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I. INTRODUCTION

The polarized and unpolarized scattering of electrons by protons has been widely stud-

ied, as it is considered the simpler way to access information on proton structure. Model

independent expressions, which relate the cross section and polarization observables to the

proton electromagnetic form factors were firstly derived in Ref. [1]. The scattering of proton

on electrons at rest (inverse kinematics) is more complicated, in principle, because approxi-

mations, such as neglecting the electron mass, do not hold anymore. Liquid hydrogen targets

are considered as proton targets, but any reaction on such targets involves also reactions

with atomic electrons, which we will assume to be at rest.

Large interest in inverse kinematics (proton projectile on electron target) aroused, due

to two possible applications: - the possibility to build beam polarimeters, for high energy

polarized proton beams, in the RHIC energy range [2], - the possibility to build polarized

antiprotons beams [3], which would open a wide domain of polarization studies at the FAIR

facility [4, 5]. Indeed, assuming C-invariance in electromagnetic interaction, the (elastic and

inelastic) reactions p + e− and p̄ + e+ are strictly equivalent.

Concerning the polarimetry of the high energy proton beams, in Ref. [2] analyzing powers

corresponding to polarized proton beam and electron target were numerically calculated for

the elastic proton-electron scattering, assuming one photon exchange mechanism and dipole

approximation for the proton form factors. It was shown that the analyzing powers, as

functions of the proton beam energy E, reach a maximum for forward scattering at E = 50

GeV, where the cross section is small. The authors concluded that the concept of such

polarimeter is realistic for longitudinal as well as transverse proton beam polarizations. On

the other hand, in that paper, explicit expressions for the analyzing powers were not given.

The possibility of polarizing a proton beam in a storage ring by circulating through a

polarized hydrogen target was reported in Ref. [6]. Possible explanations of the polarizing

mechanisms were published in a number of papers [7–9], and more recently in Refs. [10, 11].

In this work, we derive the cross section and the polarization observables for proton

electron elastic scattering, in a relativistic approach assuming Born approximation. We

derive relations connecting kinematical variables in direct and inverse kinematics. Three

types of polarization effects are studied: - the spin correlation, due to the polarization of

the proton beam and of the electron target, - the polarization transfer from the polarized
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electron target to the scattered proton, - and the depolarization coefficients which describe

the polarization of the scattered proton, depending on the polarization of the proton beam.

Numerical estimations of the polarization observables have been performed in a wide range

of the proton beam energy and for different values of the scattering angle.

We discuss model independent properties of the observables for proton–electron elastic

scattering and compare to the recent theoretical and experimental ongoing work related to

the production and the properties of high energy polarized (anti)proton beams.

II. FORMALISM

Let us consider the reaction (Fig. 1):

p(p1) + e(k1) → p(p2) + e(k2), (1)

where the particle momenta are indicated in parenthesis, and k = k1 − k2 = p2 − p1 is

the four momentum of the virtual photon. In the one photon exchange approximation, the

matrix element M of the reaction (1) can be written as:

M =
e2

k2
jµJµ, (2)

where jµ(Jµ) is the leptonic (hadronic) electromagnetic current:

jµ = ū(k2)γµu(k1),

Jµ = ū(p2)

[
F1(k

2)γµ −
1

2M
F2(k

2)σµνkν

]
u(p1)

= ū(p2)
[
GM(k2)γµ − F2(k

2)Pµ

]
u(p1). (3)

Here F1(k
2) and F2(k

2) are the Dirac and Pauli proton electromagnetic form factors (FFs),

GM(k2) = F1(k
2) + F2(k

2) is the Sachs proton magnetic FF, M is the proton mass, and

Pµ = (p1 + p2)µ/(2M). The matrix element squared is:

|M|2 = 16π2α2

k4
LµνWµν , with Lµν = jµj∗ν , Wµν = JµJ

∗
ν , (4)

where α = 1/137 is the electromagnetic fine structure constant. The leptonic tensor, L
(0)
µν ,

for unpolarized initial and final electrons (averaging over the initial electron spin) has the

form:

L(0)
µν = k2gµν + 2(k1µk2ν + k1νk2µ). (5)
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FIG. 1: Feynman diagram for the reaction p(p1) + e(k1) → p(p2) + e(k2). The transfer momentum

of the virtual photon is k = k1 − k2 = p2 − p1.

The contribution to the electron tensor corresponding to a polarized electron target is

L(p)
µν = 2imǫµναβkαSβ, (6)

where Sβ is the initial electron polarization four vector and m is the electron mass.

The hadronic tensor, W
(0)
µν , for unpolarized initial and final protons can be written in the

standard form, through two unpolarized structure functions:

W (0)
µν =

(
−gµν +

kµkν

k2

)
W1(k

2) + PµPνW2(k
2). (7)

Averaging over the initial proton spin, the structure functions Wi, i = 1, 2, can be expressed

in terms of the nucleon electromagnetic FFs as:

W1(k
2) = −k2G2

M(k2),

W2(k
2) = 4M2 G2

E(k2) + τG2
M (k2)

1 + τ
, (8)

where GE(k2) = F1(k
2) − τF2(k

2) is the proton electric FF and τ = −k2/4M2.

The differential cross section is related to the matrix element squared (4) by

dσ =
(2π)4|M|2

4
√

(k1 · p1)2 − m2M2

d3~k2

(2π)32ǫ2

d3~p2

(2π)32E2
δ4(k1 + p1 − k2 − p2), (9)

where p2(E2) is the momentum (energy) of the final proton, ǫ2 is the energy of the scattered

electron. From this point, formulas will differ from the elastic electron-proton scattering, as

we introduce a reference system where the electron is at rest. In this system, the differential

cross section can be written as:
dσ

dǫ2
=

1

32π

|M|2

m~p2
, (10)
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where ~p is the momentum of the proton beam. The average over the spins of the initial

particles has been included in the leptonic and hadronic tensors. Using the relation

k2 = 2m(m − ǫ2) (11)

one can write
dσ

dk2
=

1

64π

|M|2

m2~p2
. (12)

The differential cross section over the solid angle can be written as:

dσ

dΩe

=
1

32π2

1

mp

~k3
2

−k2

|M|2

E + m
, (13)

where E is the proton beam energy and dΩe = 2πd cos θ (due to azimuthal symmetry). We

used the relation

dǫ2 =
p

E + m

~k3
2

m(ǫ2 − m)

dΩe

2π
. (14)

Let us focus here on three types of polarization observables, for elastic proton-electron

scattering

1. The polarization transfer coefficients which describe the polarization transfer from the

polarized electron target to the scattered proton, p + ~e → ~p + e;

2. The spin correlation coefficients when both initial particles have arbitrary polarization,

~p + ~e → p + e;

3. The depolarization coefficients which define the dependence of the scattered proton

polarization on the polarization of the proton beam, ~p + e → ~p + e. In our knowledge,

this case was not previously considered in the literature.

The first case is the object of a number of recent papers [3] in connection with the possibility

to polarize proton (antiproton) beams. The second case was considered in Ref. [2], in view

of using the polarized proton-electron scattering for the measurement of the longitudinal

and transverse polarizations of a high energy proton beams.

Let us calculate the hadronic tensor, when the initial or final proton is polarized. The

contribution of the proton polarization to the hadronic tensor is:

Wµν(ηj) = −2iGM (k2)
[
MGM (k2)ǫµναβkαηjβ + F2(k

2)(Pµǫναβγ − Pνǫµαβγ)p1αp2βηjγ

]
, (15)
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where the four vector ηj (j = 1, 2) stands for initial (final) proton polarization. One can

see that all the correlation coefficients in ~p~e collisions are proportional to the proton mag-

netic FF. This is a well known fact for ~e~p scattering [12]. The dependence of the different

polarization observables, namely, the spin correlation (the polarization transfer) coefficients

on the polarization four vector of the initial (scattered) proton is completely determined by

the spin dependent part of the hadronic tensor Wµν(ηj), j = 1 (j = 2).

The expression of the differential cross section for unpolarized proton-electron scattering,

in the coordinate system where the electron is at rest can be written as:

dσ

dk2
=

πα2

2m2~p2

D

k4
, (16)

with

D = k2(k2 + 2m2)G2
M(k2) + 2

[
k2M2 + 2mE

(
2mE + k2

)] [
F 2

1 (k2) + τF 2
2 (k2)

]
. (17)

It can be written in terms of the Sachs FFs as:

D = k2(k2 + 2m2)G2
M(k2) + 2

[
k2M2 +

1

1 + τ

(
2mE +

k2

2

)2
]
[
G2

E(k2) + τG2
M(k2)

]
. (18)

This expression is consistent with Ref. [2].

Note that the differential cross section diverges as k4 when k2 → 0. This is expected from

the one photon exchange mechanism.

A. Polarization transfer coefficients, Tij, in the p + ~e → ~p + e reaction

These polarization observables describe the polarization transfer from the polarized target

to the ejectile. The transfer coefficients are also called Ti00j in the notations from [13]. Here

the four subscripts denote, in the order, ejectile, recoil, projectile, target. The indexes i, j

correspond to n, t, ℓ, according to the direction of the polarization vectors of each particle.

The dependence of the scattered proton polarization on the polarization state of the

initial electron is obtained by contraction of the spin-dependent leptonic tensor L
(p)
µν , Eq.

(6), and the spin-dependent hadronic tensor Wµν(η2), Eq. (15). The following formula hold

in any reference system and can be used to obtain the polarization transfer coefficients :

DT (S, η2) = 4mMGM(k2)
[
GE(k2)(k · Sk · η2 − k2S · η2) − k2F2(k

2)P · SP · η2

]
. (19)
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In the frame where the initial electron is at rest, the polarization four vectors of the electron

Sµ and of the scattered proton η2µ have the following components:

S ≡ (0, ~ξ), η2 ≡

(
1

M
~p2 · ~S2, ~S2 +

~p2(~p2 · ~S2)

M(E2 + M)

)
, (20)

where ~ξ and ~S2 are the unit three-vectors of the initial electron and scattered proton polariza-

tions in their rest systems, respectively; ~p2(E2) is the momentum (energy) of the final proton.

In the laboratory system (inverse kinematics) one can write ~p = ~k2 + ~p2, m + E = E2 + ǫ2,

where ~k2(ǫ2) is the momentum (energy) of the scattered electron.

Using the P-invariance of the hadron electromagnetic interaction, one can parametrize

the dependence of the differential cross section on the polarizations of the electron target

and of the scattered proton as follows:

dσ

dk2
(~ξ, ~S2) =

(
dσ

dk2

)

un

[1 + TℓℓξℓS2ℓ + TnnξnS2n + TttξtS2t + TℓtξℓS2t + TtℓξtS2ℓ] , (21)

where Tik, i, k = ℓ, t, n are the corresponding polarization transfer coefficients, with the

following notations: ℓ is the component of the polarization vector along the momentum of

the initial proton, n is the component which is orthogonal to the momenta of the initial

proton and of the scattered electron, i.e., orthogonal to the scattering plane, and t is the

component which is orthogonal to the initial proton momentum and lies in the scattering

plane.

At high energy, the polarization transfer coefficients depend essentially on the direction

of the scattered proton polarization. Let us choose an orthogonal system with the z axis

directed along ~p, ~k2 lies in the xz plane (θ is the angle between the initial proton and the

final electron momenta) and the y axis is directed along the vector ~p × ~k2. Therefore, in

this system ℓ ‖ z, t ‖ x and n ‖ y. The explicit expressions for the polarization transfer

coefficients are given in Appendix A.

B. Polarization correlation coefficients, Cij, in the ~p + ~e → p + e reaction

In the reaction involving polarized proton beam and polarized electron target, one can

derive explicit expressions for the spin correlation coefficients. These coefficients are also

called double analyzing powers and denoted A00ij in the notations from Ref. [13].
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The contraction of the spin dependent leptonic L
(p)
µν and hadronic Wµν(η1) tensors, in an

arbitrary reference frame, gives:

DC(S, η1) = 8mMGM (k2)
[
(k · Sk · η1 − k2S · η1)GE(k2) + τk · η1(k · S + 2p1 · S)F2(k

2)
]
.

(22)

All spin correlation coefficients for the elastic ~p~e collisions can be obtained from this expres-

sion and they are, therefore, proportional to the proton magnetic FF.

In the considered frame, where the target electron is at rest, the polarization four vector

of the initial proton has the following components

η1 =

(
~p · ~S1

M
, ~S1 +

~p(~p · ~S1)

M(E + M)

)
, (23)

where ~S1 is the unit vector describing the polarization of the initial proton in its rest system.

Applying the P-invariance of the hadron electromagnetic interaction, one can write the

following expression for the dependence of the differential cross section on the polarization

of the initial particles:

dσ

dk2
(~ξ, ~S1) =

(
dσ

dk2

)

un

[1 + CℓℓξℓS1ℓ + CttξtS1t + CnnξnS1n + CℓtξℓS1t + CtℓξtS1ℓ] , (24)

where Cik, i, k = ℓ, t, n are the corresponding spin correlation coefficients which characterize

~p~e scattering. Here also one expects large sensitivity of these observables to the direction

of the proton beam polarization. Small coefficients (in absolute value) are expected for the

transversal component of the beam polarization at high energies. This can be seen from the

expression of the components of the proton beam polarization four vector at large energies,

E ≫ M :

η1µ = (0, ~S1t) + S1ℓ

(
p

M
,

~p

M

E

p

)
∼ S1ℓ

p1µ

M
. (25)

The effect of the transversal beam polarization appears to be smaller by a factor 1/γ,

γ = E/M ≫ 1. This is a consequence of the relativistic description of the spin of the

fermion at large energies.

The explicit expressions of the spin correlation coefficients, are given in Appendix B. One

can see that Cnn = Tnn.
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C. Depolarization coefficients, Dij, in the ~p + e → ~p + e reaction

In this section explicit expressions for the depolarization coefficients, (also denoted Di0j0

in the notations from Ref. [13]), which define the polarization transfer from the initial to

the final proton, are derived for the reaction ~p + e → ~p + e.

The part of the hadronic tensor, Wµν(η1, η2), which corresponds to polarized protons in

initial and final states can be written as:

Wµν(η1, η2) = A1g̃µν +A2PµPν +A3(η̃1µη̃2ν + η̃1ν η̃2µ)+A4(Pµη̃1ν +Pν η̃1µ)+A5(Pµη̃2ν +Pν η̃2µ),

(26)

where

g̃µν = gµν −
kµkν

k2
, η̃iµ = ηiµ −

k · ηi

k2
kµ, i = 1, 2,

and

A1 =
G2

M

2
(2k · η1k · η2 − k2η1 · η2), A2 = −η1 · η2

2M2

1 + τ
(G2

E(k2) + τG2
M(k2)),

A3 = G2
M(k2)

k2

2
, A4 = −MGM (k2)

GE(k2) + τGM (k2)

1 + τ
k · η2,

A5 = MGM (k2)
GE(k2) + τGM (k2)

1 + τ
k · η1.

The dependence of the polarization of the scattered proton on the polarization state of

the proton beam is obtained by contraction of the spin independent leptonic tensor (not

averaged over the spin of the initial electron), i.e., 2L
(0)
µν , Eq. (6), and the spin-dependent

hadronic tensor Wµν(η1, η2), Eq. (26).

One obtains the following formula which holds in any reference system:

DD(η1, η2) = 2(1 + τ)−1
{
k · η1k · η2GM(k2)

[
k2
(
GM(k2) − GE(k2)

)
+ 2m2(1 + τ)GM(k2)

]

+k2(1 + τ)G2
M(k2)(2k1 · η2k2 · η1 − m2η1 · η2)

+4GM(k2)(k · η1k1 · η2 − k · η2k1 · η1)
[
M2τ

(
GE(k2) − GM(k2)

)

+mE
(
GE(k2) + τGM(k2)

)]

−η1 · η2

(
G2

E(k2) + τG2
M (k2)

) [
k2(M2 − 2mE) + 4m2E2

]}
. (27)

Applying the P-invariance of the hadron electromagnetic interaction, one can write the

following expression for the dependence of the differential cross section on the polarization
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of the incident and scattered protons which participate in the reaction as:

dσ

dk2
(η1, η2) =

(
dσ

dk2

)

un

[1 + DttS1tS2t + DnnS1nS2n + DℓℓS1ℓS2ℓ + DtℓS1tS2ℓ + DℓtS1ℓS2t] ,

(28)

where Dik, i, k = ℓ, t, n are the corresponding spin depolarization coefficients which charac-

terize ~p + e → ~p + e scattering. The explicit expressions of the depolarization coefficients,

are given in Appendix C, in terms of the hadron form factors.

D. Kinematics

A general characteristic of all reactions of elastic and inelastic hadron scattering by atomic

electrons (which can be considered at rest) is the small value of the transfer momentum

squared, even for relatively large energies of the colliding hadrons. Let us give details of the

order of magnitude and the range which is accessible to the kinematic variables, as they are

very specific for this reaction. The following formulas can be partly found in Ref. [12].

One can show that, for a given energy of the proton beam, the maximum value of the

four momentum transfer squared, in the scattering on the electron at rest, is (Fig. 2):

(−k2)max =
4m2~p2

M2 + 2mE + m2
. (29)

Being proportional to the electron mass squared, the four momentum transfer squared is

restricted to very small values, where the proton can be considered point-like. Comparing

the expressions for the total energies in two reactions: sI = m2 +M2 +2mE, where E is the

proton energy in the elastic proton electron scattering, and sD = m2 + M2 + 2Mǫ, where ǫ

is the electron beam energy in the electron proton elastic scattering, one finds the following

relation between the proton beam energy and the electron beam energy, in order to reach

the same total energy sI = sD

E =
M

m
ǫ ∼ 2000 ǫ. (30)

The four momentum transfer squared is expressed as a function of the energy of the scattered

electron, ǫ2, as:

k2 = (k1 − k2)
2 = 2m(m − ǫ2), (31)

where

ǫ2 = m
(E + m)2 + p2 cos2 θ

(E + m)2 − p2 cos2 θ
, (32)
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FIG. 2: Maximum four momentum transfer squared as a function of the proton beam energy.

and θ is the angle between the proton beam and the scattered electron momenta.

From energy and momentum conservation, one finds the following relation between the

angle and the energy of the scattered electron:

cos θ =
(E + m)(ǫ2 − m)

|~p|
√

(ǫ2
2 − m2)

, (33)

which shows that cos θ ≥ 0. One can see from Eq. (32) that in the inverse kinematics, the

available kinematical region is reduced to small values of ǫ2:

ǫ2,max = m
2E(E + m) + m2 − M2

M2 + 2mE + m2
. (34)

From momentum conservation, on can find the following relation between the energy and

the angle of the scattered proton E2 and θp:

E2 =
(E + m)(M2 + mE) ± M |~p|2 cos θp

√
m2

M2 − sin2 θp

(E + m)2 − |~p|2 cos2 θp
. (35)

Let us introduce the invariant

ν = k · p1 = E(m − ǫ2) + |~k2||~p| cos θ =
k2

2m

(
E − |~p| cos θ

√
1 − 4

m2

k2

)
. (36)
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The following relation holds: k2 + 2ν = 0.

For the angle between the initial and final hadron, it exists a maximum value which is

determined by the ratio of the electron and scattered hadron masses, sin θh,max = m/M .

One concludes that hadrons are scattered on atomic electrons at very small angles, and that

the largest is the hadron mass, the smaller is the available angular range for the scattered

hadron.

III. NUMERICAL RESULTS

A. Experimental observables

For a given proton beam energy E the observables are functions of only one kinematical

variable, that we chose as k2, as it is a kinematical invariant. Transformation to the scatter-

ing electron angle are straightforward. The proton structure is taken into account through

the parametrization of FFs. We took the dipole parametrization:

GE(k2) = GM(k2)/µp = [1 − k2/0.71]−2, (37)

where µp is the proton magnetic moment, and k2 is expressed in GeV2. The normalization

to the static point is GE(0) = 1 and GM(0) = µp. The standard dipole parametrization

coincides with more recent descriptions for −k2 < 1 GeV2. At higher k2, different choices

may affect the cross section and at a lesser extent, the polarization observables, but as

we showed above, the maximum value of k2 which can be achieved in inverse kinematics,

justifies the choice of dipole parametrization, and even of constant FFs, where the constants

correspond to the static values.

The differential cross section, Eq. (16), is plotted as a function of (−k)2 in Fig. 3. One

can see that it is monotonically decreasing as a function of k2 up to a value of k2
max according

to Eq. (29).

The polarization transfer coefficients, Eq. (A1), are shown in Fig. 6 as a function of

the incident energy for θ = 0 (black solid line), 10 mrad (red dashed line), 30 mrad (green

dash-dotted line), 50 mrad (blue dotted line). The spin correlation coefficients Eq. (B1) are

shown in Fig. 7. The spin depolarization coefficients, Eq. (C1), are shown in Fig. 8.

One can see that in collinear kinematics, in general, either polarization observables take

the maximal values or they vanish. An interesting kinematical region appears at E = 20
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FIG. 3: Differential cross section as a function of −k2 for different incident energies: E=1 MeV

(black solid line), E=50 MeV (red dotted line), E=100 MeV (blue dashed line), E=1 GeV (green

thick line).

GeV, where a structure is present in agreement with the results of Ref. [2].

As shown in Section II, Eq. (16), the cross section diverges for k2 → 0. This condition

is obtained when the scattering angle is small (high energies, and large impact parameters),

or when the energy is small.

In the first case, one introduces a minimum scattering angle, which is related to the

impact parameter, which classical (c) and quantum expressions (q), are given by [14]:

θ
(c)
min =

2e2

pβb
, θ

(q)
min =

~

pb
, (38)

where b is the impact parameter and β is the relative velocity. Let us take as characteristic

impact parameter, the Bohr radius, b = 0.519 · 105 fm. We have shown above that there is

a maximum scattering angle for the proton, which does not depend on the energy, and a

corresponding maximum value for the transferred momentum k2. The condition kmin < kmax

from Eqs. (38), is obtained for E ≥ 1 MeV. When the relative energy is very low, the electron

and proton may be trapped in a bound system, and the present description based on one

photon exchange is not valid. The Born approximation corresponds to the first term of an

expansion in the parameter α/v which should be lower than unity. The condition α/v = 0.1c

is satisfied for E > 2.5 MeV.
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FIG. 4: Differential cross section as a function of the incident energy E for different angles: θ = 0

(black solid line), 10 mrad (red dashed line), 30 mrad (green dotted line), 50 mrad (blue dashed-

dotted line).

The description of Coulomb effects at low energies require approximations and it is outside

the purpose of this paper. We will apply the present calculation for E ≥ 3 MeV.

Al low energy, screening effects are introduced multiplying the cross section by the factor

χ =
χb

eχb + 1
, χb = −2π

α

β
. (39)

Such factor is attractive for opposite charges and increases the cross section for the reaction

of interest here.

The total cross section has been calculated by integration from a value of k2
min extracted

from Eqs. (31,32), and it is given as a function of the incident proton kinetic energy T =

E − M in Fig. 5, for values of the proton kinetic energy in the MeV range.

Let us calculate the cross section for a non polarized proton beam colliding with a polar-

ized target:

σij =

∫
NDTijPiPj dk2, N =

πα2

2m2p2k4
. (40)
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FIG. 5: Total unpolarized cross section as a function of the incident proton kinetic energy T.

Assuming Pi = Pj = 1, the values for different incident energies are reported in Table I

for the total polarized and unpolarized cross sections and in Table II for the corresponding

integrated polarization coefficients.

T σunp σtℓ σℓt σℓℓ σtt σnn

[GeV ] [mb] [mb] [mb] [mb] [mb] [mb]

23 · 10−3 4.4 · 108 26 26.7 −125.3 −16.9 −139.3

50 · 10−3 2 · 108 11.5 12.2 −62.8 −7.4 −67

1 2.5 · 107 0.4 0.8 -5.6 -0.2 -2.9

10 1.9 · 107 9.1 · 10−3 10.6 · 10−2 -1.01 −0.6 · 10−2 -0.09

50 1.8 · 107 0.4 · 10−3 2.3 · 10−2 -0.2 −0.3 · 10−3 −0.5 · 10−2

TABLE I: Unpolarized cross section and polarized transfer cross sections (in mb) for different

incident energies.

The spin transfer cross section σnn and σℓ = (σℓℓ + σℓt)/2, are illustrated in Fig. 9 in the

MeV range.
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FIG. 6: Polarization transfer coefficients as a function of E for different angles. Notations as in

Fig. 4.

These values are very sensitive to the incident energy, and they are consistent with the

findings of Refs. [6, 7, 16]. Although they cannot be compared directly with the previous

calculations, as our formalism is derived in the laboratory system, they allow a more direct

comparison to the experiment.

B. High energy polarimetry

From Figs. 6, 7, 8 it appears that polarization coefficients are in general quite large,

except at low energy. Proton electron scattering can be used, in principle, to measure the
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FIG. 7: Same as Fig. 6 for the spin correlation coefficients.

polarization of high energy beams. The idea to use pe elastic scattering for beam polarimetry

has already been suggested in Refs. [16]. Let us calculate the figure of merit, for measuring

the polarization of a secondary proton beam, after scattering on atomic electrons.

The differential figure of merit is defined as

F2(θp) = ǫ(θp)A
2
ij(θp),

where Aij stands for a generic polarization coefficient and ǫ(θp) = Nf (θp)/Ni is the number

of useful events over the number of the incident events in an interval ∆θp around θp. This

quantity is useful, as it is related to the inverse of the statistical error on the polarization
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FIG. 8: Same as Fig. 6 for the spin depolarization coefficients.

measurement, for a proton with degree of polarization P :
(

∆P (θp)

P

)2

=
2

Ni(θp)F2(θp)P 2
=

2

Ltm(dσ/dΩ)dΩA2
ij(θp)P 2

, (41)

tm is the time of measurement. The correlation coefficient squared, weighted by the differ-

ential cross section, A2
tℓ(k

2)(dσ/dk2) and A2
ℓℓ(k

2)(dσ/dk2) are shown in Fig. 10 for different

electron angles.

The integrated figure of merit

F 2 =

∫
dσ

dk2
A2

ij(k
2)dk2 (42)

as a function of the incident energy is shown in Fig. 11. In Refs. [17] it was suggested
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T Ttℓ Tℓt Tℓℓ Ttt Tnn

[GeV ]

23 · 10−3 1.5 · 10−12 1.5 · 10−12 −1.3 · 10−12 −2.6 · 10−12 −3.8 · 10−12

50 · 10−3 7.2 · 10−12 7.5 · 10−12 −6.3 · 10−12 −1.2 · 10−11 −1.8 · 10−11

1 3.3 · 10−9 6.8 · 10−9 −4.8 · 10−9 −6.8 · 10−9 −9.2 · 10−9

10 3.5 · 10−7 3.9 · 10−6 −1.4 · 10−6 −1.1 · 10−6 −1.2 · 10−6

50 5.9 · 10−6 0.3 · 10−3 1.4 · 10−3 −1.4 · 10−5 −0.2 · 10−4

TABLE II: Polarization coefficients for different incident energies.
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FIG. 9: Spin transfer cross section σℓ = (σℓℓ + σℓt)/2 (black solid line) and σnn (red dashed line)

as a function of the proton beam energy.

to use the scattering of a transversally polarized proton beam on a longitudinally polarized

electron target. From Fig. 11, one can see that the figure of merit takes its maximum

value for T ≃ 10 GeV. Assuming a luminosity of 1032 cm−2 s−1, for an ideal detector with

acceptance and efficiency of 100%, one could measure the beam polarization with an error

of 1% in a time interval of 3 min.

If one detects the outgoing proton, which seems more challenging as its kinematical

characteristics are close to those of the beam, one could in principle build a polarimeter

based on the scattering of the polarized beam (the polarization of which should be known)

on an unpolarized target. In this case, from the azimuthal distribution, one can reconstruct

the components of the polarization which are normal to the scattering plane.
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FIG. 10: Variation of the differential quantities A2
tℓ(k

2)(dσ/dk2) (left) and A2
ℓℓ(k

2)(dσ/dk2) (right)

as a function of the incident energy for a polarized proton beam on a polarized electron target

~p + ~e → p + e, at different angles. Notations as in Fig. 4.

IV. CONCLUSIONS

The elastic scattering of protons on electrons at rest was investigated in a relativistic

approach in the one photon exchange (Born) approximation. This reaction, where the target

is three order of magnitude lighter than the projectile, has specific kinematical features due

to the ’inverse kinematics’, i.e., the projectile is heavier than the target. For example, the
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FIG. 11: Variation of the quantity F 2 as a function of the kinetic proton beam energy for a

transversally polarized proton beam on a longitudinally polarized electron target ~p + ~e → p + e.

proton is scattered at very small angles and the allowed momentum transfer are in the MeV2

scale, even when the proton incident energy is of the order of GeV. The differential cross

section and various double spin polarization observables have been calculated in terms of the

nucleon electromagnetic FFs. Note that at the values of transferred momentum involved,

any parametrization of FFs is equivalent and it is very near to the static values. The spin

transfer coefficients to a polarized scattered proton were calculated for two cases: when the

proton beam is polarized or the electron target is polarized. The correlation spin coefficients

when the proton beam and the electron target are both polarized were also calculated.

Note that the expressions for the polarization observables in the considered reaction, in a

relativistic approach, are absent in the literature (at our knowledge). Numerical estimations

showed that polarization effects may be sizable in the GeV range, and that the polarization

transfer coefficients for ~p+e → ~p+e could be used to measure the polarization of high energy

21



proton beams. This result confirms previous estimations from [16]. The calculated values of

the scattered proton polarization in the reaction p+~e → ~p+e at energies of the proton beam

lower then few tens of MeV, show that it is not possible to obtain sizable polarization of

the antiproton beam in an experimental set up where antiprotons and electrons collide with

small relative velocities. The present results confirm that the polarization of the scattered

proton has large values at high energies of the proton beam (in the GeV range). So, one

could consider an experimental set up were high energy protons collide with a polarized

electron target at rest. The low values of momentum transfer which are involved, insure

that the cross section is sizable.
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APPENDIX A: POLARIZATION TRANSFER COEFFICIENTS

The explicit expressions for the polarization transfer coefficients for p + ~e → ~p + e are:

DTnn = 4mMk2GE(k2)GM(k2),

DTtt = 4mMk2 GM(k2)

1 + τ

{
(1 + τ)GE(k2) −

(
E + M +

k2

2m

)−1(
1 −

k2

k2
max

)

[
(E + M + 2Eτ)GE(k2) − τ(E + M + 2Mτ)GM (k2)

]}
,

DTtℓ = −2mpk2 GM(k2)

1 + τ

(
E + M +

k2

2m

)−1 [
−k2

(
1 −

k2

k2
max

)]1/2

{
M

m

m + M

E − M

[
(1 + 2τ)GE(k2) − τGM (k2)

]
+

(
1 − 2m

E + m

s

k2

k2
max

)[
GE(k2) + τGM (k2)

]}
,

DTℓt = −4mpk2 GM(k2)

1 + τ

(
E + M +

k2

2m

)−1 [
−k2

(
1 −

k2

k2
max

)]1/2

{
(1 + τ)GM (k2) +

E − M

2M

[
GM(k2) − GE(k2)

]

−m
E + m

s

1

k2
max

[
k2
(
GE(k2) + τGM(k2)

)
+

2M(E + M)
(
GE(k2)(1 + 2τ) − τGM (k2)

)]}
,

DTℓℓ = 4mMk2 GM(k2)

1 + τ

{
(1 + τ)

[
E

M
+

xk2

2m
(E + M + 2m)−

(E + m)2

s

k2

k2
max

(
1 +

xk2

2m
(m − M)

)
+

1

s
(m + M)(E + m)xp2 k2

k2
max

]
GE(k2)

+τ

[
xp2 M + m

m

(
1 − 3

m(E + m)

s

k2

k2
max

)
+

(E + m)2

s

k2

k2
max

(
1 −

xk2

2m
(m + M)

)
−

E + m

m

] [
GM(k2) − GE(k2)

]}
, (A1)

with x−1 = M(E + M + k2

2m
), and s = m2 + M2 + 2mE is the total energy in the proton

electron elastic scattering.
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APPENDIX B: POLARIZATION CORRELATION COEFFICIENTS

The explicit expressions of the spin correlation coefficients, as a function of the Sachs

FFs can be written as:

DCnn = 4mMk2GE(k2)GM(k2),

DCtt = 4mMτk2 GM(k2)

1 + τ

[
(1 −

4M2

k2
max

)GE(k2) + (
k2

k2
max

− 1)GM(k2)

]
,

DCtℓ = 8mMp

[
−k2

(
1 −

k2

k2
max

)]1/2
GM(k2)

1 + τ

{
τ
[
GM(k2) − GE(k2)

]

−
k2

k2
max

m(E + m)

s

[
τGM(k2) + GE(k2)

]}
,

DCℓt = −2mM
k2

p

(
E

M
−

M

m

)[
−k2

(
1 −

k2

k2
max

)]1/2
GM(k2)

1 + τ

[
τGM (k2) + GE(k2)

]
,

DCℓℓ = 4k2GM(k2)

1 + τ

{
(mE − τM2)GE(k2) + τ(M2 + mE)GM(k2)

−(M2 + mE)
k2

k2
max

m(E + m)

s

[
τGM (k2) + GE(k2)

]}
. (B1)
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APPENDIX C: DEPOLARIZATION COEFFICIENTS FOR ~p + e → ~p + e

The depolarization coefficients from the polarized beam to the ejectile for ~p + e → ~p + e,

are expressed in terms of the hadron form factors, as:

DDtt = −R1 − k2

(
1 −

k2

k2
max

){
m

M
(R3 − R4) − xR1 +

(
1 − xk2 m + M

2m

)
R2

}
,

DDnn = −R1,

DDℓℓ =
R1

M

{
p

M

(
p +

k2

2m

E + m

p

)
− E

[
1 + x

(
p +

k2

2m

E + m

p

)2
]}

+

R4
m

M

k2

2m

{
1

M

(
p − E
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p

)(
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2m
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p

(
p +
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2m
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)[
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−
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p

}
+
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M
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+

(
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1
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2m

(
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k2

2m

)]}
+
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(
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1
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]
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1
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[
−k2

(
1 −

k2
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[
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(E + m)

]

[
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M2p
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−k2

(
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M
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+
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k2
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+

xMR1
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k2

2m
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, (C1)

where

R1 = −2

[
m2k2G2

M +
G2

E + τG2
M

1 + τ
(M2k2 + 2mEk2 + 4m2E2)

]
,

R2 = 2
GM

1 + τ

[
2m2(1 + τ)GM + k2(GM − GE)

]
,

R3 = 2k2G2
M ,

R4 = 2(k2 + 4mE)GM
GE + τGM

1 + τ
. (C2)
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