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Résumé

Ce mémoire, écrit en vue de l’obtention de l’habilitation à diriger des recherches de l’Université de
Paris VII, présente certaines de mes contributions à la préparation du détecteur ATLAS auprès du
collisionneur LHC et aux études de la production de paires de bosons vecteurs sur les données recueillies
lors de la première phase du LHC. Après une brève description du collisionneur et du détecteur ATLAS,
je présente la problématique de la reconstruction des muons dans ce détecteur. Je décris ensuite le
travail effectué sur la description du détecteur, un sujet très important pour la reconstruction. Dans
le chapitre suivant, je présente les algorithmes de la châıne de reconstruction STACO qui a été utilisé
par les principales analyses de Physique de ATLAS. Les performances de cette châıne sur des données
simulées et réelles sont discutées. Enfin les analyses de la production de paires de ZZ, WZ, WW , Wγ
et Zγ sont présentées. Les mesures de sections efficaces sont comparées aux prédictions théoriques,
et les limites sur les couplages anomaux à trois bosons sont comparées à celles obtenues auprès des
collisionneurs qui ont précédé le LHC. Les limites sur les couplages anomaux sont discutées dans le
cadre de la théorie effective des champs.

Mots-clés: ATLAS, reconstruction de muons, production de paires de bosons vecteurs, couplages
anomaux à trois bosons

Avis au lecteur: Ce mémoire présente les résultats d’analyses encore préliminaires au moment
d’achever sa rédaction (janvier 2016). Ils n’engagent pas la collaboration ATLAS.
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Abstract

This memoir presents some of my research activities, written in view of obtaining the “Habilitation à
diriger des recherches” delivered by the University of Paris VII. It retraces some of my contributions
to the preparation of the ATLAS detector and to the analyses of production of pairs of vector bosons
at the LHC on the data collected in the first phase of the LHC. I first introduce the LHC, the ATLAS
detector and the problematic of the reconstruction of muons. Next I describe the work that has been
done for the description of the detector, a crucial issue for the reconstruction. Then I discuss in some
details the algorithms forming the STACO chain of the muon reconstruction which has been used
by the main ATLAS Physics analyses. The performance of this chain on simulated and real data are
presented. Finally the analyses of the production of pairs of ZZ, WZ, WW , Wγ and Zγ are discussed.
The cross sections measurements are compared to the theoretical predictions, and the limits on the
anomalous Triple Gauge couplings to the limits from the previous generation colliders. The limits on
the anomalous couplings are discussed in the Effective Field Theory framework.

Keywords: ATLAS, Muon reconstruction, dibosons Physics, anomalous Triple Gauge couplings

Notice to the reader: This memoir presents the results of analyses still preliminary at the
moment of its completion (January 2016). They do not engage the ATLAS collaboration.
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Introduction

This memoir retraces some of my contributions to the preparation of the ATLAS detector and to the
analyses of diboson production at the LHC, the Large Hadron Collider at CERN, on the data collected
in the first period of data taking.

The LHC is the most powerful collider ever built. It aims to explore particle interactions down to
the unprecedented TeV scale and to elucidate the problem of the Electroweak Symmetry Breaking.
The discovery of a new particle in 2012 which, to all appearances, looks to be the long-awaited Higgs
boson of the Standard Model of the Particle Physics, rewarded 20 years spent in designing, building
and preparing the collider and the four large detectors designed to exploit the data from proton colli-
sions.

The Higgs boson discovery completes the set of the particles of the Standard Model. However
there are many arguments both phenomenological and theoretical which plead for the existence of
Physics beyond the Standard Model: the non explained natures of the dark matter and of the dark
energy, the non explained baryon asymmetry observed in the Universe, the many free parameters of
the Model with vastly different values, the strong CP issue, the neutrinos masses so smaller than the
quarks masses, the naturality of the observed light mass of the Higgs boson, unique scalar particle in
the Model, the missing explanation of the particular Higgs potential and the puzzling metastable state
in which, according to the observed top and Higgs boson masses, it apparently places the Universe.

All this makes plausible that the Standard Model is actually an effective description at low energy
scales of a Physics at a higher scale. This Physics Beyond the Standard Model could manifest itself in
the form of the direct production of new heavy particles in high energy collisions. Even if too heavy
to be produced at LHC, the virtual effects of these particles could induce departures from Standard
Model predictions in processes involving Standard Model particles only. This last possibility motivates
the precision measurements of the Higgs bosons couplings as well as of the couplings between vector
bosons, photon, W and Z bosons. These latter couplings are allowed by the non-abelian nature of the
Standard Model Gauge symmetries. They are measured in the production of two vector bosons. The
measurement of the cross sections of these processes at high energy scales allow to set limits on the
anomalous couplings between the vector bosons in particular on the anomalous Triple Gauge Bosons
couplings. The leptonic decays of the W and Z bosons in electrons and muons provides attractively
clean signatures of these processes.

In this memoir, I will recount my contributions to the analyses of the production of ZZ, WZ,
WW , Wγ and Zγ pairs. The measurements of the total cross sections provides challenging tests
of the significant higher order QCD and Electroweak corrections that these processes receive. The
limits on the anomalous couplings improve significantly, sometimes dramatically, on those obtained at
previous colliders. Interpreted in the framework of the Effective Field Theory, they promise a glimpse
on effects from a new Physics Beyond the Standard Model.

The final states of the diboson processes are simple and clean with few leptons. They are exam-
ples of the many processes to which leptons and in particular high-momentum muons provide robust

3



4 Introduction

signatures. For the muon measurements, the ATLAS collaboration chose a Muon Spectrometer based
on air-code toroids of exceptional dimensions.

I joined the ATLAS Muon Spectrometer project in 1995. I could contribute to the design, opti-
mization and testing of this complex detector all over the years which from the early technical proposal
led to its successful operation right from the LHC inception. Instrumental in the long maturation of
the project has been the possibility at a very early stage to rely on software tools allowing realistic
evaluations of the performance of the simulation of the various options of the design of the detector
which had to be considered over the years, as well as of the performance of the actual detector when it
became possible to work on real data from test beams, cosmics rays during the ATLAS commissioning
and ultimately on collision data.

The domains concerned by these activities, with which my colleagues and I came to be involved,
cover the alignment of the detection units of the detector, the magnetic field, the precise description of
the active and passive components of the Detector, and at the heart of all, fed by all the other domains,
the reconstruction and identification of a muon in the apparatus. I contributed mainly on one hand, to
the description of the Detector and on the other hand, to the muon reconstruction both in Standalone
mode, i.e within the Muon Spectrometer only and in Combination mode, i.e using all the sub detec-
tors ATLAS, chiefly the two ATLAS tracking systems, the Inner detector and the Muon Spectrometer.

The challenge of the reconstruction of muon within the Muon Spectrometer is to form a trajectory
in a highly inhomogeneous field, from the patterns of few hits in detection units meters apart. These
hits can be from a genuine muon but can have actually been generated by the high level background
of neutrons and photons induced by the protons collisions. These fake hits spoil true tracks and create
fake ones. These fake muons are a scourge that should be fight to the maximum extent at an early
stage in the chain of reconstruction. The combination of tracks from the Inner detector and the Muon
Spectrometer is comparatively easier. This combination stage provides the bulk of the identification
of muons in ATLAS. However an additional tagging algorithm is needed to rescue reconstruction effi-
ciency at low momentum and in weak acceptance spots.

In this memoir I will recount the principles and the performance on simulated and actual data,
of a suite of reconstruction algorithms to which I contributed. Suitably integrated in the complex
software infrastructure of ATLAS by means of a significant technical work that will be not recounted,
this chain was improved and extensively validated over many years. At the eve of the LHC start the
ATLAS collaboration based the evaluation of the global performance of the detector on this chain.
Since the LHC inception it has be used by the main ATLAS Physics analyses for the first phase of LHC.

This memoir contains five chapters. In the first chapter I briefly present the LHC and the ATLAS
detector, with some emphasis on the Muon Spectrometer of ATLAS. The chapter closes with an
introduction to the problematic of the reconstruction of the muons in ATLAS .

The chapter 2 describes my contributions to the domain of the description of the detector. Two
schemes of very different sophistication levels are discussed. They are at the base of the current
description of the active and passive components of the Muon Spectrometer.

The chapter 3 describes in some details, the reconstruction and identification algorithms of a muon
in ATLAS to which I contributed, the Muonboy Standalone reconstruction, the Staco combination
algorithm and the MuTag tagging algorithm, which all together form the STACO chain.

The chapter 4 is an overview the performance of the muon reconstruction in ATLAS established
for the STACO chain, on simulated data, then on real data from test beam and cosmics rays, and
finally on real collisions data.

The final and longest chapter 5 reviews the results of the diboson production analyses to which I
contributed. The measurements of the production cross sections and the limits on anomalous Triple
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Gauge Bosons couplings are presented and discussed. Limits on anomalous couplings are discussed in
the Effective Field Theory framework.

The memoir is completed with few appendices. The appendix A offers a review of the theory
of anomalous Triple Gauge Bosons couplings and of their measurements, as well as a discussion of
the Effective Field Theory framework. The appendix C examines through a very idealized case some
statistical issues relevant for the anomalous couplings measurements. The appendix D contains some
back of an envelope calculations of the muon momentum resolution in the Muon Spectrometer.





Chapter 1

The LHC, The ATLAS Detector and
its Muon Spectrometer

In this chapter, I wish to set the scene for the discussions, the studies and the results which are pre-
sented in this memoir.

In the first section, I briefly present the LHC and its working conditions during the so-called Run
1 period, the first period of the data taking. The analyses presented in the chapter 5 are on data from
this period.

Then I present the ATLAS detector, following the journey a muon born at the point of the collision
of protons while it crosses all the sub-detectors. The Inner Tracking Detector and the calorimeters are
described as well as their interaction with the muon. The Muon Spectrometer is described in more
detail. I discuss the guidelines and some important aspects of its design. I briefly review the magnetic
field map, material distribution and alignment issues and describe the layout of the detection units
and the detection technologies.

Finally I discuss in general terms the issue of the reconstruction of muons in the ATLAS detector,
first within the Muon Spectrometer and then combining all the sub-detectors of ATLAS. The main
difficulties are discussed and the reconstructions algorithm are briefly outlined.

This last section serves are introduction for the next three chapters, which discuss the issue of the
Description of the detector and its relevance for the reconstruction, then present in detail the Staco
reconstruction chain, and finally review the performance of this chain.
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8 Chapter 1. The LHC, The ATLAS Detector and its Muon Spectrometer

1.1 The LHC

The LHC is the most powerful of the particle accelerators [1, 2]. The collider reuses the 27 km long
tunnel which once hosted the LEP. It is the last element of a suite of accelerators displayed in fig-
ure 1.1, rising the protons energy up to 450 GeV prior to their injection in the main accelerator which
brings them to the collision energy, nominally 7 TeV.

When officially inaugurated end of November 2008, the LHC was a wounded beast. A month ear-
lier, few days after the first very successful protons injections and circulations, a spectacular incident
exposing important safety defects, exacted a year long repair campaign. But the LHC was to return
with a revenge 1.

By the end of November 2009, it provided first collisions in the detectors and achieved 1.18 TeV
beam beating Tevatron by an awesome 200 GeV. At the end of March 2010, LHC performed first
collisions at 7 TeV in the center of mass, reaching the energy targeted for the first runs for physics.
In April 2011, it overtook the Tevatron instantaneous luminosity record 2.

For a period of more than 1.5 year, the machine instantaneous luminosity steadily improved and at
the end of 2011, the detectors had harvested an integrated luminosity of about 5 fb−1 . A new period
opened up in April 2012, with collisions at 8 TeV in the center of mass. Before the long shutdown
in February 2013, ATLAS had collected an integrated luminosity of about 25 fb−1 (cf figure 1.2(a)).
LHC is due to restart its operations early 2015 with an energy in the center of mass of 13 TeV and
increased luminosity.

The high luminosity, made possible by highly focusing closely packed numerous dense protons
bunches, comes with a price. Huge number of interactions occur simultaneously in a single crossing
of two protons bunches, in average 20.7 interactions in the 2012 period with excursion up to 40 in-
teractions for some fills as shown in figure 1.2(b) 3. The resulting pile-up of events in time with the
triggered bunch-crossing is, depending on the sub-detectors time window sensitivities, worsened by
the out-of-time pile-up from neighboring bunch-crossings, following or preceding by small intervals of
time (50 ns in 2012 see table 1.1).

By obscuring the event pattern, the pile-up severely impacts the reconstruction of objects espe-
cially in the Inner Tracker and Electromagnetic calorimeter most exposed to the high flow of particles.
A great deal of work on the reconstruction algorithms is being made to assess and to improve their
performance against pile-up [4–7].

The issue and related concerns are not going to alleviate any time soon. It is anticipated that at
the restart of the LHC, there will be about 50 interactions per bunch crossing in the conditions of the
reference beam configuration [8]. On the longer term, figures as high as 140 interactions per bunch
crossing are being contemplated for the High Luminosity LHC project [9].

1The long and epic History of the LHC and the associated experiments projects has been recently told in great details
and in French in [3].

2Tevatron ceased operations by September of the same year.
3It is the very nature of the LHC idea to compensate by a very high luminosity, an energy in the center of mass

limited by the cost saving re-use of the LEP tunnel.
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Figure 1.1: LHC accelerators chain

(a) (b)

Figure 1.2: (a) Total Integrated Luminosity and Data Quality in 2011 and 2012: cumulative luminosity
versus time delivered to (green), recorded by ATLAS (yellow), and certified to be good quality data
(blue) during stable beams and for pp collisions at 7 and 8 TeV center-of-mass energy in 2011 and
2012; (b) Mean number of interactions per crossing for the 2011 and 2012 data

2010 2011 2012 Nominal

Energy in the center of mass (TeV ) 7 7 8 14
Number of bunches 368 1380 1380 2808
Bunch time spacing (ns) 150 75/50 50 25
Delivered Integrated Luminosity (fb−1 ) 0.04 6 23
Mean number of interactions
per bunches crossing ∼2 ∼9 ∼21 19

Table 1.1: LHC parameters [8]
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1.2 ATLAS overview

The ATLAS detector displayed in figure 1.3 is the largest of the general-purpose Particle Physics de-
tectors ever built [10]. Its overall dimensions are defined by its exceptionally large Muon Spectrometer
displayed in figure 1.4.

Figure 1.3: Cut-away view of ATLAS Detector with the different sud-systems identified

Figure 1.4: The eight barrel toroids magnets installed in the ATLAS Cavern

Notwithstanding its impressively large dimensions, ATLAS has the same onion-like structure than
many of the Particle Physics detectors: several detectors layered upon one another surround the nom-
inal zone of interactions of the protons bunches.
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Emerging from the central interactions area, a muon will cross all these detectors:

� It will meet first the Inner Tracking Detector (ID) shown in figure 1.5.

Figure 1.5: ATLAS Inner Tracking Detector

The ID, which covers the η 4 range [−2.7; 2.7], is composed of three sub-detectors: two semi-
conductor detectors, one using pixels, the Pixel detector, the other using micro-strips, the Semi-
Conductor Tracker (SCT), and the Transition Radiation Tracker (TRT). Immersed in a 2 Tesla
field of the Central Solenoid (CS), these detectors provide high granularity position measure-
ments along the transversally bent tracks.

Lightweight, these detectors are designed to be as much as possible transparent to the particles
emerging from the interaction point (IP). This is particularly true for muons, which are affected
only by Multiple Scattering within sub-detector material, let simple, pristine tracks easily re-
constructible. Indeed muon tracks are more easily reconstructible than tracks of electrons which
are affected also by Bremsstrahlung, or of pions which are affected also by hadronic interactions.

This results in higher performance of the muon reconstruction, as illustrated by the figure 1.6(a)
which shows the reconstruction efficiency as a function of η [10]. While the muon reconstruction
efficiency is high and fairly uniform, the efficiencies for electron and pions are not only lower
but do depend strongly on η in a way reflecting the amount of material in the ID (cf figure 1.6(b)).

This material impacts nevertheless the muon performance by the Multiple scattering effect. It
deteriorates the muon momentum resolution shown in figure 1.7 in the intermediate range from
|η| ∼ 0.7 to |η| ∼ 1.7. For higher η, the resolution inexorably worsens because not only the

4ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center
of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and
the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudo-rapidity and the transverse momentum are defined in terms of the polar angle θ as
η = − ln(θ/2) and pT = p sin(θ), respectively. The η−φ distance between two particles is defined as ∆R =

√
∆η2 + ∆φ2.
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instrumentation reduces (TRT stops at ∼ 2.0), but also the measurement lever arm shortens
due to the finite length of the solenoid.

(a)
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Figure 1.6: (a) Track reconstruction efficiencies as a function of |η| for muons, pions and electrons
with pT = 5 GeV (b) Material distribution in X0 at the exit of the ID envelope;

Figure 1.7: Muon momentum resolution as a function of |η| for muons with pT = 1, 5 and 100 GeV .

� the muon then meets the Calorimeters system shown in figure 1.8.

The ATLAS Calorimeters cover the range |η| < 4.9. They are all sampling calorimeters, saving
the presampler sections in front of the Liquid Argon Electromagnetic calorimeter, using various
absorber materials (lead, steel, copper, tungsten) and various active materials (liquid Argon,
scintillator tiles). The complexity of their geometrical structure is also variable, the most so-
phisticated one being the accordion shape of the Liquid Argon electromagnetic calorimeter.

They are designed to force the incoming electrons, photons and hadrons to generate showers of
secondary particles by cascades of successive electromagnetic and hadronic interactions until the
initial energy is spread out on low energy particles which are eventually absorbed, for most of
them, within the calorimeters themselves.

Much heavier than an electron, a muon does not shower and typically goes through the calorime-
ters. However, in addition to suffer from a multiple scattering effect much larger than in the ID,
a muon does loose energy in the dense material of calorimeters both by ionization and radiative
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Figure 1.8: ATLAS Calorimeters

processes (cf figure 1.9) and if its energy is too low, lower say than 3 or 4 GeV, it will be absorbed
in the calorimeters. The average energy lost per unit length is approximately an affine function
of the muon energy. The distribution of the energy actually lost is a Landau distribution with
large tail toward large energy loss, reflecting the not so unlikely deposit at one time of a large
fraction of the muon energy, i.e a catastrophic energy loss event.

Figure 1.9: Most probable value of the energy loss as parameterized in the geometry of the ATLAS
tracking (points) and in GEANT4 [11] for muons of momentum 10 GeV (left) and 1 TeV (right)
as a function of pseudo-rapidity. The solid line and points correspond to the energy loss of muons
propagating from the beam pipe to the exit of the hadronic calorimeters. The filled histogram and
hollow points correspond to the energy loss of muons propagating from the beam pipe to the entrance
of the hadronic calorimeters (from [12]).

� Having survived the passage through the calorimeters, a muon, if its energy is high enough, can
eventually reach the Muon System that is described in the next section.
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1.3 Muon Spectrometer

1.3.1 General considerations on the Design

The Muon Spectrometer, depicted in figures 1.4 and 1.10, is a detector of truly gigantic size: a hollow
cylinder 46 meters long, 22 meters large. Yet its function is nothing but standard: estimate the
momentum of a muon from the bending of its trajectory in a magnetic field. The field is toroidal so
that the lever arm on which the measurement is done, is not decreasing at high η.

(a) (b)

Figure 1.10: (a) Schematic view of the ATLAS Muon Spectrometer; cross-section view transverse to
the Z direction. (b) R-Z view of the ATLAS Muon Spectrometer

Figure 1.11: Transverse view of the ATLAS Muon Spectrometer showing where the reference methods
of momentum measurement apply. Note that these reference methods are only convenient idealizations
of the actual measurement algorithm.

The rationale underlying the Muon Spectrometer design is to perform the momentum measurement
with the effect of the multiple scattering in the matterial of the apparatus reduced to the extreme.
This led to the solution of an air-core toroid with magnetic field supplied by superconducting magnets
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5. Because these magnets provide field weaker than conventional iron magnets, and therefore have
smaller bending power, the level arm of the measurement has to be quite large.

The muon trajectory in an gentle magnetic field forms a smooth arc, the sagitta of which depends
on the momentum. The reference method, so called Three-Point method (cf appendix D), to measure
the momentum of a muon is to measure this arc by measuring 3 points along this trajectory at the
entrance and the exit of the volume where the deflection occurs and somewhere in between within this
volume, as shown in the figure 1.11.

Aiming for a 10 % momentum resolution for a 1 TeV muon, and assuming that one can achieve
a field of typically ∼0.5 T and a precision of ∼50 µm on the measurement of the sagitta, it comes
that the lever arm should be of the order of 5 m (cf appendix D.3.1). This sets the overall dimensions
of the Barrel part of the apparatus: eight superconducting coils, each embedded in its own cryostat
(figure 1.4), generate a toroidal field in a cylindrical volume extending from the radius ∼5 m where
the calorimeters end, to a radius of ∼10 m (figure 1.10).

The deflection of the trajectory is measured in position detectors arranged in three set of Stations,
the Inner, Medium, and Outer Stations, respectively at the entrance of, within, and at the exit of the
deflection volume. To obtain a ∼50 µm precision on the sagitta, one needs a precision of ∼40 µm on
the measurements of the position of each point where the trajectory intersects the Stations. This set
the choice of the detection technologies for the measurement of the position in the bending direction
as it will be discussed latter.

For mechanical reasons, the schema of the Barrel part of the Muon Spectrometer could not be re-
peated for the end cap part. The field is still generated by eight superconducting coils but they share
a single cryostat Contrary to the Barrel case, there is no measurement Station within the magnetic
field volume. There are still three Stations but now the Inner and Medium Station measure the track
position respectively before and after the deflection of the trajectory in the end cap toroid. No further
deflection occur between the Medium and Outer Stations.

Instead of the Three-Points Method, the momentum measurement relies in the End-Caps on the so
called Angle-Point Method (cf figure 1.11): the track angle after the deflection is very precisely mea-
sured by the two position measurements in the Medium and Outer Stations and the difference between
straight line extrapolation on the plane of the Inner Station and the actual track position measured
there gives the track momentum. It can be shown that with Stations of similar performance than
those of the Barrel part, this Method needs larger distances between the Stations (cf appendix D.3.2).
This sets the larger dimensions of the end sides of the Spectrometer.

The above considerations give the outlines of the Muon Spectrometer. In the next sections I will
discuss few aspects of the concrete design of the detector, concerning the magnetic field, the material
distribution within the apparatus, the alignment issue and in more detail, the layout of the detection
Units.

5An air-core toroid was part of the ASCOT detector proposal for LHC in the early 90’s [13]. ASCOT and an other
proposal, EAGLE [14], merged to form the actual ATLAS detector. The originators of the air-core toroid concept, Marc
Virchaux and Claude Guyot, were drawing on an earlier proposal that they did with others, of such an apparatus for a
Deep Inelastic Scattering (DIS) experiment, the project MuSupra [15]. The idea was to improve on the performance of
the spectrometers of the majors DIS experiments of that time, which were mainly Iron spectrometers. Iron allows strong
magnetic field in a compact volume at the price of a momentum resolution limited by multiple scattering.
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1.3.2 Some consequences of the Design

1.3.2.1 Magnetic Field Map

As discussed above, the field in the Muon Spectrometer is given by 3 Toroids: the Barrel toroid, made
of eight coils each in its own cryostat, and two End Cap Toroids, each made of eight coils sharing the
same cryostat. The eight End Caps coils are rotated by 22.5◦with respect to the Barrel coils 6.

Figure 1.12: Magnetic field map in the transition region.

The field lines are shown in a plane perpendicular to the

beam axis and located in the middle of an end-cap. The

scales are in centimeters.

The resulting field departs significantly from an
ideal toroidal configuration and shows complex
structures, specially in the transition region when
the fields from Barrel and End Cap Toroids over-
lap (cf figure 1.12). This prevents any simple an-
alytical parametrization of the muon trajectory.

Therefore a precise map of the field is a cru-
cial ingredient of the reconstruction program for
tracking the trajectory, as well as for corrections
of field effect at the level of the detection units.

The Field description is based on a recon-
struction of the positions of the coils conduc-
tors from the measurements of a set of magnetic
probes located mainly on the Stations, taking
into account the effect of some magnetic mate-
rials around, as well as the influence of the field
in the calorimeters nearby the Muon Spectrome-
ter entrance [16].

1.3.2.2 Matter distribution

As discussed in appendix D.4, the multiple scattering effects dominate the momentum resolution at
low momentum. Although being based on an air-core Toroid concept, the actual ATLAS Muon Spec-
trometer is far from being empty.
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Figure 1.13: Amount of material in units of radiation

lengths (X0) traversed by muons after exiting the calorime-

ters, as a function of η and φ

The matter of detection units themselves pro-
vides opportunities for the muon to experience
scatterings.

The Coils of all the Toroids place large
amount of matter on the muon paths even though
they are limited distributed in azimuth. The
Struts and the Voussoirs, large bars connecting
the coils needed for mechanical integrity, do con-
tribute by ring-like matter spots extending over
all the azimuth, although narrow in rapidity.

On the side of the End Cap Toroids, the walls
of the cryostat cover all the phase space at high
rapidity.

The area of two pillar structures, the feet,
which support the weight of the detector and are
merged with the two bottom Barrel Toroid coils,
(cf figures 1.10(a) and 1.20) is one of the most
difficult ones.

6At one time considered, the configuration with both Barrel and End Cap coils lying in the same plane was abandoned
since it led to too large low field regions in the regions between coils of the two systems.
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In addition to all of this, few spots of matter corresponding to services and supports. are often
distributed in a highly non uniform way.

All these contributions make a very contrasted distribution of the matter in η and φ as shown in
figure 1.13. Furthermore, as discussed in appendix D.4, the influence of the matter on the resolution
does depend on the actual position of the matter with respect to the detection units, the more damaging
spots being those which are the closest to the Medium Stations. This implies that one does need a
fully tridimensional description of the matter distribution to properly take in to account the effects of
the multiple scattering on the measurement of the momentum.

1.3.2.3 Alignment of the detection units

We saw that to measure properly the sagitta of a trajectory, a precision of ∼40 µm is needed on the
positions of the intersections of the track with detection units. As we will see later, technologies exist
which allow to reach this precision.

But the relative positioning of the detection units themselves contributes also to the precision on
the sagitta. In order that this contribution remains a sub-leading contribution to the overall momen-
tum resolution, the relative position of chambers should be known with an uncertainty better than
30 µm. The detection units are meter wide objects few meters apart. Installation procedures and
geometers surveys allow a precision at the mm level, more that an order of magnitude worse than the
precision required.

Therefore sophisticated optical systems have been developed to reach this goal [17, 18]. Thanks
to an intricate network of optical links connecting the different units, illustrated in figures 1.14(a)
and 1.14(b), to special data sets recorded with the Toroids field switched off, and to the tremendous
work of my colleague physicists working on this task, the relative and absolute positions of the detection
units can be determined with the prescribed precision for almost all of them [19, 20]. The outcomes
of the Alignment procedure are important inputs for the reconstruction of the tracks.

(a) Barrel Optical Alignment System (b) End Cap Optical Alignment System

Figure 1.14: ATLAS Optical Alignment Systems
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1.3.3 Stations Layout and Chambers Technologies

1.3.3.1 Stations Layout

The Muon Spectrometer covers the range |η| < 2.7. The general scheme of a Triplet Inner/Medium/Outer
Stations is present everywhere in the layout of the Stations of the Detector, as it is shown in figure 1.15.

Figure 1.15: View of the Muon Spectrometer Layout giving some examples of the nomenclature of
the Chambers.

In azimuth the Toroids define 16 Sectors, each with their set of Stations: eight Large Sectors for
Stations in between the Barrel coils, eight Small Sectors for Stations centered on them. The ubiquity
of the Station Triplet scheme explains the nomenclature based of a triplet of letters, of most of the
names of the Stations: first B or E for Barrel or End Cap Stations, then I, M or O for Inner, Medium
or Outer Stations and finally S or L for Small or Large Sectors.

But the Muon Spectrometer Layout is not just three cylinders nested one inside the other. There
are many departures from this scheme.

Some departures are astute such as in the transition area between the Barrel and the End Cap
parts illustrated by the figure 1.16, where additional Stations, the EEL and EES Stations, are placed
to act as Medium Stations in a Triplet which recruits a, in principle, Medium Stations as an Outer
Stations.

Some departures are to rescue weak points, such as when the BEE Stations are added in the
Small Sectors and forms with the EIS, EMS and EOS a Quadruplet of Stations. The complicate
field structure in such region results in cancellation of bending power between the Inner and Medium
Stations. The BEE inserted in between these Stations allows to recover the momentum resolution.
Unfortunately the alignment of these BEE is specially challenging.
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Figure 1.16: Cross-section in the Large Sectors of the Muon Layout. In Barrel, the tracks are measured
by the triplet BIL-BML-BOL and in End Cap, by the triplet EIL-EML-EOL. In the transition region,
the measurement triplet is EIL-EEL-EML, i.e the Medium EML Station is used as an Outer Station.

Figure 1.17: Cross-section in the Small Sector. Red Curves starting on the Inner Station are trajec-
tories of muons of 10 GeV pT . Blue curves crossing the Inner Station are straight lines superimposed
on these muon trajectories in the volume between EO and EM Stations. Difference between positions
on the Inner Station surface of the Red and Blue curves gives the momentum (Angle-Point Method).
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Figure 1.18: View of the allowance space at η ∼0. Meter wide passages for service prevents installation
of Chambers.

Figure 1.19: Holes are made within the Medium coverage for the Barrel coils ribs.

Figure 1.20: In the feet sectors, holes are made in the Medium and Outer Stations coverages.
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However its fair to say that most of the departures from the ideal Layout are damaging. They
amount for acceptance losses to make room for services.

The worst case is the allowance space in the range |η| < 0.06, made for the passage of various
services. It mainly affects the Large Sectors where all Stations are lost as shown in the figure 1.18.

In other cases, only one of the standard Three Stations along the trajectory of a muon is lost.

Examples are holes made in all the Medium Small Stations to accommodate the Ribs of the Barrel
coils as illustrated in the figure 1.19, or made non projectively in both Medium and Outer Stations to
make room for the feet structures as shown in the figure 1.20.

Figure 1.21: In the bottom Large sector between the two feet, a passage for an Elevator is hollowed
out in the Medium and Outer Stations. View from the Interaction Point, only one station, the BM or
the BO, is missing at once.

A last example of these configurations, are the two large non-projective holes in the bottom Barrel
Large Sector around |Z| ∼7 m shown in figure 1.21. There, meter wide holes allow room for Elevators
needed to access Inner Detector and Calorimeters.

The figure 1.21 shows also trajectory of muons shot from the Interaction Point at different η. As
it can be seen for some trajectories, only two points can be measured and the Three-Points method,
usual in the Barrel area, can not be applied. However the Muon Spectrometer Stations do measure
more than just the track intersection point. Actually they measure a segment of the track, a point and
a direction. Therefore for this category of trajectories, the momentum can be measured by comparing
the angles of the trajectory on the two Stations. Unfortunately, the resolution obtained with this so
called Angle-Angle Method is not as good as the resolution of the standard Three-Points Method (cf
appendix D.3.3).
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1.3.3.2 Chambers Technologies

A very convenient idealization of the trajectories of the muon in the Muon Spectrometer is to see
them as confined in a plane passing by the beam axis.

Indeed emerging from the beam axis, a muon is bent transversally in one direction by the solenoidal
field when it crosses the Inner Detector volume. When it crosses the calorimeters volumes, it is bent
in the other direction by the return field there. If the fluxes of the Inner Detector field and its return
field have canceled each other at the radius of the Muon Spectrometer entrance, then the muon enters
in the Muon Spectrometer tangentially aligned on a ray passing by the beam axis.

Then crossing the Muon Spectrometer, bent by a Toroid field its trajectory remains in a plane at
constant φ, which includes the muon entry point and the beam axis. This idealization of the actual
field configuration, is good enough to capture the main picture.

On this basis, one distinguishes first coordinates quantifying positions in the bending plane, i.e
η direction, and second coordinate for position perpendicular to this plane, i.e φ direction. The
measurements of these coordinates are done in Chambers of various kinds, called technologies hereafter.
Four types of technologies are present: MDT, RPC, TGC and CSC

1.3.3.2.1 MDT Chambers
The main technology is the Monitored Drift Tubes Chambers technology, the MDT technology. The
MDT Chambers are collection of orthoradial 7 tubes typically arranged in three or four Tubes Layers
grouped in one or two Multilayers.

The tubes are filled by a mixture of Ar and CO2 gases under pressure. High voltage is applied
between the tube wall and a wire at the center of the tube. Operation principle is illustrated in
figure 1.22(b): crossing a tube, the muon ionizes the gas; the ionization electrons drift toward the
wire; the time delay between crossing and first arrival of charges on the wire, the drift time, gives a
measure of the shortest distance of the muon to the wire, the drift radius. The information from a
single tube is thus that the muon trajectory is tangent to a cylinder centered on the tube axis, the
radius of which is the drift radius. The resolution on the drift radius is typically 100 µm in average,
with a significant dependence on the impact radius shown on figures 1.22(c) [21, 22]. Fluctuations in
the deposited ionization charge is responsible for the resolution degradation at small radius [23, 24].

The local magnetic field modifies the trajectory of the drift electrons and therefore the relation be-
tween drift radius and arrival time (Lorentz angle effect) [25]. A moderately precise, ∼1 cm, estimate
of the position of the track along the tube, i.e a measurement of the second coordinate, is needed to
correct for this effect. This measurement is also needed to correct for the time of the propagation of
the signal along the tube.

A salient feature of the MDT technology is that it is slow. The maximum drift time corresponding
to charge deposition at the largest radius, is ∼700 ns. While only the charge deposition the closest to
the wire does contain impact parameter information, the drift of all deposited charges along the track
will take that long. This led to implement in the readout-electronic, a dead-time of 750 ns after the
arrival of the first signal. Therefore it could be that the signal expected on some tube for a candidate
track has been masked by an earlier signal from a δ-ray, i.e an atomic electron knocked out by the
muon from the tube wall, or a neutron or a photon from the high level background radiation [26].
This masking effect is an important feature to be included in the track reconstruction algorithm

7Orthoradial is used here and later to mean that a circle centered on the beam-axis and passing by the middle of the
tube would be tangent to the tubes axis.



1.3. Muon Spectrometer 23
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Figure 1.22: (a) Mechanical structure of a MDT chamber. Three spacer bars connected by longitudinal beams form

an Aluminium space frame, carry two Multilayers of three or four drift Tubes Layers. Four optical alignment rays, two

parallel and two diagonal, allow for monitoring of the internal geometry of the chamber; (b) Cross section of a MDT

tube. They are Aluminium tubes filled with Ar/CO2 gas under a 3 bar pressure. A voltage difference of 3080 V is applied

between the central tungsten-rhenium wire and the tube wall. (c) Resolution as a function of the impact parameter of

the track with respect to the tube wire from [21].

The mechanical simplicity of the MDT technology has permitted the development of very reliable
and precise assembly procedures which allowed to reach a precision on the positioning of the wires
in the MDT Stations better than 20µm [27, 28], well below the intrinsic drift radius precision. Still
MDT Stations are large objects subject to gravitational or thermal deformations. Therefore, they are
equipped with internal optical system shown in figure 1.22(a), which monitor these deformations. As
the corrections of the positions of the Stations, these deformation corrections have to be included in
the reconstruction algorithm of the tracks.

The measurement of the local position and angle of the muon trajectory in an MDT station will
consist in fitting a straight line tangent to a set of cylinders centered on the tube axis. The resolutions
on the local position and angle of the trajectory obtained in this way are of the order of 40 µm and
few hundreds of µrad (cf appendix D.2).
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The tubes of the MDT Chambers measure precisely the first coordinate. The MDT Chambers
provide this precision measurement over most of volume. Only at high rapidity and only in the inner-
most Station an other technology is used, the CSC technology, which allows also a second coordinate
measurement.

But anywhere else, the second coordinate is measured in Chambers distinct from the MDT Cham-
bers but located in their immediate vicinities. These Chambers are of two types: the RPC and the
TGC Chambers. The use of two technologies, the RPC for the lower rapidity range and the TGC for
the higher range, has resulted, among other factors, from a compromise between prices (RPC Cham-
bers are less expensive) and rate capabilities (TGC Chambers cope better with the higher background
rates of the high η range) [29, 30]. Both Chambers types provide first and second coordinate with a
precision in the cm range. Much faster than those of the MDT Chambers, their signals are used in
the logic of the Muon Spectrometer Standalone Trigger system [31].

1.3.3.2.2 RPC Chambers
The Resistive Plate Chambers, the RPC Chambers, are used in the Barrel part of the Muon Spec-
trometer. One or Two of these Chambers are placed on each side of the Medium MDT Stations as
shown in figure 1.23(a).

The internal structure of the RPCs is shown in figure 1.23(b). The active volume is a gas gap
defined by two resistive planes between which a high voltage difference is applied. A muon crossing
this volume generates avalanches along its path. The reading is performed by capacitive coupling on
strips planes parallel to the resistive planes. On each side of the gap, strips run in orthogonal directions
providing position measurements in both coordinates with a resolution of the order of ∼1 cm. Both
first and second coordinates measurements are used in offline reconstruction of tracks.

(a) (b)

Figure 1.23: (a) Cross-section through the upper part of the barrel. In the middle chamber layer, RPC1 and RPC2

are below and above their respective MDT partner. In the outer layer, the RPC3 is above the MDT in the large and

below the MDT in the small sectors; (b) Cross-section through a RPC, where two units are joined to form a chamber.

1.3.3.2.3 TGC Chambers
The Thin Gap Chambers, the TGC Chambers, are used in the End Cap part of the Muon Spectrome-
ter. They are arranged in four wheels: one covers the End Cap Inner MDT Chambers while the three
others are flanking the End Cap Medium MDT Chambers (cf figure 1.10(b) and 1.24(a)). Only these
last three are used in the Trigger. They are not matching Small and Large Sectors segmentation of
the End Cap MDT Stations but are rather formed of trapezoidal Chambers arranged in concentric
rings.

The internal structure of the TGCs is shown on figure 1.24(b). A high electric field is generated
between a plane formed by orthoradial anode wires and cathode graphite layers. The wire distance is
greater than the anode-cathode distance. Set of wires are grouped to form the signal measuring the
first coordinate while some cathode planes are read by strips orthogonal to the wires providing thus
the second coordinate. The resolution in both direction is of the order of ∼0.5 cm.
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(a) (b)

Figure 1.24: (a) TGC Chambers with the End Cap MDT Chambers; (b) Cross-section of a TGC triplet

1.3.3.2.4 CSC Chambers
The Cathode Strip Chambers, the CSC Chambers, are used at high rapidity in the range 2 < |η| < 2.7
where the rate of incoming tracks would have been too high for the slower MDT technology. Each
CSC unit is formed by four CSC planes grouped in trapezoidal units, (cf figures 1.10(b) and 1.25(a)).
The internal structure of a CSC plane is shown in figure 1.25(b). CSCs are multi-wire proportional

(a) (b)

Figure 1.25: (a) Layout of a CSC end-cap with eight small and eight large chambers; (b) Left: structure of the CSC

cells looking down the wires.

chambers with anode formed by a plane of wires arranged radially, i.e the wires are all parallel to the
symmetry axis of the chamber which passes by the beam-axis. These wires are not read. The cathode
planes are segmented in strips running in orthogonal directions on each side of the anode plane. While
the strips measuring the first coordinate are mm wide, those that measure the second coordinate are
cm wide and run parallel to the wires.

The resolution on the second coordinate is of the order of ∼0.5 cm. The position measurement in
the first coordinate is done by averaging signals received on the ∼5 first coordinate strips on which
the charge distributes. A resolution of the order of ∼60 µm is achieved in this way.

The CSC resolution for first coordinate depend on the angle of incidence of the muon. This is why
the CSC Chambers are mounted inclined toward the Interaction Point such that a muon of infinite
momentum falling on the center of a CSC Chamber would be perpendicular to the Chamber surface.
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1.4 Considerations on the Muon Reconstruction in ATLAS

As we have seen the three main sub-detectors, primarily the two tracker systems, can provide useful
informations for the reconstruction of muons in ATLAS.

The reconstruction of muon track in the Inner Detector does not pose specific problems. On the
contrary, by the very nature of this particle, the reconstruction efficiency of a muon is very high in the
ID with unsurpassable measurements on the angles of the track. However the momentum resolution
in the ID is limited by the lever arm of the detector and the magnitude of the magnetic field. A
common rough number is that below 100 GeV in pT , the momentum resolution of a muon in ATLAS
is driven by the ID measurements, the identification of the particle itself being always from the Muon
Spectrometer measurements. For this sort of comparison, it is relevant to note that the actual ID
resolution has a strong rapidity dependence due to the solenoidal configuration of the field and to the
mater distribution within the detector. Therefore even in this range of moderate momenta, the mo-
mentum measured in the Muon Spectrometer does contribute significantly to the overall measurement
at high rapidity 8.

At higher momentum, the measurement of momentum of a muon rests primarily on the Muon
Spectrometer. The reconstruction of a muon in this detector presents specific difficulties.

Figure 1.26: A simple recon-

structed track within the Muon

Spectrometer

The main point is that the long trajectory of a muon
in the detector is sparsely sampled as illustrated on fig-
ure 1.26.

The connection of these far distant sampled sections, of these
Segments of the track, is made difficult by the highly inhomo-
geneous magnetic field. The propagation of a candidate muon
over the large distance is doomed to be done numerically step
by step, analytical means being confined to very rough estimates
only.

This large distance propagation is a source of extrapo-
lation errors, all the more important that, given the rela-
tively modest magnetic field, the chased magnetic deflections are
small.

A precise knowledge of the Geometry of the detector is manda-
tory to properly reconstruct muons. As seen above, at high mo-
menta the momentum resolution would be completely spoiled if the
reconstruction algorithm does not take into account not only the rel-
ative positions of the detection units, but also their internal deforma-
tions.

At lower momenta, the scatterings in the matter of the detector
can easily mimic magnetic deflections. This is a source of abundant
low momentum fake tracks which can only be reduced by adding
to the kinematic variables of a candidate track, degrees of freedom
accounting for these scatterings. In turn, this requires a precise de-
scription of the matter which can be crossed by a muon, from which,

8In a very early version of the Muon Spectrometer, the possibility of an Iron-Core End Cap Toroid was considered and
wisely rejected on the basis of these considerations, the standalone resolution from a air-core End Cap Toroid surpassing
the performance of the combination of the ID and the iron-core End Cap Toroid [32].
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(a) (b)

Figure 1.27: (a) No neutrons and photons background (b) With neutrons and photons background

Figure 1.28: Muon track accompanied by shower

for instance, one can define properly located and weighted spots for scattering angles to be fitted along
with the kinematic parameters of a candidate track.

Another issue is that there is no (but in the limited corner of the CSC Chambers) true local three-
dimensional position measurement. The precise first coordinate measurement of the MDT Chambers is
separated physically from the second coordinate measurement from RPC or TGC chambers. Therefore
pattern recognition is mandatory to associate these measurements to form a fully three-dimensional
local object, the track segment. Due to cost considerations, the redundancy offered by the local detec-
tion devices is limited (for instance only the innermost MDT Stations are equipped with four Tubes
Layers per Multilayer), the pattern recognition can be badly perturbed by the activity in the vicinity
of the true track.

The first source of these perturbing local environments is the neutrons and photons background
induced by the interactions of primary hadrons produced in protons interactions, with the calorimeters
and shielding. The low energy neutrons and photons which escape the absorption, can produce hits
in the active devices. Some of these hits are not correlated tube to tube and simply harm by the
confusing combinatory that they induce. The other part produces correlated hit in tubes harmfully
mimicking genuine segment of tracks. Examples of the sort of confusion that this source can produce
is given in figures 1.27.

An other source of confusion, is illustrated in the figure 1.28. At high momenta, the probability
of local showers generated while crossing some dense material increases. These local showers can give
many hits in the active devices spoiling the pattern of the genuine hits from the muon, up to the point
that the track can not be reconstructed. The resulting effect is a reduction of the track reconstruction
efficiency at high momenta.



28 Chapter 1. The LHC, The ATLAS Detector and its Muon Spectrometer

The reconstruction of a muon in the Muon Spectrometer is naturally performed by fitting its posi-
tion, angle and momentum at the entrance of the Volume of the Muon Spectrometer. By themselves,
these track parameters are of little use for Physics analysis (although they can be of interest for some
computation of visible transverse momentum of an event). It is necessary to express this measurement
in terms of the parameters of the track as it emerges from the Interaction point.

This operation, the back tracking of the track measured in the Muon Spectrometer, involves prop-
agation in the magnetic fields of the Calorimeters and the Inner Detector. In the process, the muon
energy should be updated for the energy that the muon lost when is crossed these volumes in the
other direction. This correction can be done with or without the assistance of energies measured in
the calorimeters along the muon path, but in all cases it involves a parametrization of some average
energy loss based on the nature and dimensions of the matter volumes crossed. The errors of the
measurement are to be updated for the uncertainties in the energy loss correction as well as for the
uncertainties on possible multiple scattering events which could have occurred on the muon path. All
this requires a precise description of the Inner Detector and the Calorimeters, specially of the latter
since by far, both energy losses and multiple scattering are more important in them.

The Muon Spectrometer Standalone Reconstruction consists in reconstructing a track from the
Muon Spectrometer Stations hits and backtracking its to the beam axis.

At the end of the Standalone Reconstruction, one has a track at the level of the beam axis with all
the errors on its parameters. If this track is real, it is very likely that there is also nearby a track which
has been reconstructed in the Inner Detector. These two tracks are two independent measurements
of the same muon and their combination can improve the precision of the measurement.

A combination procedure can be to perform a common refit of all the primary signals of the detec-
tion devices which were used to perform the two independent track measurements. Alternatively one
can do a simple statistical combination of the two tracks measurements. Actually under the assump-
tions that the errors are small enough there is no gain to expect from a common refit with respect to a
simple statistical combination. Of course, a so definitive statement is doomed to be wrong sometimes.
Still it fails so rarely, in occasions so easy to fix, that it is exact for all practical purposes. The key
point is that the track measurements from a sub-detector with the errors in the form of covariance
matrix is a faithful and, above all, complete summary of the signals of the basic detection units of the
sub-detector.

Because the reconstruction of a muon in the Inner Detector has a very high efficiency, it is very
likely, provided that the reconstruction algorithm in the Muon Spectrometer does a decent job, i.e does
not produce too much fake tracks, that a back tracked track will be successfully and appropriately
combined with an Inner Detector track. The problem is that it happens that there is no Muon
Spectrometer track to play the game of the combination. There are two circumstances which limit
the reconstruction efficiency within the Muon Spectrometer:

� the coverage of the Muon Spectrometer Layout is imperfect. Specially in the configuration in
which Data were collected at first, some places are so poorly covered (EE Stations area) that
only one Station is on the path of a muon. There is only one Track Segment in the event and
no track can be reconstructed.

� at low momentum, as illustrated in figure 1.29, the trajectory of a muon becomes excessively
curved, and soon it is effectively impossible to reconstruct it in its totality. As a consequence,
the track reconstruction decreases steeply for pT below say 7-8 GeV . Still Track Segments can
be found in the Innermost Stations at the entrance of the Muon Spectrometer before the muon
enters too far in the Muon Spectrometer and starts its uneasy path.
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In both circumstances, no full track can be reconstructed. However the identification of the muon
is possible, although with a lesser confidence, on the basis of the few segments let by the muon: an
Inner Detector track extrapolated in the Muon Spectrometer will be identified as a muon if it matches
some track segments there.

Though very efficient, such a “Tagging” identification is less solid than an identification based
on the combination of two full tracks. Indeed there is a risk to build fake candidates by associating
erroneously one of the many Inner Detector tracks to an unrelated track segment in the Muon Spec-
trometer. Such an algorithm should be used with care and under strict control.

Figure 1.29: Views of some Muon trajectories in the Muon Spectrometer, illustrating the difficulties
of reconstructing the trajectories of low momentum muons.

In the chapter 3 I will discuss in some detail three Muon reconstruction algorithms to which I
contributed:

� Muonboy a Standalone Reconstruction

� Staco a Combined Reconstruction of the Muon Spectrometer and Inner Detector tracks

� MuTag a Tagging identification algorithm of the Inner Detector tracks

But before I am going to review in the next chapter the work which has been done on the Detector
Description, an issue of central importance for the reconstruction





Chapter 2

Detector Description of Muon
Spectrometer and ATLAS

To have a precise Description of the detector is a crucial issue for the reconstruction.

Clearly, one needs the positions of the elements of the active units which are fired. This is first
needed to arrange these fired elements, these hits, in patterns consistent with the passage of a particle,
i.e. in segments of tracks in the active units. Actually a great precision on these positions is needed
when in a second stage these segments are assembled in a candidate trajectory in order to measure
the minute curvatures of the high momentum muons in the Muon Spectrometer. To fulfill these needs
one has only to transmit to the reconstruction algorithm the positions at the same time as one gives
it all the other informations concerning the hits, such as say drift times. In this perspective, it is good
enough to pass so to say the geometry with the hits.

This scheme was actually the one followed for the very first design studies. This was good enough
for a first evaluation of the Muon Spectrometer performance. However while the understanding of the
working conditions of the actual detector progressed, it became clear that the issue of the fake muons
rate imposed a more ambitious scheme.

Indeed as we have seen, in the Muon Spectrometer the trajectories are sparsely sampled in Stations
far apart. In addition, the proton collisions induce significant neutrons and photons backgrounds
generating hits here and there all around the apparatus, possibly forming apparently consistent local
segments of tracks in Stations. These two circumstances make that the reconstruction algorithm can
be fooled and can reconstruct a false track from segments erroneously associated in the same trajectory.

Generally such a fake track is globally inconsistent. Indeed connecting unrelated track segments,
its trajectory over the whole detector has a good chance to cross also station units where the hits that
one would have expected to find are actually absent. Therefore if the reconstruction program knows
all the positions of the active elements fired or silent, it can spot these inconsistent trajectories and
reject fake muons.

For the detailed studies of the ATLAS experiment finally approved, the rate of fake muons became
a central issue of the reconstruction performance. It became clear that the reconstruction algorithm
had to have access to the full geometry of the Detector and had to know about detection units whether
they are fired or not. Soon the description was extended to the passive material in the whole ATLAS
Detector. This allowed to account for the Multiple Scattering and Energy loss in the Muon Spectrom-
eter and to back track the Muon Spectrometer tracks through the Calorimeters down to beam axis.

The two next sections briefly describe two schemes for the Detector descriptions to which I con-
tributed, the AMDB and AGDD schemes. The actual descriptions of the Muon Spectrometer for the
simulation and the reconstruction are based on these schemes.
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2.1 AMDB

Marc Virchaux, Laurent Chevalier and I designed the first version of the ATLAS Muon Detector
Description Database (AMDB) to fulfill the reconstruction needs. Over the years the design and the
power of AMDB improved greatly thanks to the involvement of many our ATLAS colleagues among
who, Stefania Spagnolo, Daniel Pomarède, Daniel Lellouch, Kétévi A. Assamagan, Florian Bauer,
Pierre-François Giraud and Jochem Meyer [33].

AMDB allows to collect and to organize, the thousands of numbers coming from a myriad of
disparate sources (Engineers drawings, Excel and paper sheets, people interviews and confessions)
that are needed to describe the Muon Spectrometer. Providing in a structured and reliable way the
primary numbers on the actual Layout, needed for the Reconstruction and Simulation, AMDB played
a crucial role in the early developments of these softwares. It was also a means to discuss in effective
terms the incorporation of the outputs of the Alignment System Software, being the corrections of
the positions of the detection units (Alignment proper) or the correction of their shapes (deformations).

AMDB is fundamentally a format to organize numbers plus some light code to access them. How-
ever since these numbers have to be interpreted to be useful, a set of non trivial codes are provided
which compute the actual positions of the various described elements. These codes form a set of
packages, the Amdcsimrec packages, part of the ATLAS software. The different implementations
interpreting the same AMDB numbers (Amdcsimrec, Reconstruction, Simulation, Alignment) were
actually checked against each other continuously over all the years of ATLAS preparation. Far to be
an unnecessary duplication of work as an average manager would say, any one who has ever had the
questionable chance to work on such as complex issue as the Detector Description, will understand
that this is a powerful means to debug software as the facts did prove many times in ATLAS.

Working on AMDB is a hard job of collecting thousands of numbers dispersed all around. The
worker pain is alleviated by the wonderful views of the Detector that he gets in return from the 3D
Visualization Software PERSINT [34] that Marc Virchaux started to develop at about the same time
we started AMDB. Here, as elsewhere in this document, I will use these views to illustrated my points.

2.1.1 Brief Description of the Structure of AMDB

The AMDB format organizes numbers in a flat file describing active and passive materials. Hereafter,
I briefly describe the structure of the active material part, i.e of the Stations of the Muon Spectrometer
(cf table 2.1). More details can be found in the AMDB documentation [33].

D entry type of Station ; lists and defines its components (shapes, dimensions, positions)
W entry internal structure of a Station component (technology dependent)
H entry cut out of a Station; refer to a D entry

P entry Station placements; refers to a D entry, possibly to a H entry

A entry Alignment corrections of a given Station
B entry Deformation corrections of a given Station
I entry Internal Alignment corrections for a given CSC Station

Table 2.1: AMDB Entries types for the description of Muon Spectrometer Stations

Extensive use of the many similarities that exist between the various Muon Spectrometer Stations
in their shapes and in their internal structure, is made in order to reduce the numbers of distinct
elements needed for a complete description.

Muon Spectrometer Stations data are organized around a two levels structure: Station or D entry,
and Inner Structure or W entry.
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The Station level, the D entry, defines the Station in its own local axis system as a stack of units
(MDT, RPC, ...) giving the shapes of these elements, their dimensions, their relative positions and for
each of them a pointer to the Inner Structure level, to a W entry, specifying the details of its internal
building.

The shape definition is flexible enough to handle the rectangular shape of MDT Barrel and RPC
units (cf figure 2.1(a)), the trapezoidal shape of MDT End Cap and TGC units (cf figure 2.1(b)) or
the coffin-like shape of some CSC units (cf figure 1.25(a)).

Many of the physical Stations of the Muon Spectrometer are identically built. They are described
by the same D entry which, therefore a type of Station, not a physical Station.

(a) (b)

Figure 2.1: AMDB description of a Barrel (a) and End Cap (b) Chambers

Figure 2.2: AMDB internal structure description
of a Barrel Chamber

The Inner Structure level, the W entry, is
Technology dependent.

For instance, a W entry for a MDT Multi-
layer contains informations such as the number of
Tubes Layers, the values of the inner radius and
of the thickness of the wall of the MDT tubes,
the pitch of the tubes within a Tubes Layer and
the relative positions of the Tubes Layers in the
local MDT Multilayer axis system.

The W entry for RPC, TGC and CSC Tech-
nologies are similar, only sometimes more extended as for instance, in the case of TGC owing to the
more complex structure of this Technology. A flavor of the described internal structure for MDT and
RPC units is given on figure 2.2

Parallel to the D entries, runs an other tree-like structure formed by special entries, the H

entries, which describe the cutouts that are made in the detection units for e.g. the optical paths of
the Alignment System. In the local axis of a Station, a H entry defines which elements of a given D

entry are cut and the parameters of the rectangular beveled volume to be removed (cf figures 2.3).
Many of the physical Stations which are identically built, differ only by the actual cutout that is dug
in them. In these cases, there are different H entries referring to the same D entry.

Finally there are the positioning entries, the P entries. A P entry refers to a particular D entry

and possibly to a particular H entry, and describes the simultaneous positioning of multiple copies
of a particular Station type with the same cutout, at a given radius from and position along the
beam-axis, in a set of φ sectors at once.
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Figure 2.3: Cut outs in MDT, RPC and TGC Chambers in Barrel

A set of identifiers allows to navigate in the tree of the above entries. For instance to each physical
Station is associated a name (e.g. BIS, EOL, ...), and two indices specifying its φ sector and its rank
in the Station segmentation along the beam axis in Barrel region or along the distance to the beam
axis in End Cap region.

To this set of identifiers for a physical Station is associated an index pointing to a D entry. In
turn for a given D entry are associated indices pointing to the different elements forming it, and so
to the different W entries. If a given physical Station is cut out, then the set of its identifiers allows
also to reach a H entry.

This identifiers scheme, up to insignificant differences, is the one used in the ATLAS Muon Spec-
trometer software [35].

Coupled with a description of the passive material of the detector not discussed here, the AMDB
organization of the data of the geometry of the Stations, allowed to perform many of the Muon
Spectrometer Layout evaluation and optimization studies such as the optimization of the Number
of MDT tubes layers per MDT Multilayer [36] or impacts on Momentum resolution of an imperfect
acceptance coverage of various Layouts [37, 38].

2.1.2 Alignment and Deformation in AMDB

Some dedicated entries, the A entries are designed to carry the outputs of the Alignment System
software.

A given A entry allows to get the corrections of the position and orientation of a given physical
Station as shown on figure 2.4(a). This functionality can be used to generate randomly misaligned
layouts as the one shown on figure 2.4(b). These “random” Layouts were extensively used in studies
of the effects of misalignment on the resolution on the momentum of a muon or on the mass of a
resonance as shown on figures 2.5(a) and 2.5(b) respectively [39–41].

The Alignment system provides also measurements of the deformations of the shapes of the de-
tection units. These outputs are entered in dedicated entries, the B entries, of AMDB. There are
many types of deformations such a banana deformation type or twist deformation type as shown on
figures 2.6(a) and 2.6(b) respectively.

Some corrections of the internal arrangement of the elements forming a Station are possible using
the A entry as illustrated in figure 2.7. This option could be used to describe relative misalignment
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(a) (b)

Figure 2.4: Examples of AMDB misalignments; (a) Three Barrel Chambers, the middle one has non
nominal positions and orientation (b) Persint view of the Outermost Barrel Stations with random
rotations added on their nominal positions; for the effects to be visible, the unrealistically large value
of 50 mrad has been used for the width of the Gaussian distribution of the added random angles.

(a) (b)

Figure 2.5: (a) Contribution to the momentum resolution as a function of the misalignment in position
(from [40]). (b) Reconstructed invariant mass of Z’ events produced with the χ model, decaying in
pairs of muons reconstructed with Staco Combined Reconstruction, for various misalignment errors
(from [39]).

in position and in orientation of the MDT Multilayers forming an actual MDT Station. Such infor-
mations on the “As built” geometry of actual MDT chambers have been collected at CERN for about
15% of the MDT Stations in Quality control tests using X-ray tomography [42]. Exploratory studies
in the context of a Qualification task [43] did show the interest of these data for the reconstruction
and some progress were made in incorporating them in AMDB.

The MDT Chambers construction was in general of very high quality, and to ignore in the recon-
struction the “As built” MDT geometry, as it was the case for all the Run 1 period, has no major
impact.

On the contrary, for the CSC Stations the corrections of the positions and orientations of the
internal elements with respect to the nominal design can not be ignored without a major degradation
of the performance. These corrections are simple rotations and translations of the planes forming the
active layers of the CSC. Although they do not fit either in the A entry scheme, they are close enough
to be dealt with a very similar but CSC specific entry, the I entry and the effects of these corrections
are propagated down to reconstruction without a hitch.
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(a)

(b)

Figure 2.6: (a) AMDB banana-like deformation: the tubes ends planes sag out and take parabolic
shapes; (b) AMDB twist deformation: a twist is applied along the tube nominal axis on the Station
volume ; deformations is applied on the left Station.

Figure 2.7: Example of AMDB misalignment of the internal components of a Barrel Station
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2.2 AGDD

2.2.1 Early days

At the end of 1999, Marc Virchaux and I joined some of our ATLAS colleagues, among others, Chris-
tian Arnault, Stan Bentvelsen, Steven Golfarb, Julius Hrivnac, RD Schaffer and Christophe Lester,
in a new Detector Description project, the ATLAS Generic Detector Description (AGDD) project,
based on XML, the eXtensible Markup Language [44].

Although this use of XML is quite common now-days [45], it was very new at that time and the
design and development of AGDD has been a very creative and exciting period. Very soon, the basic
elements of AGDD were in place, almost all the sub-detectors of ATLAS were described at least at the
level of solid prototyping, and Visualization, Reconstruction and Simulation applications using these
AGDD descriptions were available.

Brief description The basic idea of AGDD is to have a very explicit description of the Geom-
etry in terms of Geometry primitives and their relations, couched in very human readable XML files,
so that the Description of the Geometry is totally independent of the applications that use it.

At the bottom of the elements that AGDD defines, are basic volumes such as box or tube. Some
of them are shown in figures 2.8. The material of a volume can be defined and chosen within a list of
materials, itself defined in a separate section. Also to sort out passive and active volumes, a “sensi-
tivity” status of a given volume can be set.

A bunch of these basic volumes can be placed together in a common axis system. AGDD provides
various ways to do these placements, some directly inspired from those of AMDB (cf figures 2.9).
The simplest of the results of this step is an element called composition which is essentially the
axis system with respect to which the volumes placement is done. Contact with the memory saving
GEANT 4 concept of mother volume, can be made at this stage, by equipping a composition with an
envelope, a boundary volume which can be a basic AGDD volume or a volume resulting from boolean
operations, a boolean AGDD volume. AGDD provides boolean volumes of types union, subtraction
and intersection, (cf figures 2.10).

These compositions and boolean volumes can be positioned as well along with other AGDD
volumes . This leads to tree-like structures allowing the description of complex Geometries. Elements
named sections are provided that allow to map the various sub-detectors domains by encapsulating
separately the descriptions of independent large structures.

AGDD applications The syntax and structure of AGDD is very effective and user friendly.
To write AGDD files describing complex structures is actually quite easy. In any respect, it is much
easier and efficient than to code the same geometry with C++ objects.

For the Muon Spectrometer, AMDB provided the sources for the AGDD description and all active
and passive elements described in AMDB went available in AGDD files within a year. The figures 2.11
show for instance the Muon Spectrometer Stations as described in AGDD. Soon this was also the case
for a large part of the other ATLAS sub-detectors [46–49].

Some applications using AGDD started to be developed.

The first of them were 3D Visualization applications. Along with GraXML developed by Julius
Hrivnac [50], there was PERSINT [34] from Marc Virchaux which, backed with the great experience
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(a) A box volume (b) A tubs volume (c) A trd volume

(d) A pcon volume (e) A elipso volume

Figure 2.8: Examples of AGDD basic volumes

(a) Three volumes positioned and ori-
ented individually

(b) Positioning in Phi on eight copies
of a single volume

(c) Stacking positioning setting only
the distance between objects stacked
in the Y direction

Figure 2.9: Examples of AGDD placements
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(a) A union volume (b) A subtraction volume (c) A intersection volume

Figure 2.10: Examples of AGDD boolean volume

(a) (b)

Figure 2.11: Muon Spectrometer Stations described with AGDD. First a tubs element is created.
Then multiple copies of it are done to form a Layer composition . This layer is copied multiple time to
form a Multilayer composition. Then this Multilayer is copied twice to form a Station composition.

(a) A Rocket (b) A Dalek in the Rocket

Figure 2.12: This too was done with AGDD. With the great power of AGDD and PERSINT comes
the great difficulty to not spend a lot of time on things of questionable interest
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from AMDB, provided very useful functionalities 1. They were instrumental for the debugging of an
AGDD description in construction.

On the reconstruction side, Muonboy is the only application which can use directly AGDD as far
as I know, .

For what concerns simulation, there were some GEANT 4 applications developed to use AGDD.
Among them is my own application G4AGDD [51]. With G4AGDD, I prototyped an automatic building
of a GEANT 4 Geometry from AGDD as a proof of principle that its was possible to do this in a
sensible way.

The top node of an AGDD hierarchical structure represents the “World” in which all the described
elements are ultimately placed. The easy way is to read this hierarchy as a tree and to position
physically each of the volumes individually. This is particularly inefficient in terms of memory usage.
But an AGDD hierarchy is not a tree since some volumes are identical up to their positioning within
others. This maps the difference GEANT 4 between Physical and Logical volumes. Taking account
of this, the building of a GEANT 4 geometry can be done efficiently with an algorithm with visits
recursively an AGDD hierarchy, building on flight when needed, the GEANT 4 objects alter egos
of the AGDD ones. This can be reversed and one can translate GEANT 4 Geometries in AGDD
Geometries, i.e dump GEANT 4 Geometries in AGDD files. This back and forth game between
AGDD and GEANT 4 Geometries can be played with the Geometry of any other packages. For
instance I implemented it for the TGeo Geometry of ROOT [52], translating AGDD Geometries in
TGeo Geometries and vice versa.

2.2.2 Dark ages

The AGDD project came to an abrupt end in 2002 when the ATLAS computing management decided
that the ATLAS software had to use a Detector Description package, the GeoModel [53, 54]. This
package is a library of geometrical primitives very close to the GEANT 4 ones with some memory
optimizations.

This decision was both good and bad. It was good since it provided an uniform way to handle
geometrical informations for the Reconstruction and Simulation applications.

However for the Detector Description proper, the decision missed the whole point of the idea moti-
vating AGDD. We went back to old schemes [55] which identify on one hand, a set of C++ codes each
dedicated to a specific task, e.g “Build a Toroid”, and on the other hand, primary numbers, stored
almost structureless in some format, that are needed to feed these codes.

For active elements of the Muon Spectrometer, this was viable since, as already said, they form
a very structured almost regular set of elements. For the passive part of the Muon Spectrometer,
this was a very serious handicap since this meant that the passive part had to be handled by a set of
specific codes, as numerous as there are dead matter volumes, i.e really a lot, fossilizing a particular
level of detail of the description.

To decide to code the passive material of the Muon Spectrometer in C++ objects was necessarily
leading to a hardly updatable and maintainable heavy software, doomed to lag behind reality and,
ultimately, doomed to stasis.

The AGDD description for the dead material of the Muon Spectrometer continued to be refined

1in particular a tool of detection of clashes between volumes, extremely useful to find minutes inconsistencies which
tend to destabilize GEANT 4 simulations.
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for some time. But unfortunately it was used only in Muonboy. As it should have been anticipated,
the GeoModel codes for the Muon Spectrometer dead material started quietly to fossilize.

2.2.3 Renaissance

These AGDD dark days ended in 2008 when Andrea Dell’Acqua and Laurent Chevalier, soon joined
by Jochem Meyer, decided to cure this appalling situation, and to raise high the AGDD banner again,
at least for the Muon Spectrometer dead matter [56, 57].

Their fully generic application, AGDD2Geo, does build a GeoModel Geometry from an AGDD Ge-
ometry which is then moved to GEANT 4. As G4AGDD but more efficiently, AGDD2Geo can also build
directly GEANT 4 and TGeo ROOT Geometries.

At the end of an impressive update of the AGDD Geometry, the whole set of elements of the
Muon Spectrometer dead matter has been described and included in the ATLAS simulation. This is
illustrated by the impressive figure 2.13 from [56], which shines as the old AGDD dream come true.

Figure 2.13: Support structures as included in the muon spectrometer detector layout. All volumes
are implemented in terms of AGDD-XML elements. (from [56]).

2.3 Conclusions

The detector description is an issue of crucial importance for both simulation and reconstruction. It
requires a very significant investment for the few but distinguished individuals who get involved in it.

The development of AMDB scheme allowed to address very early the optimization of the Muon
Spectrometer and well as to structure the alignment and reconstruction softwares. Since then it pro-
vides the only description of the active volumes.

The AGDD scheme allows to describe in a very generic and effective way any geometry. After a
long eclipse, its sound philosophy now prevails in the ATLAS simulation of the Muon Spectrometer
passive material.
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Muon Reconstruction in ATLAS

In this chapter I describe the reconstruction algorithms that form the STACO chain.

The core of this chain is the Muonboy algorithm. It is described in the section 3.1. This algorithm
performs the reconstruction of muon candidates in Standalone mode, i.e from the signal of the devices
of the Muon Spectrometer exclusively.

Briefly its strategy is to form in a first stage segments of tracks within the Stations and in a
second stage to associate them in a trajectory of a muon candidate, the kinematics of which is fitted
to match the segments. As we have seen, due to the low redundancy in the measurements of a muon
trajectory, and to the background activity in the detector, there is a risk to associate erroneously
unrelated segments and to build a fake muon candidate.

From the very beginning, Muonboy has aimed to maintain the rate of these fake muons as low
as possible while providing the highest possible efficiency of the reconstruction of true muons. This
motivated in particular the important investment in the Detector Description issue as it was discussed
in the previous chapter

The second element of the chain is the Staco algorithm. It performs the combination of the tracks
reconstructed separately in the Inner Detector and in the Muon Spectrometer. It is described in the
section 3.2.

In comparison to Muonboy, Staco is very simple: from the set of tracks reconstructed on one hand
within the Muon Spectrometer and on the other hand within the Inner Detector, Staco performs a
simple statistical combination of the two independent measurements of the parameters of a track.

This simple algorithm works excessively well. That it does so well with only few cuts on the Inner
Detector associated tracks and simple cuts on the χ2s of the combined tracks, is a consequence of
the quality of the measurements of the track parameters performed in both sub-detectors and, as
importantly, of the high purity of muons reconstructed by Muonboy.

Indeed given the huge number of Inner Detector tracks, it is quite easy to identify erroneously one
of them as a muon, if one is willing to associate such tracks with any junk objects “reconstructed”
from some vague activity in the Muon Spectrometer. Therefore it is excessively important when it
comes to the combination of the two sub-detectors that one is extremely strict on the quality of the
reconstructed tracks that one assembles.

The last element of the chain is the MuTag algorithm. It identifies an Inner Detector track as a
muon on the basis of the good matching a Muon Spectrometer segment with the extrapolation of the
track. It is described in the section 3.3.

MuTag aims to recover inefficiencies on weak spots of the Muon Spectrometer acceptance and at
low momentum. By nature this algorithm is prone to produce fake candidates. Its action is therefore
severely limited. It is allowed to run only on the left-overs of the previous stage and strict conditions
are put on the matching of the Inner Detector tracks and the Muon Spectrometer segments. In this
way the MuTag goals are achieved while maintaining a high purity of the muons candidates.
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3.1 Muon Reconstruction in Muon Spectrometer: Muonboy

As we have seen in details in section 1.4, the reconstruction of muon in the ATLAS Muon Spectrom-
eter has to cope with specific difficulties: sparsely sampled trajectories; high inhomogeneity of the
magnetic field; low redundancy of local measurements; high level of neutrons and photons background
spoiling true tracks and creating fake ones; complexity of the layout and variety of chambers types ;
detector matter highly non uniformly distributed; no local true three-dimensional information.

Muonboy has been designed to cope with these difficulties. Its algorithm, described with more
details in the next sections, can be summarized in four main points:

� identification of Regions of Activity (ROA) through the RPC/TGC systems;

� reconstruction of local Track Segments in each Station of these ROAs;

� combination of Track Segments of different Stations to form Muon Track Candidates using
three-dimensional tracking in the magnetic field;

� global track fit of the Muon Track Candidates using individual hit information.

3.1.1 Regions Of Activity

Regions of Activity (ROA) in the (η, φ) space are found using information from the Trigger Chambers.
The size of the ROAs is roughly ∆η ×∆φ = 0.4× 0.4. They are centered on the intersection of RPC
or TGC hit measurements in the two different coordinates, from any Stations belonging to the same
sector in φ.

All Chambers intersecting with the ROAs are selected for the Muon Track reconstruction.

3.1.2 Track Segment Reconstruction

Track segments are reconstructed by forming pairs of hits, one of the hits belonging to a Multilayer
and the other hit to the opposite Multilayer from the same Station or from the Stations contiguous
in the η direction. A Track segment is formed using hits from Stations neither from different sectors
in φ nor from Barrel and End cap simultaneously.

The hit pair is required to point loosely to the interaction vertex in order to suppress background
tracks and combinatorial background. All possible candidates of each hit pair are extrapolated to the
remaining tubes of the MDT Chamber and matched with the hits in these tubes.

The Track Segments are straight-lines as illustrated in figure 3.1. This, over the thickness of a
Multilayer, is an acceptable approximation of the trajectory for any momentum to be reasonably
considered.

Figure 3.1: Muonboy Track Segment
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The quality of a segment is evaluated using a “penalty factor” χ2
P , which deviates from a purely

statistical χ2 (cf figure 3.2) to take into account the following effects:

� masking effect by hit from δ-ray or neutrons and photons background; Tube hits with a drift
time shorter than that expected value have a lower contribution to χ2

P than hits with a drift
time longer than the expected value, i.e the absence of an expected hit is less damaging for the
likelihood of the candidate in the making, if it is possible that the expected hit has been masked
by an earlier hit;

� non uniformity of detection efficiency of individual MDT tubes; The higher the tube efficiency
assumed, the larger the contribution to χ2

P , of tubes which are crossed by the extrapolated
candidate track segment, but which do not contain a valid hit.

As we have seen, signal should be corrected for propagation time of the signal along the tube and
for the Lorentz angle effect from magnetic field. Both effects require an estimate of the position along
the second coordinate. Segments are positioned in this direction using, if available, second coordinate
measurements from RPC or TGC Chambers. If there are not such measurements, several positions
are tried and the best hypothesis is retained. The resolution of this pure MDT second-coordinate
measurement is poor, ∼60 cm 1.

Figure 3.2: Top: sketch of a candidate Track Segment crossing, at a predicted radius R from the wire,
a tube where a hit was recorded at radius R0. The thickness of the shaded area corresponds to the
dead time assumed for the electronics; in the absence of multi-hit capability, the shaded area would
extend from R0 all the way to the tube wall. Bottom: penalty factor χ2

P vs. impact parameter R.
The penalty is highest for R << R0 and R >> R0, as well as in the two empty adjacent tubes. χ2

P is
minimum for R = R0, and only slightly larger for R just above R0 (hit masking). The penalty is also
moderate in the space known to be inactive between neighboring tubes.

The steps of the Track Segment search are:

� ROAs in the (η, φ) space are identified using information from the Trigger Chambers.

� First the Track Segment are looked only in Stations where second coordinate Chambers can be
available, i.e in Outer and Medium Stations in the Barrel and in Inner and Medium Stations
in the End Cap. Indeed, in this first search which is called Strict search, Track Segments are
required to be associated with at least one second-coordinate hit;

1In commissioning or cosmics running, this is not possible due to the T0 fit and the Track Segment is positioned at
the center of the Station.
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� At this stage, Track Segments are also reconstructed in the CSC Chambers, directly in Three Di-
mensions using the CSC clusters (in both projections) as inputs. All these CSC Track Segments
are considered as Strict.

� Then starts an second, independent and looser search of Track Segments, called Loose search.
The Loose Track Segments are not required to match second-coordinate hits and the requirements
on χ2

P are less stringent. To avoid too many fakes candidates, this search is performed only
within those RPC/TGC ROAs which include at least one Strict Track Segments. However to
recover some efficiency from regions where RPC/TGC are not available, new ROAs defined by
an accumulation of first coordinate hits in Stations without RPC nor TGC associated Chambers,
are added to the ROAs set.

The above searches are completed by an other class of Track Segments which are this time allowed
to be formed with hits from one Multilayer only. This class is intended to cure inefficiencies at the
edges of Stations where the muon can cross only one Multilayer, or due to dead channels. For this class
of Track Segments, each Multilayer of a Station is used individually to identify triplets (or quadruplets)
of tubes with hits compatible with a straight track. In order to reduce the large number of possible
combinations, only the hits left unused by the Track Segments found in above searches are considered
and the χ2

P requirements are more strict.

3.1.3 Track Fit

The track fit is a multi-stages process. First a track candidate is formed using only segments, asso-
ciating them according to a set of Strategies. From the result of this segment-based fit, the track is
refined by first using directly the raw informations used to build the segments, instead of the seg-
ments cinematic, and then fitting, along with the track cinematic parameters, few additional angles of
scattering at appropriately located and weighted locations, in order to take into account the Multiple
scattering effects in crossed matter.

Taking the case of a track fully contained within the Barrel, the segments-based fit stage starts
from a Strict Track Segment found in the Barrel Outer Stations. Its position and direction are used to
derive a first rough estimate of the momentum. This estimate is used to extrapolate first to the Barrel
Medium Stations. A “Momentum Scan” is performed around the first rough estimate and several
extrapolations are performed for different values of the momentum. Matchings with Track Segments
in these Medium Stations are evaluated and the Track Segment with the best matching is included in
the candidate track, leading to a second and more accurate estimate of the momentum. The process
is repeated with the Barrel Inner Stations and then with all other potentially crossed Stations refining
each time the estimate of the momentum. In all these fits full tracking is performed at each step of
the minimization procedure. After this stage, a candidate track is kept only if it contains at least two
Track Segments.

The above Barrel basic strategy which starts from the Outer Stations and looks first in the Medium
Stations and then in the Inner Stations corresponds to the two first strategies listed in table 3.1. In the
End Cap, the basic strategy is to start from the Medium Stations, then to look in the Outer Stations
and finally in the Inner Stations.

Dedicated strategies cope with the association of Barrel and End Cap Track Segments.

All these strategies are restricted to a same single φ sector, large or small. Only for Track Segments
at the edges of sectors, some strategies are applied to attempt association between two φ sectors.

Finally two last searches are devoted to reconstruct tracks at very high η where the TGC Chambers
coverage is limited. These are thus the only searches which can start with Loose Track Segments (i.e.
without φ information), but on the other hand, they have harder cuts (3 Stations required).



3.1. Muon Reconstruction in Muon Spectrometer: Muonboy 47

Basic Fully Barrel or End Cap strategies
BOL � BML → BIL or BIR
BOS � BMS → BIS
EML � EOL → EIL or EEL or CSL
EMS � EOS → EES or EIS or CSS

Barrel/End Cap transition strategies
EML � EIL → EEL or BIL
EMS � EIS → EES or BIS
EMS � BMS → EES or BIS or BOS
EML � BML → EEL or BIL or BOL
BOL � EIL → BIL or EEL or EML
BOS � EIS → BIS or EES or EMS

Mixing φ sectors; Restricted to Track Segments at the border of the Station
BOS � BML → BIL or BIR
BOL � BMS → BIS
EML � EIS → BIS or EEL or CSS
EMS � EIL → BIL or EES or CSL

Start with Loose Track Segments, but with harder cuts and not used for cosmics
EML � CSL → EOL
EMS � CSS → EOS

Table 3.1: Stations Association Strategies (BIM are included inside BIL, BMF inside BMS and
BOF/BOG inside BOS); A�B→ C means that the association starts from a Strict Track Segment on
A and then looks for association with a Track Segment on B; if this is successful, association is then
tried with a Track Segment on C; if not, association is tried starting from a Strict Track Segment on
A directly looking for a Track Segment on C. If this fails the procedure restarts from a Strict Track
Segment on B looking for a Track Segment on A; If this is successful, association is then tried with a
Track Segment on C; if not, association is tried starting from a Strict Track Segment on B directly
looking for a Track Segment on C.

Then from the Segments-based fit, a new fit is performed using directly the raw information which
were used to build the Segments-based track. Besides to add information to the fit, this allows to sort
out, among all the hits, the “good” ones from the “bad” ones, the outliers, which are too far away
from the reconstructed path of the muon.

From this stage, tracks are penalized for the “holes” on their predicted trajectory, i.e for the total
absence of a predicted hit. This allows an important rejection of fake tracks resulting from accidental
association of segments, which, against evidence, should have crossed some Stations which are actually
missing.

This refined fit is used to collect dead matter along the track. Crossed volumes are replaced by
discrete scattering centers. An optimized procedure merges the neighboring scattering centers collaps-
ing the matter into a set of fewer more manageable (3 to 5 according to the momentum) appropriately
located and weighted Scattering spots. To these scattering spots, adjustable angles of scattering are
attached. From here, energy loss is also applied at these spots when tracks are propagated in the
Magnetic Field.

A final global fit is performed similar to the last one, but this time with energy loss applied and
fitting as well the scattering angles for which constrains have been added to the χ2 function depending
on the amount of matter their scattering spots stand for. Eventually, a selection of reconstructed muons
is made according to the value of the χ2 of this last global fit.

The covariances matrices of the track candidates are computed from the variations of the χ2 when
varying the track parameters around the fitted parameters.
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3.1.4 Back Tracking

At the end of the previous Track Fit, the parameters of the track are expressed at the Entrance of
the Muon Spectrometer. This means that the 5 parameters which have been fitted set the cinematic
of the muon where it crosses a cylinder located just after the Calorimeters volumes (cf figure 3.3(a)).

These parameters form a 5-dimension vector ~E5, the fitted value of which is ~Eo5 , associated with a
5×5 Covariance matrix CE,5 or equivalently its inverse, the Weight matrix, WE,5 = C−1

E,5, so that the

compatibility of a given hypothesis ~E5 with the Muon Spectrometer data is quantified by:

χ2
5( ~E5) = ( ~E5 − ~Eo5)TWE,5( ~E5 − ~Eo5) (3.1)

Analyses are primarily interested in the parameters of the muon when it emerges from the inter-
action point. Therefore the track measurement is to be transported from MS Entrance to the vicinity
of the beam axis. A new more convenient definition of track parameters, the Perigee Track Represen-
tation, is needed which sets the cinematic of the muon at the DCA point, the point at the distance of
closest approach where the trajectory is the closest to the beam axis (cf figure 3.3(b)). This defines a
5-dimension parameters vector ~P5, its central value ~P o5 , and the Covariance and Weight 5×5 matrices
in this representation CP,5 and WP,5 = C−1

P,5. The aim is to compute ~P o5 and CP,5.

Crossing the detector from the interaction point, the muon can have lost energy and can have
been scattered specially in the Calorimeters. The errors in the Perigee Representation will reflect
both errors on the parameters measured at the MS Entrance and the uncertainties on the energy
actually lost and on the multiple scatterings that actually occurred along the trajectory.

(a) (b)

Figure 3.3: (a) Cylindrical representations on a cylinder defining the entrance of the entrance of
the Muon Spectrometer: two parameters to fix the point where the track intersects the cylinder, two
parameters to fix the unit vector tangent to the track at this point and the inverse of the momentum
multiplied by the charge; (b) Perigee representation: the longitudinal coordinate of the DCA point
along the beam-axis, the signed distance perpendicular to the beam axis of the DCA point, two
variables for the unit vector tangent to the track and the inverse of momentum multiplied by the
charge ;

In Muonboy, the AMDC/AGDD Detector Description of the Calorimeters volumes is used to col-
lect along the backtracked trajectory, the locations of the Calorimeters volumes crossed or equivalently
a set of discrete points where the Energy loss corrections are to be applied (cf figure 3.4). Also, one
derives from the collection of these points, the positions of two Scattering Spots sharing the total
amount of the crossed material on which the track direction can be changed discontinuously.
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Figure 3.4: Three-dimensional display of a muon track traversing the ATLAS calorimeters and Muon
Spectrometer; the small red cubes indicate the centers where multiple scattering was assumed by the
reconstruction to occur in the material traversed by the track.

Applying, as the most likely assumptions, the average energy loss correction and no scattering at
all, one computes the central value of the parameters vector in the Perigee Representation, ~P o5 , from
the central value of the parameters vector in the Track Representation at MS Entrance, ~Eo5 .

In order to deal with the errors, the Track Representations are extended to include extra param-
eters to handle fluctuations of Energy losses and multiple scattering within the Calorimeters. One
introduces an Energy Loss Scale Factor, fEloss, which multiplies the Energy losses on each of the
points collected before. To handle multiple scattering, one associates two scattering angles, α1 and α2

to the two Scattering Spots.

A representation of the full trajectory is obtained adding to the track parameters at the MS
Entrance, the three new Extra parameters fEloss, α1 and α2. This defines 8-dimension parameters
vector ~E5+3. The elements of the central value vector ~Eo5+3 are those of ~Eo5 but for fEloss which is 1

and α1 and α2 which are 0. The Likelihood of a given hypothesis ~E5+3 is evaluated by:

χ2
5+3( ~E5+3) = χ2

5( ~E5) +
(fEloss − 1)2

σ2
f

+
α2

1

σ2
α1

+
α2

2

σ2
α2

= ( ~E5+3 − ~Eo5+3)TWE,5+3( ~E5+3 − ~Eo5+3) (3.2)

where σαi are the multiple scattering distribution widths computed for the equivalent amount of
matter associated to each of the two Scattering Spots and σf scales the fluctuations of the energy lost
and is taken to be 15%. The 8×8 matrix WE,5+3 is obtained from WE,5 by adding rows and columns
for the Extra parameters. Since there is no correlation between track parameters at MS Entrance and
the Extra parameters, the elements of the additional rows and columns in WE,5+3 are all 0 but the
diagonal terms which are equal to 1/σ2

f and 1/σ2
αi .

In the same way, the Perigee Track Representation is extended adding the same three Extra
parameters. This defines 8-dimension parameters vector ~P5+3. The elements of the central value
vector ~EoP+3 are those of ~Eo5 but again for fEloss which is 1 and α1 and α2 which are 0. One can
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always compute numerically ~P5+3 from ~E5+3 and vice versa. In the vicinity of ~P 0
5+3, this relation takes

a matricial form, where a Transfer 8×8 matrix T , evaluated numerically, acts as:

~E5+3 − ~E0
5+3 ' T (~P5+3 − ~P 0

5+3) (3.3)

Then if the errors are small enough, one can say that the likelihood of a given hypothesis ~P5+3 is
evaluated by

χ2(~P5+3) = χ2( ~E5+3) ' (~P5+3 − ~P o5+3)T [T TWE,5+3T ](~P5+3 − ~P o5+3) (3.4)

Therefore the 8×8 matrix WP,5+3 = T TWE,5+3T is the Weight matrix in the Extended Perigee Track
Representation.

At the end one is interested by the errors on ~P5 and not by those on ~P5+3. One obtains the
5×5 Covariance matrix on ~P5 by simply removing from the inverse of WP,5+3 the rows and columns
concerning any of the fEloss, α1 and α2 parameters.

3.1.5 Energy loss correction in Muonboy

The energy loss correction in Muonboy is intimately connected with the AMDC/AGDD description
of all the volumes of ATLAS. The Muonboy tracking can collect the intersection of the trajectory of
a muon with all these volumes. It is known that for what concerns the multiple scattering, a slab
of matter can be exactly replaced with two planes sharing the total amount of matter, with random
independent discontinuous angular changes on them [58]. On the other hand, to proceed that way for
the energy loss is a discretization approximation. This approximation is worsened when as explained
above, the spots are further collapsed in a set of three to five points as done in the Track reconstruction
within the Muon Spectrometer. However this procedure is valid since the Energy loss within the Muon
Spectrometer is small. For the back tracking within the Calorimeter, the energy loss is much more
important and the set of spots on which the Energy loss is applied is not reduced. This insures that
the correction remains smooth, or the smoothest possible, all along the trajectory.

The basic Muonboy assumption on the Energy loss is that the amount of energy lost per unit
length is linear in the momentum

dE

dx
= −(a+ bE) (3.5)

reflecting the loss by ionization at low energy and the radiative rise with energy. For a given length l,
this leads to

Eout = Einα+ β with α = exp(−bl) and β = (α− 1)a/b (3.6)

where Ein and Eout are the energies of the muon before and after going through the length l. When
a slab of matter is replaced by a spot, the parameter α and β are associated to this spot, and the
equation (3.6) is used to compute the energy of the outgoing muon from the energy of the incoming
muon when it crosses the spot.

The parameters a and b of equation (3.5) were originally derived from [59]. Over the years, specially
for the Calorimeters, substantial massage of these parameters has occurred to get satisfactory single
muons pulls and satisfactory description of various resonances mass peaks, on the basis of detailed
GEANT4 [11] simulations. It is well known that the distribution of the energy losses follows a Landau
distribution and that the parameterizations of the energy loss correction face difficulties sometimes
termed as choices between Most Probable Value and Mean Value correction [12]. It is fair to say that
these fine distinctions are quite moot in the case of the Muonboy parametrization which, at the term
of the years of “massage”, is justified mainly by the results of the empirical studies mentioned above.
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3.2 Combined Muon reconstruction in ATLAS: Staco

Staco aims to combine an ID Track and MS track. This combination is a Statistical combination of
two independent tracks measurements of the same muon by means of their covariance matrices.

Let assume two Tracks measurements from two independent Data sets, represented in the same
Track representation by the 5-dimension parameter vectors, ~P o1 and ~P o2 , and their covariance matrices,
C1 and C2, or equivalently by their Weight matrices, the inverses of the covariance matrices, W1 = C1

1

and W2 = C2
1. The compatibility of a Track hypothesis, represented by a parameter vector ~P , with

the two independent Data sets is quantified by the function

χ2(~P ) = (~P − ~P o1 )TW1(~P − ~P o1 ) + (~P − ~P o2 )TW2(~P − ~P o2 ) (3.7)

which can be written as

χ2(~P ) = (~P − ~PCb)
TWCb(~P − ~PCb) + χ2

match (3.8)

where
~PCb = (W1 +W2)−1[W1 × ~P o1 +W2 × ~P o2 ] (3.9)

is the best estimate of the cinematic from the two Track measurements,

WCb = W1 +W2 (3.10)

is the Weight matrix of the combined measurement, i.e the covariance matrix of the combined mea-
surement is CCb = W−1

Cb , and

χ2
match = (P1− P2)T (C1 + C2)−1(P1− P2) (3.11)

quantifies the quality of the combination of the two measurements.

The Staco algorithm works on the two collections of tracks measured in the ID and of track
measured in the MS backtracked to beam axis. Both set of tracks are in Perigee Representation with
respect to the Oz axis. All tracks are required to have pT above 3 GeV. The ID Tracks are first filtered
on the basis of quality criteria, e.g one can require a certain number of Pixel or SCT hits.

Then the algorithm forms pairs of ID and MS Tracks requiring first that they point loosely in the
same direction. The above Statistical Combination is performed and only the combination with the
best χ2

match is kept. If the χ2
match of the best pair is above a certain momentum dependent thresh-

old, the combination is rejected. For the best association to be accepted, a statistical combination is
then performed by extrapolating the ID track measurement up to the Muon Spectrometer Entrance
and combining the extrapolated measurement with the Muon Spectrometer measurement there. In
principle, the χ2

match of this combination and the one of the combination in the ID volume should
be identical since the χ2

match is a statement on the compatibility of the two trajectories measured
in the Inner Detector and in the Muon Spectrometer and should not depend on the point where one
computes it. This is actually true within the numerical precision, for the overwhelming majority of the
cases. Still it was found useful to require that the χ2

match of the combination at the Entrance of the
Muon Spectrometer does not exceed by too much the χ2

match of the combination in the ID volume.
Indeed this prevents the very rare cases where the algorithm errs combining ID and MS Tracks with
very unbalanced momenta. If the pair passes this last test, the combination is kept and the Tracks
it uses are removed from the sets of ID and MS Tracks. The procedure restarts on the leftovers and
stops when no more acceptable combination can be formed.

The standard ID tracks are restricted to the range |η| < 2.5. Still some ID informations are
available up to |η| < 3. These informations are exploited by a special setting of the ID reconstruction
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Figure 3.5: Distribution of the muon energy deposited in one electromagnetic Calorimeter cell by 150
GeV muons. The Gaussians on the left of each plot are the distributions of the noise. Left (right):
energy deposit in a cell belonging to the first (middle) longitudinal sampling traversed by the muon.
The data were collected in the 2004 Combined Test-beam.

running on the leftover hits of the main reconstruction with criteria relaxed on the SCT hits (a
minimum of 6 of them are required in the main ID reconstruction; none are required by the special
ID reconstruction setting) to go past the |η| < 2.5 limit. Staco uses the set of these so-called Pixel
“tracklets” so obtained to validate reconstructed MS tracks reconstructed at |η| > 2.5. This is done
after the first combination pass described above and using the MS Tracks not associated yet.

3.2.1 Energy Loss correction and Staco Muon Combined Reconstruction

The Staco algorithm deals with sets of Tracks expressed in the same Track Representation, the Perigee
Representation with respect to the Oz axis. For the Tracks reconstructed in the Muon Spectrometer,
this means that they should have been corrected for the Energy lost in the Calorimeters. When they
have been reconstructed by Muonboy, we have seen in sections 3.1.4 and 3.1.5, how this is done and,
in particular, that no measurement of energy deposited in the Calorimeters is being used. However the
signal from an isolated muon is clearly visible in the Calorimeters as illustrated by figure 3.5. Although
first, the actual resolution of the measurement of the few GeV deposited by a muon, for a large part
in the Hadronic Calorimeter, is not high and second, in real conditions, isolation of a candidate Track
should be examined cautiously before attributing a Calorimeter signal to it, it is nevertheless worth
to have an option allowing to take into account Calorimeters measurements.

Ideas for such algorithms are numerous [60]. An elegant one [61], developed for Staco, consists in
evaluating the likelihood of a candidate Energy Loss, ELoss, by the product of two distributions: a
Landau parametrization of ELoss scaled from the measured muon track momentum and a Gaussian
centered on the measured Energy Loss in the Calorimeters, EmeasLoss , with a width representing the res-
olution of the Calorimeters Energy measurement. Staco is equipped with an optional stage preceding
those described above, allowing to backtrack Muon Spectrometer Tracks measured at the Entrance
of the Muon Spectrometer correcting it using this method. It was shown that the Standalone perfor-
mance are indeed somewhat improved by such a method. However after combination with ID tracks,
the gain in the resolution is much smaller, of the order of 4% in relative terms.

One issue with such approach is that, in real conditions, isolation criteria have to be designed
carefully for the method to be applied. A worrisome consequence is that this makes the actual per-
formance dependent on the pile-up level and in general of the environment of the muon, for instance
making moot transposition of performance observed on the Z decay mass peak to other physical final
states. Given these concerns, the default option of the Staco algorithm was to not allow this backtrack-
ing, waiting that more experience is gained on the working conditions of the experiment, providing
meanwhile reliable performance robust against pileup and in general busy muon environments.



3.3. Muon Tagging in ATLAS: MuTag 53

3.3 Muon Tagging in ATLAS: MuTag

As we have seen in section 1.4, it could happen that the reconstruction of a Track within the Muon
Spectrometer is not possible because of imperfect acceptance coverage or because at low pT no enough
energy is available to reach the outer or even the medium Stations. This leads to spots of inefficiencies
in the (η, φ) space and to a drop in Track reconstruction at low momentum. The last issue was pointed
very early in the ATLAS performance studies [62]. It was found then that the identification efficiency
could be extended to low momenta provided that the Track Segments in the Inner most Stations could
be used.

The MuTag algorithm was developed first to recover the loss of identification at low pT and latter
to recover those due to poor coverage. Its principle is trivial and illustrated in figure 3.6: ID tracks
are extrapolated up to the level of Muon Spectrometer Stations and tentatively matched with Tracks
segments.

Figure 3.6: MuTag algorithm matching Track Segments and ID Tracks extrapolated up to Muon
Spectrometer Stations (left) in φ and (right) in η

The early version was simply a matching between the φ and η of the Track at Interaction Point
and φ and η coordinates of the Track Segment in the Inner Stations. Although this is an outdated
stage of the algorithm history, it is interesting to note that due to the simplicity of solenoidal Field,
the extrapolation of ID Tracks up to the Inner Stations is extremely simple. Indeed as illustrated
by the figure 3.7(a), the difference between the φ of the ID Track at the Interaction Point and the φ
coordinate of the point where this Track crosses the Inner Stations is to a very good approximation
simply inversely proportional to pT , the proportionality factor being a simple function of η independent
on pT . The case of the η matching is even simpler: in first approximation, the η of the ID Track at
the Interaction Point and the η coordinate of the point where this Track crosses the Inner Stations
coincide. This extremely simple relations, in flabbergasting contrast with what happens in the Muon
Spectrometer 2, allowed immediately, with some educated guesses on the widths of the distributions of
differences φ and η, to solve the problem of the low reconstruction efficiency at low pT , as illustrated
by the figure 3.7(b).

Later, the ATHENA Tracking software machinery was used to perform the propagation of the ID
Track. The code, therefore immediately more cryptic, becomes however much more powerful since
not only the concomitant propagation of the errors of the ID track measurement allows more solid
matching criteria, but the idea could be extended to address also the issue of imperfect acceptance
coverage of the Muon Spectrometer layout.

2For Track Segments from other Stations than the Inner Stations of the Muon Spectrometer, the complexity of the
trajectories in the magnetic field of the toroids prevents any simple analytical parametrization of the connection between
them and an ID Track.
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(a) (b)

Figure 3.7: Early version of MuTag : (a) Mean value of the product of transverse momentum of an
ID Track by the difference between the angular φ of this Track at the beam axis and the φ of the
point where the ID Tracks trajectory crosses the MS entrance against the η of the Track, for various
single muon samples at fixed transverse momentum; (b) First MuTag performance; the points marked
“MuTag” are obtained adding to the Staco reconstructed muons, the muons tagged by MuTag ;

It is important to be conscious of the dangers of an algorithm such as MuTag. Its intrinsic effi-
ciency is really very high and it is easy to forget how much it is prone to build fake muons. To require
a highly consistent object such as MS track as Staco does is incomparably more demanding than to
base an identification on a matching with a Track segment. Therefore the role of a algorithm such as
MuTag should be strictly confined, a last resort when everything else has failed so to say

All over its evolution, the strategy of the algorithm remained the same: MuTag runs after Staco
on its leftovers, i.e it works on the ID Tracks that have not been combined by Staco and on Tracks
Segments that where not used in Muon Spectrometer Tracks that have been successfully combined by
Staco. This allows to get a clean and simple picture with no overlap between Candidates categories
and clear precedence of Combined Candidates over Tagged Candidates. Furthermore strict cuts are
applied on the quality of the ID tracks and MS segments considered and on their matchings, them-
selves only allowed in some corners of the MS. Finally the MuTag muon are sorted post-reconstruction
in “Tight”, “Medium” or “Loose” candidates categories (Staco muon are themselves “Tight” candi-
dates) according to such criteria as the number of segments tagging a given ID tracks or the number
of second coordinate hits of the tagging segments.

The strict policy against the fake muons which is followed in all the stages of the Staco chain does
not result in a loss of reconstruction efficiency and at the start of the LHC, the Staco chain was ready
to provide the best performance to the Run 1 analyses.



Chapter 4

Performance of Muon Reconstruction
in ATLAS
In this chapter I review the performance of the STACO chain of reconstruction of muons in ATLAS.

The driving principles of the development of this chain was to get the highest efficiency for the
lowest rate of fake candidates. It is quite easy to get a very high reconstruction efficiency spoiled by
a huge contamination of fake candidates, by permissively tagging Inner Detector track on the basis
of some matching activity in the other sub-detectors. On the contrary and as easily, one can get a
very high purity sacrificing reconstruction efficiency at low momentum and in the weaker spots of the
Muon Spectrometer acceptance. It is much difficult to get both high efficiency and purity.

As discussed earlier, the strategy of the STACO chain, is built chiefly on a efficient and robust
Standalone reconstruction (Muonboy Stage) introducing fake rejection early in the process, followed
by a combination with tracks for the Inner Detector (Staco stage). The tagging of an Inner Detector
track with a Track segment in the Muon Spectrometer (MuTag stage) which comes next is intrinsi-
cally more prone to form fake candidates. It is therefore strictly conditioned to the previous stages
and under severe control. This highly prioritized hierarchy of a few algorithms insures high efficiency
of reconstruction of true muons and high rejection of fake candidates. Very importantly in practice,
the simplicity of this scheme is a help for the understanding of the reconstruction software, i.e its
debugging.

The development of the STACO chain software had always included the routine validation of the
performance of the reconstruction on simulations of more or less complex events from single muons to
full physical events with pile up. This effort which can be tracked back to the “Physics TDR” [62, 63],
culminated with the studies for the Computing System Commissioning (CSC) books [64]. Some of
the CSC books results are presented in the section 4.1.

Tests on real data were also very important for the development of the STACO chain. The earliest
were on a setup at CERN combining some elements of all the ATLAS sub-detectors. Besides enforce-
ment of the integration of the reconstruction software within the general ATLAS software framework,
it has been the opportunity to test alignment software and the proper use of its output in the recon-
struction. Some of the results obtained then are presented in the section 4.2.

The extended commissioning period which followed the incident at the LHC start was also impor-
tant. The main legacy of this period is a set of special software modules developed to deal with the
specific topology of cosmics muons. They latter provide a proper reconstruction for the alignment of
Muon Spectrometer stations with cosmics data. The section 4.3 presents some of the results that were
obtained during this period.

Finally the long awaited collision data came. Extensive studies of the resonances were done to
establish the actual performance of the STACO chain. Some of the excellent results that were obtained
are presented in the last section 4.4.

55
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4.1 Performance on simulated samples

Since 1999, ATLAS has regularly evaluated the performance of its evolving design, on benchmark
physical processes using large simulated samples [62]. It embarked in increasing larger simulation
and reconstruction efforts, the Data Challenges, using ever improving realistic Detector description,
simulation and reconstruction softwares, making intensive use of tools such as the GRID. These efforts
culminated in the performance reported in the ATLAS Detector paper [10] and the Computing System
Commissioning (CSC) books [64]. For both reports the STACO chain, comprising the stand-alone (i.e.
using only muon Spectrometer measurements) reconstruction Muonboy (cf section 3.1), the combined
reconstruction Staco (cf section 3.2), and the Track Segment based identification algorithm MuTag
(cf section 3.3) was the default chain for all the analyses presented, owing for its highest efficiency,
purity, and robustness. Some of the results concerning Muon Performance [65] are reported here.

The efficiency of the reconstruction of a muon is shown in figure 4.1(a) as a function of |η| for
muons with pT =100 GeV and in figure 4.1(b) as a function of pT . The reconstruction efficiencies are
shown for the Muonboy stand-alone muon reconstruction, the Staco combined reconstruction and the
combination of Staco and the MuTag Track Segment based identification,
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Figure 4.1: Reconstruction efficiency (a) as a function of |η| for pT=100GeV and (b) as a function
of pT , of the Muonboy stand-alone reconstruction, of the Staco combined reconstruction and of Staco
followed by the MuTag segment based identification.

The effect of the central large allowance space appears as a drop of efficiency at η ∼0 in figure 4.1(a).
The EE Stations missing in the initial Data-taking Layout are the main explanation of the efficiency
drop of the stand-alone and combined reconstruction efficiencies around |η| ∼1.2. The combined
reconstruction efficiency drops down sharply at |η| ∼2.5 owing to the ID acceptance which stops
there.

As explained in the section 3.3, MuTag allows to recover efficiency lost due to the missing EE
Stations in the range 1.0 < |η| < 1.3. Above this range, up to |η| ∼2, it recovers some efficiency lost
at the combination stage 1. As shown in figure 4.1(b), MuTag allows to flatten the efficiency down to
pT ∼6 GeV , which would otherwise significantly decreases already at pT ∼10 GeV . At lower pT , it
adds almost 20% to the overall efficiency down to pT ∼3 GeV . Below this momentum the efficiency
drops down to ∼0 due to the threshold effect of the energy deposited in the calorimeters which requires
a minimal energy to be able to cross them.

1The performance of MuTag displayed in figure 4.1(a) for |η| >2 are somewhat old. As explained in section 3.3,
dedicated tagger for the End Cap area have been implemented in the version used for the analyses of collision Data,
which brings the Staco+MuTag efficiency almost at the level of the stand-alone reconstruction efficiency for all the range
|η| >2 [66].
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Figure 4.2 shows the various contributions to the transverse momentum relative resolution of the
stand-alone reconstruction as a function of pT . At low momentum, up to 20 GeV , the resolution
is dominated by the fluctuations of the Energy lost in the calorimeters. At high momentum, above
200 GeV , the contributions, linear in the momentum (cf appendix D.3), from tube resolution and
alignment dominate. In the intermediate momentum range the dominating resolution is coming from
the multiple scattering effect in the Muon Spectrometer and is almost independent of the momentum
(cf appendix D.4).

Figure 4.2: Contributions to the Transverse
momentum resolution for muons from stand-
alone reconstruction as a function of pT for
|η| < 1.5.

Figure 4.3: Transverse momentum resolution
of the stand-alone reconstruction as a function
of φ and |η| for pT=100GeV .
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Figure 4.4: Transverse momentum resolution in % for muons with pT=100GeV as a function (a) of
|η| and (b) of φ, for the Muonboy stand-alone reconstruction, and the Staco combined reconstruction.

The figure 4.3 shows in the η − φ plane, the estimate of the resolution at pT =100 GeV obtained
from the Marc Virchaux algorithm, Resomu, part of Muonboy, which used the ATLAS Magnetic field
map and the detailed AMDB/AGDD description of active and passive material in the Muon Spec-
trometer (cf chapter 2). The figure 4.3 illustrated the very non uniform nature of the momentum
resolution. One can identify the “shadows” of the various features, dead matter spots and acceptance
issues, that have been described in sections 1.3.2 and 1.3.3. This is illustrated further in figures 4.4
showing the momentum resolutions obtained with full simulation for the stand-alone and combined
reconstructions, as functions of η and φ: the poor resolution in the η range of the missing EE Stations
appears clearly in figure 4.4(a), as does, in the figure 4.4(b), the resolution degradation in the feet area.
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The momentum resolutions for the stand-alone and combined reconstructions obtained with full
simulation are again shown in figures 4.5, this time as a function of pT for Barrel and End Cap areas.
One finds back the stand-alone resolution behavior of figure 4.2 . At high momentum the combined
resolution is dominated by the measurement in the Muon Spectrometer while the combined resolution
is, at low momentum, the Inner Detector resolution, which is itself dominated by the multiple scattering
effect within the ID.
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Figure 4.5: Transverse momentum resolution in % of the Muonboy stand-alone reconstruction, and
the Staco combined reconstruction, as a function of pT in (a) Barrel and (b) End Cap regions.

Finally the figures 4.6(a) and 4.6(b) gives estimates of the fake muon rate of stand-alone and
combined reconstructions as a function of η. The sample used was a collection of tt̄ events containing
at least one lepton, overlaid with pile-up interactions for a reference luminosity of 1033 cm−2 s−1and
neutron-photon background within the Muon Spectrometer twice the nominal value. As shown in
figure 4.6(a), the stand-alone fake muons rate is, in these conditions, everywhere below 2% at low
momentum and is reduced by about one order of magnitude in combined reconstruction as shown in
figure 4.6(b).
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Figure 4.6: Fake rates for (a) Muonboy stand-alone reconstruction and (b) Staco combined recon-
struction as functions of η in tt̄ sample at high luminosity. Fake rates are shown for a variety of pT
thresholds.

Owing for its superior performance in terms of efficiency, resolution and purity, the STACO chain
was selected by the ATLAS collaboration as the reference software to be used in the Physical analyses
presented in as the CSC books [64].
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4.2 Performance on test-beam tests on the ATLAS H8 setup

From 2000 to 2004, a series of test beam campaigns involving various elements of the ATLAS Detector
was set up in the CERN North Area on the H8 beam line. It culminates in 2004, with a large scale
set up combining elements of all the sub-detectors as illustrated in figure 4.7 [67].

Figure 4.7: Sketch of the ATLAS combined test-beam set-up in 2004

The H8 muon stand consisted in a Barrel and an End Cap section each reproducing sectors of
the ATLAS Muon Spectrometer. In the Barrel section, two Inner, two Medium and two Outer Large
Stations (BIL/BML/BOL), with complete MDT (tubes axis oriented vertically) and RPC units, were
installed fully equipped with the optical alignment system. In the End Cap section, Large and Small
Inner, Medium and Outer Stations (EI/EM/EO), also fully equipped with optical alignment system,
were installed as well as TGC units.

A bending magnet in front of the Barrel Stations allowed to deflect muons horizontally, i.e in a
plane perpendicular to the Tube Layers. An other bending magnet placed in between the EI and
EM Stations allowed to emulate the magnetic deflection of the End Cap part of the ATLAS Muon
Spectrometer. It was possible to move the different Barrel Stations in a controlled way, by translating
them by few millimeters in the z-direction, i.e perpendicularly to the tube axis and within the Tube
Layer plane, or by rotating them by few mrad around the y-direction, i.e around the axis perpendicular
to the Tube Layer plane. The various results of the 2004 Combined Test beam were reported in [68–73].

From Software development point of view, the 2004 Combined Test beam was an opportunity to
test a prototype of the full chain of reconstruction within the ATHENA framework. A key element of
this chain is the Conditions Database which provides various informations of the actual Data-Taking
conditions. In this campaign, only the Alignment constants could be retrieved in this way. The “R-T”
MDT Calibration constants, which allow to convert drift time from MDT tubes in drift radii, were
produced for the different H8 test beam configurations, written in flat files and retrieved by a dedicated
ad hoc ATHENA Service within ATHENA, prior to the reconstruction stage, here Muonboy.
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Figure 4.8: Sagitta variations as a function of tem-
perature in the Barrel stand before (left) and after
(right) applying the relative alignment corrections.

To allow monitoring of the optical sensors,
a large amount of data were taken under sta-
ble conditions without any forced displacement
of the chambers.

Under the influence of the daily variations
of the temperature, the chambers positions and
shapes change.

These changes impact directly the sagitta as
it can be computed using a constant Geometry.

This is illustrated in the left part of the fig-
ure 4.8 where the mean of the sagitta measure-
ments shows a clear correlation with the temper-
ature.

These changes are faithfully recorded by the
Alignment system software which provides rela-
tive alignment corrections.

As illustrated in the right part of the fig-
ure 4.8, these corrections do cancel the sagitta
dependence on temperature.

The figures 4.9 show the sagitta, before and after corrections, obtained in several runs where, by
various amounts, the BOL Stations were translated in the z-direction and the BIL and BML rotated
around the y-direction. As shown the several millimeters shifts observed before corrections vanish
when the corrections from the absolute and relative alignment are applied.

sagitta (mm)
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

700

Sagittas before alignment (mm)

BOL 6mm in z 

BOL 4mm in z 

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift

Sagittas before alignment (mm)

(a) sagitta (mm)
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

700

Sagittas after absolute alignment (mm)

BOL 6mm in z 

BOL 4mm in z

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift

BIL rot BML rot BOL shift 

Sagittas after absolute alignment (mm)

(b)

Figure 4.9: Sagitta distributions for several runs in which different controlled movements on MDT
chambers were performed. (a) before and (b) after alignment corrections were applied

Both the right part of the figure 4.8 and the figure 4.9(b) show that the relative alignment cor-
rections, correcting from the relative displacement of the Stations with time, does not correct for the
absolute misalignment of these Stations.

The H8 test beam of 2004 was also the occasion to test on real data the concept of alignment with
tracks which allows the absolute alignment of the Barrel Stations of the Muon Spectrometer. In H8
test beam conditions, the illuminated surface was not large enough to constrain all the Chambers po-
sition parameters. Still the results of figures 4.10 show that the overall sagitta shift before corrections
can be canceled within 5µm while reducing significantly the width of the sagitta distribution. More
spectacularly, the figures 4.11 show that systematics shifts with strong dependence on the position of
the track within the Station can be corrected for. In particular, the figure 4.11(b) shows that, the very
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strong dependence on the second coordinate (along tube axis) of the sagitta before corrections that
one obtains rotating the BIL Station around the y-direction, is totally corrected by the track based
alignment.

Figure 4.10: Sagitta distribution of selected tracks before and after the alignment fit. Since there
was no field within the volume of the Stations, a null mean value of the sagitta is expected. Left:
Distribution of sagitta of selected tracks with the chambers at the survey position. The muon sagitta
is centered at −351µm and the distribution width is 209µm. Right: Distribution of sagitta after
alignment fit. The mean value of sagitta is now 5µm and the distribution width is 148µm.

(a) (b)

Figure 4.11: Mean value of the sagitta as a function of the Track segment coordinate in the BML
chamber before (blue/dark) and after (red/light) corrections form track based alignment; (a) sagitta
as a function of the z-coordinate; z=1800 mm is the location of the transition between the two BML
Stations; (b) sagitta as a function of the y-coordinate for a run with large rotation of the BIL Station.

A study was performed of the Track segment efficiency and hit efficiency. The Track segment effi-
ciency in a tested Station was estimated selecting events such that, in each of the two other Stations
taken as references, one Track Segment was reconstructed. Then one checked for the presence of a
Track Segment in the tested Station along the path defined by the Track Segments of the reference
Stations. The resulting efficiency of the Stations was found to be independent of the beam Energy as
illustrated in the figure 4.12(a). The sensitivity to the threshold level of the signal discriminator of the
MDT electronics was also found small as shown in the figure 4.12(b), as long as the threshold is not
too low, i.e electronics noise not too high. The hit efficiency can be derived from the Track Segment
efficiency. A hit efficiency of the order of 95-96% was found in line with the simulations which showed
that the walls of the tubes and δ-ray electrons induce an inefficiency of the order of ∼5% .

Finally a study of the muon catastrophic energy losses within the calorimeters was done using
a 350GeV muon beam [72, 73]. By cutting on energy depositions in the different calorimeters com-
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(a) (b)

Figure 4.12: (a) Track segment efficiency in the BOL chamber versus the beam energy (b) Track
segment efficiency versus MDT threshold of the BIL chamber, for two cases: 1/ when the most
stringent requirement to validate a track segment (nhits=ntotal) and 2/ when (nhits=ntotal-1)are
used. The beam momentum is 180GeV/c.

partments and requiring a track reconstructed in the Muon Spectrometer section, a pion-free sample
of muons was selected and the distribution of the energy seen in the calorimeters studied. The fig-
ure 4.13(a) show the spectra of these energies and the figure 4.13(b), the probability for a muon to
lose more than a certain energy. Simulation results are presented along read data. As it can be seen
there is a very good agreement between the H8 data and the Monte Carlo simulation.

(a) (b)

Figure 4.13: (a) Energy deposited in the calorimeters by particles tagged as muons. (b) Probability
in % for catastrophic energy loss as a function of the energy lost in the calorimeters

The data samples collected at the ATLAS H8 setup were actually the first large size ones from
the real devices that we could used. These tests allowed to check many basics aspects of the detector
functioning and simulation as well as an opportunity to test successfully in real conditions, the software
integration of the reconstruction program in the larger framework designed to feed it with devices signal
and condition data such as informations from the stations alignment algorithms which were themselves
brilliantly validated.
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4.3 Performance from Cosmics Rays Commissioning

In 2008 and 2009, ATLAS recorded hundreds million of cosmic ray events. This extended period
allowed to perform the commissioning of the different sub-detectors and of the software [74]. The
cosmics rays reach the ATLAS detectors mainly via the two access shafts used for the detector in-
stallation shown in figure 4.14(a), producing spots of downward tracks as shown on figures 4.14(b)
and 4.14(c). The characteristics of these events led to important changes in the muon reconstruction
algorithm.

(a) The ATLAS detector in the experimental cav-
ern. Above the cavern are the two access shafts
used for the detector installation

(b) Distribution of the polar angle of
cosmics ray tracks; the peaks corre-
sponds to the access shafts

(c) Distribution of the azimuthal an-
gle of cosmics ray tracks;

Figure 4.14: Cosmics rays in ATLAS (from [66])

The most important feature of these muons is that they are not at all pointing to the Interaction
point, not at all projective. All the criteria requiring such a projectivity had to be relaxed both for
Track Segment and Tracks reconstructions. In addition, the presence of second coordinate hits in
Track segment seeding Track reconstruction, was relaxed owing both for the topology and the trigger-
ing conditions on cosmic rays.

The second important feature of the cosmics muons is their complete asynchronism with respect
to the 40 MHz ATLAS readout clock synchronized on the LHC clock during normal operation. This
is a major difficulty for the MDT drift time conversion in radius since the starting time, the t0, with
respect to which the arrival time is to be counted, is unknown. For Muonboy, this led to develop a
stage, preceding the actual reconstruction, in which for each Station containing a Track Segment, a
scan on t0 was done to find the value giving the best penalty factor for this segment (cf section 3.1.2).
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This stage sets a table associating to each Station the best value found, which, in a second stage, is
handed over to the ATHENA “R-T” Service prior the full reconstruction stage. These conditions
led also to use in the reconstruction a reference resolution of 500µm instead of the 100µm used in
standard settings.

The last of the peculiarities of the cosmics muons having a major impact, is the direction of their
propagation. Although the situation for a track in the bottom part is “standard”, changes had to be
made in Muonboy, especially for the back tracking stage, for the tracks in the upper part.

Many studies were done on the cosmic ray event samples and reported in [74, 75] and especially
in [66]. Some of them are presented bellow.

(a) MDT hits residuals (b) Muonboy Efficiency (c) Staco Efficiency conditioned to
successful stand-alone reconstruction.

Figure 4.15: Examples of studies on the cosmic rays (from [66])

The figure 4.15(a) shows the distribution of the residuals of MDT hits belonging to a reconstructed
track, i.e the difference in impact parameter between the value predicted by the reconstructed track
trajectory and the actually measured impact parameter. From the residual studies a MDT impact
parameter resolution of ∼150µm was derived.

The figure 4.15(b) displays the reconstruction efficiency of the stand-alone reconstruction. The
non projective nature of the tracks is responsible of the enlarged and complex structure of the η ∼0
gap.

The efficiency of the combined reconstruction relatively to the stand-alone reconstruction is shown
in figure 4.15(c) for a special selection, requiring at least three φ RPC-hits, picking up track topologies
closer to the collision topology. By conditioning to the stand-alone successful reconstruction, one sees
that most of the peculiarities of dealing with cosmic rays cancel out, but a small drop of the efficiency
at η ∼0 for the tracks reconstructed in the lower part of the detector.

The figure 4.16 shows the distributions of the difference ∆p = pMS − pID, of the momenta of the
Muon Spectrometer and ID tracks. The left part of the figure is obtained taking the Muon Spectrom-
eter tracks measured at the entrance of the Muon Spectrometer. One clearly sees the effect of the
energy lost in the calorimeters in the difference between the upper and lower tracks samples. The
right part of the figure is obtained taking the Muon Spectrometer tracks backtracked down to the
beam line, nicely illustrating the correction of energy in the back tracking stage.

Very nice studies of the tracks parameters resolutions were done by comparing the two pieces of the
same cosmic ray reconstructed in the upper and lower parts of the detectors. For instance the width of

the distribution of the ratio ∆pT
pT

= 2
pupT −p

down
T

pupT +pdownT

computed for the transverse momenta of the upper and
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Figure 4.16: Difference of momentum ∆p between Muon Spectrometer and ID tracks; Left: Muon
Spectrometer tracks at the entrance of the Spectrometer Right: Muon Spectrometer tracks back
tracked to beam line (from [66])

lower tracks back tracked to beam line is expected to be
√

2 times the momentum resolution. Actually
because of the Landau tails, the resolution is extracted by fitting a Landau distribution convoluted
with a Gaussian. This leads to the result shown in figure 4.17 in which one recognizes the characteristic
shape of the momentum resolution already discussed about the simulation figures 4.2, 4.6(a) and 4.6(b).

Figure 4.17: Transverse momentum resolution for the barrel region only, |η| < 1.1. (from [75])

The commissioning data were the first test of the reconstruction software performed at the scale
of the full apparatus. The integration of the software was complete and tested in real conditions.

Although with limitations imposed by the particularities of the cosmics rays, many important
aspects were studied, checked and understood such as tube resolution and energy losses corrections.
These particularities forced to develop specific algorithms which although they were not to be used
later in collisions data, remained crucial for such specific and important tasks as the alignment with
cosmics data.
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4.4 Performance on Collisions Data

The most recent evaluation of the Muon reconstruction performance on collision data has been pub-
lished in [76] (older studies can be found in [77] and [78]) . The Muon reconstruction used in this paper
is the STACO chain, since most of the ATLAS analyses and in particular the Higgs analyses [79, 80]
used it.

As we have seen the STACO chain comprised the standalone reconstruction Muonboy, the com-
bined (CB) reconstruction Staco, and the Track Segment Tagging (ST) identification MuTag. An
other identification algorithm CaloTag was considered which associates an ID track to deposits in the
calorimeters compatible with a minimum ionizing particle. The sample of the CaloTag candidates
has the lowest purity and CaloTag is used for |η| <0.1 only, in the central part where the Muon
Spectrometer instrumentation is very poor. Some of the results of the analyses of [76] are described
here.
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Figure 4.18: Muon reconstruction efficiencies as a func-
tion of η measured in Z → µµ for muons with pT > 10
GeV .

The muon reconstruction performance
are estimated from decays of Z, J/ψ and
Υ in pairs of muons. The data samples
used in these analyses, were mostly col-
lected in the

√
s = 8 TeV run of 2012

and correspond to an integrated luminos-
ity of 20.3pb−1 . The studies are based
on about 9M of Z → µµ events, 2
to 17M (depending on the analysis per-
formed) J/ψ → µµ events, and about
5M of Υ → µµ events. The background
processes considered are Z → ττ , W →
µν, W → τν, diboson (WW , WZ and
WW ) productions, tt̄, bb̄, cc̄, QCD mul-
tijet and W+jets. The reconstruction ef-
ficiencies on Z → µµ are shown in fig-
ure 4.18.

The combination of Staco+MuTag (CB+ST) gives an uniform muon reconstruction efficiency of
about 99 % over most the detector regions. The drop of the Staco+MuTag efficiency in the |η| <0.1
region is compensated by CaloTag. The drops of the Staco efficiency in the regions, 1.1< η <1.3,
due to the missing EE Stations, and |η| > 2 are recovered by MuTag as expected (cf section 3.3) and
anticipated from simulation studies (cf section 4.1). The figure 4.18 shows a good agreement between
Monte Carlo and Data. This good agreement is illustrated by the figures 4.19 which show the ratio
between data and Monte Carlo efficiencies over the (Φ, η) space.

All the discrepancies between Data and simulation can be tracked down to issues in the simulation
or to detector conditions not included in the simulation. For instance the drop of ∼0.1% of the Staco
at η ∼0.5 is due non simulated RPC detector conditions.

Owing to the less demanding criteria of MuTag, the Data/Monte Carlo agreement for the Staco+MuTag
efficiency is in general better, as shown in the figure 4.19(b) but on a very localized spot which has
been understood as originating from a partially inactive MDT chamber which has not been simulated
accordingly.

The study of the momentum scale and resolution of a reconstructed muon has be done using
Z → µµ and J/ψ → µµ events by rescaling and smearing the momenta reconstructed in Monte Carlo
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Figure 4.19: Data/MC efficiency scale factor (a) for CB and (b) for CB+ST muons as a function of
η and φ for muons with pT >10 GeV .

events. It was found that the resolution of the stand-alone reconstructed muon has to be corrected by
at most 15%. In addition to an absolute correction of ∼30 MeV at low momenta, a relative correction
of few per mill was found necessary: less than 0.1% for large MS sectors, ∼0.3% for small MS sectors
and up to ∼0.4% in some corners.
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Figure 4.20: Dimuon invariant mass distribution of J/ψ → µµ (a), Υ → µµ (b) and Z → µµ (c)
candidate events reconstructed with CB muons.

Finally the mass scale and resolution of dimuon system for the combined reconstruction was studied
on Z → µµ , J/ψ → µµ and Υ → µµ events by fitting the mean and width of the distributions of
the mass of the di-muon system for Monte Carlo samples adjusted to the same distributions on data,
as shown in the figures 4.20. The mean mass results of these fits are shown as a function of η in
figures 4.21 for the Z, J/ψ and Υ samples.

As shown by these figures, the mass scale at the Z mass is appropriately described by the uncor-
rected Monte Carlo at a level better than 0.1%. For lower masses and high η, a correction up to 0.5%
becomes necessary. This is understood as the effect of imperfections of the energy losses simulation,
the relative effect of which is higher at lower pT and when the weight in the combination of Muon
Spectrometer measurement is greater as in the high η region. The dimuon mass widths were also
studied and it was found that the uncorrected Monte-Carlo widths are lower by 5 to 10 % than those
observed in the data.

To summarize, the STACO chain was shown to perform extremely well on the data from collisions
data, necessitating efficiencies and energy scale corrections at the few per mill level only.
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Figure 4.21: Ratio of the fitted mean mass, mµµ, for data and corrected MC from Z (top), Υ (middle),
and J/ψ(bottom) events as functions of the pseudo-rapidity of the highest-pT muon.

4.5 Conclusions

The performance on simulated sample were established routinely during the entire period of the de-
velopment of the STACO chain. Actually this development has been always driven by the need to
maintain the highest efficiencies for the lowest possible rate of fake muons.

Equally important has been the imperative of deliver a software that could make the best use of
the informations on the data taking conditions among which, the most important ones, the alignment
data. Hence the importance of the investment in the description of the geometry of the detector in
close connection with our colleagues in charge of the alignment of the stations of the Muon Spectrom-
eter. All this was tested with success in realistic conditions as soon as it became possible with the H8
test-beam setup.

At the end of years of development and testing, the STACO chain was fully operational for the
start of the LHC foreseen at the end of 2008. The LHC incident and the resulting delay opened a
extended commissioning period. This allowed to check various basic aspects of the detector and of
the software, within however the limitations imposed by the specificities of the cosmics muons.

But the last words of all this story has been for the real data when the LHC started at last. For the
greatest satisfaction of all those who have been involved in the long development of the STACO chain,
tests on resonances have confirm its quality beyond expectations in terms of efficiencies, resolution,
energy scale biases and purity. From the start, the STACO chain was ready to serve the physics
analyses.



Chapter 5

Two Bosons production:
Measurements of cross sections and
anomalous Triple Gauge couplings

In this chapter, I describe the studies performed on the data of the Run 1 period of LHC data tak-
ing, of the production of two vector bosons, W , Z or γ, with the W and Z decaying leptonically, in
electrons or in muons. These final states fitted well with the expertise on leptons reconstruction avail-
able in the ATLAS group of my institute at the start of the LHC, in particular on the reconstruction
of the muons which for all the analyses presented in this chapter was performed with the STACO chain.

These studies cover all the diboson final states, ZZ, WZ, WW , Wγ and Zγ. They were performed
with many ATLAS colleagues. In my institute, they resulted from an exalting collaboration which,
beside my Saclay colleagues Samira Hassani and Ahmimed Ouraou, has involved a group of young
and talented colleagues physicists: João Firmino da Costa, Eve Le Menedeu, Camilla Maiani, Joany
Manjarrés Ramos, Sofia Protopapadaki, and Dimitra Tsionou. Thanks to them I could contribute to
these measurements in particular on their Statistical aspects developping a Software package FLIT [81]
which has been used to extract the diboson production cross sections and the limits on anomalous
Triple Gauge couplings. I had similar contributions to the measurement of the production cross sec-
tions of Wγγ three bosons final state [82] and of the 4-leptons final states [83], two analyses that are
not reported here.

Hereafter I first review the diboson productions. Their cross sections at the LHC are discussed
in section 5.2.1. The anomalous couplings between three vector bosons that the study of the diboson
production allows to probe, are discussed in section 5.2.2. The topic of the anomalous couplings, the-
ory and available measurements, is developed in some details in a review proposed in the appendix A.
In this chapter I will refer often to this review.

Then from section 5.3 to section 5.7, I report the measurements, cross sections and anomalous
couplings, of the production of ZZ pairs [84, 85], of WZ pairs [86–89], of WW pairs [90, 91], of Wγ
pairs [92], and of Wγ pairs [92]. The statistical aspects of these measurements are developed in some
details in the section dedicated to the ZZ pair production.

Finally I conclude this chapter in section 5.8 with a summary and a discussion of the cross sections
measurements and of the limits on anomalous couplings that are presented in the previous sections.
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5.1 Introduction

The Standard Model (SM) gauge symmetry SU(3)c × SU(2)L × U(1)Y imposes interactions between
Gauge bosons. For instance the gluons, gauge fields of the SU(3)c symmetry, engage in three and four
gluons interactions as a consequence of the non-abelian nature of SU(3)c. Similarly the non-abelian
nature of the SU(2)L symmetry leads to Triple and Quartic Gauge bosons Couplings (TGC and QGC)
of the electroweak vector bosons W , Z and γ.

However these fields are not the gauge fields of the SU(2)L × U(1)Y symmetry but mixtures of
them. The W , Z and γ are promoted to the status of the relevant physical fields after the Spontaneous
Electroweak Symmetry Breaking. In the course of this breaking, the W and Z bosons acquire masses
and couplings to the Higgs boson.

The precise values prescribed by the SM for the Triple and Quartic Gauge bosons Couplings and
for the Higgs boson couplings, are crucial for the SM renormalizability. Any departure has major
consequences on the tree-level unitarity of electroweak processes such as the scattering of two W -
bosons 1: the Triple and Quartic Gauge couplings are exactly so that the leading divergences of the
cross section with the energy do cancel while the Higgs boson couplings do insure the cancellation of
the sub-leading divergences.

Therefore the experimental investigation of TGCs offers an opportunity not only to explore the
gauge symmetry of the SM but also to catch manifestations of new physics in a particularly sensitive
area. Indeed anomalous TGCs and Higgs boson couplings are among the low-energy effects through
which such a new physics could reveal itself well before the energy scale of the associated new degrees
of freedom is reached. To study these low-energy effects in a model independent way is the purpose
of the currently very active field of the Effective Field Theory (EFT) analyses.

A review of the physics of the interactions between electroweak bosons is proposed in the ap-
pendix A. Hereafter I will remind few points, will refer to this appendix for details.

5.2 Two Bosons production at LHC

5.2.1 Cross sections and strong and electroweak corrections

The factorization theorem backs the QCD-improved parton model which describes high energy proton-
proton interactions in terms of scattering of the partons which composed the protons. The cross
section of the proton-proton interaction is the convolution of the parton-parton scattering cross section
weighted by the probabilities of the partons to carry some fraction of the protons momenta. The cross
section of the pp→ V1V2X process with two bosons W , Z or γ in the final state can be written as

σpp =

∫∫
dxadxb fa(xa, µf )fb(xb, µf ) σab(xa, xb, µf , µr) (5.1)

where fa,b(xa,b, µf ) are the parton distribution functions (PDFs) for partons in proton and σab is the
cross section of the hard interaction ab → V1V2. The scales µf and µr are the factorization and
renormalization scales resulting from the treatment of the divergences occurring in long-distance/low-
energy and short-distance/high-energy physics respectively.

These factorization and renormalization scales would be irrelevant if the contributions at all orders
were collected in equation (5.1). For finite order approximation, it is advised to set µf = µr = Q
where Q is a “natural” hard scale of the process, say the mass of the two bosons system. The impact
of missing higher orders uses to be estimated from the changes of the cross section computed varying a

1A reconstruction of the SM Lagrangian can even be attempted from the sole perspective of the reining in of the
divergences of these processes [93]
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parameter ξ from 2 to 1/2 while setting µf/ξ = µr/ξ = Q or sometimes µfξ = µr/ξ = Q. As expected
the relative change uses to decrease when the order of the pertubative expansion increases. However
the arbitrariness of the procedure has been often underlined as has been the risk of underestimating
of the true uncertainties.

The accepted wisdom is that Next-to-Leading-Order QCD (NLO QCD) corrections are needed to
get a reliable prediction of the cross section and Next-to-NLO QCD (NNLO QCD) corrections to get
a first meaningful estimate of the theoretical errors [94]. Things can get complicated by the opening
of processes with new initial states in higher Orders.

The Leading-Order (LO) diagrams for the two bosons production, qq′ → V1V2, are shown in
figures 5.1. The two bosons final state V1V2 can be WW , WZ, Wγ, ZZ and Zγ.

q

q'
1V

2V q

q'
1V

2V

3V

Figure 5.1: LO diagrams for two Bosons production at LHC

The NLO QCD corrections arise from virtual loop diagrams and the real emission diagrams as
those shown in figures 5.2, qq′ → V1V2g as well as qg → V1V2q

′, a qg initial state process opening at
NLO. These corrections are very large and non-uniform over the phase space. The computations of the
NLO QCD corrections started in the early 90’s and were available for all channels at the start of the
Tevatron Run 2 [95–108]. They have been assessed for LHC Run 1 with the parton-level Monte-Carlo
program MCFM in [109]. The NLO QCD corrections amount for several tens of % for integrated cross
sections and up to few hundreds of % in places for some differential cross sections.

(a) (b) (c) (d) (e)

Figure 5.2: Some real emission NLO diagrams for two Bosons production at LHC

An early known contribution of a different kind comes from the Higgs boson production diagram
shown in figure 5.3(a) followed by the Higgs boson decay in two electroweak bosons. This particular
process contributes for less than about 5% to the WW and ZZ channels. Because of its importance
for the Higgs searches, it has received a lot of attention. It has been known for some time up to
the NNLO QCD level and up to the NLO for the electroweak corrections [110]. The NNNLO QCD
corrections have been obtained recently [111].

The size of the NLO QCD corrections of two bosons production motivated assessment of the NNLO
QCD corrections less specific than the Higgs production one. For a long time, the only available of
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these contributions was the one arising from gluon-gluon fusion diagram shown in figure 5.3(b) [112–
120]. This gg initial state process opens at NNLO. The suppression of its contribution by an extra αS
factor with respect to NLO corrections is compensated by the large gluon PDF. It was assumed that
this NNLO QCD gg correction, of the order of 10%, was providing the bulk of the full NNLO QCD
correction.

0H

(a) (b)

Figure 5.3: Some NNLO diagrams for two Bosons production at LHC

Beyond NLO QCD corrections

With the advent of the LHC Run 1 analyses, some tensions between the measurements and the
predictions have sparked a surge of theoretical computations of the complete NNLO QCD corrections.
They are now available for all channels but the WZ one [121–125]. They are much smaller than the
NLO QCD corrections, usually of the order of a couple of tens of %.

In [125], the NNLO QCD corrections for the integrated cross sections of Z(→ `+`−)γ and W (→
`ν)γ, were found to amount for about 8% and 19% respectively at

√
s = 7 TeV. They decrease down

to 3% and 7% respectively when it is required that the number of jets is 0 2. Interestingly the relative
contribution of the gluon-gluon fusion was found quite small, about 6% of the NNLO QCD correction
for Z(→ `+`−)γ. On the contrary the gluon-gluon fusion contribution to the NNLO QCD corrections
was found large for the ZZ and WW [121, 124] channels: the NNLO QCD corrections were found to
increase cross sections by about 10% and more than a half of this increase is due to the gluon-gluon
fusion.

It should be noted that in all cases, the impact of the missing higher orders on the NLO order cross
section estimated in the usual way, was found to largely underestimate the actual difference between
the NLO and NNLO QCD cross sections. For instance a factor 3 difference was found in the case of
the WW final state [124]. The uncertainties of the order of few % estimated in the same way but
for the NNLO QCD cross sections are believed to be more reliable. However it is already known that
they are too underestimations for the case of the ZZ final state as discussed below.

For the WZ final state, only the so-called “approximate” NNLO (ñNLO) QCD estimation seems
to be available [126–128]. This particular theoretical approach has been validated against the full
NNLO QCD computation for the WW channel [127]. In [126], the integrated WZ cross section was
found to be increased by about 5% by the NNLO QCD corrections. The impact on some differential
distributions was found however significantly larger reaching in places few tens of %. Interestingly
some observables are much less affected than others. In particular the NNLO QCD corrections of the
distribution of the transverse mass of the WZ system are much smaller than the corrections of the

2The reference [125] gives also the NNLO QCD corrections Z(→ νν)γ, 12% decreasing down to −2% if one requires
0 jet
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distribution of the missing transverse energy or of the transverse momentum of the hardest of the
decay leptons.

Further QCD corrections beyond the NNLO QCD order have been investigated. For instance the
NNNLO QCD contribution of the gluon-gluon fusion in the ZZ channel was studied in [129]. It was
found to reach from 50% to 100% of the NNLO QCD gg contribution which, as mentioned above,
accounts for more than a half of the full NNLO QCD correction. Actually this increase exceeds the
uncertainty from missing higher orders estimated in the NNLO QCD ZZ study of [121]. These NNNLO
QCD gg contributions provide for now the proper estimate of the uncertainties from missing higher
orders for the NNLO QCD estimations.

Other QCD theoretical developments have been triggered by the ATLAS and CMS measurements
of the WW cross sections ∼ 2σ above predictions [90, 130–132]. In order to circumvent a large tt̄
background, these cross sections were obtained from counts of events without jet above a certain pT
threshold. This dependence on transverse momentum motivated to resort to techniques of resum-
mation of Leading Logarithms (LL) contributions on top of the fixed order NNLO QCD corrections.
These techniques sum up to all orders contributions of the form αnSL

m where L are large logarithms
of the ratio of the transverse momentum to the WW system mass. These corrections, known now
up to NNLL+NNLO QCD order, have alleviated the discrepancy between measurements and predic-
tions [133–136].

NLO EW corrections

With the level of precision reached for the QCD corrections, it is necessary now to know the
electroweak corrections at the Next-to-Leading-Order (NLO EW). Indeed since αEW ∼ α2

S , the NLO
EW and NNLO QCD corrections can be guessed to be of the same order of magnitude. The NLO
EW corrections are now known for all channels [137–143]. For the integrated cross sections, they are
typically small, of the order of few percent, e.g. ∼ +2% for the WW channel and ∼ −3% for the ZZ
and Wγ channels, and even negligible for the WZ channel [139, 143]. However they can reach few tens
of % in places for differential cross sections. An interesting feature is that these corrections receive
contributions from photon induced processes such as for instance γq →WZq′. These contributions are
negligible for ZZ but can be significant when a W -boson is in the final state. Therefore they depend
on the photon PDF in the proton which is not well known [144]. Assessment of the uncertainties of the
electroweak correction will become an acute issue for the higher statistics at higher energies available
for the Run 2.

Monte Carlo Programs

The comparison of the theory and experiments rests on the availability of Monte-Carlo programs
which, incorporating the most up-to-date theoretical predictions, produce samples of realistic physical
events. These events can be propagated in the detailed simulation of the detectors, and then analyzed
like the real data.

Key components of the General purpose Monte-Carlo programs, such as PYTHIA [145], SHERPA [146],
or HERWIG [147] are their Parton Shower (PS) algorithms which relate a hard process defined at
parton level to a final state of hadrons and other particles that can feed detectors simulation. From
a configuration of initial and final state partons, a PS algorithm generates a cascade of successive
branchings of a mother parton to two daughter partons down to a certain stage at which partons form
hadrons. PS algorithms sum up soft and collinear contributions but are inaccurate for large angle hard
emission. On the contrary, matrix elements calculations describe well processes with largely separated
energetic partons but are not convenient for a realistic final state description.

During the last decade, tremendous progress have been made combining the two approaches by



74
Chapter 5. Two Bosons production: Measurements of cross sections and anomalous

Triple Gauge couplings

matching PS and matrix elements calculations avoiding double-counting in kinematic regions where
they overlap and by consistently merging samples of different parton multiplicities. These efforts lead
to modern Monte-Carlo programs producing physical events samples with corrections up to NLO QCD
such as MC@LNO [148] and POWHEG [149].

As we have seen, the present focus is on NNLO QCD and NLO EW corrections. Quite recently,
implementations of corrections at NLO for both QCD and EW have been presented in the POWHEG

and HERWIG contexts in [150, 151] and methods and implementation prototypes for the combination
of NNLO QCD and PS have been proposed in [152, 153].

5.2.2 Anomalous couplings

As shown in figure 5.1, the Two Boson production involves a vertex with three Gauge bosons. These
Triple Gauge Bosons Coupling (TGC) vertices can be the “charged” WWγ and WWZ vertices, in-
volved in the WW , WZ and Wγ productions, or the “neutral” ZZZ, ZZγ and Zγγ vertices, involved
in the ZZ and Zγ productions. As discussed in the section A.1, the Standard Model does fix precisely
the forms of the charged TGCs and does forbid any neutral TGCs. These prescriptions are indisso-
ciable from the SM renormalizability.

A fairly general description of interactions departing from those prescribed by the SM is pro-
vided by the framework of the Effective Lagrangians discussed in sections A.2.1 and A.3.1. These
Lagrangians describe interactions between the W -boson, Z-boson and photons fields that are allowed
under minimalist conditions such as Lorentz invariance and Bose symmetry. The departures from the
SM are parametrized by coupling constants, null in the SM, called anomalous Triple Gauge bosons
Couplings (aTGCs) which appear in the Effective Lagrangians (A.13) and (A.29) given in appendix.
These aTGCs are shown in tables 5.1 along with the vertices and the two Boson productions that
they affect, and the behaviors under C and P of the interactions they account for.

(a) Charged TGCs

Vertex WWZ WWγ

Two boson production WZ WW Wγ

C and P ∆gZ1 , ∆κZ , λZ ∆gγ1 , ∆κγ , λγ

C and/or P gZ4 , gZ5 , κ̃Z , λ̃Z gγ4 , gγ5 , κ̃γ , λ̃γ

(b) Neutral TGCs

Vertex ZZZ ZZγ Zγγ

Two boson production ZZ Zγ

CP fZ5 fγ5 hZ3,4 hγ3,4

CP fZ4 fγ4 hZ1,2 hγ1,2

Table 5.1: Anomalous Triple Gauge Couplings in Two Bosons production processes

The effect of the presence of an aTGC is a modification of the cross section at high energy. This is
illustrated in figure 5.4 showing for the WZ production, the distribution of the transverse momentum
of the Z for Data and simulations of SM processes and the contribution of non null aTGCs [86].
Clearly the evidence for aTGCs is to be looked for in an excess at high energies.

This aTGC characteristic leads to violation of the unitarity of the Two boson production cross
section at some energy in the center of mass,

√
ŝ. Traditionally, this violation is cured by transforming
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the aTGCs into Form Factors depending on the energy using the ansatz

ζ(ŝ) =
ζ0

(1 + ŝ/Λ2
FF )n

(5.2)

As discussed in sections A.2.2 and A.3.2, a dependence with energy is possible in the framework of
the sightly distinct approach of the Vertex Functions. However the arbitrariness of the ansatz (5.2)
has been criticized many times (cf introduction of the section A.2.3). The limits that are reported in
this chapter have been obtained without Form Factors.
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Figure 5.4: Distribution of pZT of WZ candidate events of the 7 TeV WZ ATLAS analysis [86]; Data are
shown together with expected background and signal events, assuming the Standard Model; Expected
events in the case of anomalous TGCs are also shown.

An very practical issue is that there is a lot of aTGCs, viz 14 charged and 12 neutral aTGCs. There
is not too much to expect from the combination of the measurements of the different Two Bosons pro-
ductions. For instance, one sees in tables 5.1 that the ZZ and the Zγ productions depend on two
distinct sets of parameters. Therefore the combination of the measurements of these two processes
does not bring any further constrain on the neutral aTGCs. This holds true also for the WZ and
Wγ productions. However since the WW production does depends on all the charged parameters, the
limits on the charged TGCs limits are improved by combining the measurements of the three WZ,
Wγ and WW processes. But with 14 parameters to deal with, this is a very small consolation.

The number of parameters can be reduced by imposing U(1)em on the charged Effective La-
grangian (A.29) 3. But this has the very limited effect of removing just three aTGCs, namely ∆gγ1 ,
gγ4 and gγ5 . Much more effective is the traditional choice to exclude in addition the charged aTGCs
violating C and/or P and the CP violating neutral aTGCs (the second rows in tables 5.1): it remains
only 5 charged and 6 neutral aTGCs. This is still a large number of parameters and, specifically for
the charged aTGCs which received a lot of attention, some ”scenarios“ were developed which bluntly
impose certain relations between the parameters. Among them, the “LEP scenario” imposes the
relations

λγ = λZ and ∆gZ1 = ∆κZ + tan2 θW∆κγ (5.3)

reducing to 3 the number of independent charged aTGCs respecting C and P. Clearly in the context of
the Effective Lagrangian approach such relations come out from nowhere. Their origin is to be found
in an other much more consistent and actually as old approach, the Effective Field Theory approach.

This approach is discussed in some details in the sections A.2.3, A.3.3, and A.5. The Effective

3The neutral Effective Lagrangian (A.13) is already U(1)em invariant
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Field Theory (EFT) is concerned with low-energy manifestations of a Physics Beyond the Standard
Model “living” at a high energy scale, Λ. However, the EFT remains agnostic on the details of this
new Physics and retains only that it can allow interactions between the “low-energy” SM fields beyond
those of the SM Lagrangian 4.

The EFT Lagrangian is the infinite sum of all fields couplings invariant under SU(3)c×SU(2)L×
U(1)y. Each of these couplings is an operator Odi of mass-dimension d in the SM fields “before” the
Spontaneous Symmetry Breaking, i.e the Gauge Fields of SU(3)c×SU(2)L×U(1)Y , the Higgs doublet
and the quarks and leptons fields.

Remarkably, the SM Lagrangian collects already all these couplings up to mass-dimension 4. There-
fore the EFT Lagrangian takes the form

LEFT = LSM +
∑
d>5

LdEFT with LdEFT =
∑
i

Cdi
Λd−4

Odi (5.4)

in which the constants Cdi are dimensionless and the effects accounted for by the term LdEFT are the
smaller as d is larger. Re-expressed in term of the fields “after” the Spontaneous Symmetry Breaking,
i.e. the W , Z, γ and Higgs boson fields, the EFT operators of mass-dimension d > 5, give birth to
new couplings between them, i.e to new and therefore anomalous Triple Gauge Bosons couplings as
well as new Higgs boson couplings.

From here, an EFT analysis proceeds by truncating the above expansion at some rank dc, neglect-
ing higher orders effects. Then because of this truncation, relations are predicted between the various
anomalous Triple Gauge Bosons couplings and Higgs boson couplings which are valid however only
up to the 1

Λdc−4 order. The operators Odi are known wholly up to the dimension 7 and for specific
applications up to dimension 8. Since the odd dimension operators violate the conservations of baryon
and lepton numbers, the first dimension considered is 6.

Due to the opportunities offered by the LEP2 measurements, the EFT description up to dimension 6
for the charged aTGCs have been established a long time ago [154]. Up to the 1

Λ2 order, the predictions
are

∆gγ1 = gγ,Z4,5 = 0 (5.5)

λγ = λZ and ∆gZ1 = ∆κZ + tan2 θW∆κγ (5.6)

λ̃γ = λ̃Z and κ̃Z + tan2 θW κ̃γ = 0 (5.7)

reducing the 14 charged aTGCs of tables 5.1 to just 5 independent parameters that one can choose to
be ∆gZ1 , ∆κγ , λγ , κ̃γ and λ̃γ . These 5 independent parameters are related to the constant couplings of
the dimension-6 EFT operators by the relations (A.35), (A.37), (A.39) and (A.43) given in appendix.
One should note that these latter relations do depend on the Basis of the dimension-6 EFT operators
that was chosen while the relations (5.5), (5.6) and (5.7) are valid in any Basis (cf A.5 for more details
on Bases issue).

The neutral aTGCs do not receive contributions from the dimension-6 EFT operators. So the
EFT expansion should be pushed up to dimension 8. The predictions, which were derived more
recently [155], are up to the 1

Λ4 order

hγ,Z2,4 = hγ3 = fZ5 = 0 , fγ5 = hZ3 and hZ1 = −fγ4 (5.8)

4The classical example of such mechanism is the 4-point interaction of the Fermi Theory of the β-decay which is
ultimately explained in terms of exchange of the heavy W -boson.
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reducing the 12 neutral aTGCs of tables 5.1 to just 4 independent parameters that one can choose
to be fγ5 , fγ4 , fZ4 and hγ1 . These 4 independent parameters are related to the constant couplings of
dimension-8 EFT operators by the relations (A.24), (A.26), (A.27) and (A.28) given in appendix.

The tables 5.2 show how the Two Boson production processes depend on the independent aTGC
parameters in the EFT framework.

(a) Charged TGCs

∆gZ1 ∆κγ , λγ κ̃γ , λ̃γ

WZ , WW X X X

Wγ X X

(b) Neutral TGCs

fγ5 fγ4 fZ4 hγ1
ZZ X X X

Zγ X X X

Table 5.2: EFT aTGCs in Two Bosons production processes; the rows show the Two Bosons production
channels; the columns show the aTGCs separated according to their behaviors under C and P; the
mark “X” indicates a dependence of the Two Bosons production on the particular aTGC.

The EFT approach is not just the Effective Lagrangian approach supplemented with opportune
relations between the aTGCs.

It is an effective theory only valid at energies lower than Λ. Therefore such traditional devices as
the Form Factors are to be excluded since the unitary violation issues that they cure, are explicitly
outside the domain of validity of the theory. Beyond the banishment of the Form Factors, it is not
yet totaly clear how this restriction is to be taken into account in the experimental analyses.

Moreover the EFT approach is limited to the effects of lowest order in Λ and neglects explicitly
the higher orders. A consistent use of the EFT approach imposes some changes in the way limits
on anomalous couplings are traditionally derived. For instance, the amplitude of the two bosons
production process is the sum of the SM amplitude plus a non-SM amplitude proportional to the
anomalous coupling ζ, schematically |SM〉+ ζ × |TGC〉. Therefore the cross section, proportional to
the square of the process amplitude is “naturally” a quadratic function of the anomalous couplings.
The EFT approach consistency imposes to neglect the quadratic terms because they are of an order
explicitly neglected, e.g. for the charged aTGCs case, since ζ ∝ 1

Λ2 , the ζ2 terms are of the order of
1

Λ4 , i.e the same order of the contributions of the neglected dimension-8 operators. This has drastic
consequences on the experimental aTGC limits that we will explore latter in this chapter.
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5.3 Study of the ZZ Production

Hereafter I present the analysis of the production of two Z-bosons of the sample of the ATLAS data
at 8 TeV .

The ZZ production can be studied in two channels for the decays of the two bosons system,
ZZ → ` ¯̀̀ ′ ¯̀′ or ZZ → `¯̀νν̄, where l and l′ are electrons or muons. Both channels were studied in the
analysis of the ATLAS data at 7 TeV [156]. However only the measurements of the channel ZZ → ` ¯̀̀ ′ ¯̀′

has been published for the 8 TeV sample. Cross sections measurements were first presented in [84].
The analysis was completed and extended to measurements of aTGCs in the work of my PhD student
Sofia Protopapadaki [85].

5.3.1 Selection and backgrounds

The final states of interest are those of the fully leptonic decays ZZ → ` ¯̀̀ ′ ¯̀′, with ` and `′ muons
or electrons. They contain 4 muons, 2 muons and 2 electrons, or 4 electrons. Hereafter they will be
named µµµµ, eeµµ , and eeee. The signature is very simple and clean: 4 leptons of high transverse
momenta, well separated and isolated, that can be paired in two same flavor opposite sign couples
forming Z-like systems. Among all the channels of two bosons productions, the ZZ → ` ¯̀̀ ′ ¯̀′ channel
is the one with the lowest background.

The base event selection consists in selecting the appropriate charge and flavor mixes of four iso-
lated “central” leptons, muons (Combined and Segment-Tagged muons) and electrons in the main
acceptance of the sub-detectors, i.e |η| < 2.5, with pT > 7 GeV. Since the ZZ production cross sec-
tion is among the smallest, the selection is extended to “forward” leptons in the regions beyond the η
coverage of the Inner Detector, viz up to |ηµ| < 2.7 for muons and |ηµ| < 4.9 for electrons. Higher pT
are required for these leptons: more than 10 GeV for muons and 20 GeV for electrons. The selection
is also extended to CaloTag muons but only if |η| < 0.1 and pT > 20 GeV. In the details, the selection
gets complicated by requirements limiting the number of the “extended” leptons in the selected events.
At the end, the total yield of selected events increases by ∼ 17% with respect to the base selection.

The figures 5.5 compare the data and simulations of Standard Model Signal with estimates of the
backgrounds for the leptons pair forming the Z of highest transverse momentum. The total number
of selected events is 321 among which 171 are eeµµ events, 86 µµµµ events and 64 eeee events. One
sees that data and predictions agree quite well. One sees also that the backgrounds contribution is
very small, ∼ 6% of the total number of events.
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Figure 5.5: Distributions of the mass (left) and of the transverse momentum (right) of the 2 leptons
forming the Z of highest transverse momentum, the leading Z.
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The background processes are classified as irreducible or reducible, according to whether the se-
lected leptons are genuine prompt high energy leptons or one or more of them are actually “fake”
leptons.

The irreducible background processes are triboson (ZZZ and ZWW final states) and tt̄(Z/W ) pro-
ductions as well as Double Parton Interactions resulting in the separated production of two Z-bosons.
They are estimated from MC simulations and are severely sub-leading as illustrated by figures 5.5.

In the final states of the reducible background processes, prompt leptons from Z, W or t decays
are accompanied by “fake” leptons from jets and photons. These “fakes” leptons are leptons from
in-flight decays of light mesons or heavy flavor hadrons or results from the misidentification of jets or
photons as electrons. Cuts on Isolation and impact parameters reject efficiently these “fake” leptons.
However, owing for the large cross sections of the reducible background processes, a significant number
of events survive the cuts. Furthermore they tend to populate the tails of the jets distributions which
are not accurately described by Monte Carlo simulations. Therefore the contribution of the reducible
background processes is better estimated from data themselves using the so-called Data-driven (DD)
methods. Generically these methods consists in reversing few cuts of the events selection, typically
isolation, impact parameters and electron identification criteria. From the events counts then domi-
nated by backgrounds sources one extrapolates their contributions into the signal region.

In the case of the ZZ analysis, one uses an auxiliary sample dominated by Z+jets events to deter-
mine the fake-factor, i.e the probability of a “fake” lepton to be selected as a genuine lepton. Then one
counts the number of events containing one or two objects passing the reversed cuts. Assuming that
these failing objects are “fake” leptons and using the probability estimated on the Z+jets sample, one
then estimates how many “fake” leptons have successfully passed the selection. MC-based corrections
are done to correct the “pure-background” assumption for the samples obtained reversing the cuts
and for the auxiliary Z + jets sample. The DD background so estimated is shown on figures 5.5. The
shapes of the DD background distributions are taken from MC simulations. The uncertainties on the
DD background estimates are on one hand, statistical errors from the sizes of the samples used in the
DD procedure, and on the other hand, systematics errors derived comparing results obtained using a
global or a differential fake-factor, i.e constant or varying with the lepton pT and η.

As mentioned above the total background is quite low: the ratio of the SM signal over the back-
ground contribution is 17 summing all channels, 33 for the µµµµ channel and ∼ 13 for the eeµµ and
eeee channels.

5.3.2 Cross sections definitions and measurements

The aim is to measure the cross section of the ZZ production with two Zs on mass-shell. Precisely one
defines the total cross section, σtot, requiring that both Zs have masses between 66 GeV and 116 GeV.
The data for this measurement are the numbers of events selected in each of the 3 final states channels.

5.3.2.1 Data Modelization

The number of events nb selected in the final states indexed here by b, is understood as the outcome
of a random draw from a Poisson distribution of mean νb. This mean is the sum of a irreducible and
reducible background components νbIrB and νbReB, and a signal component νbS proportional to σtot, the
integrated luminosity L , and the branching ratio into the final states of interest Brb

νb = νbS + νbIrB + νbReB = FbBrbL σtot + νbIrB + νbReB (5.9)
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The factor Fb accounts for the loss of signal events which either did not fall in the phase space
acceptance defined by the kinematical cuts of the selection or, if they did, have not been retained due
to inefficiencies of the trigger, the reconstruction or the identification. It is usual to factorize the two
effects writing

νb = AbCbBrbL σtot + νbIrB + νbReB (5.10)

where the factor Ab accounts for phase space acceptance and the factor Cb accounts for inefficiencies.

More precisely one defines a fiducial phase space volume close to, but simpler than, the phase
space volume carved by the kinematical cuts of the selection: one requires the masses of the Zs to
be between 66 GeV and 116 GeV, pT > 7 GeV for all final state leptons, |η| < 2.7 for all muons, and
|η| < 2.5 for all electrons but possibly one which is required to have |η| < 4.9. Because of the muons
and electrons are not treated equally, this does not defined a fiducial phase space common to all three
final states but actually three fiducial volumes, one for each of them. The fiducial cross sections, σbfid
are defined as the integrals of the cross section over the fiducial volumes. The acceptance factor Ab is
the ratio of the fiducial and total cross sections, σbfid/σtot.

The factor Ab is computed at truth level from the Monte-Carlo generators POWHEG and gg2VV,
the latter for the gluon-gluon fusion contribution [157]. The factor Cb is calculated as the ratio of
the number of selected events over the number of generated events in the fiducial volume using fully
simulated and reconstructed samples 5. The selected MC events should be weighted to correct differ-
ences observed between Data and simulations for the trigger, the reconstruction and the identification
efficiencies.

At this stage the expectation value νb appears as a function of the sole cross section σtot with all
the other factors in (5.10) computable. However these factors are derived from quantities inaccurately
known, which induce systematic errors on the cross section determination. Therefore νb should be
considered as a function of the actual although uncertain values of these quantities as well.

For each source of systematic error, one introduces a pulled nuisance parameter η such that the
central value and the uncertainty range are mapped for η on 0 and on the interval [−1; +1]. For
instance if the luminosity is measured as Lo ± δL , one builds the nuisance parameter ηL = L−Lo

δL .
For small uncertainties, one writes

νb(σtot,η) = AboC
b
oBr

bLoσtot× (1 +
∑
s

αbsηs) +νbIrB,o× (1 +
∑
s

βbsηs) +νbReB,o× (1 +
∑
s

γbsηs) (5.11)

where the αbs, β
b
s and γbs are the differential sensitivities of the corresponding components to the sys-

tematic source indexed by s. A single source can act on several components of several bin expectations.

If one aims to the fiducial cross section, the modelization becomes

νb(σbfid,η) = CboBr
bLoσ

b
fid × (1 +

∑
s

αbsηs) + νbIrB,o × (1 +
∑
s

βbsηs) + νbReB,o × (1 +
∑
s

γbsηs) (5.12)

where the αbs could be different than those appearing in (5.11). Indeed some systematics source can
affect more specifically the extrapolation from the fiducial phase space volume to the total phase space
volume which is irrelevant for the fiducial cross section determination.

5By construction, the factor Cb accounts for inefficiencies, as well as for the small extrapolation from the effective
selection phase space to the simpler fiducial phase space. It corrects also for the small contamination of ZZ events
decaying in pairs of τ which subsequently decay in electrons or muons.
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5.3.2.2 Likelihood

At this point the modelization of the data consists in saying that the observed event count is drawn
from a Poisson distribution the mean of which is given by (5.11) or (5.12) as a function of the param-
eter of interest σtot or σbfid, and of the nuisance parameters η, with the additional knowledge that the
latter are somehow 0 with an uncertainty of 1.

Under very general conditions the best estimates of the parameters are given by the estimators
obtained maximizing the Likelihood, the probability of the observation. For a set of observed events
counts η in independent bins and noting σ the total or fiducial cross section aimed for, the normalized
Likelihood used here is:

L(σ,η) =

∏
b P(nb; νb)

∏
s Gs(ηs; 0, 1)∏

b P(nb;nb)
∏
s Gs(0; 0, 1)

(5.13)

L(σ,η) =

∏
i P(ni; νi)

∏
s Gs(ηs; 0, 1)∏

i P(ni;ni)
∏
s Gs(0; 0, 1)

(5.14)

where P(n; ν) is the Poisson distribution of mean ν and Gs(ηs; 0, 1) is the Gaussian distribution of
mean 0 and width 1.

Strictly speaking the Likelihood is rather the numerator of (5.13). The denominator is actually
the absolute upper bound of the numerator so that one has L(σ,η) ≤ 1. This normalization is advised
in [158, 159] as the appropriate mean to assess the quality of a fit. Since the Likelihood is a measure
of the compatibility between the data and a certain theory of the data, the ratio (5.13) can be seen as
a comparison between, at the numerator, the theory defined by the parameters σ and η and, at the
denominator, the best ever, although unknown, theory: the one which predicts exactly the observed
events counts.

It should be noted that the denominator in (5.13) does not depend on σ and η. As we will see
the determination of the point estimates of these parameters involves to maximize L(σ,η) and the
determination of the Confidence domains involves ratio of the values of L(σ,η) at different points.
Therefore for both of these issues the normalization of L(σ,η) is irrelevant. However there is an other
issue: the assessment of the quality of the fit. The normalization in (5.13) makes L(σ,η) the proper
quantity to address this third issue.

In (5.13) the term
∏
s Gs(ηs; 0, 1) constrains the nuisance parameters η within their uncertainties.

Ideally a Likelihood should contain only probabilities of data. The constrain term can be seen as a
tentative to reconstruct the various Likelihoods built on the data which were used to measure the nui-
sance parameters 6. This is a decent approximation for many systematics, such as uncertainties from
reconstruction efficiencies or from Luminosity. For other systematics this is a fiction, a Frequentist
fairy tale. For instance for QCD scales or generators uncertainties, one takes bluntly extreme cases
felt as reasonable and do with the differences. But the determined Frequentist is not stopped by this:
he confesses his sins lucidly, controls the damages to the best, and carries on.

In practice the working Likelihood quantity is the opposite of the logarithm of (5.13)

nLL(σ,η) = − ln (L(σ,η)) =
∑
b

[νb − nb + nb ln(nb/νb)] +
∑
s

η2
s

2
(5.15)

nLL(σ,η) is always positive. As nb → ∞, the product 2 × nLL approaches the usual Pearson’s and

Neyman’s Chi-square functions χ2 =
∑

b
(nb−νb)2

Db
+
∑

s η
2
s with respectively Db = νb and Db = nb. For

6If motivated, other functions than the Gaussian distribution can be used for this approximation.
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finite nb, it is known that both Chi-square functions are biased.

5.3.2.3 Method for the extraction of Cross sections and errors

The central values of the measurements, (σ̂, η̂), are obtained by minimizing nLL(σ,η)

∀ σ and η, one has nLL(σ,η) ≥ nLL(σ̂, η̂) (5.16)

If one has a single event count nb, the condition (5.16) leads to a perfect match between the data
and the prediction, nb = νb so that nLL(σ̂, η̂) = 0. Indeed one obtains η̂ = 0 and, according to
whether one wants to measure the total or the fiducial cross sections,

σ̂tot =
nb − νbB,o

Abo C
b
o Br

b Lo
or σ̂bfid =

nb − νbB,o
Cbo Br

b Lo
(5.17)

If there are more than one counts, a perfect match is less likely and the value of nLL(σ̂, η̂) > 0
can be used to assess the quality of the fit.

Once the estimates σ̂ and η̂ are obtained, one wants error intervals on them. A basic method to
set a “68.3% Confidence Level interval” for σ is to take the end points of the interval as the solutions
of 7

∆nLL(σ) = 1/2 (5.18)

where ∆nLL(σ) is the Profile Likelihood defined as

∆nLL(σ) = −ln

[
L(σ, ˆ̂η)

L(σ̂, η̂)

]
with ∀ η, nLL(σ,η) ≥ nLL(σ, ˆ̂η) (5.19)

which by construction is always greater or equal to 0.

The Confidence interval for any nuisance parameter is obtained reformulating the prescription (5.18)
by “profiling” the cross section and all other nuisance parameters 8.

What is the rationale behind the condition (5.18)? It is that ∆nLL(σ) offers a measure of the
“acceptability” of a given value σ given the data. The cross section value the most compatible with the
data is σ̂. Its “performance” is quantified by the value of L(σ̂, η̂). If now we consider an alternative
value of the cross section σ different from σ̂, one only has to compute the corresponding Likelihood
and compare it to L(σ̂, η̂). But for which value of η? The best that we can do is to take the value
which makes σ the best looking possible, i.e ˆ̂η, and compare L(σ, ˆ̂η) to L(σ̂, η̂). This is what ∆nLL(σ)
does. By construction ∆nLL(σ̂) = 0 and the worst σ performs with the data, the larger ∆nLL(σ) is.
It is therefore natural to set a threshold on the value of ∆nLL(σ) to separate the “acceptable” values
of σ such that ∆nLL(σ) < K from the “unacceptable” values such that ∆nLL(σ) > K.

Now for the value of the threshold K, one has to turn towards some probabilist reasonings. The
frequentist posture is that whatever the procedure to build an error interval is, an objective Level of
Confidence in this procedure is assessed by imagining multiple repetitions of the whole experiment
and measuring the coverage, i.e the frequency with which the procedure gives an error interval which
indeed contains the value of the true cross section. A “68.3% Confidence Level interval” is supposed

7This is the analogue of the familiar ∆χ2 = 1 prescription.
8The central values of the nuisance parameters are expected to remain close to 0. Their errors can be less than 1

although a sizable reduction is an indication that the data of the current analysis do constrain significantly the systematic
error source and should be investigated. Nuisance parameters errors greater than 1 means that there is a bug somewhere.
For the ZZ analysis, the nuisance parameters central values are never bigger than a couple of tens of % and their errors
lower than 1 by never more than a couple of %.
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to result from a procedure such that whatever is the true value of the cross section, the coverage is
greater than 68.3%.

To do a cut on ∆nLL(σ) is a procedure that does not guarantee the frequentist coverage. There
are other methods to be discussed later which do guarantee the frequentist coverage but they are very
expensive in terms of CPU processing time.

However asymptotically, if the number of events is high enough, then a simple cut on ∆nLL(σ)
turns out to be a good enough approximation of the true thing: if one cuts at K = 1/2 as in (5.19),
then the coverage is greater than 68.3% in the regions of interest. However since this is only an ap-
proximate method, checks and validations are de rigueur

The most natural way to check the sanity of the whole procedure is to verify that it behaves as
expected on controlled conditions, e.g resorting to pseudo-experiments.
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Figure 5.6: Estimation of the coverage of the Con-
fidence Interval procedure as a function of the total
cross section

The figure 5.6 has been obtained choos-
ing 20 values of σtot over a range en-
compassing the actual measurement. For
each σtot, 105 pseudo-experiments were pro-
duced and each pseudo experiment was an-
alyzed in the same way as the true data
are.

This figure shows the fraction of the 105

pseudo-experiments for which it turned out that
the σtot of their generation was indeed in the er-
ror interval. This is an estimation of the coverage
of the Interval procedure. Since the error inter-
vals are announced to be 68.3% Confidence Level
intervals, the coverage should be 68.3%. As we
can see in figure 5.6, this is obtained within the
statistics fluctuations.

These simulations can be used also to study biases of the cross section estimates. For the ZZ
analysis they amounts for less than one per-mill of the cross section.

5.3.2.4 Results

The table 5.3 shows the total cross section obtained combining the three ZZ final states.

The total error on the cross section measurement amounts for about 8% of the total cross section.
Its receives contributions from the various sources, statistical and systematics and it is desirable to
assess them numerically. However this assessment is not unambiguous and definitions are needed.

As we saw in 5.3.2.3, the statistical procedure delivers central values and errors for the cross section
as well as for the nuisance parameters. These central values and errors are refereed hereafter as from
the main fit.

The statistical errors on the cross section are defined as the total errors on the cross section ob-
tained by redoing a fit while fixing the nuisance parameters at their central values in the main fit.

The error from a given systematic source is defined by performing two fits with all nuisance pa-
rameters free but the nuisance parameter corresponding to this source which is kept fixed at its main
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fit central value plus or minus its main fit errors. The variations of the central value of cross section
in these two fits with respect to its value in the main fit is taken as the errors on the cross section
from the source.

σtot [pb]
Measurement 6.98 +0.42

−0.40(stat.) +0.38
−0.33(syst.) +0.20

−0.19(lumi.)

Theory 7.06 ±0.25

Table 5.3: Total ZZ cross section: measurement combining all channels and theoretical prediction.
The theoretical prediction is computed with MCFM with error from QCD scales and PDFs.

The table 5.3 gives the statistical errors, the Luminosity errors and, indicated by “(syst.)”, the
errors from other sources computed subtracting quadratically the statistical and Luminosity errors
from the total errors. One sees that the statistical error amounts for about 6% of the total cross
section.

Source Error (%)

Luminosity +2.87
−2.76

e-Identification efficiency +1.63
−1.61

µ-Isolation and impact parameter +1.92
−1.89

MC generators +2.97
−2.88

QCD scales and PDFs +0.79
−0.78

Data Driven Background +2.99
−3.00

Table 5.4: Main systematic uncertainties on the
combined total ZZ cross section in % of the mea-
sured cross section.

The table 5.4 shows in % of the total cross
section measurement, the contributions from all
the systematic sources. Its shows that the main
systematics, each amounting for about 3% of the
cross section, are the uncertainties from Lumi-
nosity, from the Data Driven background and
from the Monte Carlo generators. The recon-
struction and selection effects are sub-leading.
The main ones are the cuts on isolation and
impact parameter for the muons and on elec-
tron identification for the electrons. The er-
rors from uncertainties on PDFs and QCD scales
are low. They affect mainly the extrapolation
for the fiducial to the total phase space vol-
ume.

eeee µµee µµµµ Combined

M
ea

s.
/T

he
or

y 

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 

Measurement 
Theory

ZZ
totσ

ATLAS           Work in progress
-1 L dt = 20 fb∫ = 8 TeV, s

 

Figure 5.7: Measured total ZZ cross section, per channel

and combining all of them, normalized to the theoretical

predictions computed with MCFM.

The table 5.3 gives also the theoretical pre-
diction for the total cross-section computed
with MCFM with error from QCD scales and
PDFs. In the figure 5.7, this prediction
is compared graphically to the measurement
combining all channels. Also shown are the
measurements from each channel separately.
The prediction and measurement agree very
well.

As we saw, MCFM computations are at the
NLO level and contains the NNLO gluon-gluon
fusion contribution. Using the software imple-
mentation described in [160], the NLO EW cor-
rections were found to reduce the cross section by
about 4.4%. On the other hand, the NNLO QCD
corrections were estimated in [121] to amount for
about 11% among which 60% are due to gluon-
gluon fusion. Therefore the NNLO QCD and NLO EW corrections of the MCFM estimate nearly cancel.
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5.3.2.4.1 Fit Quality

In 5.3.2.3, we saw that the error interval is determined by comparing the performance of a test
cross section σ to the performance of the cross section the most compatible with data σ̂. This is
what the ratio in the definition of ∆nLL(σ) (5.19) does. Therefore because it serves as a reference
point, the performance of σ̂ itself is not examined in the determination of the errors. How much this
performance is good is the specific issue of the quality of the fit.

In the same way that the performance of σ̂ serves as a reference in the determination of the errors,
one needs a reference against which the performance of σ̂ can be compared to assess the quality of
the fit. Actually the definition of the normalized Likelihood in (5.13) does already incorporate such a
reference point. Indeed due the ratio in (5.13), the minimal value of the normalized likelihood, L(σ̂, η̂),
does compare the performance of σ̂ at the numerator to the best one can ever do at the denominator.

The idea is therefore to build on the minimal value of the normalized Likelihood 9. More precisely,
one evaluates how much likely would it be to find the value L(σ̂, η̂) that has been found with the
actual data, if the true value of the cross section was indeed σ̂. To determine this, one uses pseudo-
experiments generated under the assumption that the true value of the cross section is σ̂ and one builds
the distribution of the minimal value of the normalized Likelihood found in each pseudo-experiment.
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Figure 5.8: Normalized distribution of −ln(L(σ̂, η̂)) obtained with 105 pseudo experiments. The dashed vertical line

shows the value obtained with actual data.

The figure 5.8 shows the distribution of −ln(L(σ̂, η̂)) obtained for 105 pseudo experiments. The
value of L(σ̂, η̂) found with the true data is shown by the dashed vertical line.

To assess how much this value is “typical”, one computes the fraction of pseudo experiments for
which a minimal value of the normalized Likelihood worst than the actual value has been found, i.e
one integrates the distribution of figure 5.8 to the right of the dashed line. This is the p-value of the
quality of the fit. The bigger the fit quality p-value is, the better the fit is. For the ZZ analysis, one
finds a very good fit p-value of 50.8± 0.2%.

One can show that under asymptotic conditions of large statistics the distribution of the figure 5.8
should tend to a χ2 law of 2 degrees of freedom for 3 bins minus one unconstrained parameter. This law
is shown by the solid blue line on the figure. One sees that indeed this is an excellent approximation
of the distribution built with the pseudo experiments. This is usually the case of all measures of the
diboson productions cross sections till the moment the integrated luminosity has been high enough
to allow few hundreds events to be selected. However this nice feature is specific to cross section
measurements. For anomalous couplings, the asymptotic conditions do not hold and one has to resort
to pseudo experiments.

9One should note that the minimal value of the exact “unnormalized” Likelihood, the numerator of (5.13) is inap-
propriate for this investigation. See [161] for related issues.
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5.3.2.4.2 P-values of the edges of the Confidence Interval

Let’s consider the edges of the error interval of the measurement in table 5.3, say the upper edge,
σ+
tot = 6.98 + 0.60 pb. Let’s assume that this is the true value of the cross section.

That the data fluctuations have been such that the true value ends up to be at the extreme
edge of the error interval is somehow a “disappointing” performance. With the actual data, one got
∆nLL(σ+

tot) = 1/2. But surely if σ+
tot is the true value, one can hope that in many repetitions of whole

experiment, σ+
tot would perform, in terms of ∆nLL(σ+

tot), often better than this.

This leads to investigate how much 1/2 is a likely value for ∆nLL(σ+
tot) if σ+

tot is indeed the true
value.

0 0.5 1 1.5 2 2.5 3 3.5 4

-210

-110

1

UP_At_Pdf TestStat A

Figure 5.9: Normalized distribution of ∆nLL(σ+
tot) obtained with 105 pseudo experiments.

To do this, one resorts to pseudo experiments generated assuming that σ+
tot is the true value and

one builds the distribution of the ∆nLL(σ+
tot)pExp found for each pseudo experiment. The figure 5.9

shows this distribution obtained for 105 pseudo experiments. The fraction above 1/2 is by definition
the p-value of σ+

tot.

For any other value of the cross section σ, one would have proceed the same way: one would have
first compute ∆nLL(σ)Data with the actual data, then produce pseudo experiments assuming that σ
is the true value, then build the normalized distribution of the ∆nLL(σ+

tot)pExp found for each pseudo
experiment, and finally integrate the distribution on the right of ∆nLL(σ)Data to obtain the p-value
of σ. Since a priori, the distributions for different values of the cross section assumed to be the true
one are different, this is to be done for each value of the cross section, a very time consuming procedure.

For the ZZ analysis, one estimates the p-value of σ+
tot to be 31.9± 0.1%. This value is very close

to 100− 68.3 = 31.7%.

Actually, the proper frequentist procedure works the other way around: the edges of a x% Con-
fidence Level Interval are found by requiring that they have p-values equal to (100− x)%. This
guarantees that the coverage is then greater than x%.

The prescription (5.18) is far simpler and faster and since the p-value of σ+
tot is found close to

the target, it seems to be a good substitute for the proper procedure. The explanation for this good
performance is that when the number of events is large, the distribution of ∆nLL(σ+

tot) follows asymp-
totically a simple χ2 law with 1 degree of freedom for the sole unconstrained parameter σ+

tot. This
laws is the blue solid line in the figure 5.9 and one sees that this is indeed an excellent approximation
of the distribution.

But here also, this nice feature is specific to cross section measurements. For anomalous couplings,
the asymptotic conditions do not hold and one has to resort to pseudo experiments.
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5.3.3 Anomalous Triple Gauge Couplings measurements

The production of ZZ pairs allows to probe the ZZZ and ZZγ vertices. As shown by the tables 5.1,
it is sensitive to 4 anomalous Couplings, viz the 2 CP respecting fZ5 and fγ5 and the 2 CP violating
fZ4 and fγ4 . For convenience, one will note them ζi in the following.

The amplitude of the ZZ production process receives components proportional to the anomalous
couplings. Schematically one has

|.〉 = |SM〉+
∑

ζi |i〉 (5.20)

It follows that the cross section and so also the signal expectation of the events count in a bin are
bilinear functions of the ζis

νbS(ζ) = Y b
00 +

4∑
i=1

Y b
0iζi +

4∑
i=1

Y b
iiζ

2
i +

4∑
i,j=1;j>i

Y b
ijζiζj (5.21)

where the first term is proportional to the square of the SM amplitude, the second term to the
interferences of the SM amplitude with the aTGC amplitudes, the third term to the squares of the
aTGC amplitudes, and the fourth term to the interferences between the aTGC amplitudes.

The polynomial coefficients Y b
ij are determined using SHERPA and POWHEG+gg2VV fully simulated

samples and reweighing techniques using the BHO program [162] which for a given event and a choice
of anomalous couplings values returns a weight proportional to the cross section. These coefficients
are also corrected for difference in efficiencies between data and Monte Carlo as this was done for the
coefficients of the data modelization for the cross section measurement (5.11) or (5.12).

The determination of the systematics errors follows a similar path. However the sensitivity to
some sources such as the PDFs and QCD scales uncertainties is different. Indeed in the cross section
determination, the sensitivity to these sources enters through ratios of cross sections such as the factor
Ab. A change of the cross section is irrelevant if the numerator and the denominator move in concert.
For the aTGC case, this increase has a full effect as it becomes clear acknowledging for instance that
the Y b

00 is the number of events predicted by the SM.
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Figure 5.10: Distribution of the transverse momen-
tum distribution of the 2 leptons system forming
the Z of the highest pT .

Contrary to the cross section measurement
case, the aTGC measurement is dominated by
statistics fluctuations from low event counts as
illustrated by the figure 5.10.

It shows, merging all the 4 leptons final states,
the distribution of the transverse momentum dis-
tribution of the 2 leptons system forming the Z
of the highest pT for data and simulations com-
prising SM and Background contributions as well
as the effect of setting all anomalous couplings at
fZ,γ4,5 = 0.005.

As it clear from this figure, the sensitivity to
the anomalous couplings is coming from weakly
populated kinematics regions and no asymptotic
large statistics regime can settle.

The reference [85] presents a systematic study
looking for the kinematic variables the most sen-
sitive to aTGC, alone or by pair, and for optimal
binning. It turns out that the distribution of the pT of the leading Z offers the best sensitivity with
the binning shown in figure 5.11.
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5.3.3.1 Statistical Analysis

The statistical treatment for the aTGCs measurements is similar to, although slightly more sophisti-
cated than, what has been done for the cross section.

The Likelihood L(ζ,η) is still given by the equation (5.13). It is now a function of a set parameters
of interest ζ, not just of a single one as before. The bin content expectation νb is

νb(ζ,η) = νbS(ζ)× (1 +
∑
s

αbsηs) + νbIrB,o × (1 +
∑
s

βbsηs) + νbReB,o × (1 +
∑
s

γbsηs) (5.22)

where the signal component νbS is now a function bilinear in the parameters of interest given by (5.21).
It is important to note that due to this dependence, the bin content is bound from below. In a very
simple case, the consequences of this bound are discussed in detail in the appendix C 10.

The best estimates of the parameters, ζ̂ and and η̂, are given by the Maximum Likelihood Esti-
mators as before

∀ ζ and η, nLL(ζ,η) ≥ nLL(ζ̂, η̂) (5.23)

Since one can want to determine more than 1 parameter at once, the statement on the errors is
not always a Confidence Interval, but in general a piece of the multi-dimensional parameter space, a
Confidence Domain. In addition the Confidence Level for the anomalous Couplings is traditionally
taken to be 95% rather than 68.3% as for the cross section.

The Confidence Domain is no more obtained from a the simple prescription similar to (5.18) but
it has to be based on the p-values. Precisely a given hypothesis ζ is still scored on the basis of its
Profile Likelihood value ∆nLL(ζ) defined as in (5.19) by

∆nLL(ζ) = −ln[L(ζ, ˆ̂η)/L(ζ̂, η̂)] with ∀ η, nLL(ζ,η) ≥ nLL(ζ, ˆ̂η) (5.24)

ProfL(λ) =
L(λ, ˆ̂η)

L(λ̂, η̂)
(5.25)

but instead to cut on ∆nLL(ζ) as in (5.18) one now computes the probability to get a as bad or worse
than ∆nLL(ζ) if the true value is indeed ζ. This probability is the p-value of the hypothesis ζ.

The 95% Confidence Level Domain is defined as the most compact volume of the parameter space
such that outside it any point has a p-value lower than 5%. Such a definition ensures that the coverage
of the procedure, the cornerstone of the Frequentist approach, is indeed 95% .

Deliberately the Frequentist approach has no inference rule to go from the actual data to the
theory contrary to the Bayesian approach with its priors on the parameters updated by the Bayes
rule. The frequentist statements are not on the actual Confidence Domain obtained from data but
on the procedure which produces it. Confronted to such a procedure, the Frequentist approach is to
consider it as a “machine making domains” and to act as a tester of this machine. The Frequentist
practitioner repeatedly injects simulated data in the machine and looks at the outputs. She determines
how many times the output domains do contain, do “cover”, the true value that she used in her
simulation, and very reasonably, she assesses her confidence in the procedure from the fraction of
successes, the coverage. A Frequentist “machine making x% Confidence Level Domains” is built such
that the coverage is, by contract, at least x% whatever the true parameters are.

10Briefly while the likelihood is approximatively a gentle 2nd order polynomial in the parameter of interest ζ when the
expectation is linear in ζ, it is a fourth-order polynomial with typically two minimas and a maximum in between when
the expectation depends quadratically on ζ.
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From the publication of the paper from G.J. Feldman and R.D. Cousins [163], it has become clear
in the HEP community that such a procedure is to build domains such that the p-value function is
lower than (100− x)% outside the domain.

In practice to work with p-values means that one has to do a lot of pseudo experiments. They
should be done cleanly notably for what concerns systematic sources fluctuations and they should be
done very fast which involved various technical tricks and a lot of code optimization. Then one can
reasonably explore the p-value function over the space of the parameters of interest. This function is
high, close to 100%, in the immediate vicinity of ζ̂ and decreases further away from the best estimate.
It remains to catch the contour on which the p-value function crosses the 5% level.

Despite all optimization, the computation of a single p-value is still time consuming and one can
not afford to compute the p-value function for too many points. For instance, one can compute the
p-value function only at the nodes of a rectangular grid. Instead here the p-values are computed only
along a set of few rays passing by the origin ζ = 0 and spanning the [0; 2π] angle range. This is
convenient for typically oval-shaped contours. About ten of rays are enough to get a decent sampling.
Then starting from educated guesses, one runs a dichotomous iterative procedure along each ray.
Generally about ten of trials are enough to catch the transition point where the p-value function
crosses the 5% level.

5.3.3.2 Results
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Figure 5.11: Numbers of events in pZT bins for data,
predicted by SM and for two non null aTGCs sce-
narios. (ZZ analysis)

The data used to extract Confidence Intervals on
the anomalous Couplings are shown in the fig-
ure 5.11.

They are the numbers of events in 4 bins
in transverse momentum of the 2 leptons sys-
tem forming the Z of the highest pT . The
Upper edge of the last bin goes to infin-
ity.

Are shown the numbers of events found in the
8 TeV data sample as well as those predicted in
a simulation comprising the SM ZZ production
and the irreducible and Data-Driven estimates of
the backgrounds. These numbers are reported in
the table 5.5. As it can be seen there are tensions
between the SM predictions and data mainly in the two first bins.

[0-200] [200-260] [260-380] [380-∞]

Observed ZZ 316 1 4 0

SM Expected 296.06 ±4.64 5.69 ± 0.20 2.71 ± 0.11 0.67 ± 0.04

fγ5 = 0.005 296.25 ±4.64 5.88 ± 0.20 3.23 ± 0.11 2.96 ± 0.04

fZ5 = 0.004 296.24 ±4.64 5.87 ± 0.20 3.18 ± 0.11 2.61 ± 0.04

Table 5.5: Numbers of events in pZT bins for data, predicted by SM and for two non null aTGCs
scenarios. (ZZ analysis)

Also shown in the figure 5.11 are the predictions for two non null aTGCs scenarios: fZ5 = 0.004 and
fγ5 = 0.005. They correspond approximatively to the size of the one-dimension Confidence Domains
for these couplings discussed below. As shown in the table 5.5, both predict about 3 events in the
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highest pZT bin.

One considers first the four one-dimension fits of the anomalous Couplings, i.e the fits where all
couplings but one are fixed to 0.

The quality of these fits can be evaluated by the same method described in the section 5.3.2.4.
The p-value of the four fits are found to be of the order of 6%. A p-value of 6% is not excessively
good although not redhibitory. This poor performance reflects mostly the compatibility of the SM
with the actual data and results from the tensions between the SM events counts predictions and data
discussed above.

The table 5.6 shows the Confidence Intervals for each of the one-dimension fits in the column
“Observed”. The Lower and Upper ends of the Confidence Interval for the anomalous Coupling fZ5
are shown in the figures 5.12 by the solid red vertical line.

Parameter Observed Expected

fγ4 [-0.0046, 0.0046 ] [-0.0056(+0.0013
−0.0017), 0.0056(+0.0017

−0.0013) ]

fZ4 [-0.0041, 0.0040 ] [-0.0049(+0.0011
−0.0014), 0.0049(+0.0014

−0.0011) ]

fγ5 [-0.0046, 0.0047 ] [-0.0056(+0.0013
−0.0017), 0.0056(+0.0017

−0.0013) ]

fZ5 [-0.0040, 0.0040 ] [-0.0048(+0.0011
−0.0015), 0.0048(+0.0015

−0.0011) ]

Table 5.6: Observed and Expected one-dimension 95% Confidence Level Intervals of the anomalous
Couplings; the figures reported between parentheses are not errors but distributions widths (cf text)
(ZZ analysis)

The figures 5.12 show also intervals ends named “Asimov”. They correspond to aTGCs analyses
in which the actual data are replaced by the SM expectations. The name “Asimov” is borrowed
from the Asimov dataset concept developed in [164] which, very roughly, corresponds to the idea that
injecting in input the mean of the inputs, one gets in output the mean of the outputs. These Asimov
limits allow to guess if there is any anomaly in the results that one obtains with the actual data. In
figures 5.12, one sees that the “Asimov” limits are quite compatible with the Observed limits although
the latter are somewhat more stringent owing to the downward fluctuation of the data with respect
to SM expectations in the most sensitive bin.

The Asimov limits are very fast to obtain and this is very much appreciated in these studies which
are usually very CPU time consuming. However they do not provide a “width” scale that would allow
to evaluate the likelihood of the difference between them and the Observed limits 11. The solution is
to use pseudo experiments that one generates from the SM expectations. The figures 5.12 show the
distributions of the Lower and Upper ends of Confidence Intervals for these pseudo experiments. The
means of these distributions are indicated in the figures as “Expected”. As it can be seen they are
nicely close to the Asimov limits. The figures 5.12 show also the 1 and 2-σ widths containing 68.3%
and 95.4% of the distributions respectively. The means and 1-σ widths are reported in table 5.6 in the
column “Expected”. One notes that the low statistics in the most sensitive bins results in a marked
asymmetry of the distributions 12.

Both the table 5.6 and the figures 5.12 show that the actual Observed limits are in the expected
range of fluctuations from SM expectations.

11The reference [164] gives results on this resolution aspect but they are not easily transposable here.
12It interesting to note that for the most part, the one-dimension Confidence Domains are statistical in origin. If all

systematics uncertainties are zeroed, the Asimov Intervals for fZ5 and fγ5 for instance go from [−0.0051,+0.0051] and
[−0.0059,+0.0060] to [−0.0050,+0.0050] and [−0.0058,+0.0057] respectively.
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One considers now the six two-dimensions fits, i.e fits in which all but two of the anomalous cou-
plings are fixed to 0. As for the one-dimension fits, one can compute Observed, Asimov and Expected
limits but now in a two dimensions space. The results are shown on the figures 5.13. The yellow
and green bands are the analogues of the 1 and 2-σ 1D-widths of the distributions of the figures 5.12.
The figures 5.13 show that the observed 2-dimension 95% Confidence level Domains are within the
expected fluctuations around the SM expectations.

The one-dimension Confidence Domains from table 5.6 are reported on the anomalous Couplings
axes in figures 5.13. A feature which is worth to comment is that these one-dimension limits “touch”
the two-dimensions Confidence Domains when the latter cross the aTGC axes. In other words, the
one-dimension limits are only marginally stronger than the two-dimensions limits.

This is a feature which is not seen on the CMS similar plots. CMS does not derive its two-
dimensions Confidence Domains from a p-value analysis. Instead the frontiers of these Domains are
obtained solving the condition ∆nLL(ζ) = 2.452/2. The value “2.45” is the radius on which a two
dimensional Normal Gaussian should be integrated to get 0.95 as a result. The CMS method amounts
for assuming not only that an asymptotic regime settled but that it is described by a χ2 law with 2
degrees of freedom because one has 2 parameters.

Actually the second point does not hold due to degeneracy which arises in anomalous couplings
analyses 13. This degeneracy arises because only one of the data bins is effectively constraining
anomalous couplings, and it arises in a particular manner because the events count expectation is a
bilinear function of these couplings.

When the problem is linear in the parameters a degeneracy uses to translate into a huge cor-
relation between the parameters along a “blind” axis corresponding to the parameters combination
which lets the expectation unchanged. In the case of anomalous couplings, the “blind” direction is
orthoradial so to say. Indeed by linear combination of the parameters and shift of the origin, such
a bilinear expectation can be put in the form νb = νb0 + ρ2 with ρ =

√
ζ2

1 + ζ2
2 where the ζ1,2 are

the linearly combined and shifted parameters. Effectively only ρ is measured and the blind direction
corresponds to change in the polar angle which is not measured at all. This degeneracy is hidden in
figure such as the figures 5.13 and, de facto, the problem is essentially with one degree of freedom only.

The concept of degree of freedom it is irrelevant for the proper frequentist method based on p-
values. Despite its heaviness, this method protects against this sort of pitfalls.

13To my best knowledge, this was shown first by our ATLAS colleague Masahiro Mori.
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5.3.3.3 EFT Results

As discussed before, the EFT operators analysis leads to significant reduction of the number of pa-
rameters for the description of the neutral anomalous Triple Gauge Couplings [155]. Instead of the
12 neutral anomalous Couplings given in table 5.1, the EFT analysis ends up on just 4 parameters,
all but one violating CP. The relations between the EFT parameters and the anomalous couplings to
which the ZZ production is sensitive are (cf equations (A.24), (A.26) and (A.27)):

fZ5 = 0 (5.26)

fγ5 =
v2m2

Z

4cwsw

C
B̃W

Λ4
(5.27)

fγ4 = −
v2m2

Z

4cwsw

(
− cwsw

CBB
Λ4

+ (c2
w − s2

w)
CBW
Λ4

+ 4swcw
CWW

Λ4

)
(5.28)

fZ4 =
v2m2

Z

2cwsw

(
c2
w

CBB
Λ4

+ 2cwsw
CBW
Λ4

+ 4s2
w

CWW

Λ4

)
(5.29)

Since in the EFT framework fZ5 = 0, the ZZ production does depend only on 3 anomalous cou-
plings. Since there are 4 EFT parameters, there is a degeneracy between these parameters: a combina-
tion of them, actually a combination of CBB, CBW and CWW , can not be measured in ZZ production.

Nevertheless, the whole problem can be parametrized in terms of the 4 EFT parameters and limits
can be extracted on them following the procedure described in section 5.3.3.1. To the best of my
knowledge, the one-dimension limits on the neutral EFT parameters at LHC were derived for the first
time in the ZZ analysis described here [85]. They are shown in table 5.7.

One can convert the limits shown in this table into limits on the scale Λ by assuming Cxyz ∼ 1.
This is by no means justified theoretically but this gives a taste of the scales with which we are dealing.
In this way one gets lower limits for Λ in the range 0.5 to 0.6 TeV.

EFT Parameter Observed [ TeV−4] Expected [ TeV−4]

CB̃W /Λ
4 [-15.53 , 15.65 ] [-18.86(+4.48

−5.53) , 18.87(+5.55
−4.47) ]

CBB/Λ
4 [ -7.98 , 7.83 ] [ -9.53(+2.24

−2.72) , 9.52(+2.71
−2.24) ]

CBW /Λ
4 [ -8.43 , 8.56 ] [-10.34(+2.45

−3.12) , 10.35(+3.12
−2.43) ]

CWW /Λ
4 [ -7.07 , 7.17 ] [ -8.57(+1.95

−2.73) , 8.60(+2.71
−1.95) ]

Table 5.7: Observed and Expected one-dimension 95% Confidence Level Intervals of the neutral EFT
parameters; the figures reported between parentheses are not errors but distributions widths (cf text)
(ZZ analysis)

5.3.3.3.1 Consistency requirement As already discussed, a consistent application of the EFT
analysis requires to drop the two last terms in the parametrization of the signal expectation (5.21).
Indeed in the EFT analysis the neutral anomalous coupling ζi are of the order of 1/Λ4 and one ne-
glects explicitly contributions to ζi of higher orders. One should not allow a form such as (5.21) to
introduce back terms inconsistent with this approximation. This requirement emerged clearly recently
only and it has not been integrated in the experiments analyses yet. The following discussion is thus
exploratory at best.

Let’s say that (5.21), takes the form νbS = aζ2+bζ+c and that ζ = α/Λ4+β/Λ6+... where the term
β/Λ6 is the first term of higher order that we are neglecting. Then νbS = c+bα/Λ4+bβ/Λ6+aα2/Λ8+....
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If b 6= 0 then if we neglect β/Λ6, bβ/Λ6 goes away. Thus aα2/Λ8 which is of higher order should goes
away too. Therefore one should drop the quadratic term aζ2 in νbS . However if b = 0, there is no
reason to do so.

So the precise EFT consistency prescription is that one should drop in the parametrization of the
signal expectation (5.21) any bilinear term which involves a coupling the amplitude of which does
interfere with the SM amplitude.

The anomalous coupling fγ4 and fZ4 correspond to interactions which violate CP. So their associ-
ated amplitudes do not interfere with the SM. Therefore the EFT consistency prescription does affect
neither their one-dimension limits in table 5.6 nor their paired two-dimensions limits in figures 5.13.
The EFT parameters CBB/Λ

4, CBW /Λ
4, and CWW /Λ

4 correspond also to interactions which violate
CP. So their one-dimension limits in table 5.7 are unaffected.

It remains the anomalous coupling fγ5 and the EFT parameter C
B̃W

which are related by (5.27).
Their situation is puzzling. They correspond to interaction which do not violate CP and their asso-
ciated amplitude is not prevented to interfere with the SM amplitude. So their are not “protected”
against the EFT consistency prescription. Still it is a fact of experience that the term of interference
with the SM is excessively small. So small actually that if one drops the bilinear terms in (5.21),
the sensitivity to fγ5 and C

B̃W
vanishes totally. I was unable to found an explanation of this state of

affairs. If there is a reason which would explain the observed vanishing interference with the SM and
therefore protect against the EFT consistency prescription, then the limits on fγ5 and C

B̃W
will be

those presented above. If there is no such reason, then the ZZ production leads to no limits on these
parameters.
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Figure 5.12: Lower and Upper Ends of the 95% Confidence Level Intervals for one-dimension fits. The red lines show

the Observed limits, the black solid lines the Asimov limits, the thin long dashed black lines the Expected limits and the

dashed lines the 1 and 2 σ-bands. (ZZ analysis)
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are reported on the anomalous Couplings axes. (ZZ analysis)
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5.4 Study of the WZ Production

Hereafter I present the analysis of the production of a pair of WZ-bosons of the sample of the ATLAS
data at 8 TeV .

The first ATLAS measurement of this production was done for the 7 TeV data sample in [86].
The cross section measurement on the first part sample of the 8 TeV data (13fb−1) was published
in [87, 165]. The analysis was extented to the full data sample in the reference [89] and completed
with the measurements of aTGCs in [88].

5.4.1 Selection and backgrounds

The final states of interest are those of the fully leptonic decays WZ → `′ν`¯̀, with `′ and ` muons
or electrons. They contain 3 electrons, 2 electrons and 1 muon, 1 electron and 2 muons, or 3 muons.
Hereafter they will be named eee, eeµ, eµµ and µµµ. Two of the leptons of the same flavor and
opposite charges are associated to the Z-boson and the remaining lepton to the W -boson. On the
basis of the sign of the charge of this last lepton, the 4 above event categories can be further split in
decay from a W+ or a W− boson.

The signature is simple: missing transverse energy (EmissT ) from the escaping ν and 3 leptons of
high transverse momenta, well separated and isolated, among which 2 can be paired in a Z-like system.

Selected muons are isolated Combined or Segment-Tagged candidates in the main acceptance of the
MS and ID detectors, i.e |η| < 2.5. Electrons should be isolated and within the calorimeter acceptance
|η| < 2.47 but not in the weak area 1.37 < |η| < 1.52. For both muons and electrons, pT > 15 GeV
is required. Events with more than 3 leptons with pT > 7 GeV are rejected in order to reduce the
contamination from ZZ production. In addition one of the lepton is required to have pT > 25 GeV
and to have triggered the event recording.

Two leptons of the same flavor and opposite charges are required to form a system of mass within
10 GeV of the Z-boson mass. The third lepton is attributed to the W -boson and its identification is re-
inforced by requiring pT > 20 GeV and by imposing tighter isolation criteria and electron identification
criteria.

To tag large missing energy in the event, a cut is done, not on the EmissT but on the transverse mass
of the W -boson computed from the vectorial missing transverse energy attributed to the escaping ν
and the transverse momentum of the lepton attributed to the W as

mW
T =

√
2E`TE

miss
T − 2~p `

T
~EmissT (5.30)

It is required that mW
T > 30 GeV.

Figure 5.14: Distributions for the selected events of the transverse momentum of the 2 leptons forming
the Z-boson like system (left) and of the transverse mass of the W -boson candidate (right).



96
Chapter 5. Two Bosons production: Measurements of cross sections and anomalous

Triple Gauge couplings

The figures 5.14 compare the data and simulations of Standard Model Signal with estimates of the
backgrounds for the distributions of the transverse momentum of the 2 leptons forming the Z-boson
like system and of the transverse mass of the W -boson candidate.

One sees that the backgrounds contamination is larger for the WZ production than for the ZZ
production: it amounts for about 20% of the selected events.

The irreducible backgrounds, those producing the right amount of genuine prompt high energy
leptons, are the productions of ZZ, tt̄ + V (with V being a Z or a W boson), t + Z, and V V ′

(mainly W (Z/γ∗)) from Double Parton scattering. Their contributions are estimated by MC means
and amount together for about a half of the background contribution. For 70%, the irreducible
backgrounds contribution is due to ZZ production.

The other half of background contribution is from reducible backgrounds, for which one or more
of the selected leptons are actually “fake”. They originate from the productions of Z + j, Zγ, tt̄, and
WW . This contribution is estimated with a Data-driven method quite similar but more sophisticated
than the one used for ZZ production. One counts the events in which one or two leptons pass all the
selection criteria but the isolation cut. The counts of these events inform on the proportion of the
selected events which are actually backgrounds events for which one or two fake leptons have been
identified as genuine leptons. This requires one has an estimate of the probability f of a fake lepton
to be identified as a genuine prompt lepton.

The analysis keeps track of the lepton being associated to the W or being the leading or trailing
lepton associated to the Z boson. The probability f is estimated on Z + j and W + j data samples.
Systematics uncertainties on the DD background include statistical uncertainties of the f determi-
nation on the Z/W + j data samples, biases from the transverse missing energy cuts, and taking or
not account of the difference in the composition of the fake lepton kinds (heavy flavor decays leptons,
photon conversion, light flavor jet) in the Signal and Z/W + j data samples.

The ratio of the SM signal over the background contribution is about 4 summing all channels, and
ranges from about 4.5 for µµµ to about 3 for eee

5.4.2 Cross sections definitions and measurements

The aim is to measure the total cross section of the WZ production with the W and Z on mass-shell.
The total Phase Space is defined by requiring the Z mass to be between 66 GeV and 116 GeV. One
can ignore the sign of the W boson in the final state and this defines the “unsigned” cross section
σWZ
tot , or one can track this sign and defines the two “signed” cross sections σW

+Z
tot and σW

−Z
tot .

One aims also for fiducial cross sections. Contrary to the ZZ analysis one defines a fiducial Phase
Space common to all the various channels. This allows to derive a fiducial cross section combining
all channels. The fiducial phase space is defined by: the leptons are required to have |η| < 2.5,
pT > 15 GeV for the Z leptons and pT > 20 GeV for the W lepton; the Z-leptons are required to form
a system of mass within 10 GeV from the nominal Z mass and the transverse mass of the W to be
greater than 30 GeV. As the total cross sections, one has “unsigned” and “signed” fiducial cross sections.

The derivations of the cross sections is similar to what is done for the ZZ analysis with the
same kind of Data Modelization, Likelihood building and extraction method that are described in
sections 5.3.2.1, 5.3.2.2 and 5.3.2.3.

The data are the numbers of events in the final states channels of interest. They are the 4
“unsigned” events counts nb with b = eee, eeµ, eeµ and µµµ if one ignores the sign of the W boson
or the 8 “signed” events counts n±,b if one keeps track of it 14.

14The “unsigned” events counts range from ∼ 600 events to ∼ 400 events from µµµ to eee channels.
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5.4.2.1 Results on “unsigned” cross sections

One starts by the measurements of the total and fiducial cross sections of WZ production ignoring
the sign of the final state W boson. One uses the 4 “unsigned” events counts nb as data inputs.

The tables 5.8 show the fiducial and total cross sections obtained combining the 4 channels. The
quoted errors have been computed as described in section 5.3.2.3. The quality of the combined fit is
evaluated with the means described in section 5.3.2.4. The p-value of the fit is found to be quite good:
48.2± 0.2%.

σWZ
fid [fb]

Measurement 35.1+0.9
−0.9 (stat) +0.9

−0.8 (syst) +1.1
−1.1 (lumi)

Theory 30.0± 2.1

σWZ
tot [pb]

Measurement 24.4+0.7
−0.6 (stat) +0.6

−0.6 (syst) +0.8
−0.7 (lumi)

Theory 21.0± 1.6

Table 5.8: “Unsigned” Fiducial and total cross section: measurement combining all channels and
theoretical prediction. The theoretical prediction is computed with POWHEG and PYTHIA with error
from QCD scales and PDFs.

Source Errors (%)

Luminosity +3.2
−3.0

e - Id. Efficiency +1.0
−1.0

µ - Rec.Efficiency +1.4
−1.4

MC Backgrounds +0.9
−0.8

Data Driven Background +1.4
−1.3

Table 5.9: Main systematic uncertainties on the combined

fiducial WZ cross section in % of the measured cross sec-

tion.

The Table 5.9 shows the systematics er-
rors on the combined measurement of the fidu-
cial cross section. Beside the luminosity con-
tribution, the main contributions are from on
one hand, the uncertainties on the Identifi-
cation and reconstruction efficiencies of elec-
tron and muons, and on the other hand,
the uncertainties on the backgrounds contribu-
tions.
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Figure 5.15: Measured fiducial cross sections, per chan-

nel and combining all them, normalized to the theoretical

predictions

The tables 5.8 give also the theoretical cross
sections. In the figure 5.15, the prediction for the
fiducial cross section is compared graphically to
the measurement combining all channels. Also
shown are the measurements from each channel
separately.

Clearly the measurements are above the pre-
dictions. These theoretical cross sections are at
the NLO QCD level.

As discussed in section 5.2, the NLO EW
corrections have been found negligible [139, 143]
and no NNLO QCD calculations are available for
WZ.

However a NNLO QCD correction of the or-
der of 5% can be expected on the basis of the cor-
rections found in the framework of the so-called
“approximate” NNLO (ñNLO) QCD [126]. Such
a correction would bring the difference between
the measurement and the prediction from the ac-
tual 2-σ level to below the 1.5-σ level.
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5.4.2.2 Results on “signed” cross sections

One considers now the cross sections of WZ production discerning the sign of the charge of the final
state W boson. One uses the 8 “signed” events counts n±,b as data inputs.

The fiducial cross sections, σW
+Z

fid and σW
−Z

fid , are derived building a single Likelihood function

nLL(σW
+Z

fid , σW
−Z

fid ,η) (5.31)

running on the all the n±,b events counts and depending on the two cross sections simultaneously.
Although the two cross sections parametrize separately the signal components of the expectations
of the positive and negative events counts, the nuisance parameters are possibly acting on all event
counts expectations. So to treat all the bins together allows to get the most stringent effects on the
nuisance parameters.

σW
+Z

fid [fb]
Measurement 21.1+0.7

−0.7(stat) +0.5
−0.4(syst) +0.7

−0.6(lumi)

Theory 18.8± 1.3

σW
−Z

fid [fb]
Measurement 14.0+0.6

−0.6(stat) +0.4
−0.4(syst) +0.5

−0.4(lumi)

Theory 11.1± 1.0

Table 5.10: “Signed” fiducial cross-sections: measurements combining all channels and theoretical
predictions. The theoretical predictions are computed with POWHEG and PYTHIA with errors from QCD
scales and PDFs.

The tables 5.10 show the fiducial cross sections obtained combining all channels. The p-value
of the combined fit is found to be quite decent: 14.5%. The measurements are quite correlated:
the parametrization of the vicinity of minimum of (5.31) by the HESSE algorithm from the Minuit
suite [166] gives a correlation factor of 51%.

The tables 5.10 give also the theoretical cross sections. In the figures 5.16 the predictions is
compared graphically to the measurement combining all channels. Also shown are the measurements
from each channel separately.
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Figure 5.16: “Signed” Measured fiducial cross sections, per channel and combining all of them,
normalized to the theoretical predictions.
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A measurement of the ratio of the fiducial cross section

ρ = σW
+Z

fid /σW
−Z

fid (5.32)

is desirable since the systematics are expected to cancel for a good part. To perform this measurement,
one only has to use the Likelihood function (5.31) and performs a change of variables which makes it
a function of ρ. In the process one can also use as the new variable

σΣ
fid = σW

+Z
fid + σW

−Z
fid (5.33)

so that one gets at the same time a new measurement of the “unsigned” fiducial cross section, already
measured in section 5.4.2.1 but by significantly different means. Therefore we work with the Likelihood
function

nLL(ρ, σΣ
fid,η) = nLL

(
σW

+Z
fid =

ρσΣ
fid

1 + ρ
, σW

−Z
fid =

σΣ
fid

1 + ρ
,η

)
(5.34)

ρ = σfid
W+Z

/σfid
W−Z

Measurement 1.51+0.09
−0.08(stat) +0.01

−0.02(syst)

Theory 1.69± 0.07

σfidΣ = σfid
W+Z

+ σfid
W−Z [fb]

Measurement 35.1+0.9
−0.9(stat) +0.9

−0.8(syst) +1.1
−1.1(lumi)

Theory 30.0± 2.1

Table 5.11: Ratio and sum of the fiducial cross-sections: measurements combining all channels and
theoretical predictions. The theoretical predictions are computed with POWHEG and PYTHIA with errors
from QCD scales and PDFs.

µµµ µµe eeµ eee Combined

M
ea

s.
/T

he
or

y 

0.6

0.8

1

1.2

1.4

 

Measurement

Theory (CT10)

Theory (ATLAS-epWZ12)

ρ

ATLAS           Work in progress
-1 L dt = 20 fb∫ = 8 TeV, s

 

Figure 5.17: Measured ratio of fiducial cross sec-
tions, per channel and combining all of them, nor-
malized to the theoretical predictions.

The tables 5.11 show the measurements of
ρ and σfidΣ obtained combining all channels to-
gether. The two measurements are found to
be weakly correlated: the correlation factor is -
6%.

Consistently one finds back in the mea-
surement of σfidΣ the measurement of the “un-
signed” fiducial cross section from the ta-
bles 5.8.

The tables 5.11 give the prediction for
ρ. This prediction is compared graphi-
cally with the measurement obtained combin-
ing all the channels together. Also shown are
the ρ measurements from each channel sepa-
rately.

The combined measurement has a precision of about 6% not excessively larger than the theoretical
error. The difference between prediction and measurement is at the 1-σ level.
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5.4.3 Anomalous Triple Gauge Couplings measurements

The production of WZ pairs allows to probe the WWZ vertex. As shown by the tables 5.1, it is
sensitive to 7 anomalous Triple Gauge Couplings, viz the 3 C and P respecting parameters ∆gZ1 , ∆κZ ,

and λZ , and the 4 C or P violating parameters gZ4 , gZ5 , κ̃Z , and λ̃Z . Traditionally the C or P violating
parameters are ignored and only limits on ∆gZ1 , ∆κZ and λZ are derived. As for the ZZ analysis, the
expectation of the event counts in a given bin is a bilinear function of the anomalous couplings noted
generically ζi

νbS(ζ) = Y b
00 +

3∑
i=1

Y b
0iζi +

3∑
i=1

Y b
iiζ

2
i +

3∑
i,j=1;j>i

Y b
ijζiζj (5.35)

Various kinematical quantities can be used to derived limits on anomalous couplings. In the
analysis of 7 TeV data sample, ATLAS chose to use the transverse momentum of the Z boson, pZT [86].
However as discussed in section 5.2, it has been found that the NNLO QCD corrections, estimated
in the so-called “approximate” NNLO (ñNLO) framework [126], would affect more significantly some
distributions than others. Notably the distribution of the transverse mass of the WZ system, mWZ

T ,
is little affected. Therefore it has been decided to derive limits on anomalous couplings using this
quantity. It is defined as

mWZ
T =

√
(EmissT + ΣE`iT )2 − ( ~EmissT + Σ~p `i

T )2 (5.36)

where the sum runs on the 3 decays leptons.
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Figure 5.18: WZ Transverse Mass distribution.

Precisely the data that are used are the
bin contents of the distribution of mWZ

T merg-
ing all the channels shown on the figure 5.18.
The Upper edge of the last bin goes to
infinity. The figure shows the data and
the expected SM yields, signal and back-
grounds.

Also shown are the contributions from non
null anomalous couplings of the order of the
limits derived bellow. They amount for a
approximate doubling of the predicted num-
ber of events in the last bin and for an
increase by about 1/3 in the next to last
bin.

The statistical treatment is similar to what has been done for the ZZ analysis: the systematics
sources modify the signal and backgrounds as in (5.22) and the compatibility with the data of a given
hypothesis on the values of the anomalous couplings ζ and of the nuisance parameters η is assessed
with a Likelihood function nLL(ζ,η) analogue to (5.15).

In particular, the compatibility of the data and the SM predictions at the exclusion of any anoma-
lous couplings contributions, can be appreciated by minimizing nLL(ζ = 0,η) as a function of the
nuisance parameters η only. Then the quantity nLL(ζ = 0, η̂) where η̂ is the solution of this minimiza-
tion, can be used to assess the compatibility of the data and the SM predictions. Indeed nLL(ζ = 0, η̂)
is the appropriate Statistics to use since, as already discussed in sections 5.3.2.2 and 5.3.2.4, it is com-
paring the best that one can do under the constrain ζ = 0 and the best ever, although unknown,
theory of the data. One finds a p-value of 33± 0.1% which is quite good.
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5.4.3.1 Results

One now considers the three one-dimension fits, i.e fits in which all but one of the parameters ∆gZ1 ,
∆κZ and λZ are fixed at 0. The qualities of these fits are estimated by computing p-values as described
in section 5.3.3.2. These p-values are good and range from 26% to 28%. That they are somewhat
lower than the value found testing the pure SM case indicates that the data do not show departure
from the SM prediction which would call for anomalous Couplings contributions.

Parameter Observed Expected

∆gZ1 [-0.019; 0.029] [-0.016 (+0.007
−0.007) ; 0.032(+0.007

−0.009)]

∆κZ [-0.19 ; 0.30 ] [-0.17 (+0.06
−0.05) ; 0.25 (+0.06

−0.07)]

λZ [-0.016; 0.016] [-0.016 (+0.004
−0.004) ; 0.016(+0.004

−0.004)]

Table 5.12: Observed and Expected one-dimension 95% Confidence Level Intervals of the anomalous
Couplings; the figures reported between parentheses are not errors but distributions widths (cf text).
(WZ analysis)

The table 5.12 shows the Confidence Intervals for each of the one-dimension fits in the column
“Observed”. The Lower and Upper ends of the Confidence Interval for the anomalous Couplings are
shown in the figures 5.19.

One notes that the limit on ∆κZ is by an order of magnitude less stringent than those on the
two other anomalous couplings. This difference originates from the dependence on the energy in the
center of mass of the process,

√
ŝ, of the contributions to the cross section of the different anomalous

couplings: while the contributions of ∆gZ1 and λZ grow as ŝ, the ∆κZ one grows as
√
ŝ only.

The figures 5.19 show also the Asimov intervals ends. As for the ZZ analysis they are obtained
replacing the actual data by the SM expectations. They are quite close to the Observed limits. As
much as reassuring this is, this does not tell if the differences between the Observed and Asimov limits
are exceptional or “natural”. This is better assessed, but at a much higher cost in CPU time, by
generating pseudo experiments around the SM expectations. This allows to build the “natural” distri-
bution of the intervals ends shown in figures 5.19 with their means indicated as “Expected” as well as
their 1 and 2-σ widths. The means and 1-σ widths are reported in table 5.12 in the column “Expected”.

Both the table 5.12 and the figures 5.19 show that the actual Observed limits are in the expected
range of fluctuations around SM expectations 15.

Next one considers the 3 two-dimension fits, i.e fits in which all but two of the anomalous cou-
plings are fixed to 0. The Observed and Expected limits as well as the 1 and 2-σ bands are shown
in figures 5.20. These figures show that the observed 2-dimension 95% Confidence Level Domains are
within the expected fluctuations around the SM expectations.

One notes that the two-dimension contours depart from the one-dimension intervals more than
they did in the ZZ analysis (see figures 5.13). This indicates that the constrains on anomalous
couplings arise less exclusively from a single bin. This has the effect to lift, although very partially,
the particular degeneracy of the parameters of interest in the case of anomalous couplings that was
discussed in section 5.3.3.2.

15As the ZZ anomalous couplings limits, the WZ limits are dominated by statistical errors. The sensitivity to
systematic errors is however slightly larger in particular concerning the theoretical uncertainties: if the uncertainties
from QCD scales and PDFs are switched off, the sizes of the Confidence Intervals decrease by about 10% for ∆gZ1 and
λZ and about 20% for ∆κZ .
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5.4.3.2 EFT Results

As discussed before, the EFT operators analysis leads to significant reduction of the number of charged
anomalous Couplings [167]. Instead of the 14 charged anomalous Couplings given in table 5.1, the
EFT analysis ends up on just 5 parameters, 3 respecting C and P and 2 violating C and/or P. Putting
the later aside, the relations between the EFT parameters and the anomalous couplings to which the
WZ production is sensitive are (cf equations (A.34), (A.35) and (A.39)):

∆gZ1 =
m2
Z

2

CW
Λ2

∆κZ =
m2
W

2

(CW
Λ2
− tan2 θW

CB
Λ2

)
λZ =

3g2m2
W

2

CWWW

Λ2
(5.37)

Contrary to the ZZ case, there is no degeneracy for the measurements of the EFT parameters.
The whole problem can be parametrized in terms of the EFT parameters and limits can be extracted
on them following the same procedure than for the anomalous couplings. The one-dimension 95%
Confidence Level Intervals are given in the table 5.13.

One notes that the limits on CB/Λ
2 are much less stringent than those on the other EFT pa-

rameters. From the one-dimension limits on the anomalous couplings of the table 5.12 and the rela-
tions (5.37), one sees that the poor sensitivity to ∆κZ is reported exclusively on the measurement of
the CB/Λ

2 EFT parameter.

One can convert the limits of the table 5.12 into limits on the scale Λ by assuming Cxyz ∼ 1. This
is by no means justified theoretically but this gives a taste of the scales with which we are dealing. The
limits on CW /Λ

2 and CWWW /Λ
2 translate into lower limits for Λ in the range 0.3 to 0.5 TeV. The

limits on CB/Λ
2 point to a limit of the order of ∼ 50 GeV which once again underlines the limitation

of the measurement of this parameter.

EFT parameter Observed [TeV −2] Expected [TeV −2]

CW /Λ
2 [-4.3 ; 6.8] [-3.7 ; 7.6]

CB/Λ
2 [-320 ; 210] [-270 ; 180]

CWWW /Λ
2 [-3.9 ; 4.0] [-3.9 ; 3.8]

Table 5.13: Observed and Expected one-dimension 95% Confidence Level Intervals on the EFT pa-
rameters. (WZ analysis)

5.4.3.2.1 Consistency requirement As already discussed, a consistent application of the EFT
analysis requires to drop the two last terms in the parametrization of the signal expectation (5.35).
Indeed since in the EFT analysis the charged anomalous coupling ζi are of the order of 1/Λ2, these
bilinear terms ζiζj are of the order of 1/Λ4 which is beyond the retained order. This requirement
emerged clearly recently only and it has not been integrated in the experiments analyses yet and
results which follows are given for illustrative and exploratory purposes only. If one drops the terms
bilinear in the anomalous parameter, one gets the results shown in the tables 5.14.

The dynamic of the fit is deeply modified by the removal of the bilinear terms, it is non trivial
to explain how one goes from the results of the tables 5.12 and 5.13 to those of the tables 5.14.
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Parameter With bilinear terms Without bilinear terms

∆gZ1 [-0.019; 0.029] [-0.021; 0.021]

∆κZ [-0.19 ; 0.30 ] [-0.20 ; 0.36 ]

λZ [-0.016; 0.016] [-0.10 ; 0.39 ]

Table 5.14: Observed one-dimension 95% Confidence Level Intervals of the anomalous Couplings
obtained with and without bilinear terms in the Signal expectations (WZ analysis)

Nevertheless, one can get an idea of the gross features by examining the coefficients of the bilinear
expression (5.35). Let’s say that this expression takes the form aζ2+bζ+c for one anomalous coupling ζ.
One can guess that the ratio, aζo/b where ζo is a typical value of the ends of the Confidence Interval
on ζ, is an appropriate figure of merit of the importance of the quadratic terms in the expression (5.35)
and therefore, of the amplitude of the expected changes of the Confidence Intervals when one drops
these terms. Typically this ratio is ∼ 0.5 for ∆gZ1 , ∼ 1.5 for ∆κZ , and ∼ 20 for λZ .

The large ratio for λZ means that the anomalous amplitude associated to this coupling interferes
quite little with the SM amplitude. In consequence the square of this amplitude has an overwhelming
relative contribution in the signal parametrization. When one removes it the sensitivity to λZ drops
significantly up to the point that the limits on this parameter become almost as poor as those on ∆κZ
as it can be read in table 5.14.

One concludes that within the framework of a consistent application of the EFT approach, the
WZ production study brings constrains only on the anomalous coupling ∆gZ1 and on the EFT param-
eter CW /Λ

2.
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Figure 5.19: Lower and Upper Ends of the 95% Confidence Level Intervals for one-dimension fits.
The red lines show the Observed limits, the black solid lines the Asimov limits, the thin long dashed
black lines the Expected limits and the dashed lines the 1 and 2 σ-bands. (WZ analysis)
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Figure 5.20: Observed, Asimov and Expected two-dimension 95% Confidence Level Domains. The
black solid lines show the Observed limits, the dashed lines the Expected limits, the green and yellow
bands correspond to the 1 and 2 σ-bands. The one-dimension 95% Confidence Level Domains for the
Observed limits are reported on the anomalous Couplings axes. (WZ analysis)
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5.5 Study of the WW Production

Hereafter I present the analysis of the production of WW bosons pairs in the sample collected by
ATLAS for p-p collisions at

√
s = 8 TeV in 2012, corresponding to to 20.3 fb−1 of integrated luminos-

ity [90, 91].

5.5.1 Selection and backgrounds

The final states of interest are the fully leptonic decays WW → `′ν`ν where ` and `′ are electrons or
muons. They contains 2 electrons, 1 electron and a muon, or 2 muons. Hereafter they will be named
ee, eµ, and µµ. As the 2 produced W bosons, the 2 final state leptons are necessarily of opposite
charge.

The signature is simple: missing transverse energy (EmissT ) from the escaping νs and 2 leptons of
high transverse momenta, well separated and isolated, and opposite in charge.

Selected muons are isolated Combined candidates in the main acceptance of the MS and ID de-
tectors, i.e |η| < 2.4. Electrons should be isolated and within the calorimeter acceptance |η| < 2.47
but not in the weak area 1.37 < |η| < 1.52. Two leptons of opposite charge are required. The lepton
of highest pT should have pT > 25 GeV while the other one should have pT > 20 GeV. Events with
more than 2 leptons with pT > 7 GeV are rejected to reduce the contamination from other diboson
productions.

In order to reduce backgrounds from low mass resonances, multijets and Drell-Yan events, cuts are
made on the mass of the 2 leptons system, m``′ . It is required to be greater than 15 GeV for ee/µµ
channels and 10 GeV for eµ channel. In addition m``′ is required to be at least 15 GeV away from the
Z boson mass for ee/µµ.

After these cuts, the Drell-Yan contamination is still significant specially for the ee/µµ channels.
Further reduction is obtained by requirements on the missing energy. The missing energy computed
with tracks pmissT , is required to be greater than 20 GeV for eµ and 45 GeV for ee/µµ. In addition

a cut is applied on the relative scalar EmissT,Rel, equal to the norm of the usual ~EmissT or its projection

on the closest jet or lepton if the latter points in the same direction (EmissT,Rel is found more robust

than EmissT against mis-measurement of a jet and a lepton). It is required that EmissT,Rel is greater than
15 GeV for eµ and 45 GeV for ee/µµ.

At this stage the selected events are overwhelmingly from top-quark production (tt̄ or single t).
This contamination is severely reduced with marginal loss on signal by a jet veto cut which rejects
events with any jet above pT > 25 GeV within |η| < 4.5.

The figures 5.21 show the distributions of the transverse momentum of the lepton of highest pT .
There is a large difference in the number of events selected in the different channels: 5067 events are
selected in the eµ channel against 594 and 975 in the ee and µµ channels respectively.

The background contamination is similar in all channels ∼ 30%. The main source of the back-
grounds contamination is the top-production at the level of 50− 60%. The other background sources
are the W + jets, the Drell-Yan and the other diboson productions which vary in importance accord-
ing to the channel considered. All backgrounds are estimated with Data-Driven (DD) background
methods but the diboson background which is estimated from Monte Carlo.

For the top background, one counts the number of events in a top background dominated Control
Region defined as the normal events selection without the jet veto cut to which one adds that HT the
scalar sum of transverse momentum of leptons and jets should be greater than 300 GeV. This events
number is extrapolated to the signal region using factors essentially estimated from Monte Carlo.
The systematic errors on the top production contributions at the level of ∼ 10% result among other
sources from the uncertainties on the correction of non-top contribution in the Control region and
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Figure 5.21: Distributions of the transverse momentum of the lepton of highest pT for the eµ channel
(left) and merging the ee and µµ channels (right).

from uncertainties on the extrapolation factors used (jet energy scale and resolution, Parton shower
and harmonization modeling).

The W + jets contribution is estimated with a DD method similar to those used for the Z + jets
estimates in the ZZ and WZ methods. It is based on on one hand, the probabilities, εreal and εfake,
for true prompt leptons and fake leptons from backgrounds to be selected as genuine prompt leptons
estimated on dedicated samples enriched in fake leptons, and on the other hand, the events counts
in Control Regions defined relaxing some identification and isolation criteria in the nominal selection.
Using εreal and εfake these counts are used to estimate the contamination in the Signal Region. The
systematics errors on the W + jets contribution result among other sources from uncertainties from
possible differences in the mixes of the types of fake leptons (heavy flavor decays leptons, conversion,
light flavor jet) in the samples used to extract εreal and εfake and in the Control Regions. These
systematic errors amount for ∼ 50% in the most contaminated eµ channel and for more than 100% in
the two other channels.

The Drell-Yan contribution is estimated from event counts in Control regions defined by inverting
the cut on pmissT . The main uncertainty on this contribution comes from uncertainties on jets and
EmissT energy scale. The systematic errors on the Drell-Yan production contribution are ∼ 10% for eµ
and reach ∼ 50% for ee/µµ.
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5.5.2 Cross sections definitions and measurements

Both total and fiducial cross-section are derived. The fiducial volume is defined for each channel by
the selection discussed in preceding sections. The data are the 3 numbers of events selected in each
of the eµ, ee, and eµ channels.

5.5.2.1 Results

The table 5.15 shows the total WW production cross sections obtained combining all channels. The
p-values of the combined fit is quite good, 72.0± 0.1%.

σWW
tot [pb]

Measurement 71.0 +1.1
−1.1 (stat) +5.7

−5.0 (syst) +2.1
−2.0 (lumi)

Theory 63.2 +1.6
−1.4 (scale) ±1.2 (PDF)

Table 5.15: TotalWW production cross sections: measurements combining all channels and theoretical
predictions. The prediction is at the NNLO QCD order [124].

The total errors amount for about 8% of the measured cross sections. As shown by the table 5.15,
the measurements is dominated by systematics errors.

Source Errors (%)

Luminosity +3.0
−2.8

Pileup +1.5
−1.4

EmissT and jets +4.6
−4.4

QCD scales and PDFs +1.1
−1.1

Jet Veto uncertainty +3.5
−3.3

Generators +2.7
−2.5

Data Driven Backgrounds +3.2
−3.2

Table 5.16: Main systematic uncertainties on the com-

bined total WW production cross section in % of the mea-

sured cross section.

The table 5.16 shows the main system-
atics errors on the total WW production
cross section obtained combining all channels.
The main contributions are on the experi-
mental side, from the uncertainties on jets
and EmissT and on the DD background esti-
mates, and on the theoretical side, from the
uncertainties on generators (Parton Shower,
hadronization, underlying event) and on the
jet veto cut. This last uncertainty is ob-
tained summing up the scale uncertainties,
on the Njets ≥ 0 and Njets ≥ 1 inclu-
sive jets cross-sections considered as uncorre-
lated.
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Figure 5.22: Measured total WW production cross sec-

tions, per channel and combining all of them, normalized to

the theoretical predictions.

The table 5.15 gives also the theoretical
cross sections computed at the NNLO QCD or-
der [124].

In the figures 5.22, the predictions for
the total WW production cross sections are
compared graphically to the measurement
combining all channels. Also shown are
the measurements from each channel sepa-
rately.

The agreement between prediction and mea-
surement is at the 1-σ level.
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5.5.3 Anomalous Triple Gauge Couplings measurements

The production of WW pairs allows to probe the WWγ and WWZ vertices. As shown by the ta-
bles 5.1, it is sensitive to 14 anomalous Triple Gauge Couplings, viz the 6 CP respecting parameters
∆gZ1 , ∆κZ , λZ , ∆gγ1 , ∆κγ , and λγ , and the 8 CP violating parameters gZ4 , gZ5 , κ̃Z , λ̃Z , gγ4 , gγ5 , κ̃γ ,

and λ̃γ . Traditionally the CP violating parameters are ignored. Furthermore one imposes U(1)em
invariance which leads to ∆gγ1 = 0. Therefore only limits on ∆gZ1 , ∆κZ , λZ , ∆κγ , and λγ are derived.

One can study anomalous couplings in WW production considering these 5 parameters as inde-
pendent or one can work with only a subset of them adopting a particular scenario, i.e assuming some
relations between these parameters. Both approaches have been followed in [91]. Here I consider
one example of the second option. I adopt the so-called LEP scenario which reduces the number of
independent parameters from 5 to 3 by imposing

λγ = λZ and ∆gZ1 = ∆κZ + tan2 θW∆κγ (5.38)

As already discussed the motivation for these relations is that they are predicted by the EFT approach.
The 3 independent anomalous couplings retained are ∆gZ1 , ∆κZ , and λZ .

As for the other diboson analyses, the expectation of the event counts in a given bin is parametrized
as a bilinear function of the anomalous couplings noted generically ζi

νbS(ζ) = Y b
00 +

3∑
i=1

Y b
0iζi +

3∑
i=1

Y b
iiζ

2
i +

3∑
i,j=1;j>i

Y b
ijζiζj (5.39)

The kinematical variable used to derive limits on the anomalous couplings is pLead.T the transverse
momentum of the lepton of highest pT . Only the events from the eµ channel selection are used.
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Figure 5.23: Distribution of the transverse mo-
mentum of the lepton of highest pT .

Precisely the data that are used are
the contents of the 3 last bins of the
distribution of pLead.T shown on the fig-
ure 5.23 16. The figure shows the data
and the expected SM yields, signal and back-
grounds.

The SM prediction has been computed with
MC@NLO [148] with NLO EW corrections. Sys-
tematics has been added to cover the differ-
ences of the pT distributions between MC@NLO and
POWHEG+PYTHIA 8.

Also shown in the figure 5.23 are the contri-
butions from non null anomalous couplings of the
order of the limits derived bellow. They amount
for an increase by a factor from 3 to 4 of the predicted number of events in the last bin and by about
10 to 20% in the next to last bin.

1675 events in the 150 GeV < pLead.T < 250 GeV range, 2 events in the 250 GeV < pLead.T < 350 GeV range, and 1
event in the 350 GeV < pLead.T < 1000 GeV range
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5.5.3.1 Results

One considers first the 3 one-dimension fits, i.e fits in which all but one of the anomalous couplings
are fixed at 0. The qualities of these fits are estimated by computing p-values as described in sec-
tion 5.3.3.2. These p-values are of the order of 6% which is not great but not redhibitory.

Parameter Observed Expected

∆gZ1 [ -0.014 ; 0.026 ] [ -0.022 (+0.007
−0.009) ; 0.028 (+0.008

−0.008) ]

∆κZ [ -0.024 ; 0.019 ] [ -0.028 (+0.007
−0.009) ; 0.025 (+0.010

−0.008) ]

λZ [ -0.019 ; 0.019 ] [ -0.024 (+0.007
−0.009) ; 0.023 (+0.009

−0.007) ]

Table 5.17: Observed and Expected one-dimension 95% Confidence Level Intervals of the anomalous
Couplings; the figures reported between parentheses are not errors but distributions widths (cf text).
(WW analysis)

The table 5.17 shows the Confidence Intervals for each of the one-dimension fits in the column
“Observed”. The Lower and Upper ends of the Confidence Interval for the anomalous Couplings λZ
are shown in the figures 5.24.

These figures show also the Asimov intervals ends obtained replacing the actual data by the SM
expectations. A proper assessment of the “naturality” of the observed limits is obtained generating
pseudo experiments around the SM expectations to build the “natural” distributions of the intervals
ends. They are shown in figures 5.24 with their means indicated as “Expected” as well as their 1 and
2-σ widths. The means and 1-σ widths are reported in table 5.17 in the column “Expected”.

Both the table 5.17 and the figures 5.24 show that the actual Observed limits are in the expected
range of fluctuations around SM expectations 17.

Next one considers the 3 two-dimension fits for which all but two of the anomalous couplings are
fixed at 0. The Observed and Expected limits as well as the 1 and 2-σ bands are shown in figures 5.25.
These figures show that the observed 2-dimension 95% Confidence Level Domains are within the
expected fluctuations around the SM expectations.

5.5.3.2 EFT Results

We have already seen that the EFT operators analysis reduces the number of the parameters from
the 14 charged anomalous Couplings given in table 5.1 to just 5 parameters of which 3 are respecting
C and P. The relations between the EFT parameters and the anomalous couplings to which the
WW production is sensitive are the same than for the WZ analysis case (cf equations (5.37) and
equations (A.34), (A.35) and (A.39)):

∆gZ1 =
m2
Z

2

CW
Λ2

∆κZ =
m2
W

2

(CW
Λ2
− tan2 θW

CB
Λ2

)
λZ =

3g2m2
W

2

CWWW

Λ2
(5.40)

The problem is re-parametrized in terms of the EFT parameters and one obtains the one-dimension

17The WW limits are dominated by statistical errors. If the systematics uncertainties are switched off, the size of the
Asimov intervals decrease by about ∼ 10%.
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95% Confidence Level Intervals given in the table 5.18.

As discussed early, one can convert the limits of the table 5.17 into limits on the scale Λ by
assuming for a moment Cxyz ∼ 1. The limits on CW /Λ

2 and CWWW /Λ
2 translate into lower lim-

its for Λ in the range 0.3 to 0.5 TeV. The limits on CB/Λ
2 point to a limit of the order of ∼ 0.200 GeV.

EFT parameter Observed [TeV −2] Expected [TeV −2]

CW /Λ
2 [ -5.2 ; 10.1 ] [ -8.6 (+2.9

−4.0) ; 11.5 (+3.5
−2.9)]

CB/Λ
2 [ -20 ; 26. ] [ -27. (+8.

−11.) ; 30. (+10.
−8. )]

CWWW /Λ
2 [ -4.5 ; 4.5 ] [ -5.7 (+1.7

−2.2) ; 5.7 (+2.1
−1.6)]

Table 5.18: Observed and Expected one-dimension 95% Confidence Level Intervals on the EFT pa-
rameters; the figures between parentheses are not errors but distribution widths. (WW analysis)

5.5.3.2.1 Consistency requirement As already discussed, a consistent application of the EFT
analysis requires to drop the two last terms in the parametrization of the signal expectation (5.39).
Doing so one gets the results shown in the tables 5.19.

Parameter With bilinear terms Without bilinear terms

∆gZ1 [ -0.014 ; 0.026 ] [ -0.02 ; 0.11 ]

∆κZ [ -0.024 ; 0.019 ] [ -0.20 ; 0.05 ]

λZ [ -0.019 ; 0.019 ] [ -2.0 ; 2.0 ]

Table 5.19: Observed one-dimension 95% Confidence Level Intervals of the anomalous Couplings
obtained with and without bilinear terms in the Signal expectations (WW analysis)

Judged from the size of the intervals one can quantify the degradation of the limits by a factor
3, 6 and 400 for ∆gZ1 , ∆κZ , and λZ respectively. As in the similar situation for the WZ analysis
it is not trivial to track how one goes from the results of the tables 5.17 and 5.18 to those of the
tables 5.19. However one can capture the gross features by considering that the parametrization of
the expectation of the content of the last bin is of the form aζ2 + bζ + c for one anomalous coupling ζ,
and by taking the ratio aζo/b, where ζo is the value of the interval ends, as a measure of the impor-
tance of the quadratic terms. Typically this ratio is ∼ 0.5 for ∆gZ1 , ∼ 2 for ∆κZ , and ∼ 120 for λZ .
Therefore the massive degradation of the limits on λZ is explained by the smallness of the interference
of the anomalous amplitude with the SM amplitude of the process with respect to the square of the
anomalous amplitude. When the quadratic term is removed the sensitivity to λZ drops dramatically.

Therefore as in the case of theWZ analysis, one concludes that within the framework of a consistent
application of the EFT approach, the WW production study brings constrains only on the anomalous
coupling ∆gZ1 and on the EFT parameter CW /Λ

2.
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Figure 5.24: Lower and Upper Ends of the 95% Confidence Level Intervals for one-dimension fits.
The red lines show the Observed limits, the black solid lines the Asimov limits, the thin long dashed
black lines the Expected limits and the dashed lines the 1 and 2 σ-bands. (WW analysis)
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5.6 Study of the Wγ Production

Hereafter I present the analysis of the production of a pair of Wγ bosons of the sample of the ATLAS
data at 7 TeV [92].

5.6.1 Selection and backgrounds

The final states of interest are those of the fully leptonic decays Wγ → `νγ, where ` is a muon or
an electron. Hereafter they will be named eνγ and µνγ. The signature is simple: missing transverse
energy (EmissT ) from the escaping ν, a pair of a lepton and a γ with high transverse momenta, well
separated and isolated.

Selected muons are isolated Combined candidates with |η| < 2.4. Electrons should be isolated and
have |η| < 2.47 excluding the weak area 1.37 < |η| < 1.52. For both muons and electrons, pT > 25 GeV
is required. Events are selected requiring exactly one of such lepton. Photon should be isolated and
have |η| < 2.37 excluding 1.37 < |η| < 1.52 also. They are required to have pT > 15 GeV. Large
missing energy is required EmissT > 35 GeV. In addition a cut is applied on the transverse mass of the

lepton-EmissT system, mT =
√

2E`TE
miss
T − 2~p `

T
~EmissT > 40 GeV. For the eνγ channel it is required

that the mass of the eγ system is not within 15 GeV of the Z-mass in order to reduce contamination
from Z-boson decaying in e−e+ with one of the electrons is misidentified as a γ. Finally a large angular
separation ∆R(`, γ) > 0.7 is required between the lepton and the photon, in order to avoid the Final
State Radiation (FSR) kinematical region where the γ is radiated at low angle from the lepton.
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Figure 5.26: Combined distributions for `νγ candidate events in the electron and muon channels of the
photon transverse energy (left) and the missing transverse energy (right); the expected signal is taken
from an ALPGEN (LO) simulation scaled by about 50% so that the predicted signal and backgrounds
estimates match the observed yields.

The figures 5.26 compare combining all channels, the data and simulations of Standard Model
Signal with estimates of the backgrounds for the distributions of the γ transverse energy and of the
missing transverse energy.

One sees that the backgrounds contamination is large, about 40% of the selected events. For a half
this contamination comes from W + jets events when mesons produced in jet fragmentation produce
a γ. Events from production of Z + X, where a Z-decay lepton is misidentified as a γ or a γ results
from radiation from initial-state quark or charged lepton, contribute to background for about 20%.
For about 10%, γ + jets events can mimic Wγ events with lepton from heavy quark decays. The
remaining 20% come from production of tt̄, of single top, of WW and of W and Z bosons decaying
in τ .
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The W + jets and γ + jets backgrounds are estimated using Data Driven (DD) methods. All the
others background sources are estimated by MC simulations.

The Data Driven method is a two-dimensional sideband method, the so-called ABCD method: 2
selection criteria are chosen and reversed in turn; this defines 4 regions, the A signal region with the 2
criteria applied and 3 control regions, B and C with only one of the selection criteria reversed and D
with both criteria reversed. Assuming the control regions to be dominated by backgrounds, the ratio
of the number of event in the region D and for instance in region B, tells how to estimate the number
of background events in the signal region from the number of events in the region C. For W + jets,
the two quantities on which the selection criteria are built, are the Photon isolation and identification.
For γ + jets, they are the lepton isolation and EmissT .

The uncertainties on the DD background estimates are due to the limited sizes of data samples and
to systematic errors, mainly on the photon isolation. In total the DD background uncertainties amount
for 20-30%. The errors on the backgrounds estimated from MC are from theoretical uncertainties as
well as from uncertainties from energy scale and resolution of the reconstructed objects. They amount
for 10-20%.

5.6.2 Cross sections definitions and measurements

For the Wγ analysis, it has been decided to measure the cross sections only in a “extended” fiducial
phase space common to the electron and muon channels. It is defined by: a charged lepton with
pT > 25 GeV and |η| < 2.47, a neutrino with pT > 35 GeV, and a photon pT > 15 GeV well separated
from the charged lepton by requiring ∆R(`, γ) > 0.7.

Two types of cross sections are defined: for the inclusive cross section no further criteria are added,
for the exclusive cross section, one rejects events with any jet such that ET > 30 GeV and |η| < 4.4.

The derivation of the cross sections is similar to what is done for the ZZ andWZ analyses described
in 5.3.2.1, 5.3.2.2 and 5.3.2.3. The data are the numbers of selected events in the two electron and
muon final states 18.

5.6.2.1 Results

The tables 5.20 show the inclusive and exclusive cross sections obtained combining the electron and
muon channels. The p-value of the combined fit for the inclusive cross section is found to be very
good, 79.6 ± 0.1%. The combined fit for the exclusive cross section is even better with a p-value,
85.0± 0.1%.

The total errors amount for about 13% of the measured cross sections. As shown by the tables 5.20,
the measurements are totally dominated by systematics errors. The table 5.21 shows the main sys-
tematics errors on the combined measurement of the inclusive cross section. The main contributions
are from Photon identification and isolation and from DD backgrounds estimates.

The tables 5.20 give also the theoretical cross sections computed with MCFM. In the figures 5.27, the
predictions for the inclusive and exclusive cross sections are compared graphically to the measurement
combining all channels. Also shown are the measurements from each channel separately.

The measurements are above the predictions. These theoretical cross sections are at the NLO
QCD level. For the inclusive cross section, the discrepancy between data and NLO prediction is quite
significant, at the level of 2-σ or so. As discussed in section 5.2, the NNLO QCD order corrections have
been found to be 19% in [125] and the NLO EW order corrections at the level of -3%. A correction of
+15% brings the discrepancy at the 1-σ level.

18respectively 7399 and 10914 events (4449 and 6578 events for the exclusive selection)
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For the exclusive cross section, the discrepancy between data and theory is smaller, at the 1-σ level.
This is expected since the requirement of no jet in the final state is expected to reduce QCD corrections
in particular those not already included in the NLO QCD predictions of MCFM. The reduced NNLO
QCD correction found to be of the order of 7% further reduces further the Data-prediction discrepancy.

σWγ
fid Njet ≥ 0 [pb]

Measurement 2.77 +0.03
−0.03 (stat) +0.35

−0.30 (syst) +0.14
−0.13 (lumi)

Theory 1.96± 0.17

σWγ
fid Njet = 0 [pb]

Measurement 1.76+0.03
−0.03 (stat) +0.22

−0.19 (syst) +0.08
−0.08 (lumi)

Theory 1.39± 0.13

Table 5.20: Inclusive and exclusive Wγ → `νγ cross sections: measurements combining all channels
and theoretical predictions. The theoretical predictions are computed with MCFM.

Source Errors (%)

Luminosity +5.2
−4.8

jet and EmissT
+1.2
−1.3

Photon Id and Isolation +8.1
−7.3

Electromagnetic Scale +2.1
−2.0

QCD scales and PDFs +4.6
−4.4

Data Driven Backgrounds +8.2
−7.8

Table 5.21: Main systematic uncertainties on the combined inclusive Wγ → `νγ cross section in % of
the measured cross section.
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Figure 5.27: Measured Wγ → `νγ cross sections, per channel and combining all of them, normalized
to the theoretical predictions; Inclusive cross section on the left, exclusive cross section on the right.
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5.6.3 Anomalous Triple Gauge Couplings measurements

The production of Wγ pairs allows to probe the WWγ vertex. As shown by the tables 5.1, it is
sensitive to 7 anomalous Triple Gauge Couplings, viz the 3 C and P respecting parameters ∆gγ1 ,

∆κγ , and λγ , and the 4 C or P violating parameters gγ4 , gγ5 , κ̃γ , and λ̃γ . Traditionally the C or P
violating parameters are ignored. Furthermore one imposes U(1)em invariance which leads to ∆gγ1 = 0.
Therefore only limits on ∆κγ and λγ are derived. As for the other diboson analyses, the expectation
of the event counts in a given bin is a bilinear function of the anomalous couplings noted generically ζi

νbS(ζ) = Y b
00 +

2∑
i=1

Y b
0iζi +

2∑
i=1

Y b
iiζ

2
i +

2∑
i,j=1;j>i

Y b
ijζiζj (5.41)

Contrary to the ZZ, WZ andWW analyses, the data used for the derivation of limits on anomalous
couplings are not bin contents of some spectra histograms but simply counts of events such that
ETγ > 100 GeV. They are 2 events counts: the numbers of events in the electron and muons channels
separately 19. Only events selected by the exclusive selection are counted.

5.6.3.1 Results

One first considers the 2 one-dimension fits, i.e fits in which all but one of the parameters ∆κγ and
λγ are fixed at 0.

Parameter Observed Expected

∆κγ [ -0.41; 0.46 ] [-0.38 (+0.12
−0.18) ; 0.43(+0.18

−0.12) ]

λγ [-0.065; 0.061] [-0.060 (+0.018
−0.028) ; 0.056(+0.028

−0.018)]

Table 5.22: Observed and Expected one-dimension 95% Confidence Level Intervals of the anomalous
Couplings; the figures reported between parentheses are not errors but distributions widths (cf text).
(Wγ analysis)

The table 5.22 shows the Confidence Intervals for each of the one-dimension fits in the column
“Observed”. The Lower and Upper ends of the Confidence Interval for the anomalous Couplings are
shown in the figures 5.28.

The figures 5.28 show also the Asimov intervals ends, as before obtained replacing the actual data
by the SM expectations. A proper assessment of the “naturality” of the observed limits is obtained
generating pseudo experiments around the SM expectations. This allows to build the “natural” distri-
bution of the intervals ends shown in figures 5.28 with their means indicated as “Expected” as well as
their 1 and 2-σ widths. The means and 1-σ widths are reported in table 5.22 in the column “Expected”.

Both the table 5.22 and the figures 5.28 show that the actual Observed limits are in the expected
range of fluctuations around SM expectations 20.

Next one considers the two-dimension fit for which both ∆κγ and λγ are adjusted. The Observed
and Expected limits as well as the 1 and 2-σ bands are shown in figures 5.29. This figure shows that
the observed 2-dimension 95% Confidence Level Domain is within the expected fluctuations around
the SM expectations.

1982 and 86 events respectively
20Much more than in the ZZ and WZ cases, the Wγ anomalous couplings limits are dependent on the systematic

errors: if the systematics uncertainties are switched off, the sizes of the Confidence Intervals decrease by about 50%.
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5.6.3.2 EFT Results

At the time of the publication of the ATLAS Wγ analysis [92], no EFT analysis was performed. The
results shown in this section have been derived for this memoir.

As discussed before, the EFT operators analysis reduce the number of parameters from the 14
charged anomalous Couplings given in table 5.1 to just 5 parameters, among which 3 are respecting
C and P. The relations between the EFT parameters and the anomalous couplings to which the Wγ
production is sensitive are (cf equations (A.35) and (A.39)):

∆κγ =
m2
W

2

(CW
Λ2

+
CB
Λ2

)
and λγ =

3g2m2
W

2

CWWW

Λ2
(5.42)

Clearly there is a total degeneracy between the EFT parameters CW and CB in the Wγ measure-
ments, only the sum being constrained. The one-dimension fit on these parameters are identical and
will be noted hereafter as limit on CW,B. As clearly shown by equations (5.42), we are dealing here
with a simple rescaling of the anomalous couplings ∆κγ and λγ . The one-dimension 95% Confidence
Level Intervals are given in the table 5.23.

Compared to the limits on the same parameters from the WZ analysis listed in table 5.13, it
appears clearly that the Wγ analysis is much less constraining but on the EFT parameter CB/Λ

2

for which one gains a factor 2 to 3. If for a moment ones takes Cxyz ∼ 1, one sees that the lower
limits on Λ are around ∼ 0.1 TeV from CW,B/Λ

2 limits and around ∼ 0.25 TeV from CWWW /Λ
2 limits.

EFT parameter Observed [TeV −2] Expected [TeV −2]

CW,B/Λ
2 [ -99 ; 111] [ -92 ; 104]

CWWW /Λ
2 [-15.7 ; 14.8] [-14.6 ; 13.6]

Table 5.23: Observed and Expected one-dimension 95% Confidence Level Intervals on the EFT pa-
rameters. (Wγ analysis)

5.6.3.2.1 Consistency requirement As already discussed, a consistent application of the EFT
analysis requires to drop the two last terms in the parametrization of the signal expectation (5.41).
Doing so one gets the results shown in the tables 5.24.

Parameter With bilinear terms Without bilinear terms

∆κγ [ -0.41; 0.46 ] [ -0.45 ; 1.21 ]

λγ [-0.065; 0.061] [ -6.4 ; 1.6 ]

Table 5.24: Observed one-dimension 95% Confidence Level Intervals of the anomalous Couplings
obtained with and without bilinear terms in the Signal expectations (Wγ analysis)

Following a mechanism already discussed in the section 5.4.3.2 for the WZ analysis, the massive
degradation of the limits on λγ and therefore on CWWW /Λ

2 results from a quite small interference
between the SM amplitude and the amplitude associated to this anomalous coupling.

So it looks that within the framework of a consistent application of the EFT approach, the study of
the Wγ production brings very weak if any constrains. However the analysis described here was based
only on the event counting above ETγ > 100 GeV. This makes the fit results particularly sensitive to
the bounding from below that is built by the bilinear terms in (5.41). More bins would bring more
stability and alleviate partially the degradation of the limits when the bilinear terms are turned over.
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Figure 5.28: Lower and Upper Ends of the 95% Confidence Level Intervals for one-dimension fits.
The red lines show the Observed limits, the black solid lines the Asimov limits, the thin long dashed
black lines the Expected limits and the dashed lines the 1 and 2 σ-bands. (Wγ analysis)
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Figure 5.29: Observed, Asimov and Expected two-dimension 95% Confidence Level Domains. The
black solid lines show the Observed limits, the dotted lines the Asimov limits, the dashed lines the
Expected limits, the green and yellow bands correspond to the 1 and 2 σ-bands. The one-dimension
95% Confidence Level Domains for the Observed limits are reported on the anomalous Couplings axes.
(Wγ analysis)
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5.7 Study of the Zγ Production

Hereafter I present the analysis of the production of a pair of Zγ-bosons on the sample of the ATLAS
data at 7 TeV [92].

5.7.1 Selection and backgrounds

Two decay modes have been studied: the Zγ → `¯̀γ mode where the Z-boson decays in electrons or
muons pair and the Zγ → νν̄γ mode where the Z-boson decays in neutrinos pair

For the Zγ → `¯̀γ analysis the decay leptons are identified as in the Wγ analysis (cf section 5.6.1).
It is required that there exists exactly one pair of leptons of same flavor and opposite charge that forms
a system with invariant mass m`` > 40 GeV and that there is one isolated photon with EγT > 15 GeV.

For the Zγ → νν̄γ analysis, one requires a photon with EγT > 100 GeV and EmissT > 90 GeV. The
photon, missing energy and jets are required to be well separated in the transverse plane. Events with
leptons identified as in the Wγ analysis are rejected.
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Figure 5.30: Distributions of the transverse energy of the γ for the Zγ → `¯̀γ events combining
electron and muon decays (left) for the Zγ → νν̄γ events (right); The expected signal is taken from
an SHERPA (LO) simulation scaled so that the predicted signal and backgrounds estimates match the
observed yields.

The figures 5.30 show the distributions of the transverse energy of the γ in Zγ → `¯̀γ and Zγ → νν̄γ
events. The backgrounds are at the level of ∼ 15% for the Zγ → `¯̀γ events and of ∼ 60% for the
Zγ → νν̄γ events.

The main source of the backgrounds in the Zγ → `¯̀γ analysis (> 98%) is the Z + jets events
production. It is estimated from data in the same way than the W+jets background contribution is in
theWγ analysis. The systematic errors of∼ 20% result from the uncertainties on photon identification.

The main background sources for the Zγ → νν̄γ analysis are for 35% the production of Wγ events,
and for 25% each, the productions of W -boson and of γ + jets events.

The Wγ events can mimic νν̄γ events when the W -boson decay products are not reconstructed.
This contribution is determined from MC simulations with a systematic errors at the level of 15%.

The production of W -boson contributes to background when the W boson decays in a eν pair with
the electron reconstructed as a γ. The probability of such a misidentification, fe−>γ , is estimated on
eγ events forming a system with a mass close to the Z boson mass. A control region is defined by
substituting to the γ requirement in the νν̄γ selection, a requirement for an electron. Counting events
in this control region and using fe−>γ , one computes the number of events in the νν̄γ signal region.
The uncertainties on fe−>γ are dominating the ∼ 10% systematic error on this contribution.
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The γ + jets events contribute to background when missing energy builds up from decays of
heavy quark in neutrinos and energy mis-measurements. In the νν̄γ selection, EmissT and the photon
are required to be well separated. The contribution from this background is estimated from data by
inversing this separation. The selected events are then dominated by γ+jets events. From the number
of events so selected, one extrapolates the contamination in the signal region by using a extrapolation
factor determined in MC simulations. A systematic error on this contribution at the level of ∼ 20%,
is obtained by varying the thresholds on EmissT and jet multiplicity.

5.7.2 Cross sections definitions and measurements

As in the Wγ analysis, it has been decided to measure the cross sections only in a “extended” fiducial
phase space. For the Zγ → `¯̀γ analysis it is defined by 2 same flavor opposite charge leptons with
pT > 25 GeV and |η| < 2.47 forming a system of mass m`` > 40 GeV and a photon pT > 15 GeV
well separated from the charged lepton by requiring ∆R(`, γ) > 0.7. For the Zγ → νν̄γ analysis it
is defined by the transverse momentum of the two neutrinos system pννT > 90 GeV and and a photon
pT > 100 GeV.

As for the Wγ analysis two types of cross sections are defined: for the inclusive cross section no
further criteria are added, for the exclusive cross section, one rejects events with any jet such that
ET > 30 GeV and |η| < 4.4.

The derivation of the cross sections is similar to what is done for the other diboson analyses. The
data for the Zγ → `¯̀γ analysis are the two events counts in the electron and muon channels 21. For
the Zγ → νν̄γ analysis, the data are the single events count of selected events22.

5.7.2.1 Results

5.7.2.1.1 Zγ → `¯̀γ analysis

The tables 5.25 show the inclusive and exclusive cross sections for Zγ → `¯̀γ obtained combining
the electron and muon channels. The p-values of the combined fit for the inclusive and exclusive cross
sections are found to be very good, 86.9± 0.1% and 84.2± 0.1%, respectively.

The total errors amount for about 10% of the measured cross sections. As shown by the tables 5.25,
the measurement is dominated by systematics errors. The table 5.26 shows the main systematics errors
on the combined measurement of the inclusive cross section. The main contribution is from Photon
identification and isolation followed by the contributions from DD backgrounds estimates and from
the QCD Scales and PDFs.

The tables 5.25 give also the theoretical cross sections computed with MCFM. In the figures 5.31, the
predictions for the inclusive and exclusive cross sections are compared graphically to the measurement
combining all channels. Also shown are the measurements from each channel separately.

The agreement between prediction and measurement is good for both inclusive and exclusive cross
sections. As discussed in section 5.2, in [125] the NNLO QCD order corrections for the inclusive and
exclusive cross sections have been found to be 8% and 3% respectively. These corrections improve
the comparison between prediction and measurement for the inclusive cross sections and slightly
deteriorate for the exclusive cross sections. However, even taking into account, the additional NLO EW
corrections of the order of −5% discussed in [142], the agreement between prediction and measurement
remains excellent, of the order of 1-σ or less.

21respectively 1908 and 2756 events (1417 and 2032 events for the exclusive selection)
221094 and 662 events for the inclusive and exclusive selections respectively
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σZγ→`
¯̀γ

fid Njet ≥ 0 [pb]
Measurement 1.31+0.02

−0.02 (stat) +0.11
−0.10 (syst) +0.05

−0.05 (lumi)

Theory 1.18± 0.05

σZγ→`
¯̀γ

fid Njet = 0 [pb]
Measurement 1.05+0.02

−0.02 (stat) +0.10
−0.09 (syst) +0.04

−0.04 (lumi)

Theory 1.06± 0.05

Table 5.25: Inclusive and exclusive Zγ → `¯̀γ cross sections: measurements combining all channels
and theoretical predictions. The theoretical predictions are computed with MCFM.

Source Errors (%)

Luminosity +4.1
−3.7

Photon Id and Isolation +6.2
−5.6

Electromagnetic Scale +1.5
−1.5

QCD scales and PDFs +3.5
−3.4

Data Driven Backgrounds +3.7
−3.4

Table 5.26: Main systematic uncertainties on the combined inclusive Zγ → `¯̀γ cross section in % of
the measured cross section.
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Figure 5.31: Measured Zγ → `¯̀γ cross sections, per channel and combining all of them, normalized
to the theoretical predictions; Inclusive cross sections on the left, exclusive cross sections on the right.
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5.7.2.1.2 Zγ → νν̄γ analysis

The tables 5.27 show the inclusive and exclusive cross sections for Zγ → νν̄γ. Since the fit data is
a single events count there is no possible assessment of the quality of the fit.

σZγ→νν̄γfid Njet ≥ 0 [pb]
Measurement 0.133±0.013 (stat) ±0.020 (syst) ±0.005 (lumi)

Theory 0.156± 0.012

σZγ→νν̄γfid Njet = 0 [pb]
Measurement 0.116 ±0.010 (stat) ±0.013 (syst) ±0.004 (lumi)

Theory 0.115± 0.009

Table 5.27: Inclusive and exclusive Zγ → νν̄γ cross sections: measurements and theoretical predic-
tions. The theoretical predictions are computed with MCFM.

Source Errors (%)

Luminosity +4.4
−4.1

Photon Id and Isolation +13.9
−12.4

Electromagnetic Scale +5.9
−5.5

QCD scales and PDFs +3.4
−3.2

Data Driven Backgrounds +3.8
−3.8

Table 5.28: Main systematic uncertainties on the
inclusive Zγ → νν̄γ cross section in % of the mea-
sured cross section.

The total errors amount for about 20% of the
measured cross sections.

As shown by the tables 5.27, the measure-
ments is not totally dominated by systematics er-
rors with statistical errors amounting for a third
to a half of the total errors.

The table 5.28 shows the main systemat-
ics errors on the measurement of the inclu-
sive cross section. The main contribution is
from Photon identification and isolation followed
by the contribution from the Electromagnetic
scale.
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Figure 5.32: Measured Zγ → νν̄γ cross sections
normalized to the theoretical predictions.

The tables 5.27 give also the theoretical cross
sections computed with MCFM. In the figure 5.32,
the predictions for the inclusive and exclusive
cross sections are compared graphically to the
measurements.

The agreement between prediction and mea-
surement is good for both inclusive and exclusive
cross sections.

As discussed in section 5.2, in [125]
the NNLO QCD order corrections for the
inclusive and exclusive cross sections have
been found to be 12% and -2% respec-
tively.

These corrections slightly deteriorate the
the agreement between prediction and measure-
ments. However, even taking into account, the additional NLO EW corrections of the order of −5%
discussed in [142], the agreement between prediction and measurement remains excellent, of the order
of 1-σ or less.
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5.7.3 Anomalous Triple Gauge Couplings measurements

The production of Zγ pairs allows to probe the ZZγ and Zγγ vertices. As shown by the tables 5.1,
it is sensitive to 8 anomalous Triple Gauge Couplings, viz the 4 CP respecting parameters hγ3 , hγ4 ,
hZ3 , and hZ4 , and the 4 CP violating parameters hγ1 , hγ2 , hZ1 , and hZ2 . Traditionally the CP violating
parameters are ignored and only limits on hγ3 , hγ4 , hZ3 , and hZ4 are derived. As usual the expectation of
the event counts in a given bin is a bilinear function of the anomalous couplings noted generically ζi

νbS(ζ) = Y b
00 +

4∑
i=1

Y b
0iζi +

4∑
i=1

Y b
iiζ

2
i +

4∑
i,j=1;j>i

Y b
ijζiζj (5.43)

As for the Wγ analysis, the data used for the derivation of limits on anomalous couplings are
not bin contents of some spectra histograms but simply counts of events such that ETγ > 100 GeV.
They are 3 events counts: the numbers of the Zγ → `¯̀γ events in the electron and muons channels
separately and the number of the Zγ → νν̄γ events 23. In all cases, the exclusive selection is applied.

5.7.3.1 Results

One considers first the 4 one-dimension fits, i.e fits in which all but one of the anomalous couplings
are fixed at 0.

Parameter Observed Expected

hZ3 [ -1.3 ; 1.4 ] ×10−2 [ -1.5 (+0.5
−0.7) ; 1.6 (+0.7

−0.5) ] ×10−2

hZ4 [ -8.7 ; 8.7 ] ×10−5 [ -9.7 (+3.1
−4.6) ; 9.7 (+4.6

−3.1) ] ×10−5

hγ3 [ -1.5 ; 1.6 ] ×10−2 [ -1.7 (+0.5
−0.8) ; 1.8 (+0.8

−0.5) ] ×10−2

hγ4 [ -9.4 ; 9.2 ] ×10−5 [ -10.0 (+3.3
−5.0) ; 10.0 (+4.9

−3.3) ] ×10−5

Table 5.29: Observed and Expected one-dimension 95% Confidence Level Intervals of the anomalous
Couplings; the figures reported between parentheses are not errors but distributions widths (cf text).
(Zγ analysis)

The table 5.29 shows the Confidence Intervals for each of the one-dimension fits in the column
“Observed”. The Lower and Upper ends of the Confidence Interval for the anomalous Couplings hZ3
and hZ4 are shown in the figures 5.33.

The figures 5.33 show also the Asimov intervals ends obtained replacing the actual data by the
SM expectations. A proper assessment of the “naturality” of the observed limits is obtained gen-
erating pseudo experiments around the SM expectations to build the “natural” distributions of the
intervals ends. They are shown in figures 5.33 with their means indicated as “Expected” as well as
their 1 and 2-σ widths. The means and 1-σ widths are reported in table 5.29 in the column “Expected”.

Both the table 5.29 and the figures 5.33 show that the actual Observed limits are in the expected
range of fluctuations around SM expectations 24.

Next one considers the two-dimension fits for which all but two of the anomalous couplings are
fixed at 0. The ATLAS Zγ analysis chose to fit separately the pairs of the anomalous couplings
corresponding to each of the ZZγ and Zγγ vertices. Therefore the figures 5.34 show only the two

2315, 19 and 662 events respectively
24As for the limits obtained in the Wγ analysis, the systematic errors contribute significantly to the Zγ anomalous

couplings limits: if the systematics uncertainties are switched off, the sizes of the Confidence Intervals decrease by 50 to
60%.
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two-dimension fits for, on one hand hγ3 and hγ4 , and on the other hand, hZ3 and hZ4 . Are shown the
Observed and Expected limits as well as the 1 and 2-σ bands.

These figures show that the observed 2-dimension 95% Confidence Level Domains are within the
expected fluctuations around the SM expectations.

5.7.3.2 EFT Results

At the time of the publication of the ATLAS Zγ analysis [92], no EFT analysis was performed. The
results shown in this section have been derived for this memoir.

As discussed before, the EFT operators analysis reduces the number of parameters for the neutral
aTGCs, from the 12 neutral anomalous Couplings given in table 5.1 to just 4 parameters all violating
but one. The relations between the EFT parameters and the anomalous couplings to which the Zγ
production is sensitive are (cf equations (A.20), (A.22), (A.23) and (A.24)):

hγ3 = hγ4 = hZ4 = 0 (5.44)

hZ3 =
v2m2

Z

4cwsw

C
B̃W

Λ4
(5.45)

So the derivation of the limit on the single EFT parameter accessible is particularly simple since

one only has to rescale the one-dimension fit limits on hZ3 to obtain those on
C
B̃W
Λ4 . The results are

given in the table 5.30.

Compared to the limits on
C
B̃W
Λ4 from the ZZ analysis listed in table 5.7, it appears that the Zγ

analysis is much less constraining by a factor ∼ 3. If for a moment ones takes C
B̃W
∼ 1, one finds

that the limits from table 5.30 point to lower limits on Λ of ∼ 0.4 TeV .

EFT parameter Observed [TeV −4] Expected [TeV −4]

C
B̃W

/Λ4 [ -43. ; 47. ] [ -50. ; 54. ]

Table 5.30: Observed and Expected one-dimension 95% Confidence Level Intervals on the EFT pa-
rameters. (Zγ analysis)

5.7.3.2.1 Consistency requirement As already discussed, a consistent application of the EFT
analysis requires to drop the two last terms in the parametrization of the signal expectation (5.43).
Doing so the fit of hZ3 gets highly unstable with many local minima which break the usual procedure.
The table 5.31 gives an approximate error interval determined by visual inspection of the Profile
Likelihood curve which, as bad as it is, is enough to illustrate the main feature of what is going on.
The interference term of the hZ3 amplitude with the SM amplitude is so small that, as it already
happened for some parameters in the other diboson analyses, we loose effectively any sensitivity to
the anomalous coupling.

Parameter With bilinear terms Without bilinear terms

hZ3 [ -1.3 ; 1.4 ] ×10−2 [ -11 ; 3 ]

Table 5.31: Observed error Intervals of the anomalous Couplings obtained with and without bilinear
terms in the Signal expectations (Zγ analysis)

One concludes that within the framework of a consistent application of the EFT approach, the
study of the Zγ production brings no constrain on the EFT parameters. However as for the Wγ
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analysis, the situation would be highly improved by using spectra of the transverse energy of the
photon ETγ , rather than simple counts of events above a high ETγ threshold.

5.7.3.3 Comments

The first ATLAS and CMS publications on Zγ production [92, 168] reached approximately the same
sensitivity to anomalous couplings. The limits obtained improved significantly to the LEP and Fer-
milab results (cf table A.8). Both analyses are based on the transverse energy of the photon and in
effect count events above a threshold of the order of 100 GeV.

This is reasonable for the Zγ → `¯̀γ channel given its statistics. However the higher statistics
available in the Zγ → νν̄γ channel, which at the time was used by ATLAS but not by CMS, allows
to reach higher energies and therefore to improve limits.

This was demonstrated by CMS in [169] where using the Zγ → νν̄γ channel and bins at higher ETγ ,
a gain of 5 or so on the ATLAS aTGCs limits from table 5.29 was achieved. Going to the

√
s = 8 TeV

sample, CMS got a gain of about 3 using the Zγ → `¯̀γ channel [170] and a gain of about 10 using
the Zγ → νν̄γ channel [171] (cf table A.8). From table 5.30, one sees that this, translated in the EFT
framework, places a lower limit on Λ around ∼ 0.7 TeV.

At the time of writing, an ATLAS analysis of the
√
s = 8 TeV sample is on the point to be

published which drastically improves the ATLAS aTGCs limits from Zγ production [172].
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Figure 5.33: Lower and Upper Ends of the 95% Confidence Level Intervals for one-dimension fits.
The red lines show the Observed limits, the black solid lines the Asimov limits, the thin long dashed
black lines the Expected limits and the dashed lines the 1 and 2 σ-bands. (Zγ analysis)
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Figure 5.34: Observed, Asimov and Expected two-dimension 95% Confidence Level Domains. The
black solid lines show the Observed limits, the dotted lines the Asimov limits, the dashed lines the
Expected limits, the green and yellow bands correspond to the 1 and 2 σ-bands. The one-dimension
95% Confidence Level Domains for the Observed limits are reported on the anomalous Couplings axes.
(Zγ analysis)
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5.8 Summary and conclusions

Hereafter I summarize and comment the results that have been presented in the previous sections.

5.8.1 Cross sections measurements

The figure 5.35 shows the measurements of the cross sections normalized to the theoretical predic-
tions the ZZ production (section 5.3.2, [85]), the WZ production (section 5.4.2, [88]), the WW
production (section 5.5.2, [90, 91]), the Wγ production (section 5.6.2, [92]), and the Zγ production
(section 5.7.2, [92]).

The ZZ production measurement presented in figure 5.35 should be somewhat improved by a
on going analysis of the ZZ production in the 8 TeV sample which should include the ZZ → `¯̀νν̄
channel [173] in addition to the ZZ → ` ¯̀̀ ′ ¯̀′ channel. The errors on the Zγ → `¯̀γ cross section mea-
surement are expected to improve by a factor ∼ 2 from an ongoing analysis of the 8 TeV sample [172].

Measurement/Theory
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

 = 7 TeV s , γ ll→γZ
fid,Excl.σ

 = 7 TeV s , γν l→γW
fid,Excl.σ

 = 8 TeV s , WW
totσ

 = 8 TeV s , WZ
fidσ

 = 8 TeV s , ZZ
totσ

Measurement
Theory

Figure 5.35: Summary of measurements of the cross sections of diboson production normalized to
predictions.

The measurements in figure 5.35 are normalized to the theoretical predictions which are all at
the NLO QCD level but the prediction for the WW production which is at the NNLO QCD level.
As discussed in the previous sections, the agreement between measurements and predictions once the
NNLO QCD corrections are taken into account is good, below the 1.5-σ level.

5.8.2 Anomalous Triple Gauge Couplings measurements

The limits on neutral and charged measurements of the Anomalous Triple Gauge Couplings from
sections from sections 5.3.3, 5.7.3 5.4.3, 5.5.3, and 5.6.3 are gathered together in tables 5.32 and 5.33
respectively.

5.8.2.1 Neutral Anomalous Couplings

The measurements of the fZ,γ4,5 anomalous parameters parameterizing the anomalous couplings to which
the ZZ production is sensitive (cf table 5.1) are compared to the CMS, LEP and TEVATRON results
in table 5.34. The ATLAS and CMS fZ,γ4,5 limits are compared in figure 5.36.
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Parameter ZZ analysis

fγ4 [-0.0046, 0.0046 ]

fZ4 [-0.0041, 0.0040 ]

fγ5 [-0.0046, 0.0047 ]

fZ5 [-0.0040, 0.0040 ]

Parameter Zγ analysis

hZ3 [ -1.3 ; 1.4 ] ×10−2

hZ4 [ -8.7 ; 8.7 ] ×10−5

hγ3 [ -1.5 ; 1.6 ] ×10−2

hγ4 [ -9.4 ; 9.2 ] ×10−5

Table 5.32: Observed one-dimension 95% Confidence Level Intervals of the neutral anomalous Cou-
plings from sections 5.3.3 and 5.7.3.

Parameter WZ analysis

∆gZ1 [-0.019; 0.029]

∆κZ [-0.19 ; 0.30 ]

λZ [-0.016; 0.016]

Parameter WW analysis, LEP scenario

∆gZ1 [ -0.014 ; 0.026 ]

∆κZ [ -0.024 ; 0.019 ]

λZ [ -0.019 ; 0.019 ]

Parameter Wγ analysis

∆κγ [ -0.41; 0.46 ]

λγ [-0.065; 0.061]

Table 5.33: Observed one-dimension 95% Confidence Level Intervals of the anomalous Couplings from
sections 5.4.3, 5.5.3, and 5.6.3

As shown by the table 5.34, the fZ,γ4,5 limits has been greatly improved at the LHC with respect
the limits established at LEP and TEVATRON. As mentioned earlier, the ATLAS results present here
were obtained using the ZZ → ` ¯̀̀ ′ ¯̀′ channel only [85]. The gap between these results and the CMS
results displayed in figure 5.36 is expected to be filled by an ongoing analysis which should include
the ZZ → `¯̀νν̄ channel as well [173].

The measurements of the hZ,γ3,4 anomalous parameters parameterizing the anomalous couplings to
which the Zγ production is sensitive (cf table 5.1) are compared to the CMS, LEP and TEVATRON
results in table 5.35.
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fγ4 fZ4 fγ5 fZ5

ATLAS 8 TeV ZZ (5.3.3) [−4.6; 4.6]× 10−3 [−4.1; 4.0]× 10−3 [−4.6; 4.7]× 10−3 [−4.0; 4.0]× 10−3

CMS 7+8 TeV ZZ [174] [−3.0; 2.6]× 10−3 [−2.1; 2.6]× 10−3 [−2.6; 2.7]× 10−3 [−2.2; 2.3]× 10−3

LEP [175] [−0.17; 0.19] [−0.28; 0.32] [−0.35; 0.32] [−0.34; 0.35]

D0 [176] ; ΛFF = 1.2 TeV [−0.26; 0.26] [−0.28; 0.28] [−0.30; 0.28] [−0.31; 0.29]

CDF [177] ; ΛFF = 1.2 TeV [−0.10; 0.10] [−0.12; 0.12] [−0.11; 0.11] [−0.13; 0.12]

Table 5.34: One-dimension 95% Confidence Level Intervals for neutral aTGCs fZ,γ4,5 from LEP, TEVA-
TRON and LHC
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γ
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γ
4f

Figure 5.36: ATLAS and CMS Observed one-dimension 95% Confidence Level Intervals of the neutral
anomalous Couplings fγ,Z4,5 .

As shown by the table 5.35, the improvement is dramatic at LHC with respect to previous colliders.
One notes a huge difference between the ATLAS and CMS results. As discussed in section 5.7.3, this
is due to both the use of the 8 TeV sample by CMS and a better use of the highest momenta available
in Zγ events. An ongoing ATLAS analysis will erase this difference soon [172].

hγ3 hZ3 hγ4 hZ4

ATLAS 7 TeV Zγ (5.7.3) [−1.5; 1.6]× 10−2 [−1.3; 1.4]× 10−2 [−0.94; 0.92]× 10−4 [−0.87; 0.87]× 10−4

CMS 8 TeV Zγ [171] [−1.12; 0.95]× 10−3 [−1.50; 1.64]× 10−3 [−3.80; 4.35]× 10−6 [−3.96; 4.59]× 10−6

LEP [175] [−0.05; 0.00] [−0.19; 0.06] [0.01; 0.05] [−0.04; 0.13]

D0 [178] [−0.027; 0.027] [−0.026; 0.026] [−0.0014; 0.0014] [−0.0013; 0.0013]

CDF [179] [−0.022; 0.022] [−0.022; 0.022] [−0.0009; 0.0009] [−0.0009; 0.0009]

Table 5.35: One-dimension 95% Confidence Level Intervals for neutral aTGCs hV3,4 from LEP, TEVA-
TRON and LHC
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Figure 5.37: Observed one-dimension 95% Confidence Level Intervals of the charged anomalous
Couplings from LEP, TEVATRON and LHC
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5.8.2.2 Charged Anomalous Couplings

The table 5.36 show the charged anomalous parameters which parametrize the anomalous couplings
to which the WZ, WW and Wγ productions are sensitive (cf table 5.1). As it was explained in the
section 5.5.3, the WW analysis relies on the LEP scenario which corresponds to relations between the
anomalous couplings

λγ = λZ and ∆gZ1 = ∆κZ + tan2 θW∆κγ (5.46)

In table 5.36, the one-dimension intervals for ∆κγ have been obtained from the ∆κZ intervals of the
WZ and WW analyses using the relation ∆κγ = −∆κZ/ tan2 θW . On the other hand the limits on
∆gZ1 are directly those obtained in these analyses.

∆gZ1 ∆κγ λγ

ATLAS 8 TeV WZ [ -0.019 ; 0.029 ] [ -1.00 ; 0.63 ] [ -0.016 ; 0.016 ]

ATLAS 8 TeV WW [ -0.014 ; 0.026 ] [ -0.063 ; 0.080 ] [ -0.019 ; 0.019 ]

ATLAS 7 TeV Wγ no sensitivity [ -0.41 ; 0.46 ] [ -0.065 ; 0.061 ]

CMS 8 TeV WW [180] [ -0.047 ; 0.022 ] [ -0.130 ; 0.095 ] [ -0.024 ; 0.024 ]

CMS 7 TeV Wγ [168] no sensitivity [ -0.38 ; 0.29 ] [ -0.050 ; 0.037 ]

LEP [175] [ -0.054 ; 0.021 ] [ -0.099 ; 0.066 ] [ -0.059 ; 0.017 ]

D0 [181] ΛFF = 2 TeV [ -0.034 ; 0.084 ] [ -0.158 ; 0.255 ] [ -0.036 ; 0.044 ]

Table 5.36: Observed one-dimension 95% Confidence Level Intervals of the charged anomalous Cou-
plings(LEP scenario) from LEP, TEVATRON and LHC

The limits on charged anomalous couplings are compared to the CMS, LEP and TEVATRON
results in figure 5.37. As one can see the LHC limits at 8 TeV outperform the limits at the previous
colliders, although the LEP limit on ∆κγ is still among the best ones.

5.8.2.3 EFT results

The tables 5.37 and 5.38 collect the limits on the coefficients of EFT operators for neutral and charged
anomalous couplings respectively.

As one can see from table 5.37 the most stringent limits for neutral EFT operators are now from
the ZZ analysis (see section 5.3.3). As mentioned earlier some improvements are to be expected from
ongoing analyses [172, 173], about a factor ∼ 2 for the ZZ results and ∼ 10 for the Zγ results, although
no measurement of the CP violating hZ,γ1 to which the Zγ production is sensitive (cf table 5.1) and
which bring constrain on EFT operators (cf equations (A.25), (A.26) and (A.28)) is foreseen. If the
Cis are 1, this would translate in limits for Λ at the level of 0.7 TeV.

EFT Parameter ZZ analysis Zγ analysis

CP CB̃W /Λ
4 [-15.53 , 15.65 ] [ -43. ; 47. ]

CBB/Λ
4 [ -7.98 , 7.83 ] not measured

CP CBW /Λ
4 [ -8.43 , 8.56 ] not measured

CWW /Λ
4 [ -7.07 , 7.17 ] not measured

Table 5.37: Observed one-dimension 95% Confidence Level Intervals of the neutral EFT parameters
in TeV −4
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The table 5.38 shows that the most stringent limits are from the WZ and WW analyses (see
sections 5.4.3 and 5.5.3). But for the CB/Λ

2 parameter for which only the WW limits matters, there
is a clear interest in the combination of these two diboson production channels, which optimistically
could bring the limit on Λ in the range of 0.6 TeV if for a moment one puts the Cis at 1.

EFT parameter WZ analysis WW analysis Wγ analysis

C and P CW /Λ
2 [-4.3 ; 6.8] [ -5.2 ; 10.1 ] [ -99 ; 111]

CB/Λ
2 [-320 ; 210] [ -20 ; 26. ] [ -99 ; 111]

CWWW /Λ
2 [-3.9 ; 4.0] [ -4.5 ; 4.5 ] [-15.7 ; 14.8]

C and/or P C
W̃WW

/Λ2 , C
W̃
/Λ2 not measured not measured not measured

Table 5.38: Observed one-dimension 95% Confidence Level Intervals of the charged EFT parameters
in TeV −2;

Finally, as an exercise I tried in the individual diboson analyses sections presented in this memoir,
to apply the EFT consistency requirement consisting in removing quartic dependence on anomalous
couplings in the signal expectations (cf sections 5.3.3.3, 5.4.3.2 5.5.3.2, 5.6.3.2, and 5.7.3.2). The
conclusions of the exercise look rather distressing since it appears that under this requirement, only
the WZ and WW analyses can bring some constrains and only on the sole CW /Λ

2 parameter. However
one should note that none of the analyses presented here were ever optimized in the perspective of
this requirement which has drastic consequences. Although it could be that data do not yet allow
to be insensitive to the orders that are neglected by the usual EFT expansion, it also true that
experimentalists had no chance yet to design strategies to cope with such a radical novelty.

5.8.3 Conclusions

The measurements of the cross sections of diboson productions on data of the Run 1 period have
already motivated a surge of theoretical QCD developments. Experimental errors are close and some-
times slightly better than the theoretical errors.

Clearly with an energy as high as 13 TeV and a far larger expected integrated luminosity, the
measurements of the cross sections of the Run 2 period will provide some of the most stringent tests
of the Standard Model, challenging the QCD and EW predictions of the higher most orders.

The limits on anomalous couplings at LHC have already outperformed the limits from previous
colliders. The Limits on neutral anomalous couplings are going to be improved by ongoing analyses
of the 8 TeV sample. Time is right to envision combinations of diboson production channels within
each of the ATLAS and CMS collaborations and between them.

The currently very popular Effective Field Theory approach for the analyses of the anomalous
couplings offers an exciting as well as challenging perspective to test the Standard model at further
and further higher scales and to track down indirectly new Physics that could be hiding there.





Concluding remarks

In this memoir, I presented some of my contributions to the preparation of the ATLAS detector and
to the study of the two vector bosons production at the LHC.

Having started to work on the Muon Spectrometer project in 1995, I have been able to contribute
to the optimization of the design of this detector, to the understanding of its performance, and to its
tests and commissioning, all over the years which finally led to its successful inception as soon as the
collision of protons started to pour their products in ATLAS.

I contributed chiefly to the reconstruction of the muons both in “Standalone” mode, i.e within
the Muon Spectrometer and in “Combination” mode, i.e combining ATLAS sub-detectors. Also I
invested heavily in the Description of the Detector, one of the items which, as the description of the
magnetic field and the alignment of the detection units of the Muon Spectrometer, are of momentous
importance for the reconstruction. Thanks to a thorough work on this items, my colleagues and I
forged tools on which, from the earliest days, the ATLAS collaboration could rely to improve and
understand the detector.

As explained in this memoir the goal of this work of the reconstruction of the muons has been to
provide the best possible performance, in terms of resolution and of efficiency as well as, importantly,
of purity of the candidates identified as muons. The two goals of high efficiency and high purity, were
the cornerstone principles for the whole of the development period of the STACO chain of reconstruc-
tion. As it has been recounted, the performance of this chain has been determined, and its qualities
confirmed, in test beams and cosmics data and in innumerable Physics analyses on simulated data
prior to the first LHC data. Finally its excellence was demonstrated on the collisions data themselves.
The chain was perfectly functional right from the start of proton collisions and ready to serve the
analyses of the Physics accessible at the LHC.

I dedicated myself to the studies of the vector bosons interactions in the processes of production
of two bosons at the LHC. In this memoir, I have presented the results of these studies, the cross
sections which have been measured as well as the limits on the anomalous Triple Gauge Bosons Cou-
plings which have been obtained.

The measurements of the cross sections of the diboson productions on the data of the Run 1 pe-
riod have already galvanized the realm of the QCD and Electroweak high order corrections, presenting
challenging tests of the Standard Model. These tests will be further strengthened with the higher lu-
minosity and energy data to come.

The limits on the anomalous Triple Gauge couplings have been improved, dramatically for most of
them, with respect the limits at the previous colliders. I presented the first analyses in the framework
of the Effective Field Theory approach. This approach, presently advocated with strength by many
theorists, is a exciting framework in which the anomalous couplings of vector bosons and of the Higgs
boson join in the quest of a high energy scale physics beyond the Standard Model. The advent of the
LHC data triggered new developments in this area too. New challenges for the experimental analyses
came out which will have to be taken up with the coming LHC data.
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Appendix A

Interactions between Electroweak
Gauge Bosons

In this appendix, I review the theory and measurements of the interactions between Electroweak
Gauge Bosons, the W , Z and γ bosons.

Within the Standard Model, these interactions are consequences of the non-Abelian nature of the
Local Gauge Symmetries under which the Lagrangian of the model is invariant. Crucially the W ,
Z and γ fields are not the Gauge fields of these Symmetries but the physical fields relevant after
the Spontaneous Electroweak Symmetry breaking induced by the Higgs mechanism. The interactions
between the W , Z and γ bosons emerge from the interactions between the fundamental Gauge fields
which are determined by the SU(2)L × U(1)Y Gauge structure of the Standard Model. Among these
interactions are Triple bosons couplings, the forms and number of which are rigidly prescribed. Notably
the couplings between three neutral Z and γ bosons are forbidden.

Various frameworks have been proposed to describe possible anomalous couplings different from
those prescribed by the Standard Model Lagrangian. The most phenomenological of these frameworks,
the Effective Lagrangian and Vertex Function approaches, aim to an effective description of departures
from the Standard Model only limited by the most basic prescriptions: Lorentz invariance, Bose sym-
metry and possibly U(1)em invariance. Instead, the more ambitious approach of the Effective Field
Theory describes these departures as the low energy effects of some unspecified high energy physics.
This powerful approach can embrace in a consistent framework all the deviations from the Standard
Model from anomalous interactions between W , Z and γ bosons to anomalous couplings and decays
of the Higgs boson.

In the first section A.1 of this appendix, I review how the interactions between W , Z and γ
bosons emerge from the Standard Model Lagrangian insisting of the striking symmetry between γ
and Z boson. Modifications of the Lagrangians describing these interactions are briefly discussed as
introductions to the Effective Lagrangian and Effective Field theory approaches of the deviations from
the Standard Model prescriptions.

The next two sections A.2 and A.3 discuss in details these approaches for the anomalous interactions
first between three neutral bosons Z and γ bosons, the so-called Neutral anomalous Triple Gauge
Bosons Couplings and then between two W bosons and one neutral boson, the so-called Charged
anomalous Triple Gauge Bosons Couplings.

The fourth section A.4 offers a review of the measurements of the anomalous Triple Gauge Bosons
Couplings that have been performed at the LEP, TEVATRON and LHC colliders.

The last section A.5 briefly discusses the currently very active field of the Global EFT analyses
where the limits on anomalous Triple Gauge Boson Couplings join the Electroweak Precision tests
and Higgs boson measurements, in the search of low-energy signs of a Physics Beyond the Standard
Model.
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A.1 Gauge Bosons interactions in the Standard Model

In this section, we remind how the interactions between the W±, Z and γ emerge from the Lagrangian
of the Standard Model (SM). The symmetry between Z and γ is emphasized. All the interactions
terms, but the 4 W -bosons interactions vertex, are shown to follow from a slightly augmented minimal
coupling prescription for U(1) Gauge symmetries acting on the “matter” field W±.

The electroweak sector of the SM is defined by a Lagrangian invariant under the SU(2)L ×U(1)Y
Gauge symmetry with a specific matter content. The Gauge fields are noted W i

µ with i running from
1 to 3 for SU(2)L and Bµ for U(1)Y . The covariant derivative for a SU(2)L doublet of hypercharge
Y is

Dµ = ∂µ + ig
σi

2
W i
µ + ig′

Y

2
Bµ (A.1)

where the σi are the Pauli matrices and g and g′ are the coupling constants of SU(2)L and U(1)Y .
The matter content of the theory is defined for each generation in terms of SU(2) representations with
hypercharges assigned in order to recover at the end the appropriate electromagnetic charges: a left-

handed quark doublet qL =

(
uL
dL

)
, a left-handed lepton doublet lL =

(
νL
eL

)
and four right-handed

singlets uR, dR, eR, and νR with hypercharges Y (lL) = −1, Y (eR) = −2, Y (νR) = 0, Y (qL) = 1/3,
Y (uR) = 4/3 and Y (dR) = −2/3. To this one adds the Higgs complex scalar field doublet H to which
the hypercharge Y = 1 is assigned.

One defines four new fields, W±µ , Zµ and Aµ built from the four W i
µ and Bµ fields as

W±µ = (W 1
µ ∓W 2

µ)/
√

2 (A.2)

Zµ = crW
3
µ − srBµ , Aµ = srW

3
µ + crBµ (A.3)

where cr and sr are the cosine and the sine of θr some mixing angle of the W 3
µ and Bµ fields. Couplings

between the new fields emerge from the kinetic terms of the W i
µ and Bµ fields:

Lkin = −1

4
W i

µνW
iµν − 1

4
BµνB

µν (A.4)

where W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW
j
µW k

ν and Bµν = ∂µBν − ∂νBµ. The substitution in (A.4) of the
W i
µ and Bµ fields by the W±µ , Zµ and Aµ fields, leads to a crowd of terms in which one can identify

Triple Gauge bosons Couplings (TGC)

LSMTGC = −igsr
[
Aν(W+

µνW
−µ −W−µνW+µ) +AµνW+

µ W
−
ν

]
−igcr

[
Zν(W+

µνW
−µ −W−µνW+µ) + ZµνW+

µ W
−
ν

] (A.5)

and Quartic Gauge bosons Couplings (QGC)

LSMQGC = −g2s2
r(W

−
µ W

+µAνA
ν −W−µ W+

ν A
µAν)− g2c2

r(W
−
µ W

+µZνZ
ν −W−µ W+

ν Z
µZν)

− g2srcr(2W
−
µ W

+µAνZ
ν −W−µ W+

ν A
µZν −W−µ W+

ν Z
µAν)

− 1

2
g2(W+µW+νW−µ W

−
ν −W+µW+

µ W
−νW−ν ) (A.6)

where Aµν = ∂µAν − ∂νAµ and Zµν = ∂µZν − ∂νZµ.

This is how the TGCs and QGCs come out in the SM. This dry way to present things provides no
insight on what is going on. What follows is an attempt to “naturalize” (A.5) and (A.6).
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First one notes a striking symmetry between the Aµ and Zµ fields in (A.5) and (A.6).
One knows that the Aµ field singles out with the choice θr = θW where θW , the Weinberg angle,

is defined by tan θW = g′/g. With the above hypercharge assignment of the fermions, Aµ couples
identically to the left-handed and right-handed fermions. Most importantly, due to the Higgs doublet
hypercharge assignment, Aµ remains massless after the Spontaneous Symmetry Breaking (SSB) when
the Higgs doublet is expanded about the minimum dictated by the Higgs potential.

However θW has no particular role in Lkin as only g does enter in it. Therefore as far as Lkin is
concerned, the Aµ and Zµ fields should appear very similar. The inverse of (A.3)

W 3
µ = crZµ + srAµ , Bµ = −srZµ + crAµ (A.7)

tells what the symmetry between the Aµ and Zµ fields is. Clearly the simultaneous crossed substitu-
tions A ↔ Z and sr ↔ cr let the Lagrangian (A.4) unchanged. And indeed one can check that this
formal symmetry hold true in (A.5) and (A.6). Therefore what ever “happens” to a γ in terms of
TGC and QGC, “happens” to a Z too and reciprocally. This halves the mnemonic effort to remember
the TGCs and QGCs in the SM!

Actually all that “happens” to a γ or a Z can be understood quite simply by considering that two
U(1) symmetries, U(1)A and U(1)Z associated respectively to the A and Z fields, apply to the Spin-1
W boson field seen as the “matter” field. This makes the vertices that will emerge as “natural” as the
vertex of a γ with an electron is a “natural” consequence of requiring U(1)em for the Spin-1

2 electron
“matter” field. Indeed it can be shown that one can write Lkin in terms of the W±µ , Zµ and Aµ fields
as [182]

Lkin = −1

4
AµνA

µν − 1

4
ZµνZ

µν − 1

2
(DµW+

ν −DνW+
µ )†(DµW+ν −DνW+µ)

− ig(srA
µν + crZ

µν)W+
µ W

−
ν −

1

2
g2(W+µW+νW−µ W

−
ν −W+µW+

µ W
−νW−ν ) (A.8)

where Dµ = ∂µ + ig(srAµ + crZµ).
The first three terms of (A.8) are those of a theory with U(1)A and U(1)Z acting on the Spin-1

matter field W± 1. Indeed the first two terms in (A.8) are the standard kinetic terms for the Zµ and
Aµ fields and the third term is the implementation of the minimal prescription for the U(1) couplings
to the A and Z fields. This term generates almost all the TGCs and QGCs of the SM

− (DµW+
ν −DνW+

µ )†(DµW+ν −DνW+µ)/2 =

−W−µνW+µν/2

− igsrAν(W+
µνW

−µ −W−µνW+µ)− igcrZν(W+
µνW

−µ −W−µνW+µ)

− g2s2
r(W

−
µ W

+µAνA
ν −W−µ W+

ν A
µAν)− g2c2

r(W
−
µ W

+µZνZ
ν −W−µ W+

ν Z
µZν)

− g2srcr(2W
−
µ W

+µAνZ
ν −W−µ W+

ν A
µZν −W−µ W+

ν Z
µAν) (A.9)

where W+
µν = ∂µW

+
ν − ∂νW

+
µ . The first term of (A.9) is the kinetic term for the W± field. The

2nd and 3rd terms describe triple vertices WWγ and WWZ. The 4th and 5th terms describe quartic
vertices WWγγ and WWZZ. The last term describes a WWZγ quartic vertex and follows naturally
from having simultaneously U(1)A and U(1)Z .

1The whole affair in this section is to track and to re-express in terms of Aµ and Zµ, the couplings between the
triplet of non-abelian SU(2) gauge fields W−µ , W+

µ and W 3
µ . Beside a four W interactions terms, they amount for a U(1)

symmetry acting on the spin-1 charged field W±µ with a Yang-Mills non-minimal coupling to W 3
µ [183].
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W W

/Zγ

W W

/Zγ /Zγ

Figure A.1: Standard Model TGC and QGC involving γ or Z

The situation can be graphically represented as in the figures A.1: in a way very similar to the
case of QED for a fermion field, to the “matter” line of a W boson, one attaches one or two U(1)
Gauge boson lines, i.e or a γ bringing a factor gsw or a Z-boson bringing a factor gcw

2. That one has
vertices with 2 Gauge bosons attached is similar to the case of QED for a charged scalar: the gauge
invariance requires a quartic vertex with 2 Gauge bosons attached to the matter line in addition to
the usual triple vertex with only one Gauge boson [184].

Standing apart, are the 4th (a TGC) and 5th (a QGC) terms of (A.8). There is nothing to do for
the 5th term. It describes a 4 W -bosons vertex that is known to be necessary for the cancellation of
unitary violation in the scattering of two W -bosons. It is irreducible to this U(1)A,Z approach.

The 4th term is amenable to reason at the price of slight extension. It is a WW [γ/Z] TGC term
but with a non-minimal coupling to the magnetic moment of the W -boson. It is U(1) invariant since
it is built on the field strength tensors Aµν and Zµν which are invariant on their own. Therefore from
the point of view of U(1) invariance, the coupling constant in front of this term is unconstrained.
Let’s multiply it by an arbitrary constant κV with V = γ, Z. Gathering all the Triple Gauge couplings
terms for e.g. the Aµ field, one gets

LTGC,γ = igsw( Aν [W−µ(∂νW
+
µ )− (∂νW

−
µ )W+µ]

+W−ν [κγW
+µ(∂νAµ)− (∂νW

+
µ )Aµ]

+W+ν [Aµ(∂νW
−
µ )− κγ(∂νAµ)W−µ] ) (A.10)

One sees that the value κγ = 1 is special since it makes the preceding expression invariant under the
cyclic permutation of the W−, W+ and A fields. This feature is not an accident and does reveal
the SU(2) origin of the fourth term of (A.8). It holds between the W−, W+ and W 3 fields because
they form a triplet of non-abelian Yang-Mills gauge fields. One can include this feature by defin-
ing a slightly extended U(1) coupling prescription, the Yang-Mills non-minimal coupling prescription
which augments the minimal coupling prescription with a term −igV µνW+

µ W
−
ν . This Yang-Mills

non-minimal coupling prescription, is crucial for the cancellation of the unitary violations of tree am-
plitudes of some electroweak processes [93].

So with the Yang-Mills non-minimal coupling prescription, all the TGCs terms and almost all the
QGCs terms of the SM collected in (A.5) and (A.6), result from our U(1)A and U(1)Z symmetries,
a feature which is graphically captured in figures A.1. The only exception is the 4 W bosons QGC
vertex.

2This shows or at least helps to remember that the SM TGCs and QGCs which involve γs or Zs, involve always a
pair of W+W− bosons: they are needed to draw the “matter” line.
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So the SM Lagrangian generates only WW [Z/γ] Triple Gauge Bosons vertices and WWWW and
WW [Z/γ][Z/γ] Quartic Gauge Bosons vertices. There is no coupling involving only neutral Gauge
bosons. All the couplings emerge from the transformation of the Gauge invariant terms of (A.8). And
all this is completely prescribed by the SU(2)L × U(1)Y Gauge structure of the SM.

How then can we introduce and describe couplings beyond those prescribed by the SM? One can
start by modifying the Lagrangians directly. Focusing on the TGC Lagrangian (A.5) and specifically
on the A field terms, one can contest the Yang-Mills prescription and introduces back an anomalous
coupling to the magnetic moment of the W -boson as we did in (A.10)

LaTGC,γ == −igsr[Aν(W+
µνW

−µ −W−µνW+µ) + (1 + ∆κγ)AµνW+
µ W

−
ν ] (A.11)

Since we do want to keep the U(1)em invariance, we do not try to modify the constant in front of the
first term above since it gives the electromagnetic charge of the W -boson. But for the Z field terms
in (A.5), we do not have such scruples, so that we can propose a new TGC Lagrangian such as

LaTGC = −igsr[Aν(W+
µνW

−µ −W−µνW+µ) + (1 + ∆κγ)AµνW+
µ W

−
ν ]

−igcr[(1 + ∆gZ1 )Zν(W+
µνW

−µ −W−µνW+µ) + (1 + ∆κZ)ZµνW+
µ W

−
ν ]

(A.12)

We can continue in this way and introduce new terms, including pure neutral couplings3, in the La-
grangians. This is the Effective Lagrangian approach that will be detailed in the next sections with
the closely related Vertex Function approach.

Alternatively one can generate new couplings reiterating the mechanism that allowed the SM TGCs
and QGCs to emerge: one starts from a SU(2)L × U(1)Y invariant term and by substitution of the
Before-SSB fields (the W 3

µ , Bµ and Higgs doublet H fields) by the After-SSB fields (the A, Z, W±

and Higgs boson fields) one obtains couplings between the later 4. Such a SU(2)L × U(1)Y invariant
term will be an operator, i.e a product of the Before-SSB fields multiplied by a coupling constant. The
mass-dimension of this coupling constant should be such that the overall term is of mass-dimension
4 as required for a Lagrangian term. One knows that renormalization would be spoiled if the mass-
dimension of this coupling constant is strictly negative [186]. If one restricts the mass-dimension of
the coupling constants of these new interactions to be greater than or equal to 0, i.e if one considers
operators of dimension four at most, it turns out that the SM Lagrangian contains already all the
terms of this kind with couplings fixed by the Gauge invariance. Therefore if SU(2)L × U(1)Y is
imposed, novel interactions constructed in this way are necessarily non-renormalizable interactions 5.
This is the realm of the Effective Field Theory approach.

3For what concerns the couplings of Three Neutral Gauge Bosons, beside γγγ coupling which is prevented by the
Furry’s theorem, the Zγγ and ZZγ couplings from dimension-4 operators in A and Z fields can be excluded on the basis
of U(1)em alone. Indeed these operators will contain three A and Z fields and a field derivative. For these operators
to be U(1)em invariant, the A field should enter via a Aµν . The Zγγ coupling would have to contain two Aµν which
together exhaust the dimension-4 allowed. So Zγγ is excluded. Next the ZZγ coupling which is necessarily of the form
AµνZµZν is excluded, since Aµν is antisymmetric while ZµZν is symmetric . And indeed imposing only U(1)em, one
finds in [185] that there exists only one dimension-4 operator describing a Triple neutral Bosons interaction, a ZZZ
vertex: ÕZ∗Z∗Z∗5 = ZµZν(∂σZσ). However this interaction has no contribution if the Z-bosons couple to light fermions
pairs. Actually in the discussions on the interactions of Gauge bosons, the condition ∂µV

µ = 0 for all massive bosons
involved is almost universally used on this basis that the bosons are on-shell or that they are assumed to couple to light
fermions pairs.

4Examples of this in provided in section B.
5Non renormalizable in the sense in which e.g. QED is renormalizable, i.e not only that quantum divergences can be

renormalized, i.e absorbed by a redefinition of the parameters of the theory, but also that this involves a finite number
of parameters. In non-renormalizable theory divergences can be still absorbed by a redefinition of the parameters but
there should be an infinite number of couplings. Now, if the non-renormalizable terms are low-energy effects from high
energy interactions at a large scale Λ, one can rank these coupling by their inverse power of Λ, c ∼ 1/Λdi−4, i.e in the
order of the importance of their low-energy effects. Then it will be appropriate, at the price of a limited precision in the
computations, to work with a finite number of couplings retaining them up to some rank. In that way non-renormalizable
theory can be made effective and predictive, i.e as good as a renormalizable theory at least at low energy [186].
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A.2 Neutral Anomalous Triple Gauge Couplings

In this section, I review the theoretical frameworks that have been designed to describe the interactions
of three neutral Gauge bosons, Z-boson or γ, beyond those prescribed by the Standard Model. All
these frameworks are phenomenological or effective in the sense that the interactions do not arise from
an explicit underlying theory beyond the Standard Model. Instead these frameworks just aim to write
down all interactions which are possible under a minimal set of constraints likely to be respected by
any of these theories. The vertices of interest are ZZZ, ZZγ and Zγγ with the additional condition
that two of these bosons are on-shell 6.

A.2.1 Effective Lagrangian approach

The first approach is to write down the most general Lagrangian with all possible Lorentz structures
built with the Z-boson and γ fields, but with the fewest number of field derivatives. Under the
additional constraint that the Gauge symmetry Uem(1) is respected, this effective Lagrangian is [188]

LNB =
e

m2
Z

[
−
{
fγ4 (∂µF

µβ) + fZ4 (∂µZ
µβ)

}
Zα(∂αZβ) +

{
fγ5 (∂σFσµ) + fZ5 (∂σZσµ)

}
Z̃µβZβ

−
{
hγ1(∂σFσµ) + hZ1 (∂σZσµ)

}
ZβF

µβ −
{
hγ3(∂σF

σρ) + hZ3 (∂σZ
σρ)

}
ZαF̃ρα

−
{
hγ2
m2
Z

[∂α∂β∂
ρFρµ] +

hZ2
m2
Z

[∂α∂β(�+m2
Z)Zµ]

}
ZαFµβ

+

{
hγ4

2m2
Z

[�∂σF ρα] +
hZ4

2m2
Z

[(�+m2
Z)∂σZρα]

}
ZσF̃ρα

]
(A.13)

where mZ is the mass of the Z-boson, Z̃µν = 1/2εµνρσZ
ρσ, F̃µν = 1/2εµνρσF

ρσ and Fµν , which was
noted Aµν in section A.1, is the electromagnetic strength tensor.

This Lagrangian defines 12 independent dimensionless couplings, fVi and hVi . None of the field
operators of this Lagrangian are in the SM Lagrangian (A.5). Therefore all these couplings, called
neutral aTGCs, are null in the SM. The field operators in (A.13) have different mass dimensionalities.
The fVi and hV1,3 terms are of the form C

m2
Z

/O6 where /O6 is a dimension-6 operator while the hV2.4 terms

are of the form C
m4
Z

/O8, where /O8 is a dimension-8 operator.

The meanings of the neutral aTGCs may not be completely clear from the Lagrangian (A.13).
The table A.1 sorts out the various couplings, the vertices to which they correspond, the behaviors
under CP of their associated field operator 7 and the two bosons production for which they are relevant.

Vertex ZZZ ZZγ Zγγ

Two boson production ZZ Zγ

CP-even fZ5 fγ5 hZ3,4 hγ3,4

CP-violating fZ4 fγ4 hZ1,2 hγ1,2

Table A.1: Neutral aTGCs

There is a particularity indicated in the table A.1 which is worth to discuss. Both the ZZ and
the Zγ productions allow to probe the ZZγ vertex. However through the study of these productions,

6One of the two on-shell bosons is necessarily a Z-boson since the Landau-Yang theorem forbids the decay of a spin-1
particle into two γs (see [187], for the extension of this theorem to a spin-1 particle decaying into two Z-bosons).

7All terms are C-violating. Hence all CP-even terms are P-violating.
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one learns on two distinct “facets”, so to say, of the ZZγ vertex: on fγ4,5 through ZZ and on hZ1,2,3,4
through Zγ. These two sets of couplings are independent as all the couplings in (A.13). They describe
two “facets” of the ZZγ vertex differing by the nature of the virtual particle: the γ in the ZZ pro-
duction and a Z in the Zγ production. In [185, 189], the 3 off-shell bosons vertex Z∗Z∗γ∗ is studied.
It is shown how fγ4,5 and hZ1,2,3,4 emerge separately when one pushes 2 of the bosons on-shell. So as
perplexing it could be, it should be kept in mind that although the ZZγ vertex contributes to both
ZZ and Zγ productions, the combination of the constrains obtained from the studies of these two
production modes does not put more stringent constrains on the ZZγ vertex.

The CP-parities of the different terms in (A.13) have consequences on the dependence of the
cross-section on the couplings [190, 191]. The amplitude of the diboson production is the sum of the
SM amplitude plus the anomalous amplitudes each of these proportional to an anomalous coupling.
Schematically one has

|.〉 = |SM〉+
∑

ζi |i〉 (A.14)

where the ζi are the anomalous couplings. Therefore the production cross section proportional to the
square of the process amplitude is a function bilinear in the ζi

σ = Y00 +
∑
i=1

Y0iζi +
∑
i=1

Yiiζ
2
i +

∑
i,j=1;j>i

Yijζiζj (A.15)

where the first term is proportional to the square of the SM amplitude, the second term to the
interferences of the SM amplitude with the anomalous amplitudes, the third term to the squares of
the anomalous amplitudes, and the fourth term to the interferences between the anomalous amplitudes.
Since interferences are possible only between components with the same behavior under CP, there is
no linear dependence of the cross section on a CP-violating anomalous coupling: the second term
in (A.15) runs only on CP-respecting ζi. Furthermore the fourth term split in two terms each running
on anomalous couplings of same CP-parities. Therefore one has schematically

σ =

Y00 +
∑
i,CP

Y0iζi +
∑
i,CP

Yiiζ
2
i +

∑
i,j,CP

Yijζiζj

+

∑
i,CP

Yiiζ
2
i +

∑
i,j,CP

Yijζiζj

 (A.16)

Since at it is the most common case the constrain on anomalous couplings will come from a single
bin count, i.e on a single integral of the cross section, (A.16) tells us that the correlations will cluster
as correlations among couplings of same CP-parities. Furthermore the limits on couplings will be sign
symmetric for CP-violating couplings, while it could be not the case for the CP-respecting couplings
due to the term linear in these couplings in (A.16).

The anomalous couplings in (A.13) are not form factors depending on the momentum of the off-shell
boson since the Lagrangian is a position-space function. However this Lagrangian has been obtained
by collecting all terms with the fewest number of derivatives. Other terms, in infinite number, are
possible. The infinitely numerous terms that could have been added, would have introduced as many
additional constants. They sum up in the Vertex Function approach to form form factors which are
functions of the momenta.

A.2.2 Vertex Function approach

The vertex function is the term that comes with a given vertex when one writes down the amplitude
for a Feynman diagram. The Vertex Function approach consists in parameterizing the vertex function
of the Three Gauge Bosons vertex in figure A.2. The vantage point of this approach is that the
vertex function can be written in a fully general and complete way. One forms and sums up all the
appropriate tensorial expressions built with the momenta of the vertex bosons. The coefficients of this
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sum are functions of the norms of these momenta. These functions should verify certain symmetries
and conditions.

Figure A.2: Three bosons vertex and Vertex Function

The reference [189] is an example of such a procedure. It derives the expressions of the vertex
functions for three off-shell neutral Gauge Bosons constrained by Bose symmetry on bosons of same
type and conservation of vector current on γ legs. Under the same conditions which allowed to
derive (A.13), the Vertex Functions for the ZZ and Zγ final states are [192]:

Γα,β,µZZV (q1, q2, P ) =
i(P 2 −m2

V )

m2
Z

{
fV4 (Pαgµβ + P βgµα)− fV5 εµαβρ(q1 − q2)ρ

}
(A.17)

and

Γα,β,µZγV (q1, q2, P ) =
i(P 2 −m2

V )

m2
Z

{
hV1 (qµ2 g

αβ − qα2 gµβ) +
hV2
m2
Z

Pα[(Pq2)gµβ − qµ2P
β]

−hV3 εµαβρq2ρ −
hV4
m2
Z

PαεµβρσPρq2σ

} (A.18)

where q1 and q2 are the momenta of the on-shell bosons and V is the off-shell boson, γ or Z, of
momentum P and on-shell mass mV

8. The Vertex Functions (A.17) and (A.18) are the momentum-
space analogues of (A.13) and the couplings appearing in these formulas are related. They are equal
but only at P 2 = 0. Indeed unlike those of (A.13), the couplings in (A.17) and (A.18) are form factors
depending on P 2. There are actually the sum of the infinitely numerous terms with higher order
derivatives that could have been added to (A.13).

Usually the contribution of anomalous TGC to the cross-section leads to a violation of the unitarity
at high energies. This is cured by assuming that the form factors decrease rapidly in this regime by
parameterizing them with the ansatz C(P 2) = C0 × (1 + P 2/Λ2

FF )−n. Using this parametrization,
the constraint from unitarity on anomalous Triple Gauge couplings have been given in [193]. It is
conventional to take n = 3 for fV4,5 and hV1,3, and n = 4 for hV2,4 [190, 193]. The power n and ΛFF
are arbitrary as the form of the ansatz itself is. Their only justification is to avoid the unitarity issue.
The unitary violation is usually not an issue in machines with fixed energy in the center of mass such
as in the e+e− colliders that have been built up to now. However the problem, and thus the possible
need of parameterizing form factors, is more acute in a pp machine such as the LHC where the energy
in the center of mass of an actual hard interaction can be very high. On the other hand, to have

8One can check that Γα,β,µZZV (q1, q2, P ) is invariant under the Bose symmetry q1, α ↔ q2, β. One can get additional
conditions by considering the limit case where the virtuality of V vanishes. When V is a γ “pushed” on-shell, one should
have PµΓα,β,µZZV (q1, q2, P ) = 0. Since the contraction of Pµ with the term between curly brackets in ΓZZγ is not null, it
follows that the multiplicative factor should be 0 when P 2 = 0. When V is a Z-boson “pushed” on-shell, since the term
between curly brackets in ΓZZZ is not invariant under the Bose symmetry q1, α↔ P, µ, it follows that the multiplicative
factor should be 0 when P 2 = m2

Z . A similar analysis can be done for ΓZγV . Consistently with q2β being the momentum
of the on-shell γ in ZγV , one can check that one has q2βΓα,β,µZγV (q1, q2, P ) = 0. When V is a γ “pushed” on-shell, since
the contraction of Pµ with the term between curly brackets in ΓZγγ is not null, it follows that the multiplicative factor
should be 0 when P 2 = 0. Finally, when V is a Z-boson “pushed” on-shell, since the term between curly brackets in
ΓZγZ is not invariant under the Bose symmetry q1, α↔ P, µ, it follows that the multiplicative factor should be 0 when
P 2 = m2

Z .
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to resort to form factor makes difficult the comparison between the results of different experiments.
Furthermore the constraints from the unitarity limit using the above form factor parametrization have
been designed such that the unitarity limit is never reached however large P 2 is. Such a large scope
for the validity of a phenomenological description has been questioned.

A.2.3 Effective Field Theory approach

Both the Effective Lagrangian and Vertex Function approaches have been harshly criticized [167, 194].
They badly behave in loop calculations without providing prescriptions to cure the problems. The
cure advocated in [194] is to impose SU(2)L×U(1)Y . In reference [167], these approaches are charged
to be lacking a proper criteria specifying their range of applicability, i.e an energy scale above which
the theory is not to be trusted any more. The mass mZ in (A.13) is not a scale of the theory but
rather a dimensionful parameter allowing to compensate for the dimensionality of the operators. The
scale factor ΛFF of the form factor ansatz would be closer to be a scale associated with some new
Physics, would it be not impaired with so much arbitrariness.

The reference [167] castigates the anomalous couplings approaches for their obsolescence and the
confusion that they bring. It is actually a manifesto for the Effective Field Theory approach which in
the context of anomalous Triple Gauge Boson interactions has a long history [154].

A.2.3.1 Effective Field Theory

The EFT approach focuses on the low-energy effects of some new physics characterized by a scale Λ
much larger than the energy at hand

√
s� Λ. The EFT Lagrangian invokes only the low energy fields.

It contains the standard low energy interactions plus new interactions terms of mass-dimension ≥ 5
scaled down by some power of Λ. Its does not strive to be valid at arbitrary large energy since anyway
above Λ new degrees of freedom will be activated and a new Lagrangian will have to be written down
which will involve new fields and new interactions 9.

More precisely, the EFT Lagrangian respects the SU(2)L × U(1)Y Gauge symmetry. It is built
using the SM fields only, in particular the bosonic fields are those before-SSB, the W i

µ, the Bµ and the
Higgs doublet fields, and not the after-SSB fields, the W -boson, Z-boson and γ fields. Its contains all
the SM terms and an infinite sum of non-SM terms representing all interactions of SM fields respecting
SU(2)L × U(1)Y . Such an interaction is described by a dimension-d operator scaled by a factor C

Λd−4

with C a dimensionless constant. The effective Lagrangian takes the form

LEFT = LSM +
∑
d>5

LdEFT with LdEFT =
∑
i

Cdi
Λd−4

Odi (A.19)

where LdEFT sums up all the different operators of a given dimension d. As we saw, only the terms that
respect SU(2)L×U(1)Y are retained. One can get rid of more operators by imposing other conditions

9The classic example of EFT is the Fermi Theory of weak interactions. At energies lower than mW , the effective
non-renormalizable term in the Lagrangian is a 4-point vertex with a dimensionful coupling GF /

√
2. At high energies,

the “new” physics manifests itself in the form of the W -boson. The old low-energy Lagrangian is thrown away and a new

Lagrangian is formed with interaction vertex involving the new field with a dimensionless coupling g. Since GF√
2

= g2

8m2
W

,

the old Lagrangian term appears as an effective term built with an operator of dimension-6 in the fields relevant at
low energy, scaled by a factor which encapsulates the underlying high energy interactions, C

Λ2 , where Λ = mW is the
scale of the “new” high energy physics. This analogy shows also that even if there is some evidence for an effective
interaction term (e.g. Fermi Theory of β decay), all that can be measured is the factor C

Λd (e.g. GF coupling) but not Λ
(e.g. the mass of the W -boson) itself. For this, as it was the case for the W -boson, an explicit model of the underlying
new physics is needed. The ambition of the EFT, here the Fermi Theory, is just to provide a framework convenient to
describe low-energy effects in a model independent way.
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such as C and P conservations or, as very often done, the conservations of baryon (B) and lepton (L)
numbers 10. This latter restriction removes all operators of odd dimensions [167] 11.

Then the EFT approach proceeds in retaining only the operators up to a given dimension, dt thus
capturing the leading effects up to order (

√
s/Λ)dt−4, the neglected higher order corrections being

suppressed by further powers of
√
s/Λ. This is actually the stance of the EFT approach: it offers

a effective and consistent treatment of the low-energy effects, including loop computations, up to an
accuracy controlled by the order of the truncation of the Lagrangian (A.19). In its full glory the topic
is quite technical and complex with possibly tens of operators involved in some analyses [199–201] 12.
Fortunately in the context of the anomalous Triple Gauge bosons interactions, the relevant operators
are far fewer.

A.2.3.2 Effective Field Theory approach for Neutral aTGCs

Hereafter, I follow the reference [155] 13. Requiring conservation of B and L, the first dimension to
consider in (A.19) is the dimension 6. It turns out than none of the 59 operators of dimension-6
conserving B and L does induce neutral aTGCs [196]. Therefore one has to look for operators of
dimension-8.

This could be worrisome for the fate of the couplings fVi and hV1,3 terms since as we saw, they are
associated to dimension-6 operators. However these operators are in the after-SSB fields while the
EFT operators are in the before-SSB fields. When the EFT operators are rewritten in terms of the
after-SSB fields, the Higgs doublet H contributes by its vacuum expectation value, v, a dimension-1
constant, which amounts for a reduction of the dimension of the resulting operator in the after-SSB
fields. Thus an operator in the after-SSB fields of a given dimension can actually come from a EFT
operator of higher dimension containing H field.

The operator analysis in [155] shows that all the dimension-8 operators that contribute to neutral
aTGCs, do contain H fields. This implies that the operators associated to hV2,4 can not be obtained
from EFT dimension-8 operators since they are already of dimension-8 in the after-SSB fields. So one
has

hγ2 = hZ2 = hγ4 = hZ4 = 0 (A.20)

This lets four CP-even and four CP-violating couplings (cf table A.1).

Next it is shown that only four operators of dimension-8, named OBW , OWW , OBB and O
B̃W

, can
contribute and that they all, but the last, violate CP. They are

OBW = iH†BµνW
¯
µρ{Dρ, D

ν}H , OWW = iH†W
¯ µνW

¯
µρ{Dρ, D

ν}H (A.21)

OBB = iH†BµνB
µρ{Dρ, D

ν}H , O
B̃W

= iH†B̃µνW
¯
µρ{Dρ, D

ν}H
10However B and L conservations are global symmetries of the SM without being forced upon it. They are “accidental“

symmetries in the sense that the operators that enter in the SM Lagrangian just turn out to respect them.
11The operators have been systematically classified up to dimension-7. There is only one dimension-5 operator and

it violates L [195]. There are 59 B and L conserving dimension-6 operators [196] and 4 B-violating dimension-6 opera-
tors [197]. There are 20 dimension-7 operators all violating L, among which 7 violate B too [198].

12The counting of 59 dimension-6 operators conserving B and L numbers is for one generation only. When flavor indices
for the 3 generations are added, the number of operators reaches 2499 [201]. Various arguments are used to reduce the
number of the operators used in an analysis. A most acute point is to adopt a scheme dealing with flavor violation.
The coefficient of the operators inducing Flavor Changing Neutral Currents, ci/Λ

2, should be suppressed in some way
since the stringent limits on these processes would translate into an hopeless Λ ∼ 1 PeV if ci ∼ 1 [200]. Solutions can be
blunt flavor universality assumption or more sophisticated schemes involving Yukawa matrices (cf [202] for review). The
number of operators can be further reduced by assuming for instance CP conservation. Also the number of operators
used in a particular analysis can be limited simply because this analysis focuses on a particular Physics sector and data
set.

13A first tentative in [185] was found faulty in [155, 203, 204]. Still it is not clear that there is no tension between the
results of these three last references.
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where W
¯ µν = σiW i

µν .

Furthermore it is shown that the CP-even operator, O
B̃W

, contributes to the ZZγ vertex only.
Hence among the four surviving CP-even couplings, the two concerning the ZZZ and Zγγ vertices
are null

hγ3 = fZ5 = 0 (A.22)

while the two others should be proportional since they both have to be proportional to the same factor
C
B̃W
Λ4 which multiplies O

B̃W
in the EFT Lagrangian. These relations turn out to be

fγ5 = hZ3 (A.23)

fγ5 =
v2m2

Z

4cwsw

C
B̃W

Λ4
(A.24)

Finally the three constants CBW , CWW and CBB, which come with the three CP-violating
dimension-8 operators, determine the values of the four surviving CP-violating couplings. It is found
that hZ1 = −fγ4 (A.25)

fγ4 = −
v2m2

Z

4cwsw

(
− cwsw

CBB
Λ4

+ (c2
w − s2

w)
CBW
Λ4

+ 4swcw
CWW

Λ4

)
(A.26)

fZ4 =
v2m2

Z

2cwsw

(
c2
w

CBB
Λ4

+ 2cwsw
CBW
Λ4

+ 4s2
w

CWW

Λ4

)
(A.27)

hγ1 =
v2m2

Z

4cwsw

(
− s2

w

CBB
Λ4

+ 2cwsw
CBW
Λ4

− 4c2
w

CWW

Λ4

)
(A.28)

Therefore the EFT analysis of reference [155] concludes that at the order (
√
s/Λ)4 the anomalous

neutral boson interactions can be described by just four independent constants, C
B̃W

, CWW , CBW
and CBB corresponding to one CP-even and three CP-violating interactions.

At this order, these four constants can be taken as well to be fγ5 , fZ4 , fγ4 and hγ1 . With this choice,
one can clearly see on table A.2 how many constants are needed for the description of a given vertex
and of a given final state. Both ZZZ and the Zγγ vertices are exclusively CP-violating interactions
described by two independent constants. The ZZγ vertex corresponds to CP-even and CP-violating
interactions and it is described by two independent parameters whatever is the off-shell boson.

Vertex ZZZ ZZγ Zγγ

Two boson production ZZ Zγ

CP-even fγ5
CP-violating fZ4 fγ4 hγ1

Table A.2: EFT description of Neutral aTGCs

The description of the ZZ final state required three independent constants as does the description
of the Zγ final state. Nicely, two of these constants are common to the two descriptions. This con-
trasts with the general case shown on table A.1 where not only many more parameters were needed but
also where there was no commonality of any sort between the descriptions of the ZZ and Zγ final states

The table A.2 illustrated what the EFT approach offers: it does not provide numerical estimates
but, thanks to an ordering principle of the effects of the interactions possible under some symme-
tries constraints, it provides a guidance on what to expect experimentally and how to describe it
phenomenologically.
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A.3 Charged Anomalous Triple Gauge Couplings

In this section, I review the theoretical frameworks that have been designed to describe the interactions
of two W -bosons and one neutral boson, Z-boson or photon, beyond the interactions prescribed by
the Standard Model. They are similar to the ones reviewed for the anomalous interactions of Three
Neutral Gauge Bosons in section A.2. The vertices of interest are WWZ and WWγ and as before
two of the bosons are required to be on-shell.

A.3.1 Effective Lagrangian approach

The most general effective Lagrangian containing all the Lorentz structures from W -boson and photon
fields with the fewest number of field derivatives without imposing Uem(1) is [205]

LWWV = igWWV

[
(1 + ∆gV1 )V ν(W+

µνW
−µ −W−µνW+µ) + (1 + ∆κV )V µνW+

µ W
−
ν

+
λV
m2
W

W+λ
µ W−µν V ν

λ + igV4 W
+
µ W

−
ν (∂µV ν + ∂νV µ)

−igV5 εµνρσ(W−µ ∂ρW
+
ν −W+

ν ∂ρW
−
µ )Vσ + κ̃VW

+
µ W

−
ν Ṽ

µν +
λ̃V
m2
W

W+λ
µ W−µν Ṽ

ν
λ

] (A.29)

where mW is the mass of the W -boson, V µ is the Z-boson or photon field and the overall coupling
gWWV is gWWγ = −gsw ≡ −e and gWWZ = −gcw = −e cot θW .

This Lagrangian defines 14 independent dimensionless couplings. The operators associated to ∆gV1
and ∆κV are already in the SM Lagrangian (A.5) with ∆gV1 = 0 and ∆κV = 0 but none of the other
operators are. Therefore all these couplings, called charged aTGCs, are null in the SM. All the opera-
tors in (A.29) are dimension-4 operators but those associated with λV and λ̃V which are dimension-6
operators.

The couplings are sorted out in the table A.3 with the corresponding vertices, the behaviors under
the C and P symmetries of their operators and the final states in Two Bosons production for which
they are relevant.

Vertex WWZ WWγ

Two boson production WZ WW Wγ

C and P-even ∆gZ1 , ∆κZ , λZ ∆gγ1 , ∆κγ , λγ

C and/or P-violating gZ4 , gZ5 , κ̃Z , λ̃Z gγ4 , gγ5 , κ̃γ , λ̃γ

Table A.3: Charged aTGCs

If U(1)em is imposed some of the couplings in (A.29) are null but not all. First we saw that the
term to ∆gγ1 specifies the charge of the W -boson and so that we have ∆gγ1 = 0. We also saw that the
operator associated to ∆κγ is U(1)em invariant on its own and that therefore ∆κγ can be different
from 0.

Similarly each of the operators associated to κ̃γ , λV and λ̃V are also U(1)em invariant. Therefore
U(1)em does not force them to be 0. On the contrary the terms associated to gγ4 and gγ5 are not U(1)em
invariant and therefore one has gγ4 = 0 and gγ5 = 0.

To summarize U(1)em reduces the number of independent parameters from 14 to 11, 5 respecting
C and P and 6 violating C and/or P, by imposing

∆gγ1 = gγ4 = gγ5 = 0 (A.30)
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A.3.2 Vertex Function approach

The Vertex Function for charged aTGCs is [205]

Γα,β,µV (q, q̄, P ) = fV1 (q − q̄)µgαβ − fV2
m2
W

(q − q̄)µPαP β + fV3 (Pαgµβ − P βgµα)

+ifV4 (Pαgµβ + P βgµα) + ifV5 ε
µαβρ(q − q̄)ρ − fV6 εµαβρPρ −

fV7
m2
W

(q − q̄)µεαβρσPρ(q − q̄)σ
(A.31)

where q and q̄ are the W+ and W− bosons momenta and V is the photon or Z-boson field of mo-
mentum P . Contrary to the (A.17) and (A.18) cases, the boson V is not necessarily the off-shell boson.

The contributions of the operators of (A.29) to (A.31) are

fV1 = 1 + ∆gV1 +
s

2m2
W

λV , fV2 = λV , fV3 = 2 + ∆gV1 + ∆κV + λV , fV4 = gV4

fV5 = gV5 , fV6 = κ̃V − λ̃V , fV7 = −1

2
λ̃V (A.32)

The unitary issue arises with Vertex Function (A.31) as it does with (A.17) and (A.18) . Again
the form factors are parametrized with the ansatz C(s) = C0× (1+s/Λ2

FF )−n where it is conventional
to take n = 2 [193, 206].

A.3.3 Effective Field Theory approach for Charged aTGCs

Hereafter, I follow the reference [167]. Requiring B and L conservations, the first dimension of opera-
tors relevant for aTGCs is the dimension 6.

The operator analysis of [167] found five operators, named OWWW , OW , OB, O
W̃WW

and O
W̃

.
The first three respect both C and P while the last two violate C and/or P. They are

OWWW = Tr
[
/Wµν /W

νρ /W
µ
ρ

]
, OW = (DµH)† /W

µν
(DνH) , OB = (DµH)† /B

µν
(DνH)

O
W̃WW

= Tr
[
/̃Wµν /W

νρ /W
µ
ρ

]
, O

W̃
= (DµH)† /̃W

µν
(DνH) (A.33)

where /Wµν = i
2gσ

iW i
µν and /Bµν = i

2g
′Bµν .

The C and P-even operator OWWW contains no Higgs field. Hence its accompanying constant
CWWW determines both λγ and λZ , since their associated C and P-even operators are already of
dimension-6 in the after-SSB fields. It is found

λγ = λZ (A.34)

λγ =
3g2m2

W

2

CWWW

Λ2
(A.35)

In the same way, since the P violating operator O
W̃WW

contains no Higgs field, its accompanying

constant C
W̃WW

determines λ̃γ and λ̃Z . It is found

λ̃γ = λ̃Z (A.36)

λ̃γ =
3g2m2

W

2

C
W̃WW

Λ2
(A.37)
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Then the two constants CW and CB, accompanying the C and P-even operators OW , OB should
determine the values of the four remaining C and P-even couplings (cf table A.3). It is found

∆gγ1 = 0 (A.38)

∆gZ1 =
m2
Z

2

CW
Λ2

, ∆κγ =
m2
W

2

(CW
Λ2

+
CB
Λ2

)
, ∆κZ =

m2
W

2

(CW
Λ2
− tan2 θW

CB
Λ2

)
(A.39)

The three last relations impose a relation between the anomalous couplings only

∆gZ1 = ∆κZ + tan2 θW∆κγ (A.40)

Finally the constant C
W̃

accompanying O
W̃

should determine the six remaining C or P-violating
couplings. It is found

gγ4 = gγ5 = gZ4 = gZ5 = 0 (A.41)

κ̃γ =
m2
W

2

C
W̃

Λ2
, κ̃Z = − tan2 θW

m2
W

2

C
W̃

Λ2
(A.42)

The two last relations impose a relation between the anomalous couplings only

κ̃Z + tan2 θW κ̃γ = 0 (A.43)

The identities (A.34), (A.36), (A.40) and (A.43) are consequences of retaining only the contribu-
tions of the operators up to dimension-6, and as such they are not exact. Actually, they are shown to
be modified by corrections from dimension-8 operators [154]. However since these corrections are sup-
pressed by a factor 1/Λ with respect to the dimension-6 contributions, they should be approximately
true in the low-energy regime 14.

Vertex WWZ WWγ

Two boson production WZ WW Wγ

C and P-even ∆gZ1
∆κγ , λγ

C and/or P-violating κ̃γ , λ̃γ

Table A.4: EFT description of Charged aTGCs

So the EFT analysis concludes that at the order (
√
s/Λ)2 the Charged aTGCs WWV can be

described by just 5 independent constants, CWWW , CW , CB, C
W̃WW

and C
W̃

, corresponding to two
C and/or P violating and three C and P-even interactions. At this order, these 5 constants can be as
well taken to be ∆gZ1 , ∆κγ , λγ , κ̃γ and λ̃γ

15. With this choice, the dependence to the constants of the
vertices and Two Bosons production reactions can be represented as on the table A.4. One sees that
all the vertices and all the Two Bosons production reactions depend on 4 common parameters, ∆κγ ,

λγ , κ̃γ and λ̃γ , while the WWZ vertex and the WZ and WW productions depend on an additional
parameter, ∆gZ1 .

14The relations (A.34) and (A.40) are defining the so-called “LEP scenario”, a parametrization which is largely used
to derive experimental limits on charged aTGCs. It has happened that the additional assumption CW = CB was done.
This adds the relation ∆κγ = 2 cos2 θW∆gZ1 to (A.34) and (A.40)

15One can argue that choosing these 5 couplings, one can take ∆κZ instead of ∆κγ . However one notes from table A.3
that the Wγ production reaction does depend only on 4 parameters while the WW and WZ production reactions do
depend on 5 parameters. So it seems appropriate to include the 4 parameters that the Wγ production constrains in the
five parameters that we retain. In this view, the fifth variable could be indifferently ∆gZ1 or ∆κZ . To retain ∆gZ1 and
the 4 “Wγ” parameters, as done here, is the choice that seems to have been made for LEP and TEVATRON combined
measurements.
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A.4 Measurements of Anomalous Triple Gauge Couplings

In this section I review the anomalous Triple Gauge Couplings measurements which were done at LEP,
at TEVATRON and at LHC.

A.4.1 Measurements of Anomalous Triple Gauge Couplings at LEP

The LEP collaborations summarized and combined their aTGC parameters measurements in [175].

The charged aTGC parameters were measured at LEP2 in the two W -bosons production reaction,
e+e− → W−W+, to which TGCs contribute in the s-channel as shown in figure A.3(a). The decay
of the two W -bosons final state was studied in the fully leptonic or hadronic modes, as well as in the
cleanest semi-leptonic mode.

With a lower sensitivity, charged aTGC parameters were also measured in the single W -boson and
single γ production reactions, e+e− → W∓e±ν(ν̄) and e+e− → γνν̄, to which TGCs contribute by
Vector Boson Fusion as shown in figures A.3(b) and A.3(c).

Both total production cross-section and angular distributions were used to extract aTGC param-
eters limits. The combined fit used the “LEP scenario” defined by the equations (A.34) and (A.40)
(see footnote 14) and limited itself to the aTGC parameters respecting C and P. The table A.5 gives
the 95% Confidence Level Intervals for each aTGC parameter with the other parameters fixed at 0.
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Figure A.3: TGC diagrams at LEP2

Recently, the LEP2 measurements combination was done at new in [207, 208]. The results of this
new analysis are drastically different from those of the former combination. This new combination
was done in a consistent EFT perspective in which not only the “LEP scenario” equations were used
but also the cross-sections dependence on the aTGC parameters was restricted to the linear terms.

Indeed since the operator expansion is up to the dimension-6 operators, the quadratic terms
in aTGC parameters are of the same order than the contributions from the neglected dimension-8
operators (cf end of section A.5 for more details). This consistency condition changes drastically the
fit results, with λγ and ∆gZ1 errors increased by an order of magnitude. This is due to a poorly
constrained direction which appears in the parameters space along the λγ + ∆gZ1 ∼ 0 line.

However it was shown in [209] that the Higgs Data bring constraints on aTGC parameters with
a very different correlation pattern, so that the errors on aTGC parameters are drastically reduced
when the LEP2 and Higgs Data are combined.

The neutral aTGC were studied in the Two Vector Bosons production processes, e+e− → ZZ and
e+e− → Zγ, to which the TGCs contributes in the s-channel as shown in figure A.3(d). As for the
charged aTGC parameters both total production cross-section and angular distributions were used to
extract limits on neutral aTGC parameters. The tables A.7, A.8 and A.6 give the 95% Confidence
Level Intervals from the combined fit for each aTGC parameter with the other parameters fixed at 0.
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A.4.2 Measurements of Anomalous Triple Gauge Couplings at TEVATRON

A review of the measurements of the aTGC parameters performed at TEVATRON can be found
in [210].

The charged aTGC parameters were measured in the Two Vector Bosons production processes,
pp̄ → W−W+X, pp̄ → WZX and pp̄ → WγX to which TGCs contribute in the s-channel as shown
in figures A.4(a), A.4(b) and A.4(c).
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Figure A.4: TGC diagrams at TEVATRON and LHC

These reactions have been studied in the cases where all the final state W -bosons decay leptonically.
Then the observables sensitive to aTGC parameters are the spectrum of the transverse momentum of
the photon in Wγ production, of the Z-boson in WZ production, and the spectra of both the leading
and trailing leptons in WW production.

The WW and WZ production reactions can also be studied by requiring the leptonic decay of one
W -boson while the other vector boson is required to decay hadronically. Despite a huge background,
the transverse momentum spectrum of the jets system of the WW + WZ → lνjj events so selected
turns out to be the observable the most sensitive to the aTGC parameters.

Combining all its measurements of these final states, the D0 collaboration delivered the stronger
limits on the aTGC parameters [181]. Using a form factor with Λ = 2 TeV and the “LEP scenario”
equations, the combined fit gave the 95% C.L. intervals reported in the table A.5, for each aTGC
parameter when the other parameters are fixed at 0.

The neutral aTGCs were studied in Zγ and ZZ production reactions to which TGCs contribute
in the s-channel as shown in figure A.4(d). The table A.8 gives the results of the fits performed by
D0 and CDF. The 95% C.L. intervals are given for each aTGC parameter with the others parameters
fixed at 0. Both analyses used a form factor with Λ = 1.5 TeV [178, 179].

Apparently, only one TEVATRON ZZ analysis was published. The 95% C.L. intervals on the fVi
parameters of this D0 analysis are given in table A.6 for each aTGC parameter keeping the other
parameters at 0. A form factor with Λ = 1.2 TeV was used [176]. Sometimes, as in [177] for instance,
some limits on the fVi parameters (form factor with Λ = 1.2 TeV ) are reported from a CDF analysis
of ZZ → l+l−jj which seems however to not have been published. For completeness, these limits are
reported in table A.6.
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A.4.3 Measurements of Anomalous Triple Gauge Couplings at LHC

Limits on anomalous Triple Gauge Couplings have been obtained using the data collected during the
two first periods of data taking at LHC, at energy in the center of mass of the colliding protons of√
s = 7 TeV and

√
s = 8 TeV. The integrated Luminosities collected per experiment during these

periods have been respectively about 5fb−1 and 20fb−1 for each experiment, ATLAS and CMS. With
the exception of the study of Vector Boson Fusion process, the final states analyzed at LHC have been
similar to those analyzed at TEVATRON. The ATLAS and CMS collaborations provided systemati-
cally aTGC limits with no form factor. These limits are those that are reported in the aTGC limits
tables for LHC. They were derived by fitting one parameter fixing all other parameters at 0.

The charged aTGC parameters were studied in pp → W−W+X (see figure A.4(a)) with the W
bosons decaying in leptons. ATLAS published an analysis of its 7 TeV data sample and reported
limits for the C and P-even anomalous couplings from a study of the distribution of the transverse
momentum of the leading (highest pT ) lepton from W -bosons decays [130]. CMS extracted limits
studying the distribution of the mass of the 2 decay leptons in its 8 TeV data sample [180]. Quite
remarkably CMS gave limits in terms of EFT parameters only 16.

The WW +WZ → lνjj process was also studied (see figures A.4(a) and A.4(b)) using the 7 TeV
data, by CMS in [211] and ATLAS in [212]. Limits on aTGC were extracted from the distribution of
the transverse momentum of the di-jets system. The “LEP” scenario was used to derive the aTGC
limits reported in the table A.5. The CMS collaboration specifically did not measure the ∆gZ1 coupling.

The charged aTGC parameters of the WWZ vertex were specifically measured in the WZ pro-
duction reaction (see figure A.4(b)) by ATLAS in [86] using the 7 TeV data. Only leptonic decays
of the W and Z bosons were studied. The aTGCs limits were extracted from the distribution of the
transverse momentum of the Z and were produced only for anomalous couplings respecting both C
and P. The limits are reported in the table A.5.

The WWZ vertex was also specifically accessed studying the process pp → X + Z2j by ATLAS
in [213] using the 7 TeV data. This vertex contributes by Vector Boson Fusion as shown on fig-
ure A.4(e). The process was observed for the first time by CMS. The aTGC limits reported in the
table A.5 were obtained from the number of events with a mass of the di-jets system above 1 TeV.
The sensitivity to the parameter ∆κZ did not allow to measure it.

The vertex WWγ was specifically studied in the Wγ production reaction (see figure A.4(c)) using
the 7 TeV data, by ATLAS in [92] and by CMS in [168]. In both analyses, the W was required to
decay leptonically. To extract aTGC limits, the ATLAS analysis used the number of events with a γ
of transverse momentum pTγ above 100GeV . Instead, the CMS analysis used the distribution of pTγ .
The limits were produced assuming U(1)em and only for the parameters which respect both C and P.
They are reported in the table A.5.

The neutral aTGC parameters fVi were studied in ZZ production (see table A.1 and figure A.4(d)).
The selected final states were ZZ → (l+l−)(l′+l′−) or ZZ → (l+l−)(νν̄). ATLAS extracted its limits
from the distribution of the transverse momentum of the leading Z in ZZ → (l+l−)(l′+l′−) and of
the l+l− system in ZZ → (l+l−)(νν̄). CMS did the same for this last final state but used the mass
of the 4 leptons system for the former. ATLAS has published a study of the two final states for the
7 TeV data [156]. In [174] CMS has published an analysis of ZZ → (l+l−)(νν̄) using the 7 TeV and
8 TeV data. These limits were combined with the aTGC limits extracted from the CMS studies of
ZZ → (l+l−)(l′+l′−) with 7 TeV data [214] and 8 TeV data [215]. This produces the most stringent
limits on the fVi parameters which are reported in the table A.6. Temporary results from the ATLAS

16The corresponding CMS limits reported in A.5 are taken from CMS site page
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC
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8 TeV ZZ → (l+l−)(l′+l′−) data were obtained in [85]. They are also shown in the table A.6.

The neutral aTGC parameters hVi were studied in Zγ production (see table A.1 and figure A.4(d)).
The aTGC limits were extracted by ATLAS from the number of events with a photon of pTγ above

100 GeV , while CMS used the distribution of pTγ . The analyses of Zγ → (l+l−)γ and Zγ → (νν̄)γ for
the 7 TeV data were published in [92] for ATLAS and in [169] for CMS. In addition CMS published 8
TeV data analyses of Zγ → (l+l−)γ in [170] and of Zγ → (νν̄)γ in [171]. All these limits are reported
in the table A.8.
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∆gZ1 ∆κZ ∆κγ λZ λγ

LEP combined [175] [−0.054; 0.021] [−0.099; 0.066] [−0.059; 0.017] LEP Scenario

D0 Combined [181] [−0.034; 0.084] [−0.158; 0.255] [−0.036; 0.044] LEP Scenario ; ΛFF = 2 TeV

ATLAS 7TeV [130] [−0.039; 0.052] [−0.043; 0.043] [−0.062; 0.059] WW ; LEP Scenario

CMS 8TeV [180] [−0.047; 0.022] [−0.130; 0.095] [−0.024; 0.024] WW ; LEP Scenario

CMS 7TeV [211] Not measured [−0.11; 0.14] [−0.038; 0.030] WW +WZ → (lν)(jj) ; LEP Scenario

ATLAS 7TeV [212] [−0.055; 0.071] [−0.21; 0.22] [−0.039; 0.040] WW +WZ → (lν)(jj) ; LEP Scenario

ATLAS 7TeV [86] [−0.057; 0.093] [−0.37; 0.57] [−0.046; 0.047] WZ

ATLAS 8TeV [213] [−0.50; 0.26] Not measured [−0.15; 0.13] pp→ X + Z2jV BF

ATLAS 7TeV [92] [−0.41; 0.46] [−0.065; 0.061] Wγ

CMS 7TeV [168] [−0.38; 0.29] [−0.050; 0.037] Wγ

Table A.5: 95% C.L. Intervals for charged aTGCs from LEP, TEVATRON and LHC

fγ4 fZ4 fγ5 fZ5

LEP combined [175] [−0.17; 0.19] [−0.28; 0.32] [−0.35; 0.32] [−0.34; 0.35]

D0 [176] [−0.26; 0.26] [−0.28; 0.28] [−0.30; 0.28] [−0.31; 0.29] ZZ → (l+l−)(l′+l′−) ; ΛFF = 1.2 TeV

CDF [177] [−0.10; 0.10] [−0.12; 0.12] [−0.11; 0.11] [−0.13; 0.12] ZZ → (l+l−)(jj) ; ΛFF = 1.2 TeV

ATLAS 7TeV [156] [−1.5; 1.5]× 10−2 [−1.3; 1.3]× 10−2 [−1.6; 1.5]× 10−2 [−1.3; 1.3]× 10−2 ZZ → (l+l−)(l′+l′−), ZZ → (l+l−)(νν̄)

ATLAS 8TeV [85] [−4.6; 4.6]× 10−3 [−4.1; 4.0]× 10−3 [−4.6; 4.7]× 10−3 [−4.0; 4.0]× 10−3 ZZ → (l+l−)(l′+l′−)

CMS 7+8TeV [174] [−3.0; 2.6]× 10−3 [−2.1; 2.6]× 10−3 [−2.6; 2.7]× 10−3 [−2.2; 2.3]× 10−3 ZZ → (l+l−)(l′+l′−), ZZ → (l+l−)(νν̄)

Table A.6: 95% C.L. Intervals for neutral aTGCs fVi from LEP, TEVATRON and LHC (CDF [177] is an unpublished result; ATLAS 8TeV [85] is
a preliminary result) )

Parameters hγ1 hZ1 hγ2 hZ2

LEP combined [175] [−0.05; 0.05] [−0.12; 0.11] [−0.04; 0.02] [−0.07; 0.07]

Table A.7: 95% C.L. Interval for neutral aTGCs hV1,2 from LEP combination [175]
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hγ3 hZ3 hγ4 hZ4

LEP combined [175] [−0.05; 0.00] [−0.19; 0.06] [0.01; 0.05] [−0.04; 0.13]

D0 [178] [−0.027; 0.027] [−0.026; 0.026] [−0.0014; 0.0014] [−0.0013; 0.0013] Zγ → (l+l−)γ ; ΛFF = 1.5 TeV

CDF [179] [−0.022; 0.022] [−0.022; 0.022] [−0.0009; 0.0009] [−0.0009; 0.0009] Zγ → (l+l−)γ, Zγ → (νν̄)γ ; ΛFF = 1.5 TeV

ATLAS 7TeV [92] [−1.5; 1.6]× 10−2 [−1.3; 1.4]× 10−2 [−0.94; 0.92]× 10−4 [−0.87; 0.87]× 10−4 Zγ → (l+l−)γ, Zγ → (νν̄)γ

CMS 7TeV [169] [−2.9; 2.9]× 10−3 [−2.7; 2.7]× 10−3 [−1.5; 1.5]× 10−5 [−1.3; 1.3]× 10−5 Zγ → (l+l−)γ, Zγ → (νν̄)γ

CMS 8TeV [170] [−4.6; 4.6]× 10−3 [−3.8; 3.7]× 10−3 [−3.6; 3.5]× 10−5 [−3.1; 3.0]× 10−5 Zγ → (l+l−)γ

CMS 8TeV [171] [−1.12; 0.95]× 10−3 [−1.50; 1.64]× 10−3 [−3.80; 4.35]× 10−6 [−3.96; 4.59]× 10−6 Zγ → (νν̄)γ

Table A.8: 95% C.L. Intervals for neutral aTGCs hV3,4 from LEP, TEVATRON and LHC
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A.5 Global Effective Field Theory analyses

As we have seen in the section A.3, there are five dimension-6 EFT operators relevant for the Charged
aTGCs. There are listed in (A.33). Three of them contain Higgs doublet field. In the appendix B, it
is shown for 2 of these operators how they generate Triple and Quartic Gauge couplings. From the
computations it is clear how they do generate also interactions between the Higgs boson and the W ,
Z and γ bosons. such as hV V ′ and hhV V ′ vertices (cf appendix of [216] for the explicit couplings
resulting from OB and OW ).

Therefore the aTGCs are just one of the many low-energy signs of the Physics beyond the SM
that EFT parametrizes. The EFT operators potentially modify and create couplings between all SM
bosons and fermions, so that a Global analysis of all Electroweak Precision Data (EWPD), includ-
ing Charged aTGC limits, as well as Higgs Data accumulated by the LHC, Fermilab, LEP and DIS
experiments brings strong constraints on the coefficients of these operators. This is currently a very
active field. The topic is heavily technical although conceptually quite clear. In the following, only
few points from these analyses are briefly reviewed [200].

An early model for these Global analyses is the very comprehensive one performed in reference [217].
It combined all the EWPD collected up to LEP2 (see [208, 218] for more recent Global analyses of
EWPD). With the discovery of the Higgs boson at the LHC, there has been an explosive multiplication
of Global analyses of this, which adding the Higgs Data, allow to cover all the scope of the low-energy
effects of EFT expanded up to dimension-6 [219–224].

These analyses show that the limits on aTGC allow to constrain very significantly effects affecting
also the decays h→ V ff̄ and h→ Zγ [200, 221]. The importance of the aTGC limits has been illus-
trated in an particularly illuminating way in the reference [225], where limits on ∆gZ1 and ∆κγ have
been derived from Higgs Data only. These limits turn out to be of the same order, but, importantly,
with a different correlation pattern, than those obtained directly at LHC, Fermilab and LEP (cf [209]
for a similar but more recent analysis) 17.

The Global analyses work in the framework of the EFT involving all dimension-6 operators that one
can form using all the SM fields before SSB, which are invariant under the full SU(3)C×SU(2)L×U(1)Y
Gauge symmetry and which conserve B and L. These operators are vastly more numerous than the
five listed in (A.33). A somewhat troubling issue is that more often than not, different Global analyses
clearly use very different operators. Beside different approximations and simplifications which switch
off some operators and the use of different names for identical operators, different Global analyses are
rooted in reference set of operators, called Operators Bases, which can be authentically distinct. And
this is perfectly right.

Indeed an operator can be shown to be equivalent to a combination of other operators up to some
manipulations among which fields identities obtained from the equations of motion derived from the
SM Lagrangian. In such a case it has been shown that the physical effects of this operator and of the
operators combination to which in this sense it is equivalent are identical. This operator is therefore
redundant with respect to the combined ones and can be put aside if one retains the others. An
Operator Basis is a minimal set of non-redundant operators from which one can form combination
equivalent to any operator.

There is an huge number of admissible Operator Bases. Three of them can be considered as stan-
dard since they have been repeatably used in the literature 18: the Warsaw Basis [196, 228], the SILH
Basis [229] and the HISZ Basis [154]. They differ mainly in their bosonic operators. The reference [200]
gives a comparative table of the operators of these Bases.

17One finds in [208] some charges against the LHC aTGC limits published so far. Beside the blame for not publishing
the correlations between the aTGCs parameters, it is argued that the data used to extract limits are in a kinematic
regime where the EFT expansion fails. A similar statement is made in [226]. This very problematically point seems
however to be not corroborated by other analyses [219].

18The nomenclature for these standard Bases used here is the one from reference [227]
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Since the physical effects are identical, the choice of a particular Operator Basis is mainly an affair
of convenience. Still there are important differences between and important consequences result from
using one or another of these Bases.

There are tricky technical differences. For instance the Charged aTGCs relation (A.40) is a con-
sequence of cutting the EFT expansion at dimension-6. This relation is valid in any Operator Basis
and it can be derived in a quite direct way both in the SILH Basis [221] and in the HISZ Basis [222].
In the Warsaw Basis, the relation is retrieved through a somewhat convoluted path: only one op-
erator contributes directly to ∆κZ and ∆κγ as if at first ∆gZ1 was null (cf equations (35) and (36)
in [217]), but these aTGCs do get also indirect contributions from operators modifying the Fermi
constant as for instance a 4-fermions operator modifying the muon decay rate (cf equations 20 and 21
in [217]). It is only when all contributions are gathered that the relation (A.40) is eventually retrieved.

A criteria has been advanced to weight the virtues of the different Operator Bases, which is moti-
vated by considerations on the UV completion of the EFT, i.e on the underlying model of the Physics
beyond the SM. Once such a model is assumed, some operators can be shown to appear at the tree
level or at the loop level of the fundamental theory [230, 231]. In this perspective, an Operator Basis
is to be preferred if its operators can be classified in one or the other of these categories since the
relative strengths of the operators coefficients can be guessed 19. The argument is at the disadvantage
of the HISZ Basis. However the point seems controversial, being put forward by some [229, 232] but
dismissed by others [200, 223, 233].

A most relevant argument is that a particular Operator Basis can obscure the actual constraints
from the Data. For instance there can be “blind” directions in Operator space, i.e combinations of
operators, which turn out to be very weakly constrained. An Operator Basis is to be preferred if such
a direction corresponds to a single or at least few Basis operators. The Warsaw Basis seems the main
target of this line of argumentation. However the issue arises only in analyses of the EWPD if the LEP2
e+e− →W−W+ measurements are excluded. This exclusion has been claimed to be artificial in the re-
cent reference [218] which indeed performs a very comprehensive EWPD analysis in the Warsaw Basis.

An argument somewhat related to the former is to prefer an Operator Basis which somehow links
directly to the data. This line of argumentation had lead to the recent proposal of another Basis
in [227], the “Higgs” Basis, which evolved from [232, 234, 235]. The idea is that an EFT operator
leads to various interactions terms in the “physical” fields W , Z, γ and h, multiplied by couplings
which are functions of the operator coefficient. In general, these couplings can depend on more than
one operator coefficients. Example of this are the equations (A.35), (A.37), (A.39) and (A.42) which
express the “physical” couplings appearing in the physical fields Lagrangian (A.29) as functions of the
coefficients of the EFT operators listed in (A.33).

Since these “physical” couplings are more numerous than the operators coefficients, there are
necessarily relations that one can form between the “physical” couplings exclusively. Example of such
“necessary” relations are the relations (A.34), (A.36), (A.40) and (A.43). Crucially these relations are
valid in any Operator Basis and results only from having neglected the operators of dimension greater
than 6 in the expansion of the EFT Lagrangian.

The astute idea of the “Higgs” Basis is to focus on the “physical” couplings, i.e on the interactions
terms in the physical fields, and to promote some of them, thusly called “independent couplings”,
as the parameters of interest. The other couplings, the “dependent couplings”, are obtained from
the independent couplings through the “necessary” relations. Actually these relations do render

19On a similar basis, one finds sometimes the statement that λZ in (A.35) can be neglected since the operator OWWW

is absent at tree level in most of the models of Physics beyond the Standard Model. However this looks to be an educated
guess from Models builders since apparently no fundamental reason is put forward that would prevent such a model to
exist.
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Lagrangians built on after-SSB fields such as (A.29) invariant under the SU(3)C × SU(2)L × U(1)Y
symmetry.

Clearly the independent couplings can be picked up arbitrary but this arbitrariness allows to do
choices which make transparent the constraints brought by some Data sets (the actual proposed choice
is very much Higgs Data oriented). Although secondarily, the independent couplings choice defines
an Operator Basis. The authors of the proposal chose to express the Higgs Basis operators in terms
of combination of operators of the Standard Bases above. In addition to the relations between the
Bases, the reference [227] gives all the dependence relations. This allows for instance to see very
directly the relations between the aTGCs parameters and the couplings driving the hγγ, hZγ and
hZZ vertices. By now an analysis program using the Higgs Basis is vigorously pursued by its pro-
moters [202, 209, 220, 236]. It remains to be seen if this Basis is indeed the most appropriate way to
tackle the Global EFT analyses or if it will be just yet another Basis pilling up with the others. In
any instance, there is in this field an effort to ease the multiple Bases issue for example thanks to the
automatic translation tool proposed recently in [237].

Most the EFT analyses have been performed by theorists groups using published results of Exper-
imental collaborations (by now, there are just few ATLAS and CMS EFT analyses [180, 212, 238]).
There are some points of concern which touch the experimental analyses proper.

The first point is that a proper EFT analysis should exclude quartic dependence on anomalous
couplings of cross-sections but in case of SM forbidden effects.

For instance, in equation (A.15), the interferences of the anomalous amplitudes with the SM
amplitude give terms linear in the anomalous couplings, while the squares of the anomalous amplitudes
and the interferences of the anomalous amplitudes between themselves, give the bilinear terms. The
linear terms are of the order 1/Λ2 in an EFT perspective. However, the quartic terms, which are
perfectly right in the Effective Lagrangian and the Vertex function approaches, are of the order 1/Λ4

in the EFT perspective. So they are of the order of the interference of SM with EFT dimension-
8 operators which have been neglected. Therefore the quartic terms should be excluded in a EFT
dimension-6 analysis but if the SM amplitude is null.

This is not the experimentalist habit for aTGCs limits since most if not all limits are extracted
with these quartic terms included. On the other hand, one finds sometimes the statements that the
impacts on anomalous coupling limits of these quartic terms are nevertheless quantifying the sensitiv-
ity of the data to dimension-8 operator contributions. So it seems that it would be appropriate that
the experiments do publish limits both with and without these terms.

An other point does concern a different aspect of the validity of the EFT expansion, namely the
unitarity violation issue. It is very clear that form factors are bad from the point of view of EFT.
But the form factor prescription has a least the advantage to be a fix simple and easy to implement.
Beyond the confusing fact that, as we saw, there seems to be divergent opinions on a violation of the
unitarity in the present LHC limits (see footnote 17), it is not anyway really clear what should be
the proper way to deal with the issue in the context of an EFT analysis of raw Data at the LHC
which involve a large range of actual energies in the center of mass,

√
ŝ, of the hard interactions. One

finds in [216] an extensive analysis of the unitarity problem in the HISZ Basis. It gives the upper
limits of the product |Ci

Λ2 ŝ| beyond which unitarity is violated. However ŝ is not always experimentally
accessible. In the somewhat different context of an anomalous Quartic Gauge Bosons Couplings EFT
analysis, CMS published limits obtained with no unitarity prescription at all, along the values of the
couplings which violate unitarity at the clearly too high value of

√
ŝ = 8TeV [239]. This is a very

clean but crude procedure. One can hope that there are more sophisticated treatments of the issue,
possibly by using more conveniently defined experimental observables which for the time being are
still to be designed.





Appendix B

Linear-EFT Dimension-6 Operators

Hereafter are presented the expansions in the after-SSB fields, the W , Z and γ fields, of the EFT
operators OB and OW defined in section A.3 by (A.33).

B.1 Definitions

One defines
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B.2 OB

One has
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(B.1)

where in the last line it has been used that Aµν and Zµν are antisymmetric while ∂µh∂νh and ZµZν
are symmetric, and that V µν(Zµ∂νh− Zν∂µh) = 2V µνZµ∂νh if V µν is antisymmetric.

So one reads
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where “...” stands for vertices built from the precedding one with additional hs.

B.3 OW

One has
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The Gauge Bosons interactions from OW are obtained directly setting h = 0
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where the antisymmetry of Aµν and Zµν has been used to discard a ZµZν term and to do Lorentz
indices substitution in a term containing a single Z.

Then since
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Appendix C

Coverage studies for Poisson Data
when expectation depends
quadratically on the parameter

Herafter, I document studies of Coverage probability of two methods for constructing Confidence
Domains. In the studied case, the observation follows a Poisson law and the mean value depends on
the parameter of interest quadratically. Both methods use the Likelihood Ratio test statistic. One of
the method severely under covers sometimes while the other covers always.

This excercise is an oppotunity to work out in a simple context but in details statistical procedures
very often discussed in the HEP field.

C.1 Introduction

The general case can be described as follows. Let’s assume that we are interested in a set of some
parameters noted ~f . One wants to learn about ~f from the observed values of a set of some variables
noted ~x. One should model the connection between ~f and ~x, and design a procedure to extract from
~x some knowledge on ~f . The modeling of the observation consists in saying that ~x is a realization of

a random variable ~X following the distribution p
(
~x; ~f

)
. The procedure consists in defining a region

in the ~f space which depends on ~x, a Confidence Domain CD (~x).

The Coverage probability is a qualification of the construction of the Confidence Domains. It is
the central Frequentist concept and the “exact” coverage has been even described as the Holly Grail
of Frequentism [240].

The determination of the Coverage probabilty starts by choosing first a value of the parameters

vector, ~ft. Then one generates, according to p
(
~x; ~ft

)
, a set of pseudo-experiments {~xi}. For each ~xi,

one computes CD (~xi) and asks if CD (~xi) covers ~ft, i.e if ~ft is within CD (~xi). One desires that this
happens often but one is ready to accept that this fails from time to time due to large fluctuation

allowed by p
(
~x; ~ft

)
. In this way and in the limit of a very large number of pseudo-experiments,

one estimates the probability that a Confidence Domain so produced to cover the values of the true
parameters, ~ft. This probability qualifies the procedure of the construction of the Confidence Domains.

It is the Coverage probability, C
(
~ft

)
, of the Confidence Domain procedure for the particular value

~ft.

In the limit of a very large number of pseudo-experiments, one can imagine the pseudo-experiments
arranged in the ~x space in small cells centered on ~xc of volume d~x. One cell contains a fraction

p
(
~xc; ~ft

)
d~x of the total number of the pseudo-experiments. The pseudo-experiments of this cell are
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counted as ”successes“ if ~ft ∈ CD (~xc). So the Coverage probability will be the sum of the fraction

p
(
~xc; ~ft

)
d~x over the cells such that ~ft ∈ CD (~xc). Therefore one gets that the Coverage probability is

the integral of the distribution law over the region of the observations space defined by the condition
~f ∈ CD (~x)

C
(
~f
)

=

∫
~x/~f∈CD(~x)

p
(
~x; ~f

)
d~x (C.1)

If the Coverage is exact, i.e if the Coverage probability is a constant independent on ~f , it is possible
to speak about probability of an interval to contain the true parameter, avoiding to resort to such a
concept as probability of the parameter, in strict compliance to the Frequentist doctrine. In practice,
Coverage probability is rarely constant and one should be happy if it is limited from bellow, hopefully
by a nominal Confidence Level that the procedure attaches to its Confidence Domains.

In the problem studied here, as in [240], we are concerned with the simple case of a counting
experiment in a single bin without nuisance parameter. The observation is a number of counts noted
no. Furthermore there is only one parameter of interest, a real number noted f . So the Confidence
Domains are Confidence Intervals on f , CI (no) and the equation (C.1) becomes

C (f) =
∑

no∈A(f)

g (no; f) with A (f) = {no | f ∈ CI (no)} (C.2)

where g (no; f) is a Poisson law

g(no; f) =
e−µµno

no!
(C.3)

In addition unlike in [240], µ, the mean value of the law, is not here the parameter of interest, but
depends quadratically on it

µ = f2 + C (C.4)

where C is a known positive real constant.
A use case for such a dependence is the constuction Confidence Domains for the anomalous Triple

Gauge Couplings in the production of bosons pairs at hadron colliders [241]. The amplitude of the
reaction is the sum of the Standard Model amplitude plus anomalous amplitudes proportional to these
couplings. So that the cross-section is a second degree polynomial of the couplings.

Hereafter we establish the Coverage performance of two procedures building Confidence Intervals.
Both methods use the Likelihood Ratio. It should be noted that there is no need here to resort to
generation of pseudo-experiments since the probability case is simple enough. All the computations
are exact up to the precision to which, on one hand, one computes the repartition function of a χ2

law and, on the other hand, one solves the equations defining the intervals ends. For the first we rely
on the Root package [242] and the second can be reduced at will.
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C.2 Confidence Interval Methods

In this problem, the Likelihood is
L(f ;no) = g(no; f) (C.5)

The Maximum Likelihood Estimators (MLE) of f , f̂ are given by

f̂ =

{
0 if no < C
±
√
no − C if no ≥ C

(C.6)

Although there are 2 maxima when no ≥ C, owing to the sign symmetry of the problem, there will be
no ambiguity below in speaking of these maxima as if there was a single f̂ .

The Likelihood Ratio is the test statistic

R(f ;no) ≡
L(f ;no)

L(f̂ ;no)
(C.7)

By construction one has
0 ≤ R(f ;no) ≤ 1 = R(f̂ ;no) (C.8)

One defines the 2 derived test statistics

q(f ;no) ≡ −ln (R(f ;no)) (C.9)

and
χ(f ;no) ≡

√
2q(f ;no) (C.10)

The analytical expression of q(f ;no) is given in the Additional material section C.5. The figure C.1
shows typical examples of this function; when no is lower than C, the function has a single extremum,
a minimum at f = 0; as soon as no is greater than C, the minimum drifts away to larger and larger
value of f ; a maximum appears at f = 0 and increases with no.

Figure C.1: Test statistic q(f ;no) as a function of f for

various values of no. Since the functions are symmetric, only

the f ≥ 0 side is shown.

The Likelihood Ratio (C.1) is a mean
to compare a test value f to f̂ , the value
of the parameter the most compatible with
the observation no. Somehow, the far-
thest f is from f̂ , the least f is com-
patible with the observation, the smallest
R(f ;no) becomes. The determination of the
ends of a Confidence Interval is the selec-
tion of some values of f away from f̂ but
somehow still acceptable. The point is to
build a criteria to decide what “somehow”
means.

In the following, two methods are con-
sidered which both uses the Likelihood Ra-
tio.

C.2.1 ∆ lnL method

In this method, the interval ends are found by solving in fe the equation

R(fe;no) = e−
nσ

2

2 ⇔ q(fe;no) =
nσ

2

2
⇔ χ(fe;no) = nσ (C.11)
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where nσ is for instance 1.96 for a 95% Confidence Level Interval. For an interval of (1 − α)100%
Confidence Level this condition can be reformulated as

π(f ;no) = α with π(f ;no) = 1−
∫ χ(f ;no)

−χ(f ;no)

1√
2π
e−

x2

2 dx (C.12)

The principle of this method is to divide the f parameter space on the basis of the value R(f ;no):
lower than a threshold, f is rejected from the Confidence Interval, higher f gets included.

This method, generalized to the Profile Likelihood Ratio, is basically the MINOS algorithm from
the Minuit suite [166]. The rationale of the method is that this is indeed the appropriate thing to do
if the underlying probability is Gaussian. In absence of nuisance parameters the method is known to
perform poorly [240, 243]. Still with nuisance parameters it was found surprisingly good [244].

C.2.2 p-value method

The first step of this method is to compute a p-value for a test value f . The p-value is a real positive
number lower than 1 depending both on f and no, p(f ;no).

The idea is to compare the value of R(f ;no) computed with the actual observation no, against a
set of values {R(f ;nio)} obtained generating a set of pseudo-experiments {nio} according to g(nio; f),
i.e. as if the ”true“ value of the parameter was f .

Given these conditions of generation, the different nio are expected to be vey often compatible with
f . So the distribution of the R(f ;nio) should show a large fraction of pseudo-experiments at high
value. Now if one chooses f significantly different from f̂ so that R(f ;no) is significantly low, such a
low value will be ”atypical“ compared to the distribution of the R(f ;nio). It will lie somewhere in the
low values tail of the distribution.

One quantifies this by counting how many nio have their R(f ;nio) lower than R(f ;no), i.e. by
computing the probability to get R(f ;nio) lower than R(f ;no). Reasoning as one did for the Coverage
probability, one gets that the p-value is also an integral/sum over a specific region of the observations
space that one can write as

p(f ;no) =
∑

n′o∈W (f,no)

g(n′o; f) where W (f, no) = {n′o | R(f ;n′o) ≤ R(f ;no)}

= 1−
∑

n′o∈B(f,no)

g(n′o; f) where B(f, no) = {n′o | R(f ;n′o) > R(f ;no)} (C.13)

where B(f, no) (W (f, no) = B(f, no)
{) is the set of the integers “better-than-no-according-to-R-for-f”

(“worse-or-as-bad-than-no-according-to-R-for-f”). A low value of p(f ;no) means that, assuming that
the true value of the parameter is f , one has all reasons to be surprised to observe no since, according
to the probability distribution of the Likelihood Ratio for this f , it is rare to get an observation with
a so low value R(f ;no). Therefore we have good reasons to not accept such a f .

While the ∆ lnL method includes or rejects a particular value f on the basis of R(f ;no), the
criteria of the p-value method is based on the value of p(f ;no): lower than a threshold, f is rejected
from the Confidence Interval, higher f gets included.

The ends of the Confidence Interval are found by solving in fe the equation

p(fe;no) = α (C.14)

Due to discrete nature of the Poisson Data, the function p(f ;no) gets discontinuities in f and the above
condition can not be met exactly. Some prescription is needed. Hereafter results will be presented
using a prescription that turns out to guarantee coverage. An alternative prescription is discussed in
the Additional material section C.5.
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C.3 Results

C.3.1 ∆ lnL method

C.3.1.1 Interval Ends

As we saw the ends of the 95% Confidence Level Interval of the ∆ lnL method are found solving in
fe the equation

q(f ;no) =
1.962

2
∼ 1.92 (C.15)

As shown on figure C.1 depending on the value of no, one can find one or two disjunct intervals. If
no < C, one gets one interval only since then q(f ;no) has only one minimum for f = 0. For no ≥ C,
q(f ;no) gets two minima and an extremum at f = 0. The value of the function at this extremum is
itself an increasing function of no. So, there is a critical value for no greater than C 1 such that if no
is below (above), q(f = 0;no) is lower (greater) than 1.962

2 and one has one (two) interval(s).

Since the function π(f ;no) is continuous, there is no particular issue in finding the solution
of (C.12). Figures C.2 show two typical examples of π(f ;no): in figure C.2(a), no is low enough
so that there is only one interval, in figure C.2(b), no is greater than the critical value discussed above
and one gets two disjunct intervals.

The figure C.3 shows an example of the ends of the Confidence Intervals as a function of no. Again
if no is low enough, one gets only one interval but two intervals when no is larger.

C.3.1.2 Coverage

One computes the Coverage probability using the equation (C.2).

Let’s consider the figure C.3. It corresponds to the case C = 6 and shows the 95% Confidence Level
intervals for the different possible observations. The equation (C.2) instructs to consider all possible
observations one after an other and for a given observation no, to add its associated probability g (no; f)
if f belongs to its Confidence Interval CI(no). This amounts to draw an horizontal line at f = 0 on
the figure C.3 and to select the observations the Confidence Intervals of which are crossed by this line.
For f = 0, one sees that this picks up the 12 integers from no = 0 to no = 11. Summing up their
associated probabilities one gets C(f = 0) ∼ 98%. We report this value on the figure C.4(a) which
shows the Coverage probability as a function of f for the case C = 6.

Now let’s take a f slightly above 0. One sees in figure C.3, that if f is small enough, the horizontal
line for this f still crosses the same Confidence Intervals that were crossed for f = 0. Therefore the
sum in (C.2) still contains the 12 terms that it contains for f = 0. But the weights g (no; f) have
changed and it turns out that the sum is lower than C (f = 0). So in figure C.4(a), the Coverage
probability starts to decrease.

This continues up to f ∼ 0.65. Then as we can see in figure C.3, the horizontal line for this f comes
to cross the interval for no = 12. So the sum in (C.2) gets a new term and the Coverage probability
in figure C.4(a) gets a discontinuity.

Continuing this game for a while, one understands that the Coverage probability in figure C.3 is
an highly discontinuous function of f . The figure C.4(b) which displays the Coverage probability C(f)
for the case C = 0.1, shows the same discontinuous pattern. This feature of the Coverage probabilities
results from the observations being discrete. It is found whatever the Confidence Interval method is.
What is specific to the ∆ lnL method, is that there are many under-covered values of f specially for
low values of C, i.e lower than announced by the Confidence Level of the intervals. For instance, the
figure C.4(b) shows that Coverage probability values as low as 86% can be obtained while the face
value of the Confidence Level of the intervals is 95%.

A global view of the situation is given by the figure C.5. It displays the coverage probability in the
(C, f2) plane with f ≥ 0, in colors where it is greater than 95%. One notes a general dependence on

1If C is great enough, the critical value is ∼ C + 1.96
√
C.
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(a) π(f ;no) in % for C = 6 and no = 2 (b) π(f ;no) in % for C = 6 and no = 14

Figure C.2: π(f ;no) function in % for C = 6 and two values of no. The vertical lines are the locations
of the ends of the 95 % Confidence Level intervals of the ∆ lnL method. Since the functions are
symmetric, only the f ≥ 0 side is shown.

Figure C.3: Ends of the 95 % Confidence Level intervals of the ∆ lnL method for C = 6 as function
of no.

f2+C, the expected bin counting, blurred in a troubled zone loosely comprised between the f2 ∼ 2
√
C

and f2 ∼
√
C curves. One sees that the method under-covers in a large fraction of the parameter

space. The under-coverage is actually quite severe and Coverage probabilities as low as 85% are found
in the area covered by the figure C.5. Finally, one notes a vast area, loosely defined by f2 <

√
C, in

which the method generally over-covers by few %.
So the ∆ lnL method, although easy to catch and to implement, does not ensure coverage. The

p-value method discussed below is definitely more challenging but it has the definitive advantage to
cover.
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(a) Coverage probability for C = 6 (b) Coverage probability for C = 0.1

Figure C.4: Coverage probability in % as a function of f for 95% Confidence Level interval of the
∆ lnL method

Figure C.5: Coverage probability in the (C, f2) plane with f ≥ 0 for the 95 % Confidence Level
intervals of the ∆ lnL method. Only Coverage probabilities greater than 95% are shown. The three
solid lines are the curves f2 = a

√
C for a = 2, 1.5 and 1.
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C.3.2 p-value method

C.3.2.1 Interval Ends

The definition (C.13) makes the computation of the p-value, p(f ;no), a more complicated matter than
the computation of the function π(f ;no).

A detailed analysis presented in the Additional material section C.5 shows that the composition
of the set the integers “better-than-no-according-to-R-for-f”, B(f, no) defined by (C.13), depends
discontinuously on f . This makes the p-value a discontinuous function of f . Figures C.6 show two
typical examples of the p(f ;no) function. Although the shape of p(f ;no) is globally similar to the one
of π(f ;no) (cf figures C.2), there are many discontinuities as well as local inversions of the slope with
respect to the general trend.

The discontinuities of p(f ;no) imply that the condition (C.14) can not be met strictly. One can
at first decide to look for the f values fulfilling the condition as closely as possible and from below.
This corresponds to consider all the f which have a p-value lower than α, i.e all the “bad” f , and
among them to take as the interval end, the one which has the greater p-value. Its is shown in the
Additional material section C.5 that this “Simple prescription” leads to performance far superior to
the performance of the ∆ lnL method. Still there remains few under-coverage spots although less
severe than in the ∆ lnL method.

Actually these under-coverage spots come from the fact that the “Simple prescription” can let
outside the Confidence Interval few “good” f -ranges on which the p-values are bigger than α. A better
prescription, named the “Proper prescription” in the Additional material section C.5 (cf C.5.2.5), is
first to consider all the intervals such that any f outside them has a a p-value lower than α, and then
to take the shortest of these intervals as the Confidence Interval. In short, outside the Confidence
Interval every f is “bad”. Actually this is the core of the p-value method and this is what insures
coverage.

For both prescriptions, there could be few “bad” f -ranges inside the Confidence Interval on which
p(f ;no) < α. They lead to over-coverage with the “Proper prescription”. One could envision to
remove this insider “bad” ranges. However this would lead to a bunch of disconnected intervals. It
is much more convenient to buy a bit of over-coverage but to keep the Confidence Intervaks simply
connected. As it is shown in the Additional material section C.5, this choice is closely related to a
similar one advised in the Feldman-Cousins method [163].

Adopting the“Proper prescription”, one can determine the interval ends of the p-value method for
any observation no. For instance for the case C = 6, one obtains the Confidence Intervals shown on
figure C.7. Comparing this figure with the figure C.3, the intervals of the p-value method and of the
∆ lnL method look very similar.

This comparison can be made more precise by computing for the interval ends of the p-value
method, the values of the test statistics, χ(f ;no) =

√
2q(f ;no). Indeed from the equation (C.11),

one sees that these would be the value of the “effective” nσ that one would have had to apply in
the ∆ lnL method to find the same interval ends. For the case C = 6 the result is shown on the
figure C.8. In this particular case, this effective nσ varies from a value at low no apparently close to
χ ∼ 1.64 definitevely lower than the 1.96 value of the ∆ lnL method, up to values slightly above 1.96
at high no. This pattern varies with the value of C and is studied in details in the Additional material
section C.5 2.

2The χ ∼ 1.64 is not accidental. In short, it results from the fact that the p-value can be shown to be the probability
in the tails of a distribution as actually π(f ;no) is from its definition (C.12). However in the p-value case, it turns out
that the tails can be asymmetrical up to the point for instance that the probability of one tail gives the main contribution
to the p-value. In this case and if C is high enough, one gets χ ∼ 1.64 since the probability above 1.64σ is indeed 5% for
a Gaussian distribution.
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(a) p(f ;no) in % for C = 6 and no = 2 (b) p(f ;no) in % for C = 6 and no = 14

Figure C.6: p(f ;no) function in % for C = 6 and two values of no. The vertical lines are the locations of the ends

of the 95 % Confidence Level intervals of the p-value method with the “Proper prescription” (cf C.5.2.5). Since the

function is symmetric, only the f ≥ 0 side is shown.

Figure C.7: Ends of the 95 % Confidence Level intervals of the p-value method with the “Proper prescription”

(cf C.5.2.5) for C = 6 as a function of no.

Figure C.8: χ(f ;no) =
√

2q(f ;no) for the ends of the 95 % Confidence Level intervals of the p-value method with

the “Proper prescription” (cf C.5.2.5) for C = 6. The blue solid curve corresponds to the outermost interval ends. The

red dashed curve corresponds to the innermost interval ends when two intervals are obtained. The black dashed lines

are the curves χ = 1.96 and χ = 1.64.
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C.3.2.2 Coverage

The computation of the Coverage probability for the p-value method follows the same track than for
the ∆ lnL method.

For the same reasons the Coverage probability is a highly discontinuous function as illustrated for
the cases C = 6 and C = 0.1 on the figures C.9. However comparing these figures to the figures C.4
of the ∆ lnL method, one sees that the Under-Coverage is no more an issue.

This is confirmed by the figure C.10 which shows the Coverage probability in the (C, f2) plane
with f ≥ 0, in colours when it is greater than 95%. Comparing with figure C.5, one notes a total
absence of Under-Coverage and a globally mitigated Over-Coverage.

As it is shown in the Additional material sections C.5.3 and C.5.4, the p-value method with the
“Proper“ prescription does cover by construction and is equivalent to the Feldman-Cousins method [163].

C.4 Summary and conclusion

In this work one explored a simplified version of the problem of deriving Confidence Intervals for the
anomalous Triple Gauge Couplings insisting on the rigor of the derivation and in particular on the
Coverage probability.

Without nuisance parameters and with a single bin, our statistical problem is similar to the one
addressed in [240] with the important difference that the mean value is not the parameter of interest
but a second degree polynomial of it.

Among the two methods studied here, the ∆ lnL method is very commonly used. Its well known
poor performance are confirmed in the context of our problem. The other method, the more challending
p-value method, has far better performance and in particular covers by construction. As we have
shown, to obtain these nice features, its application requires explicit prescription more precise than
one could have guessed at first.

Increasingly complexity when many parameters of interest and bins are included as well as inclusion
of nuisance effects make quickly impractical the analytical approach used here. One has to resort to
sophisticated minimization tools as well as to pseudo-experiments to address the same questions. Still,
the results of the simple case studied here can be of some help to understand more complex situations.
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(a) Coverage probability for C = 6 (b) Coverage probability for C = 0.1

Figure C.9: Coverage probability in % as a function of f for 95% Confidence Level interval of the
p-value method with the “Proper prescription” (cf C.5.2.5).

Figure C.10: Coverage probability in the (C, f2) plane with f ≥ 0 for the 95 % Confidence Level in-
tervals of the p-value method with the “Proper prescription” (cf C.5.2.5). Only Coverage probabilities
greater than 95% are shown. The three solid lines are the curves f2 = a

√
C for a = 2, 1.5 and 1.
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C.5 Additional Material

C.5.1 Likelihood Ratio

The analytical form of the test statistics q(f ;no) defined by (C.9) is:

q(f ;no) =

 −noln
(
f2+C
no

)
+ f2 + C − no if no ≥ C

−noln
(
f2+C
C

)
+ f2 if no < C

C.5.2 p-value method

C.5.2.1 Intersection of q functions

The definition of the p-value implies that one solves first the problem of finding τ such that

q(τ ;n′o) = q(τ ;no) for n′o 6= no

where no is the actual observation and n′o an alternative hypothetical observation. The solution,
τ(n′o;no), does exist only if no or n′o is greater than C. Defining nc, as the integer such that nc ≥ C >
nc − 1, it comes

if no ≤ nc − 1 and nc ≤ n′o then τ(n′o;no) =

√(
n′o
n′oeC−n

′
o

Cno

) 1
n′o−no − C

if n′o ≤ nc − 1 and nc ≤ no then τ(n′o;no) =

√(
nonoeC−no

Cn
′
o

) 1
no−n′o − C

if nc ≤ no and nc ≤ n′o then τ(n′o;no) =

√
1
e

(
n′o
n′o

nono

) 1
n′o−no − C

(C.16)

The set of the τ(n′o;no) forms a suite increasing with n′o.
3

C.5.2.2 Categorization

From the definition (C.13), the different integers n′o have to be sorted out in two categories: the
category of the “worse-or-as-bad-than-no-according-to-R-for-f” such that q(f ;n′o) ≥ q(f ;no) and the
category of the “better-than-no-according-to-R-for-f” such that q(f ;n′o) < q(f ;no). So we have just
to find how q(f ;n′o) evolves with n′o.

All depends on whether no is lower or greater than C as shown on figures C.11 and C.12. It comes

� if no ≤ nc − 1

– if n′o ≤ no (cf figure C.11(a)) then ∀f q(f ;n′o) ≥ q(f ;no) and this n′o is to be counted as
“worse-or-as-bad”

– if no < n′o ≤ nc − 1 (cf figure C.11(b))

* if |f | = 0 then q(f ;n′o) = q(f ;no) and this n′o is to be counted as “worse-or-as-bad”

* |f | 6= 0 then ∀f q(f ;n′o) < q(f ;no) and this n′o is to be counted as “better”

– if nc ≤ n′o (cf figure C.11(c)), then the curves q(f ;n′o) and q(f ;no) cross for f = τ(n′o;no)

* if |f | ≤ τ(n′o;no) then q(f ;n′o) ≥ q(f ;no) and this n′o is to be counted as “worse-or-as-
bad”

* if |f | > τ(n′o;no) then q(f ;n′o) < q(f ;no) and this n′o is to be counted as “better”

� if nc ≤ no :

3One notes that if C is an integer, i.e C = nc, then ∀no < nc τ(nc;no) = 0.
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(a) Case n′o ≤ no (b) Case no < n′o ≤ nc − 1 (c) Case nc ≤ n′o

Figure C.11: Cases no ≤ nc − 1. Solid line corresponds to q(f ;no), and dashed line to q(f ;n′o)

(a) Case n′o < no (b) Case n′o < no (c) Case no < n′o

Figure C.12: Cases nc ≤ no. Solid line corresponds to q(f ;no), and dashed line to q(f ;n′o)

– if n′o = no, this n′o is to be counted as “worse-or-as-bad”

– if n′o < no, (cf figure C.12(a) and figure C.12(b)), the curves cross for f = τ(n′o;no)

* if |f | < τ(n′o;no) then q(f ;n′o) < q(f ;no) and this n′o is to be counted as “better”

* if |f | ≥ τ(n′o;no) then q(f ;n′o) ≥ q(f ;no) and this n′o is to be counted as “worse-or-as-
bad”

– if no < n′o (cf figure C.12(c), the curves q(f ;n′o) and q(f ;no) cross for f = τ(n′o;no)

* if |f | ≤ τ(n′o;no) then q(f ;n′o) ≥ q(f ;no) and this n′o is to be counted as “worse-or-as-
bad”

* if |f | > τ(n′o;no) then q(f ;n′o) < q(f ;no) and this n′o is to be counted as “better”

In the space (f, n′o), the domains of the “worse-or-as-bad” and “better” categories display inter-
esting patterns such as shown on figures C.13.

C.5.2.3 p-value computation

From previous results, one can compute the p-value in all cases. As illustrated by figures C.13, the
set of the “better” n′o turns out to be a single segment [n1;n2] in such a way that the p-value can be
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(a) For C = 50.5 and no = 30.

(b) For C = 50.5 and no = 65.

Figure C.13: For a given f , the solid blue lines mark the n′o values such that q(f ;n′o) ≥ q(f ;no), i.e the
“worse-or-as-bad” n′o, and the dashed red lines lines mark the n′o values such that q(f ;n′o) < q(f ;no),
i.e the “better” n′o. The solid black curve is the curve n′o = µ where µ = f2 + C. and the dashed
black curves are the curves n′o = µ ±√µ. The vertical lines are the locations of the interval ends of
the p-value method according to the “Proper prescription” (cf C.5.2.5).



C.5. Additional Material 191

written in the simple form:

p(f ;no) = 1−
n2∑

n′o=n1

g(n′o; f)

Examining all the cases, it comes

� if no ≤ nc − 1

– if f = 0 then
p(f ;no) = 1

– if 0 < |f | ≤ τ(nc;no) then

p(f ;no) = 1−
nc−1∑

n′o=no+1

g(n′o; f) (C.17)

which can be written as

p(f ;no) = 1− Fχ2(2µ; 2(no + 1)) + Fχ2(2µ; 2nc) (C.18)

where µ = f2 +C and Fχ2(x;Ndof ) is the repartition function of a χ2 law of Ndof number
of degrees of freedom

– if τ(nc;no) < |f | then

p(f ;no) = 1−
∑ñ

n′o=no+1 g(n′o; f) where ñ is such that τ(ñ;no) < |f | ≤ τ(ñ+ 1;no)

= 1− Fχ2(2µ; 2(no + 1)) + Fχ2(2µ; 2(ñ+ 1))

The p(0;no) = 1 result was expected since here the MLE is null, f̂ = 0.

If no = nc − 1 and |f | ≤ τ(nc;no) the limits of the sum in (C.17) appears to be inversed
with respect to the normal order. In this case, the sum should be understood as being null.
Then we have p(f ;no) = 1 over the range |f | ∈ [0; τ(nc;no)]. Note that this result is obtained
also from (C.18) without any particular prescription. At first sight, it could be strange that
p(f ;no) = 1 for f 6= f̂ . As shown on figure C.14, this comes from the fact that for this particular
value of no, any alternative n′o is “worse-or-as-bad” as long as |f | ≤ τ(nc;no). This illustrates
the odd effects resulting from the discrete nature of the Poisson Law.

� if nc ≤ no

– if |f | < τ(no − 1;no) then

p(f ;no) = 1−
∑no−1

n′o=ñ+1 g(n′o; f) where


if |f | < τ(0;no) ñ = −1
if |f | ≥ τ(0;no) ñ is such that

τ(ñ;no) ≤ |f | < τ(ñ+ 1;no)
= 1− Fχ2(2µ; 2(ñ+ 1)) + Fχ2(2µ; 2no)

– if τ(no − 1;no) ≤ |f | ≤ τ(no + 1;no) then

p(f ;no) = 1

Again one finds a case where p(f ;no) = 1 for f 6= f̂ =
√
no − C 4. The situation is

illustrated on figure C.15 showing that for |f | ∈ [τ(no−1;no); τ(no+1;no)], any alternative
to no is “worse-or-as-bad”

4From equations (C.16), one can check that the MLE is within this interval, f̂ =
√
no − C ∈ [τ(no−1;no); τ(no+1;no)]
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Figure C.14: Example of the no = nc − 1 case. The vertical line is f = τ(nc;no). In the range
|f | ∈ [0; τ(nc;no)], ∀n′o q(f ;n′o) ≥ q(f ;no) and so p(f ;no) = 1

Figure C.15: Details of the [τ(no − 1;no); τ(no + 1;no)] area. The vertical lines are f = τ(no − 1;no)
and f = τ(no + 1;no). In the range |f | ∈ [τ(no − 1;no); τ(no + 1;no)], ∀n′o q(f ;n′o) ≥ q(f ;no) and so
p(f ;no) = 1

– if τ(no + 1;no) < |f | then

p(f ;no) = 1−
∑ñ

n′o=no+1 g(n′o; f) where ñ is such that τ(ñ;no) < |f | ≤ τ(ñ+ 1;no)

= 1− Fχ2(2µ; 2(no + 1)) + Fχ2(2µ; 2(ñ+ 1))

C.5.2.4 p-value vs f function

So the p-value function p(f ;no) is defined by ranges and is discontinuous as illustrated on figures C.6.
The general pattern of the domains of the “worse-or-as-bad” and “better” categories in the space
(f, n′o), as shown on figures C.13, as well as the location of the n′o = µ and n′o = µ±√µ curves help
to understand the shape of the p-value function. The p-value as defined by (C.13) is a sum of the
probabilities of the “worse-or-as-bad” n′o. It can be seen as the probability in the tails of the Poisson
distribution the mean value of which can be followed on figures C.13.

When no ≤ nc − 1, one sees on figure C.13(a), that at very low |f | the probability in the tails will
be high. Thus one starts from a high p(f ;no) value as shown on figure C.6(a). When |f | increases the
mean value of the Poisson distribution increases. This decreases the probability in the lower tail the
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edge of which is constant with f . Since the edge of the upper tail increases faster than µ does, the
probability in this tail decreases too. So globally the function p(f ;no) decreases. However locally the
p(f ;no) can increase as shown on figure C.6(a) over a range over which the terms in (C.13) remains
unchanged.

The case nc ≤ no is different as one can see on figure C.13(b). At low |f |, one can start from a
high or a low p(f ;no) value depending on whether nc is close or not to no. In both cases however
p(f ;no) increases with |f |, until |f | is close to f̂ where p(f ;no) reaches 1. Above f̂ , the situation is
similar to the no ≤ nc − 1 case and p(f ;no) decreases. Again this is a global trend only.

From this description, it is clear that the condition (C.14) has no reason to be fulfilled by finding
an equal amount of probability in the low and upper tails of the Poisson distribution. This is in net
contrast with the logic behind the ∆ lnL method quite explicit in the equation (C.12). The comparison
with the ∆ lnL will be explored in more details below.

C.5.2.5 Looking for ends of Confidence Interval

Because the p-value function p(f ;no) is discontinuous applying the condition (C.14) is not straight-
forward.

First, the discontinuities pose the problem of how to deal with the ends of the ranges. For instance,
say that one is examining the values of f in one of such ranges, ]a, b]; the limit of f(a + ε) for ε > 0
when ε→ 0 is defined but it is not equal to f(a), limε→0+ f(a+ ε) 6= f(a). A priori, this excludes the
point (a, limε→0+ f(a+ ε)) when looking for the ends for Confidence Intervals. This does not look to
be appropriate and we consider here such a point as a legitimate part of the curve. This means that
all the ends of the ranges on which the function is defined, are treated as bi-valued.

Then due to the discontinuities, there could be that there is simply no f such that p(f ;no) = α.
So one can think that the condition (C.14) should be replaced by a “as close as possible to α” criteria
and after further thinking, by “as close as possible to α from below” criteria since one does not want
to get interval of Confidence Level lower than (1 − α)100%. This leads to the “Simple prescription”
that the end interval fl is such that:

Simple Prescription: fl | ∀f | p(f ;no) ≤ α, p(f ;no) ≤ p(fl) ≤ α

This prescription leads to Coverage performance far better than the ∆ lnL method as illustrated by
the figure C.16 showing the Coverage probability in the (C, f2) plane for f ≥ 0, with this prescription.
Comparing to the figure C.5, it is clear that both Over-Coverage and Under-Coverage are reduced.
Unfortunately some Under-Coverage spots remain although much smaller than in the ∆ lnL case: over
the area covered by the figure C.16, the Coverage probability is nowhere found lower than 94%.

After inspection, the Under-Coverage spots of the “Simple prescription” look to be related to
cases such as the one shown on figure C.17(a): above the choosen interval end, i.e here outside the
Confidence Interval, there are values of f such that p(f ;no) > α.

So one gives up the “Simple prescription” and adopts the new “Proper prescription”: consider all
the intervals verifying that any f outside the interval has a p-value lower than α and take the shortest
of these intervals as the Confidence Interval. The result is shown on figure C.17(b). One notes that
as shown on figure C.17(b), there could be some values of f inside the Confidence Interval such that
p(f ;no) < α. To exclude them would lead to not simply connected segments.

As shown in the main text, the p-value method with the “Proper prescription” never under-covers.

C.5.2.6 Comparison with the ∆ lnL method

The most direct comparison of the Confidence Intervals obtained with the p-value method and the
∆ lnL method consists in asking, for a given interval obtained in the p-value method, what would be
the nσ that one would have to use to get the same interval in the ∆ lnL method (cf (C.11)). This
amounts to compute the test statistics χ(f ;no) at the interval ends. The figures C.18(a), C.18(b), and
C.18(c) show χ(f ;no) as a function of no for increasing values of C.
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Figure C.16: Coverage probability in the (C, f2) plane with f ≥ 0 for the 95 % Confidence Level
intervals of the p-value method with the “Simple Prescription”. Only Coverage probabilities greater
than 95% are shown. The three solid lines are the curves f2 = a

√
C for a = 2, 1.5 and 1.

(a) “Simple prescription” (b) “Proper prescription”

Figure C.17: Example of locations of the intervals ends for the p-value method with the “Simple
prescription” or the “Proper prescription”. The vertical lines show the positions of the selected interval
end. The horizontal line gives the targeted value, here 5% for a 95% Confidence Level Interval.
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At low C, as on figure C.18(a), the equivalent nσ of the outermost end is systematically greater
than the 1.96 value of the ∆ lnL method. The equivalent nσ of the innermost end in case of two
intervals follows the same trend for high no. However for lower no, it is on the contrary much lower
than 1.96. This implies that one obtains two disjunct intervals in the p-value method for lower no
than in the ∆ lnL method.

When C increases, as on figure C.18(b). the equivalent nσ of both the innermost and the outermost
ends remains higher than 1.96 at high no. However at low no, the equivalent nσ starts from lower and
lower values, apparently closer and closer to 1.64.

At high C an asymptotic regime clearly sets in as shown on figure C.18(c). As no increases, both
innermost and the outermost ends flip from a regime with nσ ∼ 1.64 to a regime with nσ ∼ 1.96.

This situation can be understood by studying two no values in the most simple case represented
by the figure C.13(a) corresponding to C = 50.5.

For instance when no = 30 only one interval is obtained. The position of the interval end, close to
1.8, in the (f, n′o) plane is shown on the figure C.13(a). As it can be understood from the position of
the mean value of the Poisson distribution, the p-value is mostly equal to the probability in the upper
tail of the distribution. Then one understands that a value χ(f ;no) ∼ 1.64 is found. Indeed, since the
mean value is high enough, one can approximate the Poisson distribution by a Gaussian distribution
and as it is known, a probability of 5% is found in an upper tail of a Gaussian law above 1.64 σ.

In a similar way when no = 65 two intervals are obtained. The outermost end is found close to 5.6
while the innermost end is close to 1.4. From the location of the innermost end in the (f, n′o) plane
shown on the figure C.13(b), it is clear that for this end the situation is similar to the previous studied
case: an asymmetric tails configuration leads to a value χ(f ;no) ∼ 1.64. On the contrary the location
of the outermost end shows that the tails will be symmetric. Following the same lines of reasoning,
one understands then that a value χ(f ;no) ∼ 1.96 is to be expected since a probability of 2.5% is
indeed found in an upper tail of a Gaussian law above 1.96 σ.
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(a) C = 0.5

(b) C = 2.5

(c) C = 50.5

Figure C.18: χ(f ;no) =
√

2q(f ;no) for the ends of the 95 % Confidence Level intervals of the p-
value method with the “Proper prescription”, for C = 0.5. The blue solid curve corresponds to the
outermost interval ends. The red dashed curve corresponds to the innermost interval ends when two
intervals are obtained. The black dashed lines are the curves χ = 1.96 and χ = 1.64.
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C.5.3 Coverage of the p-value method

Whatever the Confidence Interval method is, we have seen that the Coverage probability is given by
the equation (C.2), i.e

C(f) =
∑

no∈A(f)

g(no; f) (C.19)

where A(f) is the set of the observations for which f is in the Confidence Interval CI(no)

A(f) = {no | f ∈ CI(no)}

This divides the observations in two sets: a set of the “accepted” observations, {nao} = A(f), which
enter in the sum (C.19), and the set of the “rejected” observations, {nro} = A(f){ which do not.

Lets consider the “rejected” observations set. One orders these observations according to the values
of their Likelihood ratios R (f, nro) and one picks up the “best-according-to-R-for-f” of them, ñro, i.e
it is such that R (f, ñro) is the greatest of the set of the {R (f, nro)} 5.

Now one looks for observations no strictly “better-according-to-R-for-f” than ñro, i.e. such that
R (f, no) > R (f, ñro). One has adopted a notation for this set when one defined the p-value in (C.13):

B(f, ñro) = {no | R(f ;no) > R(f ; ñro)}

By construction, these observations do not belong to the “rejected” set since ñro is the “best-according-
to-R-for-f” of the “rejected”. So all observations no “better-according-to-R-for-f” than ñro belong to
the accepted set {nao}, i.e B(f, ñro) ⊂ A(f). So looking back to the sum in (C.19), one gets that

C(f) =
∑

no∈A(f)

g(no; f) ≥
∑

no∈B(f,ñro)

g(no; f)

so that using (C.13) one gets
C(f) > 1− p(f ; ñro) (C.20)

In the general case, the result (C.20) does not bring too much. But in the case of the p-value method
with the Proper prescription, it implies that the method covers. Indeed since by definition ñro belongs
to the “rejected” set, one has ñro 6∈ A(f), i.e f 6∈ CI(ñro). The latter condition, in the case of the
p-value method with the Proper prescription, implies p(f ; ñro) < α. So the result (C.2) becomes

C(f) > 1− α

Therefore the p-value method with the Proper prescription covers.

5The existence of a finite ñro is granted if the set {nro} is finite. If it is not, then to require that a finite ñro exists
possibly imposes a restriction on the admissible distributions g(no; f) and Confidence Interval methods. Still this seems
granted for the distributions of interest which verify g(no; f) → 0 when no → ∞, as the one considered here, and the
Confidence Interval methods for which A(f) is finite as those studied here.
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C.5.4 Equivalence of the p-value and Feldman-Cousins methods

The Feldman-Cousins method [163] is a Neyman construction of Confidence Intervals with a specific
ordering principle.

First the method starts by building intervals not over the parameter axis for a fixed observation
no, but over the observations axis for a fixed f . Lets call these intervals Observation Intervals and note
them OI(f). For a given f , one builds OI(f) by gathering the observations in the decreasing order
of their Likelihood Ratios while summing up their probabilities, and we continue this up to getting a
total sum just exceeding 1− α ∑

n′o∈OI(f)

g(n′o; f) ≥ 1− α (C.21)

where the sum runs on the observations ordered by decreasing Likelihood Ratios.
Then the Confidence Interval CIFC(no) is formed by collecting all the f such that no ∈ OI(f)

CIFC(no) = {f |no ∈ OI(f)} (C.22)

Lets consider a f which does not belong to CIFC(nXo ) for a given nXo , i.e from (C.22), such that
nXo 6∈ OI(f). Then lets consider the sum over the observations strictly “better-according-to-R-for-f”
than nXo which enters in the definition of the p-value (C.13)

1− p(f, nX0 ) =
∑

n′o∈B(f,nX0 )

g(n′o; f) (C.23)

where by definition of B(f, nX0 ) in (C.13), the sum runs over all the n′o such that R(f ;n′o) > R(f ;nX0 ).
By construction of OI(f), one has OI(f) ⊂ B(f, nXo ). Therefore∑

n′o∈B(f,nX0 )

g(n′o; f) >
∑

no∈OI(f)

g(no; f)

So from (C.21) and (C.23) one gets

f 6∈ CIFC(nXo )⇔ p(f, nX0 ) < α (C.24)

The Proper Prescription for the p-value method that we described in preceding sections is to take
the shortest simply connected interval such that

f 6∈ CI(nXo )⇒ p(f, nX0 ) < α

Comparing this to (C.24), and noting the “⇒” and the “⇔”, one sees that the intervals of the p-value
method are larger that those of the Feldman-Cousins method.

One saw that in order to get simply connected intervals, the Proper Prescription allows f -ranges
within the Confidence Interval which have p-value lower than α. These “bad” f -ranges are what
enlarges the intervals of the p-value method with respect to those of the Feldman-Cousins method.
Would these ranges be removed, the two methods would be identical.

Actually the Feldman-Cousins method advised in [163] is not exactly (C.24). Indeed one finds in
this paper the same prescription touching simply connected intervals (p 3878 of [163]) than the one we
used here. Therefore the two methods, the p-value method with Proper Prescription and the “real”
Feldman-Cousins method are identical in all details.



Appendix D

Muon Momentum Resolution

In this appendix, I derive analytical formulas for rought estimates of the resolution on the measurement
of the momentum of a muon in the ATLAS Muon Spectrometer using idealizations of the Magnetic
Field and of the detection units.

In the first section D.1, I express position and direction changes of a point moving in a plane as
integrals on curvature radius. In the second section D.2, I estimate the resolutions on the measurement
of the position and the angle of a Segment of a muon Track crossing a MDT Station.

The results of the two first sections are used in the third section D.3 to compute the resolution
on the measurement of the momentum of a muon from the local measurements of the angles and
the positions of a muon trajectory intersecting a set of “Measurement” lines which idealize the Muon
Spectrometer Stations. The contribution of the Multiple scattering effects to the momentum resolution
is estimated in the fourth section D.4.

The sections D.3 and D.4 offer estimates of the momentum resolution using “archetypal” methods
for the measurement of the momentum, the Three-Points, Angle-Point and Angle-Angle Methods,
which are idealizations of the actual means by which the momentum is measured. They are con-
venient for the simple analytical treatment that they allow while still accurately reflecting the real
instrumental conditions: the Three-Points Method corresponds to measurements in the Barrel Muon
Spectrometer Toroid where three Stations provide trajectory measurements and the trajectory bending
occurs between the first and the last Stations; the Angle-Point Method corresponds to measurements
in the End Cap Muon Spectrometer Toroid where again three Stations measure the trajectory but
the bending occurs only between the first and second Stations; the Angle-Angle Method correspond
to various places in the Muon Spectrometer where, due to imperfect acceptance coverage, only Two
Stations are measuring the trajectory.

Each of these Methods uses only a subset of the available local measurements, e.g. the Three-Points
Method uses three position measurements but not the three angles measurements which nevertheless
are performed together with the position measurements. They are simplifications of the actual recon-
struction algorithm which builds from all the available measurements.

In the last section D.5, a generalization is discussed. It allows to obtain the covariance matrix of
the measurement of the parameters of a Track, not just the momentum but the position and angle as
well. Any number of local measurements can be included not just those retained by the archetypal
methods.

It is found that the much simpler archetypal methods do capture already the most important
instrumental effects for the moment resolution and do provide estimates almost unchanged when all
local measurements are used. However only the generalized method allows to discuss correlations
between the measurements of the parameters of a track. In particular, the incidence angle and the
momentum of a track are found highly correlated.
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D.1 Deflections in position and direction for a point moving in a
plane

Figure D.1: 2D-curve extending from x-axis to x = xE

straight line.

One considers a curve in the (x, y) plane extend-
ing from a “Begin” point (x = xB, y = 0) to an
“End” point (x = xE , y = H).

One introduces the curvilinear coordinate l
and parametrizes the coordinates of a point on
the curve as functions of l, (x(l), y(l)), so that
l = 0 and lmax correspond to “Begin” and “End”
points.

We call α(l) the angle between the unit tan-
gent vector ~T and the x axis, and αB and αE
its values at “Begin” and “End” points, see fig-
ure D.1.

The aim is to express the variation of the x coordinate, ∆x = xE − xB and the variation of the α
angle, ∆α = αE − αB, as integrals of the curvature radius R.

One has

∆x =

∫ E

B

dx

dl
dl (D.1) ∆α =

∫ E

B

dα

dl
dl (D.2)

and by definition of α and R

dx

dl
= cot(α)

dy

dl
(D.3)

dα

dl
=

1

R
(D.4)

Using (D.3) in (D.1) and integrating by parts, it comes

∆x = ∆xo +

∫ E

B
(H − y)

d cot(α)

dl
dl (D.5)

where ∆xo ≡ H cot(αB) is the change in x coordinate one gets when there is no deflection, i.e obtained
performing a straight line extrapolation from the “begin” point.

Since (H−y) cot(α) is the x difference between on one hand, the x coordinate at the actual position
along the track and on the other hand, the extrapolation on the end line along the tangent from the
same position, the second term in (D.5) collects the projections on the end line of each infinitesimal
angular deflections.

Using (D.4) in (D.5) and in (D.2), it comes

∆x = ∆xo −
∫ E

B
(H − y)

1

sin(α)2

1

R
dl (D.6) ∆α =

∫ E

B

dl

R
(D.7)

Under the approximation that the deflections are small, i.e R >> H, one gets:

∆x ∼ ∆xo − 1

sin(αB)

∫ E

B

lmax − l
R

dl (D.8)
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The expressions (D.6) and (D.7) are purely Geometry results. From here one takes that the
deflections are induced by a Magnetic Field ~B = B.~x ∧ ~y perpendicular to the (x, y) plane acting on
a particle of momentum p and charge q. Therefore the curvature radius R is given for B in Tesla and
p in GeV by:

1

R
= −q0.3B

p
(D.9)

Using (D.9) in (D.6) and in (D.7), it comes

∆x = ∆xo + q
0.3

p

∫ E

B
(H − y)

B

sin(α)2
dl (D.10)

∆α = −q0.3

p

∫ E

B
Bdl (D.11)

Under the approximation that the deflections are small, one gets:

∆x ∼ ∆xo + q
0.3

p sin(αB)

∫ E

B
B(lmax − l)dl (D.12)

If in addition, B is uniform one gets:

∆x ∼ ∆xo + q
0.3BH2

2p sin(αB)3
(D.13)

∆α ∼ −q 0.3BH

p sin(αB)
(D.14)

It is interesting to estimate the deflections of the trajectory of a muon of 1TeV in the Barrel Muon
Spectrometer Toroid. Considering a bending over a distance of 5m and taking a typical Magnetic
Field of 0.5T , one obtains a sagitta of ∼ 470µm for the arc formed by the trajectory and a total
angular deflection of ∼ 750µrad.

D.2 Local measurements in MDT

Figure D.2: Fit of a straight line in the plane

orthogonal to MDT tube axes

One wants to estimate the resolution on the mea-
surements of the local position and angle in a
MDT Station. In the bending plane, the wires of
the drift tubes form a grid of points,{Ti}, see fig-
ure D.2. For a given tube one measures the impact
parameter, µi of the trajectory with respect to the
wire.

One assumes that the Magnetic Field is weak enough
and the momentum high enough for the trajectory to be
approximately a straight line in the Station volume. Then
an other quantity of interest is λi, the distance between
the point on the trajectory the closest to Ti and the point
where the trajectory crosses the mid-plane between the two
MDT Multilayers. One assumes that the resolution of the
µi measurements is the same for all tubes, σtube.

One wants to measure x0 and α, the point where the trajectory crosses this mid-plane and its
angle there.
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Because the basic measurement is on µi, it is easier to work with the product x0 sin(α), i.e the
projection of the length x0 on an axis orthogonal to the track. It is then clear that the resolution on
x0 sin(α) is the statistical combination of the measurements of all the µi’s:

1

σ(x0 sin(α)2
=
∑
i

1

σ(µi)2
(D.15)

Therefore one has

/σx ≡ σ(x0 sin(α)) =
σtube√
Ntubes

(D.16)

where Ntubes is the total number of crossed tubes.

Along the same lines, it comes that the resolution on α is:

σ(α) =
σtube√∑

λ2
i

(D.17)

We assume that the µi are small enough with respect to the Station thickness so that one can do
the approximation λi ∼ yi/ sin(α). Therefore on has

/σα ≡ σ(α/ sin(α)) ∼ σtube√∑
y2
i

(D.18)

It is convenient to write this as

/σα ∼
σtube√
Ntubes

2

Y
(D.19)

where Y ≡ 2
√ ∑

y2
i

Ntubes
is a measure of the distance between the MDT Multilayers.

Since Ntubes is approximately proportional to 1/ sin(α), one has

/σx ∼ /σ0
x

√
sin(α) (D.20) /σα ∼ /σ0

α

√
sin(α) (D.21)

with

/σ0
x =

σtube√
N⊥tubes

(D.22) /σ0
α =

σtube√
N⊥tubes

2

Y
(D.23)

where N⊥tubes is the number of tubes crossed at normal incidence.

Taking N⊥tubes ∼ 6, σtube ∼ 100µm and Y ∼ 30cm, one gets

/σ0
x ∼ 41µm (D.24) /σ0

α ∼ 270µrad (D.25)

Such an angular resolution is typical of the BMS Stations. The angular resolution is better for
the BIL Stations due to their four Tube Layers per MDT Multilayer and for the BML, BOS and BOL
Stations due to their larger distance between their MDT Multilayers. It is definitively worst for the
BIS Stations due to the much shorter distance between their MDT Multilayers.

Hereafter we will use the values /σ0
x ∼ 40µm and /σ0

α ∼ 300µrad for numerical estimates.
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D.3 Momentum Measurement Methods

Figure D.3: Muon trajectory crossing three “Mea-

surement” lines where its position and angle can be

measured.

One considers the situation represented in figure D.3:
a trajectory crosses three parallel “Measurement”
lines on which its local position and angle can be
measured. One calls H12, H23 and H13, the dis-
tances between the lines in the y direction and αB,
the angle of the trajectory when it crosses the first
plane.

One assumes that the resolution of local position
and angle measurements are the same for all the “Mea-
surement” lines. From the results of the section D.2,
we get that is appropriate to work with the resolution
on xi sin(α), /σx and with the resolution on α/ sin(α),

/σα.

Finally, one assumes the conditions that lead
to (D.13) and (D.14) do hold and one specializes to the q = −1 case.

Hereafter one considers methods of momentum extraction under specific Magnetic Field and “Mea-
surement” lines configurations and choice on which local measurements are actually used.

D.3.1 Three-Points Method

Here an uniform Magnetic Field applies between all three “Measurement” lines and one uses only the
measurements of the local positions x1, x2 and x3 of the trajectory when it crosses them. From (D.13),
one gets

x2 − x1 ∼ H12 cot(αB)− 0.3BH2
12

2p sin(αB)3
(D.26)

x3 − x1 ∼ H13 cot(αB)− 0.3BH2
13

2p sin(αB)3
(D.27)

Figure D.4: Three-Points Method. The quantity

∆3P contains all the information on the muon momen-

tum.

The quantity ∆3P which isolates the p dependence
and allows to compute it, is

∆3P = (x2 − x1)− (x3 − x1)
H12

H13
(D.28)

since indeed

1

p3P

∼ 2

0.3B

sin(αB)3

H12H23
∆3P (D.29)

The quantity ∆3P has a simple geometrical mean-
ing illustrated on figure D.4: from the local position
measurements on the first and last “Measurement”
lines, one extrapolates on the middle “Measurement”
line the position of the trajectory if no deflection would
have happened; comparing with the actual position, one infers what the actual deflection has been.

Assuming that the most favorable solution H12 = H23 = H13/2 is chosen, it comes that the
resolution on p is:

σ(p)

p 3P

∼
8/σ0

x

0.3BH2
13

√
3

2
p sin(αB)5/2 (D.30)
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Assuming that the “Measurement” lines represent the Barrel Stations of the Muon Spectrometer,
i.e they are parallel to the beam-axis, then αB is the polar angle θ and p sin(αB) is the transverse
momentum pT . One gets

σ(pT )

pT 3P

∼
8/σ0

x

0.3BH2
13

√
3

2
pT sin(θ)3/2 (Barrel) (D.31)

For a position resolution /σ0
x ∼ 40µm and “Barrel” values of Magnetic Field and dimension, i.e

B ∼ 0.5T and H13 ∼ 5m, one gets for pT in GeV

σ(pT )

pT 3P

∼ 10%. TeV−1 pT sin(θ)3/2 (Barrel) (D.32)

There is a η range, intermediate between Barrel and End Cap areas, in which a Three-Points
measurement is performed in the Muon Spectrometer (see figure 1.11). In this configuration the
“Measurement” lines are orthogonal to the beam-axis and αB = θ + π/2. One gets

σ(pT )

pT 3P

∼
8/σ0

x

0.3BH2
13

√
3

2
pT cos(θ)3/2 1

tan(θ)
(Transition) (D.33)

D.3.2 Angle-Point Method

On considers the case where there is an uniform Magnetic Field between the two first “Measurement”
lines but no Magnetic Field between the two last lines. From (D.13) and (D.14), one gets

x2 − x1 ∼ H12 cot(αB)− 0.3BH2
12

2p sin(αB)3
(D.34)

x3 − x2 ∼ H23 cot(αB + ∆α) with ∆α ∼ 0.3BH12

p sin(αB)
(D.35)

Figure D.5: Angle-Point Method. The quan-
tity ∆αP contains all the information on the
muon momentum.

The quantity ∆αP which isolates the p dependence
and allows to compute it, is

∆αP = (x2 − x1)− (x3 − x2)
H12

H23
(D.36)

since indeed

1

pαP
∼ 2

0.3B

sin(αB)3

H2
12

∆αP (D.37)

The quantity ∆αP has a simple geometrical mean-
ing illustrated in figure D.5: from the local position
measurements on the middle and last “Measurement”
lines, one extrapolates on the first “Measurement” line
the position of the trajectory would no deflection have
happened; comparing with the actual position, one infers what the actual deflection has been.

Assuming that the configuration H12 = H23 = H13/2 has been chosen, it comes:

σ(p)

p αP

∼
8/σ0

x

√
6

0.3BH2
13

p sin(αB)5/2 (D.38)

The Angle-Point Method is only relevant for the Muon Spectrometer in the End Cap region.
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Therefore using αB = θ + π/2, one gets

σ(pT )

pT αP

∼
8/σ0

x

√
6

0.3BH2
13

pT cos(θ)3/2 1

tan(θ)
(D.39)

The dependence on the incidence angle on the Tubes Layers of the Barrel resolution (D.31) and of
End Cap resolution (D.39) differs by the term 1

tan(θ) . In order to fairly compare the Barrel and End
Cap resolutions, it is appropriate to choose a reference angle θ0 and then to compare Barrel resolution
at π

2 −θ0 and End Cap resolution at θ0. Since, apart the term 1
tan(θ) , the dependence of the resolutions

on the incidence angle is the same, this is equivalent to write

σ(pT )

pT αP

∼
8/σ0

x

√
6

0.3BH2
13 tan(θ0)

pT cos(θ)3/2 tan(θ0)

tan(θ)
(D.40)

and to look at the numerical value of the multiplicative factor
8/σ0
x

√
6

0.3BH2
13 tan(θ0)

For a reference angle corresponding to the pseudo-rapidity ∼ 2.2, i.e θ0 ∼ 12.6o, a position resolu-
tion /σ0

x ∼ 40µm and “End Cap” values of Magnetic Field and size, i.e B ∼ 1T and H13 ∼ 11m, one
gets for pT in GeV

σ(pT )

pT αP

∼ 10%. TeV−1 pT cos(θ)3/2 tan(θ0)

tan(θ)
(D.41)

A more complete treatment takes into account the variation of Magnetic Field with the distance
to the beam. For the choice of reference angle above, it turns out that one retrieves (D.40) and (D.41)

but without the term tan(θ0)
tan(θ)

D.3.3 Angle-Angle Method

On considers the case where there is an uniform Magnetic Field between all the “Measurement” lines
but only the local measurements on two “Measurement” lines, called here lines a and b are available.
The momentum measurement will rely then on the capability of the “Measurement” line to measure
also local angle. The distance between the two available “Measurement” lines is called here Hab.

In the Angle-Angle Method, one uses only the measurements of the two local angles. From (D.14),
one gets

1

pαα
∼ sin(αB)

0.3BHab
∆α (D.42)

which gives
σ(p)

p αα

∼
√

2/σ0
α

0.3BHab
p sin(θ)5/2 (D.43)

It is convenient to compare the momentum resolution of the Angle-Angle Method to the one that
could have been obtained if the Three-Points Method could have been applied, cf (D.30)

Rαα/3P ≡
σ(p)
p αα/σ(p)

p 3P

∼ 1

4
√

3

/σ0
α

/σ0
x

H2
13

Hab
(D.44)

For position resolution /σ0
x ∼ 40µm, angular resolution /σ0

α ∼ 300µrad, “Barrel” value H13 ∼ 5m,
and that it is the Medium Station that is missing, i.e Hab = H13, one gets

Rαα/3P ∼ 5 (D.45)

This indicates a strong degradation of the momentum resolution when only two Stations can be
used. Actually this is a quite optimistic estimate since not only it could happen that the missing Station
is not the Medium one, but we also considered equal angular resolutions. More realistic estimates are
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obtained if one considers the possible Stations pairs cases as well as more realistic angular resolutions,
i.e /σ0

α ∼ 500µrad for BIS Stations, /σ0
α ∼ 300µrad for BMS Stations and /σ0

α ∼ 200µrad for BIL, BML,
BOS and BOL Stations. Noting /σα0,a and /σα0,b the angular resolution on the two “Measurement lines,
the momentum resolution is given by

σ(p)

p αα

∼

√
/σ2
α0,a + /σ2

α0,b

0.3BHab
p sin(θ)5/2 (D.46)

i.e Rαα/3P ∼
1

4
√

6

√
/σ2
α0,a + /σ2

α0,b

/σ0
x

H2
13

Hab
(D.47)

One gets the results of the table D.1: all configurations gives degradation by more than a factor 5 but
the BIL-BOL case owing to the good angular resolutions of these Stations.

Configuration /σα0,a
(µrad) /σα0,b

(µrad) Hab(m) Rαα/3P

BIS-BMS 500 300 2.5 15
BMS-BOS 300 200 2.5 9
BIS-BOS 500 200 5 7
BIL-BML 200 200 2.5 7
BML-BOL 200 200 2.5 7
BIL-BOL 200 200 5 4

Table D.1: Ratio of momentum resolutions of the Angle-Angle and Three-Points Methods for different
scenarios

D.3.3.1 Trying to rescue the Angle-Angle Method: the Angle-Two-Points Method

In view of the degradation of the momentum resolution when only two “Measurement” line are avail-
able and only the two local angles are measured, see D.3.2, one can wonder if the addition of some
local point measurement could help.

Hereafter we look for the momentum resolution when two points and one angle are measured.
Latter, in section D.5, we will consider the case where all local angle and position measurements are
used, but for now, in the approach of the simple methods explored here, we restrict our computations
to three local measurements at most.

Figure D.6: Angle-Two-Points Method. The quan-

tity ∆α2P contains all the information on the muon

momentum.

One assumes that the local angle is measured on
the “Measurement” line b. One has

xb − xa ∼ Hab cot(αB)−
0.3BH2

ab

2p sin(αB)3
(D.48)

αb ∼ αB +
0.3BHab

p sin(αB)
(D.49)

The quantity ∆α2P which isolates the p depen-
dence and allows to compute it, is

∆α2P = (xb − xa)−Hab cotαb (D.50)

since indeed
1

pα2P

∼ 2

0.3B

sin(αB)3

H2
ab

∆α2P (D.51)

The quantity ∆α2P has a simple geometrical meaning illustrated in figure D.6: from the measure-
ment of the local position and angle on the “Measurement” line b, one extrapolates to the “Measure-



D.3. Momentum Measurement Methods 207

ment” line a the position of the trajectory as if no deflection would have happened; comparing with
the actual position, one infers what the actual deflection has been.

It comes:

σ(p)

p α2P

∼
2
√

2/σ2
x0,b +H2

ab/σ
2
α0,b

0.3BH2
ab

p sin(αB)5/2 (D.52)

i.e

Rα2P/αα ≡
σ(p)
p α2P /σ(p)

p αα

∼ 2
/σα0,b√

/σ2
α0,a + /σ2

α0,b

√
1 + 2ε2xα (D.53)

or

Rα2P/3P ≡
σ(p)
p α2P /σ(p)

p 3P

∼ 1

2
√

6

/σα0,b

/σ0
x

√
1 + 2ε2xα

H2
13

Hab
(D.54)

with

εxα =
/σx

Hab/σα
(D.55)

For position resolution /σ0
x ∼ 40µm, angular resolution /σ0

α ∼ 300µrad and “Barrel” valueHab ∼ 5m,
i.e εxα ∼ 0.027, one gets

Rα2P/αα ∼ 1.41 and Rα2P/3P ∼ 8 (D.56)

Clearly in these conditions, the Angle-Two-Points Method is the worst of all. The result Rα2P/αα ∼√
2, indicates that, in these conditions, the Angle-Two-Points Method exploits a single local angle

measurement while the Angle-Angle Method exploits two of equal qualities.

However if the angular resolutions are unequal, since the Angle-Two-Points Method can exploit
the best of the local angle measurements while the Angle-Angle Method can be spoiled by the worst
of them, the Angle-Two-Points Method can turn out to be better than the Angle-Angle Method, as
it is actually clearly possible from (D.53), .

Considering the “realistic” scenarios of the preceding section and using for each of them, the best
measured local angle for the Angle-Two-Points Method, one gets the results of the table D.2. One
sees that, since all the Stations in the large sectors have the same angular resolution no gain in to be
expected from the Angle-Two-Points Method. However due to the very different angular resolutions
involved in the BIS-BOS scenario, the Angle-Two-Points Method performs slightly better. There is
not such an improvement for the BIS-BMS and BMS-BOS scenarios since the angular resolutions are
not different enough. However in these scenarios, a better use of the best angular measurement is
made in the Angle-Two-Points Method since one finds for them Rα2P/αα <

√
2.

Configuration /σα0,a
(µrad) /σα0,b

(µrad) Hab(m) Rα2P/αα Rα2P/3P

BIS-BMS 500 300 2.5 1.03 15
BMS-BOS 300 200 2.5 1.12 10
BIS-BOS 500 200 5 0.74 5
BIL-BML 200 200 2.5 1.42 10
BML-BOL 200 200 2.5 1.42 10
BIL-BOL 200 200 5 1.42 5

Table D.2: Ratio of momentum resolutions of the Angle-Two-Points, Angle-Angle and Three-Points
Methods for different scenarios
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D.4 Multiple Scattering contribution

One considers that the effect of the Multiple Scattering effects in the situation represented in figure D.1,
can be described by a set of “Multiple Scattering” lines parallel to the x axis on which the trajectory
angle is deflected by random angles αSci . Under the approximations that all deflections are small, it
comes that the Multiple Scattering contributes to the position and angular deflections by adding to
the Magnetic Field deflections (D.13) and (D.14), the terms

∆Scx =
1

sin(αB)2

∑
i

(H − yi)αSci (D.57)

∆Scα =
∑
i

αSci (D.58)

where the sums run on the “Multiple Scattering” lines and the yi’s are their y coordinates

D.4.1 Application to the Three-Points Method

One looks for the effects of Multiple Scattering on the quantity ∆3P defined by (D.28). It comes that
the Multiple Scattering effect adds the term:

δ∆3P =
1

sin(αB)2

[∑
12

αSci
[
(H12 − yi)− (H13 − yi)

H12

H13

]
−
∑
23

αSci (H13 − yi)
H12

H13

]
(D.59)

where the first sum runs on the “Multiple Scattering” lines between the first and second “Measure-
ment” lines and the second sum runs between the second and last “Measurement” ones. It comes

δ∆3P = − H12H23

H13 sin(αB)2

(∑
12

αSci
[
1− |di|

H12

]
+
∑
23

αSci
[
1− |di|

H23

])
(D.60)

where di = yi −H12 is the distance between the “Multiple Scattering” line and the middle “Measure-
ment” line. The equation (D.60) shows that a “Multiple Scattering” line contributes more if closer
to the middle “Measurement” line and not at all if located on the first or on the last “Measurement”
line. Then the contribution to the momentum resolution is:

σ(p)

p

Sc

3P

∼ 2

0.3B

sin(αB)

H13
p

√∑
12

σ(αSci )2
[
1− |di|

H12

]2
+
∑
23

σ(αSci )2
[
1− |di|

H23

]2
(D.61)

where σ(αSci ) is the width of the Gaussian distribution of the angles αSci .

We take that a “Multiple Scattering” line corresponds to a certain amount of matter counted in
radiation lengths, Xi

0, in the y direction such that for p in GeV , one has

σ(αSci ) =
0.0136

p

√
Xi

0

sin(αB)
(D.62)

Assuming that the configuration H12 = H23 = H13/2 has been chosen, it comes

σ(p)

p

Sc

3P

∼ 2× 0.0136

0.3BH13

√
sin(αB)

√∑
Xi

0

[
1− |di|

H13/2

]2
(D.63)

In the Muon Spectrometer the matter of each Station amounts for about ∼ 0.3X0. Assuming that
there is a single “Multiple Scattering” line with such an amount of matter, located on the middle
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“Measurement” line, B ∼ 0.5T , and H13 ∼ 5m, one gets

σ(p)

p

Sc

3P

∼ 2.0%
√

sin(αB) (D.64)

D.4.2 Application to the Angle-Point Method

One looks for the effects of Multiple Scattering on the quantity ∆αP defined by (D.36). It comes that
the Multiple Scattering effect adds the term:

δ∆αP = − H12

sin(αB)2

(∑
12

αSci
[
1− |di|

H12

]
+
∑
23

αSci
[
1− |di|

H23

])
(D.65)

The equation (D.65) shows that again, a “Multiple Scattering” line contributes more if closer to the
middle “Measurement” line and not at all if located on the first or on the last “Measurement” line.
Then the contribution to the momentum resolution of the Multiple Scattering effect is:

σ(p)

p

Sc

αP

∼ 2

0.3B

sin(αB)

H12
p

√∑
12

σ(αSci )2
[
1− |di|

H12

]2
+
∑
23

σ(αSci )2
[
1− |di|

H23

]2
(D.66)

Assuming that the configuration H12 = H23 = H13/2 has been chosen, it comes

σ(p)

p

Sc

αP

∼ 4× 0.0136

0.3BH13

√
sin(αB)

√∑
Xi

0

[
1− |di|

H13/2

]2
(D.67)

Assuming that there is a single “Multiple Scattering” line, amounting for ∼ 0.3X0, located on the
middle “Measurement” line, and using “End Cap” values B ∼ 1T and H13 ∼ 11m, one gets

σ(p)

p

Sc

αP

∼ 0.9%
√

sin(αB) (D.68)

D.4.3 Application to the Angle-Angle Method

From (D.42) it is clear that the Multiple Scattering effects contributes as

σ(p)

p

Sc

αα

∼ sin(αB)

0.3BH13
p
√∑

σ(αSci )2 ∼ 0.0136

0.3BH13

√
sin(αB)

√∑
Xi

0 (D.69)

Comparing to the result for the Three-points Method (D.63), one gets

R3P/αα ≡
σ(p)
p

Sc

3P /σ(p)
p

Sc

αα

∼ 2

√√√√∑Xi
0

[
1− |di|

H13/2

]2∑
Xi

0

(D.70)

If the total amount of radiation lengths is put on the middle “Measurement” line it comes

R3P/αα ∼ 2 (D.71)

If the total amount of radiation lengths is distributed uniformly over all the space between the first
and last “Measurement” lines, one gets

R3P/αα ∼ 2/
√

3 ∼ 1.15 (D.72)
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D.5 Generalization

The preceding results were obtained by first expressing the momentum as a function of the local
measurements and then propagating the measurements errors and multiple scattering effects in this
expression. This approach becomes difficult, or even impossible, if much more measurements are used.
One can expect that there is a way to combine any number of local measurements. This is what is
tempted in this section.

D.5.1 General case

One considers N “Measurement” lines indexed by k, on which one measures the trajectory local
positions and angles xk and αk, and a reference line located before the first “Measurement” line, on
which one defines the parameters of the trajectory that we want to measure, xB, αB and ρ = 1/p, its
position, angle and inverse momentum.

First one considers the case with no Multiple Scattering effects. The xk and αk quantities are
functions of xB, αB and ρ = 1/p. The variations of xk and αk are obtained from those of xB, αB and
ρ by (

δxk
δαk

)
= tk

δxBδαB
δρ

 with tk =

(
∂xk
∂xB

∂xk
∂αB

∂xk
∂ρ

∂αk
∂xB

∂αk
∂αB

∂αk
∂ρ

)
(D.73)

One defines the vector ~µ to store all the xk and αk and the vector ~τ to store xB, αB and ρ so that

µ2k−1 = xk , µ2k = αk , τ1 = xB , τ2 = αB and τ3 = ρ (D.74)

Therefore the variations of ~µ is obtained from the variation of ~τ by

δ~µ = Tδ~τ (D.75)

where the matrix T is defined by

Tj,i =
∂µj
∂τi

, i.e T2k−1,i = tk1,i =
∂xj
∂τi

and T2k,i = tk2,i =
∂αj
∂τi

(D.76)

Then one writes the χ2 function as:

χ2 =
N∑
k

{
εxk
δx2

k

σ2
x

+ εαk
δα2

k

σ2
α

}
= δ~µ>W ~µδ~µ (D.77)

where σx and σα are some reference local position and angle resolutions and the positive parameters
εs and εαk allow for performance differences between the local measurements done on the different
“Measurement” lines, and the diagonal matrix W ~µ is

W ~µ
i,j = δi,jW

~µ
i,i with W ~µ

2k−1,2k−1 =
εxk
σ2
x

and W ~µ
2k,2k =

εαk
σ2
α

(D.78)

Using (D.75) in (D.77), one gets

χ2 = δ~τ>W ~τδ~τ with W ~τ = T>W ~µT (D.79)

with

W ~τ
i,j =

∑
l

Tl,iTl,jWl,l =
∑
l

∂µl
∂τi

∂µl
∂τj

Wl,l =

N∑
k=1

{
T2k−1,i

εxk
σ2
x

T2k−1,j + T2k,i
εαk
σ2
α

T2k,j

}
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i.e

W ~τ =
∑

k
∂xk
∂xB

εxk
σ2
x

∂xk
∂xB

+ ∂αk
∂xB

εαk
σ2
α

∂αk
∂xB

∑
k
∂xk
∂xB

εxk
σ2
x

∂xk
∂αB

+ ∂αk
∂xB

εαk
σ2
α

∂αk
∂αB

∑
k
∂xk
∂xB

εxk
σ2
x

∂xk
∂ρ + ∂αk

∂xB

εαk
σ2
α

∂αk
∂ρ∑

k
∂xk
∂αB

εxk
σ2
x

∂xk
∂xB

+ ∂αk
∂αB

εαk
σ2
α

∂αk
∂xB

∑
k
∂xk
∂αB

εxk
σ2
x

∂xk
∂αB

+ ∂αk
∂αB

εαk
σ2
α

∂αk
∂αB

∑
k
∂xk
∂αB

εxk
σ2
x

∂xk
∂ρ + ∂αk

∂αB

εαk
σ2
α

∂αk
∂ρ∑

k
∂xk
∂ρ

εxk
σ2
x

∂xk
∂xB

+ ∂αk
∂ρ

εαk
σ2
α

∂αk
∂xB

∑
k
∂xk
∂ρ

εxk
σ2
x

∂xk
∂αB

+ ∂αk
∂ρ

εαk
σ2
α

∂αk
∂αB

∑
k
∂xk
∂ρ

εxk
σ2
x

∂xk
∂ρ + ∂αk

∂ρ
εαk
σ2
α

∂αk
∂ρ

 (D.80)

Result (D.79) tells that the matrix W ~τ is the inverse of the covariance matrix, C~τ , for the xB, αB and
ρ parameters. Therefore the result (D.80) allows to compute all errors and correlations factors for the
measurements of these parameters. For instance the square of the error on ρ is given by:

σ(ρ) =

√
W ~τ

1.1W
~τ
2,2 −W ~τ

2,2
2

D
(D.81)

where D is the determinant of W ~τ .

In this approach the inclusion of Multiple-scattering effects is straightforward. One introduces NSc

angles of scattering, αSci and considers them as parameters of the trajectory along the parameters xB,
αB and ρ. To incorporate the αSci , the vector ~µ is extended to become a 2N + N sc vector and the
vector ~τ becomes a 3 +N sc vector:

µ2N+i = αSci and τ3+i = αSci (D.82)

The elements of matrix T are still given by Tj,i =
∂µj
∂τi

but T is now a (2N +NSc)× (3 +NSc) matrix.

Taking into account that
∂αScl
∂αScm

= δl,m ,
∂αScl
∂xB

= 0,
∂αScl
∂αB

= 0, and
∂αScl
∂ρ = 0, the elements of T are

explicitly given by:

∀k ≤ N T2k−1,i =
∂xk
∂τi

and T2k,i =
∂αk
∂τi

and ∀l > 2N, Tl,i = δl−2N,i−3H4,i where Hl,m = 0 if l > m and Hl,m = 1 if l ≤ m (D.83)

To weight the likelihood of a given set of αSci , the χ2 function is modified by adding the term
∑

(
αSci

σ(αSci )
)2

where the sum runs on all the angles of scattering. The matrix W ~µ is still diagonal, i.e W ~µ
i,j = δi,jW

~µ
i,i,

but it is now a (2N +NSc)× (2N +NSc) matrix. The diagonal elements are:

∀k ≤ N W ~µ
2k−1,2k−1 =

εxk
σ2
x

and W ~µ
2k,2k =

εαk
σ2
α

, and W ~µ
2N+i,2N+i =

1

σ(αSci )2
(D.84)

The elements of the matrix W ~τ are still given by
∑

l Tl,iTl,jWl,l but W ~τ is now a (3+NSc)× (3+NSc)
matrix. Explicitly they are:

W ~τ
i,j =

N∑
k=1

{∂xk
∂τi

εxk
σ2
x

∂xk
∂τj

+
∂αk
∂τi

εαk
σ2
α

∂αk
∂τj

}
+

1

σ(αSci−3)2
δi,jH4,i (D.85)

D.5.2 Special case

One specializes the previous general results to the kind of idealized situations we have considered up
to now. The “Measurement” lines are parallel to the reference line. The reference line coincides with
the first “Measurement” line. One calls hk the distance between the “Measurement” lines k and k− 1
and one takes h1 = 0. The Magnetic Field between the “Measurement” lines k and k− 1, Bk, is taken
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uniform and small, and one takes B1 = 0. Unless stated otherwise, one does not include multiple
scattering effects. One gets

xk = xB + cot(αB)Hk −
0.3ρ

2 sin(αB)3
/B
k
aH

2
k (D.86)

αk = αB +
ρ

sin(αB)
/B
k
bHk (D.87)

with

/B
k
a ≡

2

H2
k

k∑
k′=2

Bk′
[
Hkh

′
k −

1

2
(H2

k′ −H2
k′−1)

]
and /B

k
b ≡

1

Hk

k∑
k′=1

Bk′hk′ (D.88)

with Hk ≡
N∑
k′=1

hk′ (D.89)

Then the matrix tk is

tk =

1 − Hk
sin(αB)21/9

−0.3 /B
k
aH

2
k

2 sin(αB)3

0 1/3
0.3 /B

k
bHk

sin(αB)

 (D.90)

where 1/9 = 1− 0.9 /B
k
aHkρ

2 sin(αB) tan(αB)
and 1/3 = 1− 0.3 /B

k
bHkρ

sin (αB) tan(αB)
(D.91)

Finally it comes 1

σ(p)

p2

0.3

sin(αB)2
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√
1
/σ2
x

[∑
k ε

x
k

∑
k ε

x
kH

2
k − (

∑
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x
kHk)2

]
+ 1

/σ2
α

∑
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x
k

∑
k ε

α
k

D
(D.92)

with

D =

∣∣∣∣∣∣∣∣∣
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∑
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∑
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∑
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−
∑
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∑
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∑
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∣∣∣∣∣∣∣∣∣ (D.93)

The equations (D.92) and (D.93) may be the most compact form of the general result. Special-
izing to the “only local position measurements” condition, i.e ∀k,Hk/σα � /σx, does not improve the
expression. However specializing to “only local angle measurements” conditions, i.e ∀k,Hk/σα � /σx,
gives:

σ(p)

p2

0.3

sin(αB)2
α-Only

= /σα

√ ∑
k ε

α
k∑

k ε
α
k

∑
k ε

α
k
/B
k2
b H

2
k − (

∑
k ε

α
k
/B
k
bHk)2

(D.94)

This procedure does combine all the local position and angle measurements available and it can
give the full covariance matrix of the track parameters measurements. However the result (D.92) leads
to tedious algebraic computations even for the simple configurations of the methods that we examined.
Still it shows that σ(p)

p2 does not depend on p and is proportional to sin(αB)2, the proportionality factor
being independent of the track parameters.

The approach can cope with a Magnetic Field continuously varying in y: one imagines an infinite
number of fictitious “Measurement” lines, all “silenced” by setting their εxk and εαk at 0, but on a finite

1Since D is first order in BkBk′ , the quantities 1/9 and 1/3 are effectively set to 1
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set of true “Measurement” lines. Then one finds back (D.92) with

/B
k
a ≡

2

H2
k

∫ Hk

0
B(y)(Hk − y)dy and /B

k
b =

1

Hk

∫ Hk

0
B(y)dy (D.95)

Finally since nothing prevents the denominator of (D.92) to be null, there can be certain con-
figuration that could lead to infinite momentum resolution, i.e to an impossible measurement of the

momentum. The most obvious of these critical configurations is when all the /B
k
a and /B

k
b are null or

extremely small. As indicated by (D.95) if the Magnetic Field is trivially small all along the trajec-
tory, this is only possible if the Magnetic Field changes sign along the trajectory canceling or almost
canceling its deflection effects on the trajectory.

D.5.3 Momentum Resolution with all measurements

In this section we use the results of the section D.5.2 to improve on the resolutions obtained in
section D.3. It is very easy to code the result (D.92) to compute numerical estimates in any local
measurements and Magnetic Fields configurations. This allows not only to check the results of sec-
tion D.3, but also to evaluate how much they improve when one adds local measurements which were
not used.

D.5.3.1 Three-Points Method vs Three-Angles-Three-Points Method

For instance in the Three-Points Method configuration, see section D.3.1, one can wonder what would
be the improvement if local angle measurements are added to the three local position measurements
used, i.e what is gained with a Three-Angles-Three-Points Method with respect to the Three-Points
Method. For position resolution /σx ∼ 40µm, angular resolution /σα ∼ 300µrad, and “Barrel“ values

B ∼ 0.5T and H13 ∼ 5m, one gets that σ(p)
p2

1
sin(αB)2 is 10.5%Tev−1 without the local angle measure-

ments and improves to only 10.3%Tev−1 when one adds local angle measurements.

D.5.3.2 Angle-Point Method vs Three-Angles-Three-Points Method

Similarly for the Angle-Point Method configuration, see section D.3.2, one gets that for position
resolution /σx ∼ 40µm, angular resolution /σα ∼ 300µrad, and ”End Cap“ values B ∼ 1.T and

H13 ∼ 11m, σ(p)
p2

1
sin(αB)2 changes from 9.7%Tev−1 without local angle measurements to 9.6%Tev−1

with them. Again the improvement is marginal.

D.5.3.3 Angle-Angle Method vs Two-Angles-Two-Points Method

Figure D.7: Two-Angles-Two-Points Method. The track

can be represented by the three parameters xτ , β and 1/p

rather than by the three parameters xB , αB and 1/p.

Turning now to the case of the Angle-Angle
Method configuration, see section D.3.3, it ap-
pears that, if the angular resolutions on the mea-
sured local angles are identical, the addition of
the two local position measurements to the two
local angle measurements used has strictly no ef-
fect on the resolution.

This intriguing result can be understood con-
sidering the figure D.7. Are represented the two
“Measurement” lines, the local positions and an-
gles x1, x2, α1 and α2 being measured, the center
of curvature C, the curvature radius R and the
trajectory which is a segment of circle since the
Magnetic Field is uniform. Since one has seen
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that σ(p)
p2

1
sin(αB)2 is independent of the track parameters, one can work with the particular configura-

tion where C is on the mid-line between the two “Measurement” lines, as represented in D.7.
One defines the position parameter xτ as the x coordinate of the middle of the two points where the

trajectory crosses the “Measurement” lines and the angle β the angle between the line joining these two
last points and the x axis. Instead of representing the trajectory by the parameters xB, αB and 1/p,
one uses the parameters xτ , β and 1/p. Then one examines the variations of the local quantities to be
measured as function of the variations of the parameters of this new track representation. Variations
of xτ induces correlated variations of x1 and x2. Variations of β induces anti-correlated variations of
x1 and x2 and correlated variations of α1 and α2. Finally variations of 1/p induces anti-correlated α1

and α2. Therefore the track parameters and local quantities to be measured, separate in two groups:
on one hand xτ and β in relation with the set {Σx = δ(x1+x2)√

2
,∆x = δ(x1−x2)√

2
,Σα = δ(α1+α2)√

2
} and

on the other hand 1/p in relation with ∆α = δ(α1−α2)√
2

. If the angular resolutions on the measured

local angles α1 and α2 are identical, then the variables Σα and ∆α are non-correlated. This makes
the above two groups statistically independent. In this case the resolution on 1/p depends exclusively
on the resolution on ∆α and is completely independent on position measurements

However if the angular resolutions of the two “Measurement” lines differ, the addition of local
position measurements can help somewhat the momentum measurement. One can compute the per-
formance of the method using two local angles and two local position measurements, the Two-Angles-
Two-Points Method, in the scenarios considered in sections D.3.3 and D.3.3.1. This performance is
compared to the performance of the Angle-Angle Method and Three-Points Method in the table D.3.
Comparing with the performance of the Angle-Angle Method listed in the table D.1, one sees that
the improvements are inexistent in the large sectors, owing to the equality of angular resolutions of
the stations there, and that they are small in the small sectors and consistent with the indications of
small improvements from the Angle-Two-Points Method listed in the table D.2.

Configuration /σα0,a
(µrad) /σα0,b

(µrad) Hab(m) R2α2P/αα R2α2P/3P

BIS-BMS 500 300 2.5 0.88 13
BMS-BOS 300 200 2.5 0.92 9
BIS-BOS 500 200 5 0.69 5
BIL-BML 200 200 2.5 1.00 7
BML-BOL 200 200 2.5 1.00 7
BIL-BOL 200 200 5 1.00 4

Table D.3: Ratio of momentum resolutions of Two-Angles-Two-Points and Three-Angles-Three-Points
Methods for different scenarios

D.5.3.4 Conclusions on the effects of adding local measurements in the basic Methods

The three archetypal methods, Three-Points, Angle-Point and Angle-Angle Methods, give a fair ac-
count of the momentum measurement capabilities of the Muon Spectrometer. Taking into account
that other local measurements exist than the ones they used, does not bring major changes 2.

For the Angle-Angle Method, one can even ignore the detailed angular resolutions, the main effect
being due to lever arm variations. Using a “mean” angular resolution of ∼ 300µrad, one gets a
degradation with respect to the potential Three-Points resolution by a factor ∼ 5 (cf equation (D.45))
if the two most distant stations are used and ∼ 10 if the Medium station is paired with the innermost
or outermost station, and this is a fair summary, even if a severe one, of the results of the table D.3.

2Even if one can say that the measurement is more of the Angle-Two-Points type for the BIS-BOS scenario, more of
the Angle-Angle type for the BMS-BOS scenario while both methods contribute equally for the BIS-BMS scenario, the
improvements with respect to pure Angle-Angle performances are not changing the global picture.
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D.5.4 Measuring all the Track parameters

The result (D.80) allows to estimate not only momentum resolution but also resolutions on the Track
position and angle measurement as well as all correlations between these measurements. In this section,
we deal with the same idealized situations used the section D.5.2 but we do consider the measure of
all the Track parameters. We also allow Multiple Scattering effect although only for the Three-Points
and Angle-Point Methods. For these computations, the “Measurement” lines will be assumed to have
identical local measurements resolutions.

D.5.4.1 Three-Points Method

Specializing to the “only local position measurements” conditions using the three “Measurement” lines
configuration of the Three-Points Method, it comes that the matrix W ~τ

3P is:

W ~τ
3P =

1

/σ2
x


3 sin(αB)2 −H13

[
β + 1

] −0.3BH2
13

sin(αB)
β2+1

2

−H13

[
β + 1

] H2
13

sin(αB)2

[
β2 + 1

] 0.3BH3
13

sin(αB)3
β3+1

2
−0.3BH2

13
sin(αB)

β2+1
2

0.3BH3
13

sin(αB)3
β3+1

2
0.32B2H4

13
sin(αB)4

β4+1
4
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where β = H12/H13. Inversing W ~τ
3P and assuming the choice H12 = H23 = H13/2, one gets the

momentum resolution (D.30), and the position and angle resolutions

σ(xB)3P =
/σx

sin(αB)
(D.97)

σ(αB)3P =
/σx sin(αB)

H13

√
26 (D.98)

as well as the Correlation matrix

C3P =

 1 −3√
26
∼ −0.59 −1√

6
∼ −0.41

−3√
26
∼ −0.59 1 6√

39
∼ 0.96

−1√
6
∼ −0.41 6√

39
∼ 0.96 1
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For position resolution /σ0
x ∼ 40µm and “Barrel” value H13 ∼ 5m, one gets

σ(xB)3P ∼
40µm

sin(αB)1/2
(D.100)

σ(αB)3P ∼ 41µrad sin(αB)3/2 (D.101)

D.5.4.2 Angle-Point Method

If instead one uses the Magnetic Field and “Measurement” lines configurations of the Angle-Point
Method, it comes that the W ~τ

αP matrix is:

W ~τ
αP =

1

/σ2
x


3 sin(αB)2 −H13

[
β + 1

] −0.3BH2
13

sin(αB)
β2+β(2−β)

2

−H13

[
β + 1

] H2
13

sin(αB)2

[
β2 + 1

] 0.3BH3
13

sin(αB)3
β3+β(2−β)

2
−0.3BH2

13
sin(αB)

β2+β(2−β)
2

0.3BH3
13

sin(αB)3
β3+β(2−β)

2
0.32B2H4

13
sin(αB)4

β4+β2(2−β)2

4

 (D.102)
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where β is defined as in section D.5.4.1 Inversion of W ~τ
αP , with the choice H12 = H23 = H13/2, gives

the momentum resolution (D.38), and the position and angle resolutions

σ(xB)αP =
/σx

sin(αB)
(D.103)

σ(αB)αP =
/σx sin(αB)

H13
2
√

14 (D.104)

The Correlation matrix is

CαP =

 1 −2√
14
∼ −0.53 −1√

6
∼ −0.41

−2√
14
∼ −0.53 1 9

2
√

21
∼ 0.98

−1√
6
∼ −0.41 9

2
√

21
∼ 0.98 1

 (D.105)

For position resolution /σ0
x ∼ 40µm and “End Cap” value H13 ∼ 11m, one gets

σ(xB)αP ∼
40µm

sin(αB)1/2
(D.106)

σ(αB)αP = 27µrad sin(αB)3/2 (D.107)

D.5.4.3 Angle-Angle Method

To apply (D.80) to the Angle-Angle Method, it is convenient to add the measurements of the local
positions on the two “Measurement” lines. These measurements are needed to get a determination
of all the track parameters together. Since we will assume that the angular resolutions of the two
local angles measurements are identical, we already know that they are not changing the momentum
resolution. It comes that the W ~τ

αα matrix is:

W ~τ
αα =


2
/σ2
x

sin(αB)2 −Hab
/σ2
x

− 0.3B
2 sin(αB)

H2
ab

/σ2
x

−Hab
/σ2
x

1
sin(αB)2

[H2
ab

/σ2
x

+ 2
/σ2
α

]
0.3B

sin(αB)3

[H3
ab

2/σ2
x

+ Hab
/σ2
α

]
− 0.3B

2 sin(αB)

H2
ab

/σ2
x

0.3B
sin(αB)3

[H3
ab

2/σ2
x

+ Hab
/σ2
α

]
0.32B2

sin(αB)4

[H4
ab

4/σ2
x

+
H2
ab

/σ2
α

]
 (D.108)

Inversion of W ~τ
αα gives the momentum resolution (D.43), and the position and angle resolutions

σ(xB)αα =
/σx

sin(αB)

√
1 + 2ε2xα
1 + 4ε2xα

(D.109)

σ(αB)αα =
/σα sin(αB)
√

2

√
1 + 8ε2xα
1 + 4ε2xα

(D.110)

with εxα =
/σx

Hab/σα
(D.111)

The Correlation matrix is

Cαα =


1 εxα

√
2√

(1+8ε2xα)(1+2ε2xα)
0

εxα
√

2√
(1+8ε2xα)(1+2ε2xα)

1
√

1+4ε2xα
1+8ε2xα

0
√

1+4ε2xα
1+8ε2xα

1

 (D.112)
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For position resolution /σ0
x ∼ 40µm, angular /σ0

α ∼ 300µrad and “Barrel” value Hab ∼ 5m, i.e εxα ∼
0.027, one gets

σ(xB)αα ∼
40µm

sin(αB)1/2
(D.113)

σ(αB)αα ∼ 210µrad sin(αB)3/2 (D.114)

and

Cαα =

 1 ∼ 0.0376 0
∼ 0.0376 1 ∼ 0.999

0 ∼ 0.999 1

 (D.115)

D.5.4.4 Three-Points Method with Multiple Scattering

We address again the Three-Points Method configuration allowing this times a Multiple Scattering
angle, αSc, on the medium station. We proceed as explained in section D.5.1 adding αSc to the
representation of the track and constraining it in the χ2 function. One ends up with the 4 × 4 W
matrix W ~τ,4

3P+Sc

W ~τ,4
3P+Sc =

1

/σ2
x


3 sin(αB)2 −H13

[
β + 1

] −0.3BH2
13

sin(αB)
β2+1

2 −H13[1− β]

−H13

[
β + 1

] H2
13

sin(αB)2

[
β2 + 1

] 0.3BH3
13

sin(αB)3
β3+1

2
H2

13
sin(αB)2 [1− β]

−0.3BH2
13

sin(αB)
β2+1

2
0.3BH3

13
sin(αB)3

β3+1
2

0.32B2H4
13

sin(αB)4
β4+1

4
0.3BH3

13
sin(αB)3

1−β
2

−H13[1− β]
H2

13
sin(αB)2 [1− β]

0.3BH3
13

sin(αB)3
1−β

2
H2

13[1−β]2

sin(αB)2
1
κ

 (D.116)

where β is defined as in section D.5.4.1 and 1
κ ≡ 1 + 1

Γ with

Γ ≡
(
H13σ(αSc)

/σx sin(αB)
[1− β]

)2

(D.117)

Inversing W ~τ,4
3P+Sc and removing the row and column involving αSc, one gets the 3 × 3 covariance

matrix, C~τ,33P+Sc, for the (xB, αB, ρ) parameters. There exist simple formulas for this dimensional

reduction that allow to get the inverse of C~τ,33P+Sc, the matrix W ~τ,3
3P+Sc, directly from W ~τ,4

3P+Sc. Using
them, one gets

W ~τ,3
3P+Sc =

1

/σ2
x


(2 + γ) sin(αB)2 −H13

[
β + γ

] −0.3BH2
13

sin(αB)
β2+γ

2

−H13

[
β + γ

] H2
13

sin(αB)2

[
β2 + γ

] 0.3BH3
13

sin(αB)3
β3+γ

2
−0.3BH2

13
sin(αB)

β2+γ
2

0.3BH3
13

sin(αB)3
β3+γ

2
0.32B2H4

13
sin(αB)4

β4+γ
4
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where 1
γ ≡ 1 + Γ. Inversing W ~τ,3

3P+Sc and assuming the choice H12 = H23 = H13/2, one finds

σ(xB)3P+Sc = σ(xB)3P (D.119)

σ(αB)3P+Sc =

√
(σ(αB)3P )2 +

(
σ(αB)Sc3P

)2
(D.120)

where σ(αB)3P is given by (D.98) and the Multiple Scattering contribution, σ(αB)Sc3P , is given by

σ(αB)Sc3P = σ(αSc)(1− β) (D.121)
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One gets also

σ(ρ)3P+Sc =

√√√√(1

p

σ(p)

p 3P

)2

+

(
1

p

σ(p)

p

Sc

3P

)2

(D.122)

with σ(p)
p 3P

given by (D.30) and σ(p)
p

Sc

3P
given by (D.61), and the Correlation matrix

C3P+Sc =


1 −3√

26
1√

1+ Γ
26

−1√
6

1√
1+ Γ

6

−3√
26

1√
1+ Γ

26

1 6√
39

1+ Γ
12√

1+ Γ
26

√
1+ Γ

6

−1√
6

1√
1+ Γ

6

6√
39

1+ Γ
12√

1+ Γ
26

√
1+ Γ

6

1

 (D.123)

One notes that the Multiple Scattering effect renders the correlation matrix momentum dependent.

For position resolution /σ0
x ∼ 40µm, “Barrel” value H13 ∼ 5m, σ(αSc) given by (D.62) for an

amount of matter equivalent to ∼ 0.3X0 put on the Medium “Measurement” line and assuming a
Barrel configuration of the “Measurement” lines, i.e αB = θ, one gets for pT in GeV

σ(αB)3P+Sc ∼

√(
41µrad sin(θ)3/2

)2
+
(4µrad. TeV

pT

√
sin(θ)

)2
(D.124)

σ(p)

p 3P+Sc

∼
√(

10%. TeV−1 pT sin(θ)3/2
)2

+
(

2%
√

sin(θ)
)2

(D.125)

D.5.4.5 Angle-Point Method with Multiple Scattering

We address the Angle-Point Method configuration allowing a Multiple Scattering angle, αSc, on the
medium station. We repeat the procedure of the previous section and get the 4× 4 matrix W ~τ,4

αP+Sc

W ~τ,4
αP+Sc =

1

/σ2
x


3 sin(αB)2 −H13

[
β + 1

] −0.3BH2
13

sin(αB)
β2+β(2−β)

2 −H13[1− β]

−H13

[
β + 1

] H2
13

sin(αB)2

[
β2 + 1

] 0.3BH3
13

sin(αB)3
β3+β(2−β)

2
H2

13
sin(αB)2 [1− β]

−0.3BH2
13

sin(αB)
β2+β(2−β)

2
0.3BH3

13
sin(αB)3

β3+β(2−β)
2

0.32B2H4
13

sin(αB)4
β4+β2(2−β)2

4
0.3BH3

13
sin(αB)3

β(2−β)(1−β)
2

−H13[1− β]
H2

13
sin(αB)2 [1− β]

0.3BH3
13

sin(αB)3
β(2−β)(1−β)

2
H2

13(1−β)2

sin(αB)2
1
κ
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where β is defined as in section D.5.4.1 and κ as in section D.5.4.4, and

W ~τ,3
αP+Sc =

1

/σ2
x


(2 + γ) sin(αB)2 −H13

[
β + γ

] −0.3BH2
13

sin(αB)
β2+β(2−β)γ

2

−H13

[
β + γ

] H2
13

sin(αB)2

[
β2 + γ

] 0.3BH3
13

sin(αB)3
β3+β(2−β)γ

2
−0.3BH2

13
sin(αB)

β2+β(2−β)γ
2

0.3BH3
13

sin(αB)3
β3+β(2−β)γ

2
0.32B2H4

13
sin(αB)4

β4+β2(2−β)2γ
4
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where γ is defined as in section D.5.4.4. Inversing W ~τ,3
αP+Sc and assuming the choice H12 = H23 =

H13/2, one finds
σ(xB)αP+Sc = σ(xB)αP (D.128)

σ(αB)αP+Sc =

√
(σ(αB)αP )2 +

(
σ(αB)ScαP

)2
(D.129)

where σ(αB)αP is given by (D.104) and the Multiple Scattering contribution, σ(αB)ScαP , is given by

σ(αB)ScαP = σ(αSc) (D.130)
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One gets also

σ(ρ)αP+Sc =

√√√√(1

p

σ(p)

p αP

)2

+

(
1

p

σ(p)

p

Sc

αP

)2

(D.131)

with σ(p)
p αP

given by (D.38) and σ(p)
p

Sc

αP
given by (D.66), and the Correlation matrix

CαP+Sc =


1 −2√

14
1√

1+ Γ
14

−1√
6

1√
1+ Γ

6

−2√
14

1√
1+ Γ

14

1 9
2
√

21

1+ Γ
9√

1+ Γ
14

√
1+ Γ

6

−1√
6

1√
1+ Γ

6

9
2
√

21

1+ Γ
9√

1+ Γ
14

√
1+ Γ

6

1
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One notes again that the Multiple Scattering effect renders the correlation matrix momentum depen-
dent.

For position resolution /σ0
x ∼ 40µm, “End cap” value H13 ∼ 11m, σ(αSc) given by (D.62) for an

amount of matter equivalent to ∼ 0.3X0 put on the Medium “Measurement” line and assuming End
cap configuration for the “Measurement” line, i.e αB = θ + π/2, one gets for pT in GeV

σ(αB)αP+Sc ∼

√(
27µrad cos(θ)3/2

)2
+
(2µrad. TeV

pT

√
cos(θ)

tan(θ)

tan(θ0)

)2
(D.133)

σ(p)

p αP+Sc

∼

√(
10%. TeV−1 pT cos(θ)3/2

tan(θ0)

tan(θ)

)2
+
(

0.9%
√

cos(θ)
)2

(D.134)

where, as done in section D.3.2, θ0 = 12.6o has been introduced to allow fair comparison between
Barrel and End cap resolutions.

D.5.4.6 Comment on angle-momentum correlation

One notes in (D.99), (D.105) and (D.115), that there is an important correlation between the momen-
tum and angle measurements. One notes also from (D.123) and (D.132), that the Multiple Scattering
decreases all correlations between track parameters measurements but the correlation between mo-
mentum and angle.

This indicates that there is a potential gain on the momentum resolution that could be obtained in
combining this track measurement with a measurement of a point on the trajectory far away from the
Muon Spectrometer, i.e in the Inner Detector, since improvement of the trajectory angle resolution
alone would lead to a momentum resolution improvement. However this mechanism compete with the
angle blurring induced by the Multiple scattering effects when crossing the calorimeters.
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