenbrock, Phys. Rev. C 83, 054306 (2011).
[5] B. Jeziorski, H. J. Monkhorst, Phys. Rev. A24, 1668 (1981).
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