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Résumé

La Séparation Aveugle de Sources (SAS) est un outil privilégié pour l’analyse de données multi-
valuées. Elle cherche à estimer des signaux élémentaires dont différents mélanges sont observés.
Cette approche non-supervisée permet d’extraire des composants interprétables des observa-
tions. La plupart des méthodes de SAS supposent que chacune des observations correspond à un
mélange pondéré inconnu des sources recherchées. Toutefois, ce modèle est trop élémentaire pour
rendre compte fidèlement de la complexité des données: la présence de phénomènes physiques
inattendus, de bruit structuré ou de dysfonctionnements des capteurs, bien que fréquents en
pratique, ne sont pas correctement modélisés. Cela fausse les méthodes classiques de SAS et
nécessite le développement de stratégies robustes.

Nous nous intéressons dans cette thèse au développement de nouvelles méthodes capables
d’estimer la matrice mélange, ainsi que de séparer précisément les données aberrantes des sources.
Ces deux sous-problèmes ont été abordés dans la littérature de façon séparée, avec des hypothèses
restrictives sur les composants qui ne sont pas toujours valables, notamment en imagerie mul-
tispectrale. Nous montrons que résoudre ces problèmes simultanément permet d’obtenir des
méthodes plus robustes et précises, et notamment performantes pour un plus grand éventail de
configurations incluant le cas déterminé. Pour cela, nous utilisons des représentations parci-
monieuses des différents composants qui mettent en valeur les structures spectrales ainsi que
spatiales des différents composants. C’est précisément en exploitant, de façon jointe, les dif-
férences spectrales et spatiales des composants à estimer qu’une séparation précise est possible.
La première partie des travaux porte sur le démélange de sources ayant une morphologie similaire
à celle des données aberrantes. Les déviations sont détectées grâce au degré de parcimonie des
signaux estimés, et pénalisées lors du démélange. Cette approche est ainsi capable d’estimer de
façon robuste la matrice de mélange, même si une séparation précise entre les sources et données
aberrantes n’est pas possible sans contrainte restrictive.
Dans un deuxième temps, nous supposons que les sources et les déviations ont des morpholo-
gies différentes. La diversité morphologique est exploitée en utilisant des dictionnaires différents
pour les représentations parcimonieuses des composants. Ainsi, en utilisant alternativement les
diversités spectrales et spatiales entre les sources et les données aberrantes, l’algorithme proposé
obtient une estimation précise de tous les composants et une plus grande robustesse pour les



applications complexes.
La dernière partie de cette thèse porte sur l’extension des travaux précédents pour l’estimation des
variabilités spectrales en imagerie hyperspectrale terrestre. En effet, le modèle linéaire classique
considère que les composants recherchés ont des signatures spectrales constantes sur l’ensemble
de la région observée, alors que celles-ci varient potentiellement significativement. Dans l’étude
préliminaire menée, nous proposons de contraindre les signatures spectrales afin qu’elles apparti-
ennent à l’hypersphère. Cela constitue une hypothèse classique en SAS, mais qui n’avait pas été
utilisée pour contraindre les modèles non-stationnaires. Le degré de parcimonie des signaux sur
les données traitées ne permet pas leur estimation exacte, mais les résultats obtenus rivalisent
avec les méthodes de l’état-de-l’art sur certains critères.

Les différents problèmes de minimisation associés aux approches proposées sont multi-convexes
et paramétriques, ce qui les rend difficilement utilisables en pratique. Le développement d’algorithmes
fiables et automatiquement paramétrés est ainsi nécessaire mais assez délicat. Les mécanismes
de gestion de paramètres pour les régularisations avec contraintes de parcimonie sont étendus
pour la SAS robuste. Cela confère aux algorithmes une certaine adaptabilité ainsi qu’une ro-
bustesse aux différentes corruptions et minima locaux. Cette estimation jointe des composants
et des paramètres de régularisation, en particulier en présence de données aberrantes, nécessite
plus largement le déploiement d’heuristiques couplées à des méthodes classiques pour garantir
robustesse, fiabilité, précision et convergence des procédés de minimisation.

Des expérimentations montrent la fiabilité des méthodes et algorithmes dans de nombreuses
configurations. Notamment, les approches proposées obtiennent de bons résultats dans le cas
déterminé ainsi que dans le cadre d’applications difficiles, telle que la séparation d’émissions
galactiques en présence de sources ponctuelles dans le contexte de la mission Planck.



Notations and Acronyms

Conventions

Matrix

• x: a scalar.
• x: a vector.
• X: a matrix.
• Xi: the ith row of X.
• Xj : the jth column of X.
• Xi,j the (i,j)th entry of X.
• XT : transpose of X.
• X†: Moore-Penrose pseudo inverse of X.
• X(k): the value of X in the kth loop of an algorithm.
• X̃: estimated value of X.

Operators

• ‖X‖p, p ∈ R+: the (quasi)-norm of X seen as a long vector. More precisely, for p ∈ R+

and X ∈ Rm×t, ‖X‖p =
(∑m

i=1
∑t
j=1

∣∣Xi,j

∣∣p) 1
p . In particular, ‖X‖2 denotes the Frobenius

norm of X.
• ‖X‖0: the number of non-zeros entries of X.
• ‖X‖s,2: spectral norm of X (largest eigenvalue of X).
• ‖X‖∗: nuclear norm of X (sum of the eigenvalues of X).
• ‖X‖2,1 =

∑t
i=1
∥∥Xi

∥∥
2, with X ∈ Rm×t.

• �: Hadamard product.
• ⊗: tensor product.
• ∗: convolution product.
• X ≥ 0: Xi,j ≥ 0, ∀i, j
• 〈., .〉: scalar product.
• [X]+: non-negative part of X ([[X]+]i,j = 0 if [[X]+]i,j ≤ 0 and [X]i,j otherwise).



• proxf : proximal operator of f .
• SΛ(X): soft-thresholding operator SΛ(X)i,j = max(0,

∣∣X ∣∣
i,j
− Λi,j)× sign(Xi,j).

• χC(.): indicator function of the set C. For every M ∈ C, χC(M) = 0, and +∞ otherwise.
• mad: median absolute deviation.
• Pr: probability.
• pct(x, k): kth percentile of the entries of x.

Notations

• R: the set of real numbers.
• R+: the set of non-negative real numbers.
• R̄: extended real numbers.
• N+: the set of non-negative natural numbers.
• 1p×k: the matrix of size p× k whose entries equal 1.
• Ip×p: the identity matrix of size p× p.

• n: number of sources.
• m: number of observations.
• t: number of samples per observation/source.
• X ∈ Rm×t: the observations.
• A ∈ Rm×n: the mixing matrix.
• S ∈ Rn×t: the sources.
• O ∈ Rm×t: the outliers.
• ∆Ai ∈ Rm×t: the spectral variabilities associated with the ith component.

• Γ(): function Gamma.
• G(ρ): generalized Gaussian with parameter shape ρ, centered and unit variance whose prob-

ability density function is given by ρ
2Γ( 1

ρ ) exp−
∣∣ x ∣∣ρ , ∀x ∈ R

Abbreviations

• BSS: Blind Source Separation
• ICA: Independent Component Analysis
• NMF: Nonnegative Matrix Factorization

• MCA: Morphological Component Analysis
• GMCA: Generalized Morphological Component Analysis
• rGMCA: robust GMCA
• tr-rGMCA: robust GMCA in transformed domains
• AMCA: Adaptive MCA



• rAMCA: robust AMCA

• PALS: projected alternated least squares
• PALM: proximal alternating linearized minimization
• BCD: block coordinate descent
• PBC: proximal block coordinate
• FB: forward-backward splitting algorithm
• GFBS: generalized forward-backward splitting algorithm

• rPCA: robust Principal Component Analysis
• PCP: Principal Component Pursuit
• β-div.: minimization of the β-divergence
• OP: Outliers Pursuit

• SV: spectral variabilities
• MDP: morphological diversity principle
• KL: Kullback-Leibler

• LC/MS: liquid chromatography mass spectrometry
• CMB: cosmic microwave background
• NMR: nuclear magnetic resonance

• SIR-SNR-SAR-SDR: Signal to Interference-Noise-Artefact-Distortion Ratio
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Sparse Modeling and Blind
Source Separation
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1.2.1 Sparse modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Morphological diversity . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Sparse BSS/GMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Rationale of sparse BSS . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Generalized Morphological Component Analysis . . . . . . . . . . . . 15

1.4 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . 17

We moved into a new era in which the amount and variety of data to be analyzed are tremen-
dous: recommender systems, genomic sequencing, terrestrial remote sensing are but examples.
The future missions in astrophysics including Euclid or S.K.A are revealing examples of the forth-
coming challenges driven by the volume of the observations and the expected precision reached
from their processing. The unsupervised extraction of meaningful, interpretable information
from the produced data is one of them.
In this thesis, we will propose new robust methods for the analysis of multivalued data taking
advantages of sparse modeling. This chapter aims at introducing these two founding topics.
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1.1 Multivalued data analysis with BSS

Multivalued data are nowadays encountered in various domains of applications such as bioengi-
neering [114], astrophysics [16], audio [130], terrestrial remote-sensing [10] and topic modeling [82]
to only cite a few. More precisely, we designate by multivalued data, the observations of a same
process, region etc. with different but coherent points of view. These data will be designated
by X ∈ Rm×t, where t denotes the number of samples of one observation, and m the number of
observations.

For instance, a standard digital picture corresponds to multivalued data since a same scene
is observed in three bands, red, green and blue - see for instance fig.1.1a. In that case, each Xi

corresponds to the scene acquired at one given frequency (blue, red or green), so that m = 3
(the total number of bands), and t is equal to the number of pixels of the image (t = 512× 512
in fig.1.1a).

(a) Color image. (b) X1, blue band. (c) X2, red band. (d) X3, green band.

Figure 1.1: From left to right: color image, acquisition in the blue band, red band and then
green band.

We notice that the observations, along the different channels - X1, X2 X3 in fig.1.1a, are not
independent: each sample Xk, k = 1, . . . , t corresponds to the sampled spectrum of the element
at the kth pixel. Hence, supposing that a pepper has a constant spectrum, every pixel corre-
sponding to this pepper has the same spectrum. As so, one can remark that these multivalued
data are spectrally and spatially structured.
Blind Source Separation (BSS) aims to extract the meaningful information from these observations,
by learning this underlying structure.

In this thesis, we will use 3 illustrative applications of multivalued data analysis, which are
described below. Similarly to the digital picture, these data are spatially and spectrally (for the
different samples and channels respectively in a more general framework) structured.
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Figure 1.2: Illustration of the underlying data model with the Planck data.

1.1.1 Illustrations

Estimation of the CMB and foreground emissions from ESA-Planck
data. According to the Big-Bang theory, the CMB (Cosmic Microwave Background) is the
oldest observable of our Universe, the first light emitted 13 billions years ago. As so, it carries
fundamental information on the early Universe and its evolution for cosmologists.

In 2009, the European Spatial Agency has launched the Planck satellite in order, among other
things, to obtain a precise CMB map [37]. For this purpose, the satellite has observed the sky
at m = 9 different frequencies (microwave range from 30GHz to 857GHz).

However, we do not have a direct access to the CMB map with the Planck data. We rather
observe a combination of the different observable contributions fig.1.2: CMB and also galactic
emissions such as the synchrotron, free-free, thermal and spinning dust emissions [86]. In order to
retrieve the CMB map, it is necessary to separate these different contributions. This component
separation problem is a Blind Source Separation problem [86], [16].

Hyperspectral unmixing. Thanks to the rapid development of hyperspectral sensors,
the analysis of hyperspectral data has become a topical issue. In contrast with multispectral data
(such as the ones of Planck), hyperspectral data consists of a hundred of spectral acquisitions
(m ≈ 100 versus m ≈ 10 for multispectral). Consequently, it provides a very fine spectral de-
scription of the components and can detect slight spectral changes. This is of interest in various
applicative domains such as medicine to detect skin cancer [96], in food engineering to automat-
ically check the quality of the products [109] or in agriculture/ecology [75].

In the same spirit as for the analysis of the Planck data, it is possible to estimate the spectral
signatures and the spatial distributions of the different elements composing the observed scene
using BSS [80], [9], [98]. For instance in fig.1.3, hyperspectral unmixing can be used to detect
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and estimate the presence of water at the surface of Mars [102].

2

Fr
eq
ue
nc
y

(a) Omega observations.

11.41.82.22.6

0

µm

2

11.41.82.22.6

0

µm

2

22

0150300450600

0

rapport masse sur charge (m/Z)
0150300450600

0

rapport masse sur charge (m/Z)

0369121518

0

temps (min)
0369121518

0

temps (min)

ASZ
Z

A,S

1

2kY�ASk
2
2.

(b) Ice water spectrum
and spatial distribution. 11.41.82.22.6

0

µm

2

11.41.82.22.6

0

µm

2

22

0150300450600

0

rapport masse sur charge (m/Z)
0150300450600

0

rapport masse sur charge (m/Z)

0369121518

0

temps (min)
0369121518

0

temps (min)

ASZ
Z

A,S

1

2kY�ASk
2
2.

(c) Ice CO2 spectrum and
spatial distribution.

Figure 1.3: Left: Mars Express data from the OMEGA spectrometer. Middle and right: top:
estimated spectral signatures of the water and C02, bottom: spatial distributions of these two
components. Results from [102].

LC-MS data analysis. The types of the three previous examples (digital picture,
Planck data, Omega observations) are similar: a same region/scene is observed at several fre-
quencies. The following example has a different nature and is illustrative of the broaden variety
of multivalued data.

The analysis of Liquid Chromatography - Mass Spectrometry (LC-MS) data permits a pre-
cise identification and quantification of the components of a liquid. This fluid is first driven
through a chromatographic column. The compounds of the fluid leave the column at different
instants, based on their properties. The output of a liquid chromatography, at different time
samples, is analyzed with a mass spectrometer. We obtain a double separation fig.1.4a: in time
with the chromatography and in mass to charge ratio with the mass spectroscopy (similarly to
multi/hyperspectral images with the double separation: frequency-space domains). By estimat-
ing the elution times and mass to charge ratio of the different components with BSS, fig.1.4b,1.4c,
one can recover the composition of the analyzed fluid.

1.1.2 Linear Mixture Model

In BSS, it is generally assumed that the observations follow the so called Linear Mixture Model.
It states that the m observations X (e.g. the 9 observations at different wavelengths for the
Planck data) correspond to the sum of n elementary contributions: the one of the CMB, of the
synchrotron and so on, fig.1.2. Besides, each of these elementary contributions is rank-1: in the
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(a) LC-MS acquisition and data.

(b) Time elution of the DL-arginine. (c) Mass to charge ratio of the DL-
arginine.

Figure 1.4: Top: acquisition process and example of LC-MS data X for a given liquid. Bottom,
from left to right: the elution profile and mass to charge ratio of a component. Figures from [115].

example fig.1.2, the ith contribution can be factorized as the product between its spectral signa-
ture Ai ∈ Rm×1 and its spatial distribution-intensity map, called source, Si ∈ R1×t.
In other words, each observation Xj corresponds to a weighted linear combination of the n dif-
ferent sources {Si}i=1..n, where n designates the number of components: Xj =

∑n
i=1 Ai

jSi. The
LMM model is illustrated in fig.1.5 for the general framework, which is similar to the figure 1.2
representing the underlying structure of the Planck data.

This model is generally recast in the following matrix form:

X = AS,

where
• X ∈ Rm×t stands for the observations. In multi/hyperspectral imaging, each row of X

corresponds to the observed scene at a given frequency, fig.1.3,1.2.
• A ∈ Rm×n contains the mixture weights, and is named mixing matrix. Each column of

A represents the variations of a component across the different channels. For instance in
multi/hyperspectral imaging, fig.1.3, 1.2, each column of A represents the spectrum/endmember
of one component (e.g. ice water spectra in fig.1.3, or the spectral signature of the CMB in
fig.1.2). When analyzing LC-MS data, the columns of A equal the elution profiles of the
components fig.1.4.
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Figure 1.5: Illustration of the underlying structure of multivalued data with the LMM model.

• S ∈ Rn×t, the sources, corresponds to the variability of the components from one sample to
another. A so-called source, also named abundance in hyperspectral unmixing, represents the
spatial distribution of a component over the observed region in multi/hyperspectral imaging
(e.g. the CMB map in fig.1.2 or the ice water spatial distribution in fig.1.3).

An accurate estimation of the mixing matrix A and the sources S leads to a precise analysis
of the multivalued data: estimating the natures/spectra of the elements at the surface of the
observed scene amounts to recover A, and evaluating their spatial distributions to determine S.
Estimating both A and S only from the observations X is a BSS problem.

1.1.3 Blind Source Separation

Blind Source Separation methods aim to find a tuple (A,S) such that X = AS. Unfortunately,
this is an ill posed problem since there is an infinite number of tuples (A,S) fulfilling this con-
dition. For instance, for any invertible matrix M ∈ Rn×n, the tuple

(
AM,M−1S

)
is also a

solution.
Nonetheless, we are not interested in recovering any tuple (A,S), but the one with having a phys-
ical meaning, e.g. the spectra and spatial distributions of the components in multi/hyperspectral
unmixing. In order to retrieve this meaningful tuple, additional information should be added to
discriminate between the solutions. Depending on the priors, the BSS strategies can be divided
into three classes: Independent Component Analysis (ICA), Non-negative Matrix Factorization
(NMF), and sparse Blind Source Separation.

Independent Component Analysis. In contrast with sparse BSS and NMF, ICA
is a statistical approach, similarly to PCA. While PCA only returns decorrelated sources based
on second order statistics, the exact separation between the sources can be achieved with
ICA [39], [27], [78], [40].
It is assumed that the sources are mutually independent and that at most one source follows a
Gaussian distribution, with m = n. In that case, it has been proven that there exists an unique
unmixing matrix B so that S = BX, [39] - up to scaling and permutation indeterminacies.
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In practice, the observations are first whitened with PCA, (yielding m = n), the intermediate
sources have a unit variance and are uncorrelated. Then, the ICA methods look for the unmixing
matrix - a rotation - whose corresponding sources are mutually independent. Several implemen-
tations have been proposed: minimization of the mutual information (using the Kullback-Leibler
divergence for instance [28]), or with other contrast functions providing approximations for the
mutual information - see [40] for a review.
These methods do not explicitly estimate the sources but only the unmixing matrix B. As
pointed out for instance in [43], they do not necessarily yield a good estimate of the sources
in the presence of noise. More critically, the mutual independence of the sources is not a valid
hypothesis in several applications, including for the Planck data (the foreground emissions are
in fact quite correlated [16]), or for terrestrial hyperspectral unmixing [103] to only cite two
examples.

Nonnegative Matrix Factorization. Sparse BSS and NMF based methods are
special cases of the matrix factorization problem. In NMF, the sources and mixing matrix are
both non-negative, [87], [106]. The non-negativity of the components appears naturally in many
applications, such as in terrestrial remote sensing (the sources correspond to the spatial distribu-
tions of the components and A to the spectral signatures), or with the LC/MS data previously
presented in this chapter.
Nonetheless, non-negativity is not a discriminative criterion for the separation, and further as-
sumptions are needed to recover the initial A,S. In particular, it has been proven in [46] that
the model is identifiable if every source is active alone (presence of pure pixels). This condition
is however restrictive and not valid in many applications. To overcome this recoverability issue,
the non-negativity assumption can be coupled with another prior such as sparsity [113].

Sparse Blind Source Separation. This last strategy assumes that the sources are
sparsely represented in a given dictionary. Sparse BSS has first been presented in the Bayesian
framework in [89] and [144] with a Laplacian prior on the source coefficients. It is nonetheless not
restricted to this framework [66], [14]. Besides, in contrast with ICA, it is better suited to deal
with the under-determined case [68], or Gaussian noise [14]. Further details on sparse modeling
and sparse BSS are given in the remaining of this chapter.

1.2 Sparse modeling

Sparse modeling has a central role in many breakthrough works in signal processing of the last
twenty years. We will focus in this chapter on the necessary background for the remaining of
this thesis, and refer the reader to [124], [99], [52] and references therein for further details and
examples of applications building upon sparse modeling.
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1.2.1 Sparse modeling

Sparsity. Let x ∈ R1×t a real signal composed of t samples. We will say that x is exactly
sparse if only few entries of x are non-zero. The number of non-zero entries of x is given by its
`0 ‘norm’. For instance in fig.1.6a , x is exactly sparse, and ‖x‖0 = 18� t.

(a) x exactly sparse. (b) x approximately sparse. (c) Energetic contribution of the
samples.

Figure 1.6: Example of exactly sparse (left) and approximately sparse (middle) signals. Right:
energetic contribution of the samples for the approximately sparse signal; we display ‖x̃‖2‖x‖2

, where
x̃ is composed of only a given percentage (x-axis) of the largest entries of x.

If the signal x is composed of only few significant samples, then x is said to be approximately
sparse, such as in fig.1.6b. In that case, ‖x‖0 = t, but only few coefficients are needed to provide
a good approximation of the signal (similarly for the exactly sparse signal, whose energy is con-
tained in only 18 samples in fig.1.6a). For example, the approximately sparse signal of fig.1.6b
can be approximated with an exactly sparse signal with less than 10% of non-zero entries, with
an energetic error of less than 5% fig.1.6c. In other words, all the information content of sparse
or approximately sparse signals is contained in only few entries.

Sparse signals are naturally met in spectrometry (c.f. the previous LC-MS data) for ex-
ample. And more interestingly, many signals can be sparsely represented using an adequate
transformation (broadly, a change of basis).

Sparsity with transformed domain. Most of the signals of interest are not sparse
in the domain of observations (for instance the galactic emissions for the Planck data previously
seen). Fortunately, these signals can be sparsely represented in a transformed domain.

For illustrative purpose, let us consider an easy example. Let x be a 1D oscillating signal
fig.1.7a. This signal can be sparsely represented using an orthonormal transformation, the DCT:

x =
t∑
i=1

αiΦ
i
S = αΦS,
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where α ∈ R1×t corresponds to the expansion coefficients of x in the DCT dictionary ΦS ∈ Rt×t,
and α is composed of only few significant samples fig.1.7b.

(a) Oscillating signal x. (b) Expansion coefficients α.

(c) Synchrotron emission x. (d) Histogram of x. (e) Histogram of α.

Figure 1.7: Top: Left oscillating 1D signal x, non-sparse in the domain of observations. Right:
approximately expansion coefficients of x in DCT, α. Bottom, from left to right: synchrotron
emission map, histogram of the pixels of the emission in the direct domain, and then histogram
of the expansion coefficients of the emission in wavelets.

A more realistic example is also provided in fig.1.7. A spatial distribution map of synchrotron
emission is displayed in fig.1.7c. It does not have a sparse representation in the direct domain:
we can see that numerous entries are significant fig.1.7d. However, this image has a sparse rep-
resentation in the wavelet domain (undecimated Daubechies-4, with 2 scales) fig.1.7e: only few
entries of the corresponding α are significant.

The sparsity level of the expansion coefficients is highly dependent on the chosen dictionary,
transformation for a given signal. Besides, we point out that these dictionaries may not be
orthonormal and using over-complete/redundant dictionaries can be of interest to sparsify the
representations [122], [36]. Some widely employed transformations include: DCT for oscillating
texture, wavelets for smooth piece-wise functions [42], [122] such as many natural images (e.g.
galactic emissions for the Planck data), curvelets and ridgelets for lines, curves and cartoons
[120], [22] to only cite a few.
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1.2.2 Morphological diversity

The sparsity prior on the signal to be retrieved in a given dictionary has been intensively used in
many ill-posed inverse problems: denoising, super-resolution, inpainting or compressive sensing
for instance [52], [124]. Sparse modeling is also a powerful concept for Blind Source Separation
and component separation in general since it highlights the difference between the sources. This
principle has been designated as morphological diversity [121], [54], [12] and is described below.

Transformed domains. The morphological diversity principle has been first stated
and employed in the framework of monochannel component separation, for components having
different geometrical features [123], [15], [54].

For illustrative purpose, we consider two images having different geometrical features: a map
of synchrotron fluctuations x1 and point source emissions x2, fig.1.8. The point source emissions
correspond to Dirac emissions convolved with a Gaussian kernel with known width. These two
images are summed in the observation x = x1 + x2.

(a) x (b) x̃1 (c) x̃2

Figure 1.8: From left to right: monochannel observation made of the sum of a natural image
(synchrotron fluctuation map x̃1) and spurious point sources (Gaussian emissions x̃2). The
components x̃1 and x̃2 have been retrieved with the MCA algorithm.

The two images have different morphologies. The synchrotron emission x1 is quite broadly
distributed in the observed region, and is sparsely distributed in wavelet domain (undecimated
Daubechies-20 for the experiment), noted ΦS. On the other hand, the point source emissions x2

are already sparse in the direct domain, and even sparser in the convolutive dictionary ΦO (we
can build implicitly the dictionary ΦO by deconvolving the emissions with the known Gaussian
kernel).
The key point is that, if the components to be separated have a different morphology and if
their corresponding dictionaries in which they are sparsely represented are wisely chosen, then
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each morphological component has its sparsest decomposition in its own dictionary. Namely, the
image x1 is more sparsely represented in ΦS than in ΦO, and x2 is sparsest in ΦO than in ΦS.
The morphological diversity has been more formally stated as [14]:

∥∥x1Φ
T
S
∥∥

0 <
∥∥x1Φ

T
O
∥∥

0 and
∥∥x2Φ

T
O
∥∥

0 <
∥∥x2Φ

T
S
∥∥

0 . (1.1)

Morphological Component Analysis. It is then possible to separate the different
morphological components x1 and x2 given the observation x by looking for the sparsest decom-
position of the observation in the two dictionaries ΦO and ΦS. The Morphological Component
Analysis has been designed to perform this separation problem. It assumes that the observation
is a linear combination of morphological components x =

n∑
i=1

xi. The latter have different mor-

phologies, and are sparsely represented in a given dictionary Φi. It is further assumed that the
morphological diversity principle (MDP) is valid, meaning that the morphological components
have a sparser representation in their respective dictionary than in the others eq.1.1. The MCA
algorithm is looking for the sparsest decomposition of the image into n elements by minimizing:

minimize
x1,x2,...xn

∥∥∥∥∥x−
n∑
i=1

xi

∥∥∥∥∥
2

2

+
n∑
i=1

λi
∥∥xiΦTi ∥∥0 , (1.2)

where the first term is the data-fidelity term, well suited to deal with Gaussian noise, and the
second terms enforce the sparsity of the morphological components in their respective dictionary.
Further details on the setting of the regularization parameters {λi} and implementation can be
found in [15] for instance. The output of the MCA algorithm with the synchrotron fluctuation
map and the point source emissions are displayed in fig.1.8.

The morphological diversity principle for the separation of morphological components has
been also employed for multichannel observations with the multichannel Morphological Com-
ponent Analysis - BSS problem in which the sources have different morphologies - and to the
Generalized Morphological Component Analysis - BSS problem in which the sources can share
a same morphology [14]. For this last case, the morphological diversity principle needs to be
extended to also consider the case of signals with similar geometrical features.

In a same transformed domain. The morphological diversity principle has also
been extended for BSS in the presence of sources sharing a same morphology and sparsely repre-
sented in a same dictionary ΦS. In that case, the sources share similar geometrical features, and
the arguments previously employed to separate morphological components are not valid. That
is the case for instance for the two natural images presented in fig.1.9.

Sparse representations can still be employed to highlight the differences between the sources.
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(a) S1 (b) S2 (c) Wavelet coeffcients

Figure 1.9: From left to right: two natural images with similar geometrical contents (e.g. con-
tours, texture), and then some of their wavelet coefficients.

Indeed, the sources are represented by only few significant entries in the dictionary ΦS. Since
these significant entries encode most of the information content of the sources, they are very
likely to be active at different positions. This is illustrated in fig.1.9: the two natural images S1

and S2 are both sparsely represented in the wavelet domain, but one can notice that indeed, the
supports of the largest entries of their sparse representations are disjoint.

We point out that this notion of morphological diversity encompasses the previous case with
transformed domains. Indeed, if we concatenate the different dictionariesΦS =

[
Φ1 Φ2 ...Φn

]
,

then we end up with the framework of this more general aspect of the morphological diversity
(initial framework of GMCA [14]).
We also underline that if the source entries are identically and independently distributed from a
same narrow distribution, e.g. Generalized Gaussian, Laplacian or Bernoulli-Gaussian, then the
sources are very likely to respect the MDP. In other words, the unmixing problems handled by
ICA based methods (with narrow distribution) can also be performed by sparse BSS strategies.

1.3 Sparse BSS/GMCA

In the remaining of this thesis, we will assume that:
• The number of sources n is known, and that t ≥ m ≥ n.
• The matrices A and S are full-rank.
• The columns of A are normalized for the `2 norm. This assumption is commonly

used to avoid the scaling indeterminacy between A and S (∀α > 0, (Aiα)(Si 1
α ) =

AiSi)).
• The sources S share the same morphology and are sparsely represented in the

given dictionary ΦS (known a priori). Besides, the sources respect the morpho-
logical diversity principle in ΦS.
These basic assumptions are common in sparse BSS, see for instance [14] and [124]. We
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propose in this section to illustrate why the morphological diversity principle is so powerful for
BSS [14].

1.3.1 Rationale of sparse BSS

We have previously observed that the BSS problem is ill-posed and that it is necessary to add prior
information on the sources to be retrieved. Assuming that the sources are sparsely represented
in the dictionary ΦS, and that the expansion coefficients respect the morphological diversity
principle in ΦS are efficient hypotheses for solving BSS [14].
In that case, in order to retrieve the sought-after sources, one can seek for the tuple (Ã, S̃) so
that S̃ has the jointly sparsest representation in ΦS. Indeed, while the sources are not correctly
unmixed, their representations in ΦS are less sparse than the ones we aim to recover.

1D toy example. For illustrative purposes, let us consider that 2 sources are sparse in the
direct domain, ΦS = I, and are mixed with A into 3 noiseless observations X, such as fig.1.10.
The supports of the two sources are disjoint, so that on the first half of the grid, the entries of
S1 are the only ones that can be active, while only those of S2 can be non-zero on the second
half of the grid. We will note suppS1 and suppS2 the supports of S1 and S2 respectively (the set
of non-zero entries of the signals). These two sources respect the MDP.

The ‘estimated’mixing matrix Ã is chosen so that ÃS̃ = X and S̃ = Ã†X (noiseless observa-
tions). Hence, the spans of the ground truth A and Ã are the same, and AS = ÃS̃. However,
one can notice that the two tuples are different, fig. 1.10.
In particular, the estimated sources are clearly less sparse than the sought-after ones: ‖S1‖0 = 10
and ‖S2‖0 = 12 whereas

∥∥S̃1
∥∥

0 =
∥∥S̃2

∥∥
0 = 22. Indeed, since the observations are not correctly

unmixed, the estimated sources correspond to a mixture of the two initial sources fig. 1.10. That
is why, the supports of the two estimated sources are given by the union of suppS1 and suppS2 .
In other words, the interferences created by an incorrect unmixing lead to less sparse solutions
than S. The only way to reach the sparsity level of S is to return a mixing matrix Ã (such
that ÃS̃ = X) avoiding any interference and thus being equal to A (up to the permutation
indeterminacy).

2D toy example. This second example is more realistic. Two images S1 and S2 are mixed
into 2 noiseless observations fig.1.11. Similarly to the previous example, let us choose a mixing
matrix Ã, such that X = ÃS̃, and S̃ = Ã†X (noiseless observations). The corresponding sources
S̃ are displayed in fig.1.11. The source images S are sparsely represented in the wavelet domain
ΦS. In contrast with the first toy example, the sources are compressible in ΦS but not exactly
sparse. As we will see, we can relax the use of the `0 norm, and measure the compressibility level
of the sources with the `1 norm. We display in fig.1.12a, the scatter plot of S1Φ

T
S and S2Φ

T
S .
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Ã†

A

Figure 1.10: Two exactly sparse sources S1 and S2 are mixed with A into 3 noiseless observations
X. Two estimated sources S̃, given by Ã†X (noiseless case) are represented. In this case, the
tuple

(
Ã, S̃

)
fits perfectly the observations AS = ÃS̃, but the sources S̃ are not the ones that

we are looking after.

One can observe that the expansion coefficients SΦT
S respect the MDP: when one coefficient is

significant, it is mainly representative of one source. More generally, when the sources respect
the MDP in ΦS, the scatter plot of the expansion coefficients has a distinctive shape of cross
(exactly sparse and disjoint support) or diamond, such as in fig.1.12a.
In contrast, one can notice that the mixed sources S̃ = Ã†X = Ã†AS do not respect the MDP.
Indeed, the largest samples are significant for the 2 sources simultaneously due to the interferences
between the 2 sources, fig.1.12b. In practice, we can measure the loss of compressibility˝of the
mixed sources with the `1 norm: the wavelet coefficients SΦT

S are enclosed in an `1 ball with a
smaller radius than the one enclosing the wavelet coefficients S̃ΦT

S as shown in fig.1.12. The radius
of the `1 ball of minimal radius enclosing SΦT

S is broadly given by the maximal entry of SΦT
S

since their largest entries are nearly disjoint thanks to the MDP. On the other hand, the wavelet
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(a) S1 (b) X1 (c) S̃1

(d) S2 (e) X2 (f) S̃2

Figure 1.11: From the left to the right: the reference 2 sources, the 2 observations, and possible
solutions S̃.

coefficients S̃ΦT
S are not jointly sparse, and consequently very likely to be enclosed in an `1 ball

with a larger radius (corresponding to the `1 norm of the entry k having simultaneously large
coefficients (S̃1Φ

T
S )k and (S̃2Φ

T
S )k), fig.1.12. Hence, by recovering the sources whose expansion

coefficients are enclosed in the `1 ball of minimal radius, and consequently respecting the MDP,
one should avoid the interferences between the sources, and thus recover the mixing matrix of
interest.

1.3.2 Generalized Morphological Component Analysis

The GMCA algorithm, proposed in [14], has been designed to perform BSS for sources sparsely
represented in an (overcomplete) dictionaryΦS (the redundant dictionary can be a union of bases
for instance, if the components have different morphologies). The GMCA algorithm performs by
minimizing a cost function whose elements are based on the following assumptions:

• Data-fidelity term: The observations are corrupted by a Gaussian noise. The data-fidelity
term is consequently chosen as the standard square Frobenius norm: 1

2 ‖X−AS‖22.
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(a) Scatter plot of S1ΦTS versus S2ΦTS (b) Scatter plot of S̃1ΦTS versus S̃2ΦTS

Figure 1.12: Left: scatter plot of S1Φ
T
S versus S2Φ

T
S , the wavelet coefficients of the reference

images. Right: scatter plot of S̃1Φ
T
S versus S̃2Φ

T
S , the wavelet coefficients of two possible sources.

In green, the `1 ball with minimal radius enclosing the wavelet coefficients of the reference sources,
and in red, the one enclosing the wavelet coefficients of S̃.

• Compressibility of the sources in ΦS. The sources have an approximately sparse represen-
tation in ΦS. Different regularization functions can be employed to enforce the sparsity of
the sources in ΦS, namely

∥∥Λ� SΦT
S
∥∥
p
, with p ∈ [0, 1], and where Λ ∈ Rn×t denotes the

regularization parameters, and � the Hadamard product. GMCA has been initially proposed
with p = 0 and p = 1. In this thesis, we will prefer the `1 norm to the `0 pseudo-norm for two
reasons. First, the `1 norm is convex (while still enforcing sparsity), and is therefore easier to
minimize [48]. Second, it has been observed in [112], that using the `1 norm favors a solution
Ã so that the corresponding expansion coefficients S̃ΦT

S are clustered along such axes fig.1.12.

• Scaling indeterminacy: any BSS problem suffers from two indeterminacies: permutation (there
is no order for the sources) and scaling. We will assume that the columns of A are normalized,
which is a standard assumption in BSS [14]. This is enforced using the indicator function
χY:‖Yk‖2≤1,∀k(A)1.

Therefore, the GMCA algorithm aims at minimizing the following cost function [14]:

minimize
A,S

1
2 ‖X−AS‖22 + ‖Λ� S‖1 + χY:‖Yk‖2≤1,∀k(A). (1.3)

1The assumption can be relaxed in practice: one can simply enforce the norm of the columns to be smaller
than 1 (indicator function of a convex set). Let us consider a fixed product AS, where A has normalized columns
and let α be a positive scalar. We note Ã = αA, and S̃ = 1

α
S. For every scalar α ∈ (0, 1], the columns of Ã

belong to the unit ball. However, the `1 norm of the associated sources S̃ increases when α decreases: for fixed
product AS, the minimum of the cost function is reached when the columns have a unit norm.
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In practice, the GMCA algorithm looks for the `1 ball with minimal radius enclosing the source
samples fig.1.12: as we have observed in the previous section, if the source samples are not cor-
rectly unmixed, they are not jointly sparse and are consequently enclosed in a `1 ball with a
larger radius than the one needed to enclose the sought-after sources.

Nonetheless, we point out that minimizing the previous cost function is not simple:

• Regularization parameters: The values of the regularization parameters are crucial in sparse
BSS (setting Λ to zero results to a matrix factorization problem without any constraint, and
Λ to infinity implies that S = 0). Given that cross-validation is not always feasible, the regu-
larization parameters should be set automatically, according to the variable values, which is
done by GMCA.

• Non-convex problem: This problem is multi-convex: namely, it is convex when one of the
two variables is fixed, but not for the tuple (A,S). Minimizing such cost function is thus
challenging since one should avoid local minima.

These two issues require the development of efficient heuristics, such as the ones presented in [14].
They will be introduced and discussed in Chapter 3.

1.4 Organization of the manuscript

This first chapter presents a brief overview of the analysis of multivalued-data by means of sparse
BSS. The sparse BSS method GMCA yields accurate results if the standard linear mixture
model provides a precise description of the observations. Unfortunately, deviations from the
linear model are frequently encountered in practice, and hamper standard BSS methods. Some
examples of deviations are presented in Chapter 2, as well as the current state-of-the-art methods
for robust matrix factorization/anomaly detection. Chapter 3 presents an introduction to the
optimization for matrix factorization problems, as well as the heuristics developed for the choice
of the regularization parameters. Then, Chapter 4 focuses on robust BSS in the presence of
deviations sharing the same morphology as the sought-after sources. In Chapter 5, we propose
another robust BSS method aiming to deal with the presence of deviations having a different
morphology from the one of the components of interest. Last, in Chapter 6, the robust BSS
methods are extended in order to recover spectral variabilities in terrestrial hyperspectral images.



18 Sparse Modeling and Blind Source Separation



Chapter 2

Robust Blind Source Separation

Summary
2.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Observations deviating from the standard linear model . . . . . . . . . 20

2.1.2 Towards a more realistic data model . . . . . . . . . . . . . . . . . . . 23

2.1.3 Influence of the deviations . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Robust BSS in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Removal of the outliers in the low-rank regime . . . . . . . . . . . . . 29

2.2.2 Robust metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.3 Component Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Summary of the different approaches in the literature . . . . . . . . . 37

2.3.2 Identifiability of the outliers . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Proposed approach: a component separation strategy . . . . . . . . . 38

While the presence of large deviations from the standard linear model is ubiquitous in many
real-world applications, most standard BSS methods are sensitive to gross errors. This mandates
the development of robust BSS methods, able to handle outliers.
In this chapter, we motivate the developments on robust BSS by presenting some real-world
applications for which the observations are not correctly described by the standard linear mixture
model. Then, the main approaches proposed in the literature to handle the presence of outliers
are reviewed.

2.1 Outliers

The presence of Gaussian noise is generally taken into account in the data model of standard BSS
methods, and fairly handled [41], [14], [40]. However, it can only represent dense and relatively
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small noise. In numerous applications, large deviations from the linear model AS + N are
encountered and encompass the presence of unexpected physical events [126], [129], instrumental
artifacts [91] or non-linearity of the underlying physical process [58]. More precisely, the so-
called deviations act as a significant additional component, structurally different from the source
contribution, and spatially structured (in contrast to the Gaussian noise N). More details will
be provided after the 3 following examples.

2.1.1 Observations deviating from the standard linear model

By ways of illustrations, we will focus on the three applications that have been presented in the
introduction 1.1.1: LC-MS data analysis in bioengineering [114], estimation of the foreground
emissions from the ESA-Planck data [86], and unmixing of hyperspectral images for terrestrial
remote sensing [10]. The presence of deviations from the standard linear mixture model is
common in these three different applications.

Composition of a liquid from LC-MS data in bioengineering. In [114],
the authors analyze LC-MS data with BSS so as to estimate the composition of a liquid.
These data are noisy, but the underlying noise model is not completely understood. A part
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Figure 2.1: Zoom on some non-linearities present in LC-MS data, intensity in log-scale. Figure
from [115].

of the deviations is dense, with moderate amplitude, and is generally modeled with an additive
Gaussian noise. However, it would be better described by a multiplicative term as pointed out
in [114]. Large deviations are also encountered and certainly correspond to electromagnetic noise,
fig.2.1.
In the case of fig.2.1, the deviations are easily detectable and can be manually discarded. How-
ever, the hand-operated removing of the deviations has several drawbacks: it is time consuming,
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and may be not precise (deviations not detectable without further analysis, or hidden contribu-
tion of the signals of interest).

CMB and foreground emission separation from ESA-Planck data
in cosmology. The BSS methods aiming to estimate the CMB from the ESA-Planck data
assume that the observations are well described by the standard linear model.
In practice, the observations can significantly deviate from this simple model:

Figure 2.2: Left: Sky map of some compact source emissions visible in the microwave range.
Right: combined mask for the compact sources and the spectra variabilities.

• Some extra-components are not modeled, such as point source emissions fig.2.21. Each of
these compact emissions has a unique emission law, and as so, should be modeled as an indi-
vidual source. This is in practice impossible since they are too numerous, and their number is
not known. Nonetheless, the position of the brightest ones is known, and the corresponding
observations are masked prior to the unmixing.

• The underlying physical process is too complex to be modeled with the linear model. Indeed,
the emission laws of the foreground components depend on physical parameters such as the
temperature or gas densities, which are strongly varying across the sky. Consequently, we
face consequential spectral variabilities of the galactic components, which are unfortunately
dominating the CMB contribution. As well in practice, a part of the galactic center is masked
prior to the unmixing fig.2.2.2

One may seek for accurate full sky estimates of the foregrounds and CMB, and not only for
the statistical properties of the CMB. In that case, we cannot longer mask the galactic center.
The deviations from the linear model (spectral variability and point sources) should be carefully
taken into account.

1Map from http://sci.esa.int/jump.cfm?oid=56131
2Map from https://wiki.cosmos.esa.int/planckpla/index.php/CMB_and_astrophysical_component_maps

http://sci.esa.int/jump.cfm?oid=56131
https://wiki.cosmos.esa.int/planckpla/index.php/CMB_and_astrophysical_component_maps
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Unmixing from hyperspectral images in terrestrial remote sensing.
As stated in the introduction 1.1.1, the observations are commonly modeled with the standard
linear model X = AS+N. However, this linear approximation can be too simplistic to represent
accurately some terrestrial hyperspectral data [138], [45], [119], [2]:

• Variations of illumination: This is especially problematic if the abundances are assumed to
’sum-to-one’ (

n∑
i=1

Ski = 1,∀k = 1, . . . , t), [80]. For instance, let us consider two pure pixels of

an element, with two different illuminations. The energies of the pixels are different but the
amplitudes of the two samples should both set to 1 (pure pixel): the corresponding endmem-
bers should thus be different so as to take into account the variations of energy.

• Intrinsic variations: It is likely that a material varies slightly in the observed area. For illustra-
tive purpose, some endmembers corresponding to pure pixels of vegetation from a MOFFETT
scene are displayed in fig.2.3: one cannot expect different plant species to have exactly a same
spectral signature.

• Intimate mixing: At a microscopic level, the components interact together. For instance, if
observing a sea-coast, assuming that the material (wet sand for example) can be described
only by the spectra of the (dry) sand and water is maybe too simple.

• Multiple paths reflections: The observed reflection may not come straightforwardly from a
component, but rather reflects off several materials.
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Figure 2.3: Examples of spectral variabilities of a component.

The presence of strong deviations is detrimental for some state-of-the-art unmixing methods
[45], or for high precision classification. Besides in some applications, the spectral variations are
the point of interest (ex: for remote monitoring in agriculture [90]), and it would thus be of
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interest to estimate them precisely.

2.1.2 Towards a more realistic data model

As illustrated in the previous examples, the standard linear model X = AS + N can be too
simplistic to fairly describe the observed physical process.

Explicit modeling of the outliers. In the following, the deviations will be explicitly
taken into account in the data model by adding an extra linear term, O ∈ Rm×t, the outliers, so
that:

X = AS + O + N, (2.1)

where AS corresponds to the sought-after rank-n source contribution, N to a dense and non-
structured noise (assumed to be Gaussian i.i.d), and O, the deviations/outliers.

Defining the different contributions. In principle, this data model could repre-
sent every kind of observations (for instance, by taking O = X). That is why, defining precisely
what are the outliers is necessary to identify every contribution.
Describing the outliers on their own is difficult, and generally data dependent. For instance in
2.1.1, the deviations in the LC-MS data correspond to the diagonally-shaped (non-linear) contri-
bution, with variable masses. If the deviations are no longer drifted, further analysis is needed
to detect the deviations: in this case, the outliers can only be defined and detected by contrast
with the source contribution.

• The source contribution AS is linearly structured and of rank-n. In particular, the expansion
coefficients of S in ΦS (dictionary in which the sources are sparsely represented) are assumed
to respect the MDP presented in 1.2.2 and thus to be jointly sparse fig.2.5b. Consequently, the
source contribution ASΦT

S is clustered along the directions given by the columns of A fig.2.5a.

• The outliers correspond to a structured corruption in contrast with the Gaussian noise. In
particular, we assume that the outliers are spatially coherent: their morphology is unchanged
from one observation to another. Besides, we consider that the morphology of the outliers
is known a priori: there is a dictionary ΦO (possibly ΦO = ΦS) in which, the expansion
coefficients OΦT

O are sparse. For instance in 2.1.1, the deviating masses in the LC-MS data
are sparsely represented in the direct domain, similarly to the spurious point emissions in the
Planck data. Contrary to the expansion coefficients of the sources in ΦS, the samples OΦT

O

do not need to be jointly sparse.
Besides, in order to separate the outliers from the source contribution, we will assume that
at least, one of the following properties holds true:
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– The outliers and the sources do not share the same morphology. In the spirit of MCA (see
1.8), the outliers and the sources have clearly different geometrical contents. This differ-
ence of spatial behaviors will be exploited in Chapter 5.

– The outlier contribution does not cluster in ΦS.
In contrast with the source contribution which is clustered along the directions given by
A in ΦS, we will assume that the outliers are well spread out in all the directions in ΦS.
This ensures that if ΦO and ΦS are too similar, we can still distinguish AS from O using
the fact that the outliers are aberrant˝: fewer entries share a same behavior/spectrum.
Ideally, the non-zero samples {(OΦT

S )k}k:(OΦTS )k 6=0Rm
projected onto the unit sphere of Rm

are uniformly distributed (which can be achieved if the entries of {(OΦT
S )k}k:(OΦTS )k 6=0Rm

are generated with a same normal distribution), such as in fig.2.4a.
This condition may not be met in practice: for instance, one point source emission in the
Planck data will certainly active several atoms inΦS, and these active samples would share
a same spectral signature. Nevertheless, these active samples sharing a same spectrum
are less numerous than the active samples corresponding to a sought-after source, such as
the synchrotron emission for instance fig.1.83.
This difference of spectral structure will be exploited in the Chapter 4.

O
1

-300
-150

0
150

300

O 2

-300
-150

0
150

300

O
3

-300

-150

0

150

300

(a) Outliers in general position
O

1

-300
-150

0
150

300

O 2

-300
-150

0
150

300

O
3

-300

-150

0

150

300

(b) Outliers independently distributed

Figure 2.4: In (a), the outliers are column sparse whereas they are row and column sparse in
(b), the amplitudes of the active entries are identical for (a) and (b).

One can notice that with our proposed characterization of the outliers, the presence of nu-
merous corrupted entries, column and row sparse in ΦS (outliers uniformly drawn at random
in ΦS) may not be defined as outliers. Indeed, such outliers are clustered along the canonical
axes, as in fig.2.4b. We will rather consider that, ideally, the outliers, if sharing the same
morphology as the sources, are column sparse in ΦS, with i.i.d. entries. More details will be
provided in Chapter 4.

3The following criterion measures an ’admissible’ level of clustering of the outliers in ΦS. Let ds be the number
of atoms of ΦS, such that OΦTS ∈ Rm×ds . Let B ∈ Rm×do be a spectral dictionary whose atoms are normalized
for the `2 norm, such that OΦTS = BT, the rows of T ∈ Rdo×ds respect the MDP, and do be the minimal

dimension permitting such decomposition. We will assume that maxi
‖Ti‖1
‖Ti‖2

< minj
‖(SΦTS )j‖1∥∥(SΦTS )j

∥∥
2

.
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2.1.3 Influence of the deviations

There are applications where the deviations from the linear model are the objects of interest e.g.
target and anomaly detection [70]. In this case, using a method able to estimate the deviations
precisely, by taken them into account explicitly, makes sense. However, it may be not clear yet,
why robust methods should also be employed if we are only seeking for the mixing matrix or
the sources: the presence of important deviations deteriorates the estimation of A and S, what-
ever the prior on the sources is used [62], [79], [33]. Given that in this thesis we focus on sparse
BSS, we propose to study the influence of the outliers in this particular context with toy examples.

For illustrative purpose, let us consider that 3 sources are mixed into 3 observations. For the
sake of clarity, the sources are exactly sparse in the domain of observations. That is, they are
jointly sparse (sparse and respect the MDP 1.2.2): one entry is significant for at most one source
such as in fig.2.5b. Besides, the data samples are clustered along the directions given by the
columns of A fig.2.5a. The algorithm GMCA, presented in 1.3.2 and introduced in [14] would be
particularly well suited to retrieve the sources and mixing matrix4. We recall that it performs
the separation by minimizing the following cost function:

minimize
A,S

1
2 ‖X−AS‖22 + ‖Λ� S‖1 ,

where Λ is a matrix of size n× t containing the regularization parameters.
Among the possible tuples (Ã, S̃), GMCA looks for one satisfying X ≈ ÃS̃, with the sparsest
sources (enclosed in the `1 ball with the smallest radius), Section 1.3.1, [14]. In this ideal setting,
the results obtained by GMCA are very convincing (cannot be visually distinguished from the
ground truth).
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Figure 2.5: Three exactly sparse sources in the direct domain are mixed into 3 noiseless obser-
vations. Left: scatter plot of X1 versus X2. Right: scatter plot of S1 versus S2. The red arrows
symbolize the directions of A.

We consider then that the observations are corrupted by outliers. We can broadly distinguish
4The associated algorithm is presented in Section 3.3.5
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two kinds of outliers (the energy of O is the same in the two examples):

• i) The outliers are also sparse in the same domain as the sources (the direct domain here).
More precisely, only few samples of O are active: in fig. 2.6b, 10% of the entries are active. In
contrast with the source contribution, the outliers are in general position and do not cluster
in specific directions. This set-up corresponds to the variable masses in the LC-MS data
presented in 2.1.1, and will be studied in the Chapter 4.

• ii) The outliers are dense/non-sparse in the domain in which the sources are sparsely rep-
resented: all the entries are corrupted, by an additive noise (not Gaussian i.i.d.such as N),
fig.2.6a. Similarly, the outliers are in general position, they do not cluster in any specific
direction. This setting could describe the contribution of spectral variations encountered in
the Planck and hyperspectral data in Section 2.1.1 and will be studied in the chapters 5 and
6.

In the presence of moderate outliers, it is indeed possible to retrieve the mixing matrix with
GMCA, [67]. However, whenever the outliers are significant, they hamper the separation. The
unmixing is hindered differently depending on the type of the outliers: sparse or dense.
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(b) Observations corrupted by sparse
outliers.

Figure 2.6: Left: scatter plot of X1 versus X2 when the observations are corrupted by dense
outliers. Right: scatter plot of X1 versus X2 when the observations are corrupted by sparse
outliers, with a same energy. The red arrows symbolize the directions of A

Dense outliers. When the outliers are dense, they act as a large Gaussian noise. Indeed,
the projected sources A†X = S + A†O equal the sources plus an additional dense and relatively
small term A†O, which affects the sources similarly to a Gaussian noise 2.7a. The largest samples
still belong to the source contribution (plus the noise) fig.2.6a, and the projected sources are still
jointly sparse 2.7a, even if they are less precisely clustered along the directions given by the
columns of A 2.6a, 2.7a.
Consequently, it is still possible to recover a broad estimate of A with GMCA: we can see that
the directions are fairly but not exactly recovered by GMCA fig.2.7b. Besides, if we try to
further denoise the sources, then, only few coefficients are kept fig.2.7c since the noise level is
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quite similar to the amplitude of the sources. One can notice that the `1 norm has introduced
a very significant bias in the recovered samples fig.2.7c. This effect can be reduced by using a
reweighting `1 [23] or the `0 pseudo-norm: similarly, few entries would be kept, but they would
not have a biased amplitude.
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Figure 2.7: Left: scatter plot of
(
A†X

)
1 versus

(
A†X

)
2 with dense outliers, where the red

arrows symbolize the directions of the true A. Middle: scatter plot of
(
Ã†X

)
1 versus

(
Ã†X

)
2

with dense outliers. Right: some of the samples of the recovered source S̃1. The tuple
(
Ã, S̃

)
is

estimated with GMCA.

In the presence of dense outliers, a fair estimation of the variables can be obtained with
standard sparse BSS algorithms. However, if the energy of the outliers is very significant, such
as in fig.2.7, the separation between outliers and source contribution cannot be very precise.

Sparse outliers. Large and sparse outliers are more damaging for sparse BSS methods.
The basic assumptions needed for GMCA are no longer valid in the presence of sparse and large
outliers (the consequences of the MDP are no longer valid, Section 1.3). First, the largest sam-
ples can be related to the outliers and not to the sources fig.2.6b. Besides, the projected sources
A†X = S + A†O are not jointly sparse fig.2.8a.
This last point is particularly damaging for GMCA. Indeed, this method looks for the tuple(
Ã, S̃

)
so that S̃ is enclosed in the `1 ball with the smallest radius. In the presence of outliers,

there may be another tuple
(
Ã, S̃

)
so that the resulting sources S̃ are enclosed in a `1 ball with

a smaller radius. That is the case in fig.2.8: the estimated sources S̃ ≈ Ã†AS+ Ã†O fig.2.8b are
sparser (`1 ball in red) than the projected sources S+A†O (`1 ball in green) fig.2.8a. That is why
the mixing matrix is not recovered. In addition to the inaccurate unmixing, the sources (whose
corresponding columns are recovered) are corrupted by the projected outliers Ã†O. Given that
this contribution is also sparse, it cannot be easily distinguished from the sources entries and a
fortiori discarded with the thresholding, fig.2.8c.
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(a) Projected sources with sparse out-
liers.

(b) Estimated projected sources with
sparse outliers.
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Figure 2.8: Left: scatter plot of
(
A†X

)
1 versus

(
A†X

)
2 with sparse outliers. Middle: scatter

plot of
(
Ã†X

)
1 versus

(
Ã†X

)
2 with sparse outliers. The green dashed lines symbolize the `1

ball in which is enclosed
(
A†X

)
and the red dashed lines the `1 ball enclosing

(
Ã†X

)
. Right:

some of the samples of the recovered source S̃1. The tuple
(
Ã, S̃

)
is estimated with GMCA.

Standard sparse BSS are clearly hampered by sparse and large outliers. They are misled
by large corrupted entries and fail to retrieve the mixing matrix. Besides, given the outlier
contribution is also sparse, an exact separation between O and AS cannot be achieved using only
standard methods such as GMCA.

2.2 Robust BSS in the literature

The presence of dense outliers can be fairly handled by the methods which are robust to the
presence of Gaussian noise. However, the standard strategies lead to erroneous results in the
presence of large and sparse outliers. This mandates the development of robust BSS methods,
which should tackle the following tasks:

• i) Separation of the source contribution AS from the outliers O so as to return denoised
estimated sources.

• ii) Unmixing of the sources, i.e. estimating precisely the mixing matrix A.

Only few robust methods have been proposed in the literature for dealing with large and
sparse outliers. They can be classified into three different groups according to their strategies:
replacement of the sensitive metrics in the cost-functions of optimization-based methods (i.e.
only task ii)), removal of the outliers prior to the unmixing (i.e. task i) followed by task ii)),
and joint estimation of O, S and A (i.e. tasks i) and ii) simultaneously).
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2.2.1 Removal of the outliers in the low-rank regime

We first focus on the outlier removal strategies permitting a precise separation between L = AS
and O such that:

X = L + O.

Separating L from O is a challenging problem which requires additional priors, such as assuming
that the source contribution L has low-rank m� n, and that the outliers are sparse.

Outlier detection. These two properties are very effective to detect the outliers Fig.2.9:
the corrupted sample Xk cannot be detected by visual inspection in the determined case (m = n)
fig.2.9a, while the column-span of L and the corrupted sample Xk are easily identified in the
over-determined setting (m > n)fig.2.9a. Only the samples whose outlier contribution does not
lie in the column-span of A can be detected: this is likely if L has low-rank and the outliers are
sparse.
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Figure 2.9: On the left, 2 sources are mixed into 2 corrupted observations (blue points). On the
right, 2 sources are mixed into 3 observations. For both, the red star symbolizes the corrupted
sample, at the kth column and the arrows symbolize the two contributions to this sample Ok

and (AS)k.

Outlier identification. Even if the corrupted samples are detected, identifying clearly
the two contributions L and O requires further assumptions since for every corrupted column
k, there is an infinite number of tuples

(
Lk,Ok

)
such that Xk = Lk + Ok and Lk lies in the

estimated column-span of L.

Exact separation between L and O. An analogous framework, leading to the exact
identifiability of the two components, has been proposed in the two breakthrough papers [23]
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and [29]. In order to be fully identifiable, the components can meet the following properties
(sufficient but not necessary conditions):
• L should not be sparse. This condition has been characterized differently in [23] and [29]: by

ensuring that the tangent space of L with respect to the matrices of rank equal or less than
n have well spread out entries (and so is L) in [29] or that the right and left singular vectors
of L are well spread out for [23].
This last characterization is designated as incoherence condition with parameter µ [21] and
states that for L = UΣV∗ =

∑n
i=1 σiUiVi∗, where σ1, ..σn denote the positive singular

values of L:

Definition 2.2.1 (Incoherence condition with parameter µ)

max
i
‖U∗ei‖22 ≤

µn

m
, max

i
‖V∗ei‖22 ≤

µn

t
, ‖UV∗‖∞ ≤

√
µn

mt

• The outliers should not be concentrated in a row or a column, to ensure that the rank and
column-span of L is still recoverable (the outliers plus a column or row of L should not
be zero). For this purpose, the authors of [23] assume that outliers are column and row
sparse, and that the support of outliers is drawn uniformly at random. In [29], the authors
consider that the matrices belonging to the tangent space of O, with respect to matrices hav-
ing at most the same number of active entries as O, have a spectrum (set of its eigenvalues)
which is well spread out (i.e. the energy of the outliers is well spread out in all the directions).

If these requirements are satisfied, it is then possible to recover L and O by minimizing the
following problem [29], [23], named Principal Component Pursuit (PCP) in [23]:

minimize
L,O:X=L+O

‖L‖∗ + λ ‖O‖1 , (2.2)

where ‖L‖∗ denotes the nuclear norm, the convex relaxation of rank(L), which enforces the
low-rankness of L, and ‖O‖1 promotes sparse outliers.
In brief, the algorithm exploits the incoherence of structure between the two terms to distinguish
them: the spectrum of L is sparse (low-rankness) whereas the one of O is dense; and the entries
of O are sparse while the ones of L are dense.

In [29, Theorem 2], the authors propose a deterministic recovery guarantee, depending on
how broadly distributed are the entries of L and how sparse is O. The recovery guarantee
in [23, Theorem 1.1] is probabilistic (due to the assumption on the outliers) and assume that m
and t are large enough (with respect to n and the number of active entries of O):

Theorem 2.2.1 (Theorem 1.1 , [23]) Suppose L obeys the condition 2.2.1 with parameter µ,
and that the support of O is uniformly distributed among all sets of cardinality ‖O‖0. Then there
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is a numerical constant c such that with probability at least 1 − ct−10, the PCP decomposition
2.2 with λ = 1√

t
is exact, provided that:

n ≤ ρrm

µ(log(t))2 and ‖O‖0 ≤ ρotm,

where ρo and ρr are two positive numerical constants.

In particular, it appears from this previous theorem that there is no parameter to tune: taking
λ = 1√

t
provides a correct separation if the previous requirements are met.

Numerous works have followed these two papers such as [143] (presence of Gaussian noise),
[142] (faster implementation and presence of Gaussian noise), or [105] (utilization of a truncated
nuclear norm) - a review of the different methods can be found in [18]. Beyond the methodological
developments, PCP based techniques have been very popular in applicative domains including
background estimation of video [18] and hyperspectral image denoising [139], [91], [92].
Given that hyperspectral data cubes are made of hundreds of observations of few components,
the component of interest L is indeed low-rank (m � n). In [139], the authors use a PCP-
based technique to remove the outliers (impulse noise, stripping noise) which are assumed to
be row and column sparse (i.e. only few pixels are corrupted over few bands). In contrast, the
noise is assumed to be column-sparse in [92] and the `1 norm in PCP is replaced by the `2,1 to
promote column-sparse outliers. Nonetheless, dealing with column-sparse outliers is much more
challenging that with row and column sparse outliers.

Relaxing the sparsity pattern of outliers: column-sparse outliers. In many applica-
tions, the outliers are more likely to be column-sparse than uniformly drawn at random (column
and row sparse). For example in hyper/multichannel data, unexpected physical events, such as
the presence of point source emissions in cosmology [126], Section 2.1.1, are probably visible at
all the frequencies, and so are column-sparse.
Identifying precisely the two contributions in this case is not possible. Indeed, for every corrupted
sample k, one should recover the initial decomposition Ok + Lk, while having no prior on the
vectors, only global priors on L (low-rank), and O (column-sparse). Hence, even if restricting
the vector Lk to lie in the column-span of L, the identification problem is still ill-posed.
In contrast, if the outliers are assumed to be sparse, the corresponding column Ok is likely to
be 1 sparse: Ok belongs to one of the canonical axes, which greatly reduces the possibility for
Ok fig.2.10a. On the other hand, if the outliers are column-sparse, the problem cannot be solved
exactly. In the fig.2.10b for instance, since the corrupted sample Xk belongs to the z-axis, the
PCP algorithm would return Õk = Xk and Lk = 0 (which minimizes jointly the nuclear and `1
norms) but not the solution of interest.

In [135], the authors study the recovery of L and O with column sparse outliers with the
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Figure 2.10: 2 sources are mixed into 3 corrupted observations (blue points). On the left, the
outlier sample Ok is 1 sparse, and it is column-sparse (all the entries of Ok are active) on the
right. The blue arrows symbolize the directions of A, the red arrow the contribution of Ok to
Xk, and in white, the one of Lk.

Outlier Pursuit (OP) algorithm:

minimize
L,O:X=L+O

‖L‖∗ + λ ‖O‖2,1 ,

where the `2,1 is used to favor column-sparse outliers.
In that case, one can only recover exactly the column-span of L and the support of O given that:
L is not also column sparse (but it can be row-sparse, in contrast with [23]), and the number of
corrupted samples and the rank n of L are small enough with respect to the number of samples
t [135].

Unmixing from denoised observations. Even though the low-rank regime is
favorable to the detection of corrupted samples and the estimation column-span of A, separating
the outliers from L is ill-posed and cannot be guaranteed with mild hypotheses (only if L has
low-rank, and the outliers are column and row sparse).

If the separation between O and L is not perfect, the following unmixing on X− Õ would be
inaccurate if not erroneous. This applies more generally to the ’two-steps’ methods, combining
first a denoising method and then an unmixing strategy.
The first obvious reason is that an outlier residual would be still present and would hinder the
following unmixing and the sources estimation. The second point is that, the denoising method
may have not preserve the key properties of L, for example:

• If a monochannel denoising method is used (the outliers are removed channel by channel,
independently), the structural property of AS (linearity from one observation to another)
may not be preserved - as illustrated in the numerical experiments in 5.3.2.
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• The parameter λ in PCP-based methods (PCP or Outlier-Pursuit) is not easy to tune. In
[23], [29], [135], the authors propose a value for λ. However, even if this value achieves perfect
asymptotic results, it may be not the best choice in practice: another value of λ can lead to
better unmixing results.

Removing the outliers prior to the unmixing is not an easy task. The exact separation
between L and O requires sparse outliers and low-rankness, two conditions which are not valid
in some applications, for example for the removing of the point source emissions from the ESA-
Planck data. In the following section, we will present a group of methods which do not rely on
low-rankness.

2.2.2 Robust metrics

Another strategy for withstanding large deviations consists in replacing the most sensitive metrics
involved in the cost-functions of the deterministic methods such as the Frobenius norm or the
Kullback-Leiber (KL) divergence. Namely, since the outliers are assumed to be large, and so
correspond to large values of the residue X−AS, the robust metrics should not penalize much
large entries. They should rather penalize small deviations, which are more likely to correspond
to a mis-estimation of the variables, for the inliers points. This approach has been proposed for
robust ICA and NMF.

Robust ICA. In the outlier-free setting, based on the assumptions that the sources are
independent and that m = n, the ICA based methods look for an unmixing matrix B such
that the estimated sources S̃ = BX are statistically independent [40], Section 1.1.3. One way
to measure the independence of the estimated sources is to use the mutual information of the
sources, defined as the Kullback-Leibler (KL) divergence between the product of their marginal
distributions

∏n
i=1 pS(S̃i) and their joint distribution pS(S̃) [39]:

DKL(pS(S̃)‖
n∏
i=1

pS(S̃i)) =
∫
pS(S̃) log

(
pS(S̃)∏n
i=1 pS(S̃i)

)
dS̃.

The value of the KL-divergence is non-negative and equal to zero if and only if the estimated
sources are independent. Unfortunately, it is not robust to the presence of outliers [62]. To
overcome this problem, the authors of [100] propose to replace the KL-divergence by the β-
divergence, for which the influence of the outliers is bounded [100]. Similarly, the β-divergence
between the product of the marginal densities of the estimated sources and their joint density is
non-negative and equal to zero if and only if the estimated sources are independent (for 1 > β > 0,
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and for β = 0 we refer to the KL divergence):

Dβ(pS(S̃)‖
n∏
i=1

pS(S̃i)) = 1
β

∫
pS(S̃)

(
pβS(S̃)−

n∏
i=1

pβS(S̃i)
)
dS̃− 1

β + 1

∫ (
pβ+1

S (S̃)−
n∏
i=1

pβ+1
S (S̃i)

)
dS̃.

As the value of β increases, the divergence becomes less sensitive to outliers, but also less effective
since it is on the overall less influenced by the deviations to the observations (the best unmixing
performances, without outliers, are obtained with very small values of β, for a cost function close
to the K-L divergence).
The strategy proposed in [100] amounts to maximize the quasi log-likelihood of the β-divergence
between the empirical marginal densities of the estimated sources and their empirical joint den-
sity. It does not need any whitening of the data, but only thatm = n. Nevertheless, the efficiency
of this approach highly depends on the choice of the parameter β, which is generally problematic
in practice.
Divergences have also been employed in the framework of NMF.

Robust NMF. This strategy has been quite popular for NMF. Indeed, it is possible to
change the Frobenius norm, which is commonly used as a data fidelity term, for a more robust
metric while keeping the fast multiplicative updates.
Divergences The utilization of divergences in the NMF framework has a long history [87]. The
data fidelity term is of the form D (X‖AS) =

∑
j=1..m,i=1..n d (Xi,j‖(AS)i,j), where d denotes

the entry-wise divergence. The most common divergences can be seen as a β-divergence, which
is defined as the following for β ∈ R and x, y ∈ R+, [51], [59]:

d(x‖y) =


1

β(β−1)
(
xβ + (β − 1)yβ − βxyβ−1) , ∀β ∈ R \ {0, 1}

x log(xy ) + (y − x), β = 1 KL
x
y − log(xy )− 1, β = 0 Itakuro-Saito

(2.3)

For β = 2, the β divergence corresponds to the Euclidean distance (well suited for Gaussian
noise) [88], the value β = 1 to the KL divergence (maximum likelihood for Poisson noise) [87]
and β = 0 to the Itakuro-Saito divergence (maximum likelihood for multiplicative gamma
noise) [56]. For 0 ≤ β < 2, these divergences are non-symmetric (d(x||x + ∆) < d(x||x − ∆)
for ∆ > 0), and the influence of the large entries are lessen as β tends to 0: for ∆ > 0:
d(∆ × x||∆ × y) = ∆βd(x||y) [56]. Hence, it is possible to lessen the influence of large errors,
and so to be robust to outliers. In [35], the authors further generalized the framework to the αβ
divergences and studied their robustness with respect to outliers and parameters variations.
Whereas the theoretical properties of these divergences and their robustness motivate their uti-
lization, setting correctly the parameters of the divergence is not straightforward, especially in
the presence of an additional Gaussian noise (setting β to a small value would make the method
robust to large outliers but more sensitive to the Gaussian noise).
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Numerous works, using robust distances instead of parametric divergences, have also been pro-
posed for NMF as presented below.

Robust distances In [81], the authors used the `2,1 norm for the data fidelity term with the
non-negativity of A and S in order to copy with column-Laplacian outliers. They propose an im-
plementation procedure based on multiplicative updates, as well as the extension for the `1 norm
which will be more well-suited to deal with an entry-wise Laplacian noise (entries are Laplacian
i.i.d).
The use of the `1 norm was already proposed by Ke and Kanade in [79] (the components are not
assumed to be non-negative). However, they did not present an efficient implementation for this
problem (they proposed to smooth the `1 with the Huber norm [76]). Besides, they proposed a
weighting procedure for the `1, which can be useful in the presence of missing data (the weighting
is a binary mask) or to further penalize the entries with a large residue (i.e. which are likely to
be corrupted).
The authors of [50] also exploit a weighting procedure in a more generic framework. Using
half-quadratic minimization, they show that many robust cost-functions (`2,1, `1, but also cor-
rentropy, Huber loss and so on) can be easily minimized with weighted NMF.
Loss functions such as the Huber loss [76], the correntropy and Welsch estimator [95] or the
hypersurface [30], [74] are worth pointing out. Indeed, using such functions may be more effi-
cient than the `1 norm because they do not penalize similarly small and larges entries. Indeed,
as stated above, the small entries of the residue are likely to correspond to errors created by a
mis-estimation of the variables, but not to outliers, which are assumed to be very significant.
The aforementioned loss-functions penalize proportionally more the small errors than the large
ones: quadratic behavior for the small values and then linear for the largest ones for the Huber
and hypersurface losses, and quadratic, then linear and then constant behavior for the Welsch
loss, see fig.2.11.
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Figure 2.11: Examples of error functions. The width of the quadratic regime can be adapted to
the data.
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We further underline that the quadratic behavior of these error functions is also interesting
to deal with the remaining Gaussian noise N present in the data. More precisely, in [117], the
authors have shown that the value of the Huber loss of a residue R, ‖R‖Huber,β with cut-off
parameter β corresponds to the minimizer:

‖R‖Huber,β = min
R=RQ+RS

1
2 ‖RQ‖22 + β ‖RS‖1 .

Namely, the Gaussian residue RQ is penalized by the quadratic function, while the sparse outliers
RS by the `1 norm with regularization parameter β. That is, the Huber loss permits a more
precise discrimination of the two residual contributions and the results should be the same as
if explicitly estimating the outliers with an `1 norm. However, the explicit estimation of the
outliers is worthwhile if additional information on the outliers (such as non-negativity, [58]) is
known and can be added to further constrain the problem.

2.2.3 Component Separation

Last, the third strategy consists in estimating jointly A, S and O. This framework is more flexible
since several priors can be considered for every component, what leads to a better identifiability
of the variables. This has been proposed in a Bayesian framework [4] but more frequently with
deterministic strategies. In that case, the tuple (A,S,O) is estimated by minimizing a cost
function of the form:

minimize
A,S,O

D(X‖AS + O) + J1(A) + J2(S) + J3(O),

where D is the divergence used as data fidelity term, and Ji, i = 1..3 correspond to the penalty
functions depending on the prior information on the variables.
This kind of approach has been used in the NMF framework with sparse outliers in [57], [140],
and [118]. The authors of [118] use the standard Frobenius norm for the data fidelity term,
non-negative priors on A and S and the `1,2 norm for O which are assumed to be sparse whereas
the authors of [140] use the `1 norm to promote sparsity.

In [57], the authors assume that all the variables are non-negative (including O), that the
entries of each source sample sum to one (see Chapter 6), that the outliers are column-sparse,
which is promoted with the `2,1 norm, and use a β divergence for the data-fidelity term:

rNMF: minimize
A≥0,S≥0,11×nS=11×t,O≥0

D(X ‖ AS) + ‖O‖2,1 , (2.4)

where the divergence is defined as in eq.2.3.
It seems in [57] that the use of the β divergence does not bring much in comparison to the
Frobenius norm for the studied terrestrial hyperspectral images.
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On the overall, these works highly rely on the low-rankness of AS and the non-negativity of
the components to identify the outliers. Indeed, the components A and S are only enforced to
be non-negative (with indicator functions). On the other hand, the outliers are penalized with a
norm (`1, `2,1 or `1,2) so as to enforce their spatial rareness. This creates an imbalance between
the two terms AS and O since only the energy of O is penalized. Hence, the part [AO]+ will
necessarily leak toward the estimated sources since it will be costless, what can be significant if
m ≈ n.

2.3 Summary

2.3.1 Summary of the different approaches in the literature

The different approaches are summarized in the following table Tab.2.1.

Strategies Framework Assumption Advantages Weaknesses

Separation
AS/O

PCP-based
methods [23]

Low-rankness
and O sparse

Exact
identification

of O

Restrictive
hypotheses .

OP-based
methods [135]

Low-rankness
and

column-sparse O

Estimation of the
support of O

and column-span
of A

No exact
estimation

of O.
Outliers residual

hinders the
following unmixing.

Robust
Metrics

ICA with
β divergence

[100]
m = n

Theoretically robust
to outliers.
Can handle

the determined case.

No estimation
of O.

Determined
case only.

Choice of β crucial
but challenging.

NMF
[35], [81]

Non-negativity
of A and S

Some strategies
are easy to
implement

No estimation
of O

and non-negativity.

Component
Separation NMF [57]

Low-rankness
and

non-negativity

Well suited
for hyperspectral

imaging

No identification
of O.

Restrictive
hypotheses.

Table 2.1: Strategies for robust BSS and outliers estimation.
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2.3.2 Identifiability of the outliers

Few works have studied the identifiability of the outliers: namely only in the framework of
PCP [23], [29], [136].

In the low-rank regime (m � n), it has been proven that the exact separation between AS
and O is possible if the outliers are sparse and their sparsity pattern is uniformly drawn at ran-
dom. These hypotheses are restrictive: the low-rank regime is not always valid, and the outliers
are frequently column-sparse in multi/hyperspectral imaging (an anomaly is visible at several
wavelengths).

Even in the low-rank regime, if the outliers are column-sparse, the exact separation between
AS and O is not possible. However, it is possible to recover the column-span of A and the
support of O, as long as the active samples of O do not lie in the span of A.

We further underline that non-negativity, combined with low-rankness, is not sufficient for
the identification of O. Unless the projection of the outliers onto the column-span of A is non-
positive, what is quite unlikely, the part [A†O]+ would leak towards the estimated sources. This
leakage can be controlled, or reduced if the sources are more penalized, such as with the sum-
to-one assumption [57] (not only with the indicator function enforcing the non-negativity, which
is insensitive to the energy of the estimated sources).

On the overall, the identifiability of the outliers cannot be guaranteed in many applications.
However, it is still possible to determine and characterize the potential limits of a method, and
the leakages that will be encountered in practice. In the remaining of this thesis, efforts will be
undertaken to clarify these points.

2.3.3 Proposed approach: a component separation strategy

There is currently no method able to tackle the BSS problem in the presence of outliers in a wide
range of settings, including the determined case.
We propose a new approach, based on the component separation strategy estimating jointly A, S
and O. This approach is efficient and flexible since several priors can be added on the components
to constrain them. More precisely, we will build upon the sparse modeling of the components
to separate the different variables by exploiting efficiently the difference of morphology between
the sources and the outliers (Chapter 5), or their spectral (column space) structure (Chapter 4).
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In many applications, BSS methods aim to retrieve A, S, meaningful components from a
physical point of view, and not only at estimating a denoised subspace AS. To this end, efficient
BSS algorithms must meet these conflicting features:
• Robustness. The unmixing should not be influenced by the noise.
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• Accuracy. The sources and mixing matrix should be precisely estimated.
• Reliability. Matrix factorization methods based on optimization suffer from the non-convexity

of the involved cost-functions. The robustness against local minima is crucial for many real-
world applications.

• Convergence. The proposed methods should be convergent or empirically stable.
• Easy-to-use. The regularization parameters involved in sparse factorization problems should

be automatically set to guarantee an easy handling of the methods, and to avoid time-
consuming cross-validations.
After presenting a short background on proximal calculus, we will review some standard op-

timization strategies for sparse BSS that will be employed in this thesis. Then, we will discuss
the influence of the regularization parameters in sparse BSS and an automatic setting strategy,
which will also be of paramount importance for the proposed robust BSS methods.
The final optimization scheme together with the thresholding strategy will meet the aforemen-
tioned desired properties.

3.1 Proximal algorithms

Suppose that we aim to solve an inverse problem with the associated cost function:

argmin
Y

f(Y) + g(Y),

where f : Rd1×d2 −→ R̄, with d1, d2 ∈ N+, is a convex, proper and differentiable function,
and g : Rd1×d2 −→ R̄ be a convex, proper, lower semi-continuous function, not necessarily dif-
ferentiable. This formulation encompasses many inverse problems, for which f is a differentiable
and convex data fidelity term, and the function g a regularization for Y.

Given that the function g can be not differentiable, the standard optimization methods such
as the gradient descent [19] cannot be employed. By contrast, proximal calculus provides an
efficient and unified framework to tackle non-smooth convex minimization problems [107]. This
is particularly interesting for sparse BSS since sparsity enforcing regularizations such as the `1
norm are generally not differentiable.

Consequently, we start this chapter by presenting a necessary background on proximal cal-
culus, a tool which will be widely employed in this thesis.

3.1.1 Proximal operator

Definition. Let g : Rd1×d2 −→ R̄ be a convex, proper and lower-semi continuous function.
In the following, the functions satisfying these criteria will be called proximable. Many functions
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commonly employed in inverse problems are proximable e.g., any norm or indicator function of
a closed, convex and non-empty set is proximable.
The proximal operator of the function g is given by:

prox
g

: Rd1×d2 −→ Rd1×d2 (3.1)

Y 7→ argmin
Z

1
2 ‖Z−Y‖22 + g(Z) (3.2)

The proximal operator at Y can be seen as a local minimizer of g, close to Y. That is, if Y is a
local minimum of g, then the proximal operator of g at Y is Y (the fixed point property is key
in the analysis of proximal algorithms [107]).

Examples. The proximal operators of the regularizations that will be used in this thesis
can be found in App.A. By way of illustrations, we will present some of them:

Proximal operators of indicator functions: we consider that g is the indicator function of the
non-negative orthant. Its proximal operator is given by:

prox
g

(Y) = argmin
Z

1
2 ‖Z−Y‖22 + χU:≥0(Y) (3.3)

= [Y]+ (3.4)

The proximal operator is nothing but the projection of Y onto the non-negative orthant, denoted
as [Y]+. This is also the case if g corresponds to the indicator function of a non-empty convex
and closed set. More generally, many proximal operators can be linked to projections.

Proximal operators of the `1 and other norms: The proximal operator of the λ`1 norm is the
soft-thresholding operator Sλ(.):

Sλ(Y) = sign(Y)×max(0,
∣∣Y ∣∣− λ).

This proximal operator, as well as the proximal operator of any norm ‖.‖p, p ≥ 1, can also be
related to projections [107]. Indeed, the Moreau decomposition gives us [107]:

prox
λ‖.‖p

(Y) = Y−ΠU:‖U‖ p
p−1
≤λ(Y), (3.5)

where ΠU:‖U‖ p
p−1
≤λ denotes the projection on the convex set {U : ‖U‖ p

p−1
≤ λ}. For the λ ‖.‖1

norm, it leads to: proxλ‖.‖1(Y) = Y−ΠU:‖U‖∞≤λ(Y).



42 Algorithmic framework for sparse Matrix Factorization

3.1.2 Proximal algorithm: Forward-Backward Splitting

FB Algorithm. The Forward Backward Splitting algorithm (FB - [38]) aims to solve our
former non-smooth convex problem:

argmin
Y

f(Y) + g(Y),

where f is a proper, convex and differentiable function whose gradient is L-Lipschitz, and g is a
proximable function (the decomposition of the problem is not unique).
As stated above, these criteria are valid for many convex inverse problems: the use of the squared
Frobenius norm for the data fidelity term associated with a norm or an indicator function for
the regularization is common and meet the conditions e.g., the LASSO or group-LASSO [61].

The FB algorithm is given in Alg.1. It converges towards the global minimum of the cost
function as long as the step-size γ ∈ (0, 2

L ), [38].

Algorithm 1 FB algorithm
1: procedure FB(Ỹ(0))
2: while do not converge do
3: Ỹ(k+1) ← proxγg(Ỹ(k) − γ∇f(Ỹ(k)) . Proximal gradient step

return Ỹ(k).

Remarks. We only make few remarks concerning the interpretation of this algorithm, more
details can be found in [107, Section 4.2].
First, if there is no regularization g, the FB boils down to the standard gradient descent, for
minimizing f . On the other hand, if f is null, the FB amounts to minimize g using the proximal
operator of g [107].
Besides, if g corresponds to the indicator function of a convex set (its proximal operator is the
projection onto this set), then the FB algorithm corresponds to the projected gradient algorithm
[94], [20].
The FB algorithm can also be seen as a majorization-minimization algorithm whenever γ ≤ 1

L .
Hence, the k + 1th update of the FB algorithm can be reformulated as:

Ỹ(k+1) = argmin
Y

f(Ỹ(k)) +∇f(Ỹ(k))T (Y− Ỹ(k)) + 1
2γ

∥∥∥Y− Ỹ(k)
∥∥∥2

2
+ g(Y), (3.6)

where the function to be minimized, generally denoted as prox-linearization [136], is a tight upper
bound of the initial cost function at the point Ỹ(k).
The second order approximation of f at Ỹ(k), assuming that f is twice differentiable at Ỹ(k)
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with an Hessian H(k) is given by:

f(Ỹ(k)) +∇f(Ỹ(k))T (Y− Ỹ(k)) + 1
2(Y− Ỹ(k))TH(k)(Y− Ỹ(k)).

In the prox-linear update, the second order term is simply upper-bounded by 1
2γ
∥∥Y− Ỹ(k)

∥∥2
2.

The prox-linearization is also used by the PALM algorithm [17] for Block Coordinate minimiza-
tion as we will see later 3.2.4.

This algorithm is efficient if the proximal operator of the function g is explicit. Otherwise, if
the regularization g corresponds to a combination of proximable terms, whose proximal operators
are explicit, the Generalized Forward Backward Splitting algorithm can be employed.

Example: inverse problem with sparsity enforcing regularization. The FB algo-
rithm can be used conveniently to solve the LASSO problem [61], corresponding to the mini-
mization of the cost-function used for sparse BSS (3.11) for a fixed mixing matrix A:

argmin
S

1
2 ‖X−AS‖22 + ‖Λ� S‖1

The data-fidelity term is convex, proper and differentiable with a L-Lipschitz gradient. The
Lipschitz constant L is equal to the largest eigenvalue of ATA, i.e. the spectral norm

∥∥ATA
∥∥

2,S .
The `1 norm is proximable. Hence, it is possible to minimize this cost-function with the FB
algorithm. This popular algorithm is also known as ISTA (Iterative Soft-Thresholding Algorithm
- [107]), and is presented in Alg.2.

Algorithm 2 ISTA
1: procedure ISTA(X,A)
2: Choose a step-size LS ∈ (0, 2

‖ATA‖2,s
)

3: while not converge do
4: S̃(j) ← SΛ×LS

(̃
S(j−1) + LS × ÃT (X− ÃS̃(j−1))

)
. Proximal gradient update

5: j ← j + 1
return S̃(j).

3.1.3 Generalized Forward Backward Splitting

GFBS Algorithm. Let us assume that the proximable function g can be split into several
proximable functions, whose proximal operators are explicit: g =

∑k
j=1 gj . The corresponding

problem argminY f(Y) +
∑k
j=1 gj(Y) can be quite conveniently solved using the Generalized

Forward Backward Splitting algorithm (GFBS- [110]) presented in Alg.3.
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Algorithm 3 GFBS algorithm
1: procedure GFB(Ỹ(0))
2: Set γ ∈ (0, 2

L ), µ ∈ (0,min( 3
2 ,

1+ 2
Lγ

2 )), wj ∈ (0, 1) such that
∑k

1 wj = 1, Zj ← Y(0),∀j =
1, . . . , n.

3: while do not converge do
4: for j = 1, . . . , n do
5: Zj ← Zj + µprox γ

wj
gj (2Y(k) − Zj − γ∇f(Y(k)))− µY(k)

6: Y(k+1) ←
∑k
j=1 wjZj

7: k ← k + 1
return Ỹ(k).

1: procedure PALM-rGMCA(X, A(0),S(0),O(0))
2: while does not converge do
3: Update LA
4: A(k+1) ← prox 1

LA
gA(A(k) + 1

LA
(X−A(k)S(k) −O(k))S(k)T )

5: Update LS
6: S(k+1) ← prox 1

LS
gS (S(k) + 1

LS
A(k+1)T (X−A(k+1)S(k) −O(k)))

7: O(k+1) ← proxgO (X−A(k+1)S(k))
8: k ← k + 1

return A(k),S(k),O(k).

Example of application. The GFBS algorithm can be of interest for image denoising.
Given a noisy version X of a natural image Y to be retrieved, sparsely represented in a trans-
formed domain ΦS and non-negative, one can minimize the following cost-function:

argmin
Y

1
2 ‖X− S‖22 +

∥∥Λ�YΦT
S
∥∥

1 + χU:U≥0(Y),

where the first term is the data-fidelity term, well suited to deal with Gaussian noise, the second
term enforces the sparsity of the image in the given dictionary ΦS, and the last term ensures
that the recovered image is non-negative.
The regularization

∥∥Λ�YΦT
S
∥∥

1 + χU:U≥0(Y) is proximable but does not admit a closed form
expression. However,

∥∥Λ�YΦT
S
∥∥

1 and χU:U≥0(Y) are proximable and their proximal operators
have a closed form expression App.A: the GFBS algorithm can be interestingly employed.

3.2 Block Coordinate algorithms for component separa-
tion problems

We will now move to the review of some optimization strategies which can conveniently tackle
sparse matrix-factorization problems.
The optimization-based approach has taken the lion’s share for matrix-factorization and compo-
nent separation problems. Thanks to the recent advances in optimization, it provides a flexible
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framework in which our prior knowledge on the components can be easily promoted.
The special structure of BSS and component estimation problems makes the Block Coordinate
methods (BC) particularly well suited to deal with the associated optimization problems. We
will present in this section some of the standard BC methods1 and their application to sparse
BSS.

3.2.1 Framework

Considered cost-function. Let us assume that we aim to estimate n real components
{Xi}i=1,...,n, with Xi ∈ Rmi×ti , by minimizing a cost function h with the following expression:

h(X1,X2, ...,Xn) = f(X1,X2, ...,Xn) +
n∑
i=1

gi(Xi), (3.7)

where the functions f and {gi}i=1,...,n are such that:
• f : Rm1×t1 ×Rm2×t2 ...×Rmn×tn → R represents the data fidelity term. We assume that the

observations are corrupted by an additive Gaussian noise. Consequently, the function f is
chosen as the quadratic loss (squared Frobenius norm).
For every component X(k)

i at the kth iteration of an algorithm, we define fki (X) : Rmi×ti →
R,X 7→ f(X(k)

1 ,X(k)
2 ,X(k)

i−1,X,X(k−1)
i+1 , ...) or more generally fi, and ∇fki the gradient of this

function. The gradients ∇fki are supposed to be Lki -Lipschitz.
The functions fi of Xi,∀i = 1, . . . , n are convex, but f is not necessarily convex for the tuple
(X1,X2, ...,Xn).

• Each real valued function gi designates the convex penalization associated with the variable
Xi, such that gi : Rmi×ti → R. In this chapter and the remaining of this thesis, we will
assume that these functions correspond to a combination of norms, mixed norms [83], and
indicator functions of closed convex subsets, not empty. As so, they are real-valued, proper,
lower semi-continuous, convex and continuous on their effective domain.

Examples.

Standard sparse BSS [14]. In GMCA, Section 1.3.2, the sources are assumed to be sparsely
represented in a dictionary ΦS. The sparsity of the sources in ΦS can be promoted by the
penalization

∥∥Λ� SΦT
S
∥∥

1, where Λ designates the regularization parameters. In order to avoid
the scaling indeterminacy between A and S, the columns of A are assumed to be normalized for
the `2 norm. This feature is enforced by using the indicator function χY:‖Yk‖2≤1,∀k(A):

minimize
A,S

1
2 ‖X−AS‖22 + χY:‖Yk‖2≤1,∀k(A) +

∥∥Λ� SΦT
S
∥∥

1 . (3.8)

1The algorithms are presented in a restrictive setting, corresponding to the framework in which they will be
employed in the remaining of this thesis.
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This problem and the associated cost-function are the basics of the remaining work in this thesis.
As so, several implementations of this problem will be proposed in this chapter.

Non-negative BSS and sparsity in a transformed domain [113]. In many applications, the
sources and the mixing matrix are non-negative. This can be the case in multispectral imaging
for instance: the sources correspond to the spatial distributions of the components, and the
columns of the mixing matrix to their spectra. The non-negativity is promoted by adding two
characteristics functions χY:≥0:

minimize
A,S

1
2 ‖X−AS‖22 +

∥∥Λ� SΦT
S
∥∥

1 + χY:≥0(S) + χY:≥0(A) + χY:‖Yk‖2≤1,∀k(A).

Unmixing of hyperspectral data [102]. In hyperspectral imaging, the spectra of the compo-
nents are sampled at hundreds of contiguous frequencies. As so, they are reasonably smooth, and
sparsely represented in the wavelet domain associated with the matrix ΦA. It is thus possible,
with the sparse representations of the sources and the spectra, to highlight the morphological
and the spectral diversities between the sources with a cost function of the form:

minimize
A,S

1
2 ‖X−AS‖22 +

∥∥Λ� SΦT
S
∥∥

1 + χY:≥0(S) +
∥∥Υ �AΦT

A

∥∥
1 + χY:≥0(A),

where Υ denotes the regularization parameters.
We remark that in contrast with the previous problems, the roles of A and S are symmetric.

Sparse BSS in the presence of sparse outliers. Sparse deviations from the model can be en-
countered for instance in multispectral analysis: some elements not explicitly taken into account
can contribute significantly to the total energy at a given wavelength (e.g. the CO at 100GHz
in the Planck-ESA data). This contribution is row and column sparse in the same dictionary as
the one of the sources ΦS, what can be enforced using the `1 norm:

minimize
A,S,O

1
2 ‖X−AS−O‖22 + χY:‖Yk‖2≤1,∀k(A) +

∥∥Λ� SΦT
S
∥∥

1 +
∥∥Υ �OΦT

S
∥∥

1 , (3.9)

where Υ corresponds to the regularization parameters.

Overview of the minimization strategies. The resulting cost function h is a multi-
convex optimization problem: it is globally non-convex but the subproblems Pi with all but one
variables fixed are convex:

Pi : argmin
Xi

fi(Xi) + gi(Xi). (3.10)

Hence, it is customary to optimize this type of cost function by iteratively and alternately
minimize it with respect of each variable Xi. This is commonly designated as Block Coordinate
method.
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We can distinguish four main minimization strategies:
• Projected least-squares: each subproblem is solved without taking into account the regulariza-

tion, and then, the solution is projected on the constraints. It provides only an approximate
solution, and may not converge.

• Block Coordinate Descent: each subproblem is exactly minimized.
• Prox-linear updates: the problem is solved by minimizing a prox-linear approximation of each

subproblem.
• Proximal updates: each subproblem is approximated with a proximal regularization.
Details on these four strategies are provided below. For illustrative purpose, we will also present
the algorithms associated with these 4 optimization methods for solving the sparse BSS problem
3.8.

3.2.2 Projected least-squares

PALS Algorithm. The projected least-squares2 has a long history, and was first introduced
in the NMF framework with the Alternating Least Squares [106].
The update of a component is two-steps: first, the least-squares estimate is computed (mini-
mization of the subproblems without taking into the regularization), and then this solution is
projected on the constraints with the proximal operator of the regularization. A general formu-
lation of the projected alternating least squares (PALS) can be found in Alg.4.

Algorithm 4 Projected Alternating Least Squares Algorithm

1: procedure PALS(X(0)
1 , X(0)

2 , ..., X(0)
n )

2: for k=1,...,K do . Outer loop - kth update of the components
3: for i=1,...,n do . Inner loop - update of the ith component
4: X(k)

i ← argminXi
f

(k)
i (Xi) . Least-squares estimate

5: X(k)
i ← proxgi(X

(k)
i ) . Projection/Proximal operator

return X(k)
1 , X(k)

2 ,..., X(k)
n .

Remarks. PALS suffers from two drawbacks:
• First, it is only interesting if the proximal operators of the regularizations gi are explicit, so

that the ’proximal projections’ are one step. In some applications, this is not the case and
PALS looses its main interests: simplicity and rapidity.

• Second, given that the cost function and the sub-problems Pi are not properly minimized (in
general), the implementation Alg.4 may be not precise.
If the problem is simple (e.g. standard NMF or sparse BSS), then it generally performs fairly.

2The so-called ’Projected Least-Squares’ method encompasses indeed the standard projected least-squares
approach, but is presented in a more general framework. The term f is not restricted to the quadratic loss, and
the regularization to the indicator function of a closed convex set.
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However, if the problem is slightly more complex (e.g. sparsity and non-negativity constraints
in the direct domain), then a significant performance discrepancy between PALS and more
rigorous minimization schemes are generally encountered [112].
For the same reason, this algorithm cannot be proved to converge, or even to be stable. In
fact, the implementation Alg.4 can even diverge. We will see in the following example that
some modifications of PALS can be added to improve the stability of the algorithm.

Projected least squares are convenient because they are easy to implement and fast. However,
while the sparsity constraint can be correctly handled using this strategy, it becomes necessary
to take into account the different constraints simultaneously and more rigorously in complex
settings, for instance with the two next strategies.

Example. The standard sparse BSS problem, with sources sparsely represented in the direct
domain is given by:

minimize
A,S

1
2 ‖X−AS‖22 + χY:‖Yk‖2≤1,∀k(A) + ‖Λ� S‖1 . (3.11)

The Block Coordinate methods including PALS aim to recover A and S by alternatively
updating the components, whose associated subproblems are given by:

PS : argmin
S

1
2 ‖X−AS‖22 + ‖Λ� S‖1 (3.12)

PA : argmin
A

1
2 ‖X−AS‖22 + χY:‖Yk‖2≤1,∀k(A) (3.13)

For PALS, the updates of the components are given by:
• Source Update: The least-squares estimate of S is XA†. The proximal operator of the `1 is

the soft-thresholding operator. Hence, the update of S at the kth iteration is given by:

S̃(k) = SΛ

(
XÃ(k)†

)
.

• Mixing matrix Update: Similarly, the least-squares estimate of A is S†X. The proximal
operator of the indicator function is approximated by the projection on the `2 ball. At the
kth iteration of the algorithm, the update of A is thus:

Ã(k)i ← (XS(k)†)i∥∥(XS(k)†)i
∥∥

2
,∀i = 1..n

The sensitivity to the condition number of the variables is the main default of this approach,
based on pseudo-inversion.
To overcome this weakness, we propose to replace the pseudo-inversion with an ’interrupted’
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Algorithm 5 Modified PALS for sparse BSS
1: procedure MPALS(X,Ã(0))
2: for k=1,...,K do
3: if cond(Ã(k−1)) < 10000 then . Pseudo-inverse if small condition number
4: S̃(k) ← Ã(k−1)†X
5: else: . Incomplete Gradient Descent
6: L =

∥∥Ã(k−1)T Ã(k−1)
∥∥

2,s
7: for j=1,...,100 do:
8: S(k) ← S(k) + 1

LÃ(k−1)T (X− Ã(k−1)S(k))
9: S̃(k) ← SΛ

(̃
S(k)) . Soft-thresholding

10: if cond(S̃(k)) < 100 then . Pseudo-inverse if small condition number
11: Ã(k) ← XS̃(k)†

12: else: . Incomplete Gradient Descent
13: L =

∥∥S̃(k−1)S̃(k−1)T
∥∥

2,s
14: for j=1,...,100 do:
15: Ã(k) ← Ã(k) + 1

L (X− Ã(k)S(k))S̃(k)T

16: Ã(k)i ← (Ã(k)i)i

‖Ã(k)i‖2
,∀i = 1, ..., n . Projection

return Ã(k), S̃(k).

gradient descent for the least-squares estimate if necessary, Alg.5. With the incomplete inversion,
the components are still updated in the directions of the gradient but there is not any strong
amplification of some components due to a large condition number. This greatly enhances the
stability of PALS but does not dramatically increase the computational time.

3.2.3 Block Coordinate Descent

BCD Algorithm. The Block Coordinate Descent (BCD, [128]) consists in estimating al-
ternatively and exactly the subproblems Pi such as presented in Alg. 6.

Remarks. In contrast with PALS, BCD can be proved to converge toward a stationary point
of the cost function h under mild conditions [128], [136], which are fulfilled by the problems in
this thesis.

Unfortunately, minimizing the subproblems may be not easy since the regularization func-
tions may be not differentiable. Different minimizers based on proximal calculus [38] can be
deployed for that purpose: the conditions that we have imposed on f and gi allow us to solve the
subproblems with the FB algorithm (or GFBS if necessary) - see Section 3.1. We will illustrate
how BCD can be employed together with proximal calculus techniques to solve the sparse BSS
problem (3.11).
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Algorithm 6 Block Coordinate Descent

1: procedure BCD(X(0)
1 , X(0)

2 , ..., X(0)
n )

2: while do not converge do
3: for i=1,...,n do
4: X(k)

i ← argminXi
fki (Xi) + gi(Xi)

5: k ← k + 1
return X(k)

1 , X(k)
2 , ..., X(k)

n .

Example. The two subproblems associated with the updates of A and S are given in eq.3.13
and 3.12. The two regularization functions are not smooth, but the FB algorithm can be used
to solve the subproblems efficiently.
Indeed, the proximal operators of χY:‖Yk‖2≤1,∀k(A) and ‖Λ� S‖1 are explicit (have a closed
form expression). The quadratic term is differentiable with LA and LS Lipschitz gradients for
A and S respectively3. We point out that updating S with the FB strategy corresponds to the
ISTA algorithm Alg.2.
The BCD implementation of standard sparse BSS eq.3.8 with the FB implementation for solving
the subproblems is given in Alg.7.

Algorithm 7 Block Coordinate Descent for sparse BSS with FB implementation of the sub-
problems
1: procedure BCD sparse BSS(X,Ã(0))
2: while not converge do . BCD
3: S̃(0) ← S̃(k)

4: Compute LS =
∥∥Ã(k)T Ã(k)

∥∥
s,2

5: while not converge do . FB for PS-ISTA
6: S̃(j) ← S Λ

LS

(
S̃(j−1) + 1

LS
Ã(k)T (X− Ã(k)S̃(j−1))

)
7: j ← j + 1
8: S̃(k+1) ← S̃(j)

9: Compute LA =
∥∥S̃(k)S̃(k)T

∥∥
s,2

10: Ã(0) ← Ã(k)

11: while not converge do . FB for PA
12: Ã(j) ← Ã(j−1) + 1

LA
(X− Ã(j−1)S̃(k+1))S̃(k+1)T . Gradient descent

13: (Ã(j))i ← (Ã(j))i

max(1,‖(Ã(j))i‖2)
∀i = 1, ..., n . Proximal Operator

14: j ← j + 1
15: Ã(k+1) ← Ã(j)

16: k ← k + 1
return Ã(k), S̃(k).

The BCD strategy converges towards a stationary point with this setting [128, Lemma 3.1 a)

3Since the variables evolve during the iterative process, the Lipschitz constants are not constant and need to
be reevaluated at every loop.
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and Theorem 4.1 b)]:

• The level sets on X = {(Ã, S̃) : h(Ã, S̃) ≤ h(Ã(0), S̃(0))} are compact. The cost function h is
continuous on X , if the starting tuple indeed satisfies the conditions enforced by the indicator
function.

• The cost function is multi-convex.
• The quadratic term is differentiable and its effective domain is open.

3.2.4 Prox-linear updates

PALM Algorithm. This strategy, coined Proximal Alternating Linearized Minimization
(PALM - [136], [17]) can be seen as a generalization of the FB algorithm to the framework of
Block Coordinate minimization. It updates alternatively the components by minimizing a prox-
linearization of each subproblem 3.6. At the kth iteration of the algorithm, the ith component
is updated with

X(k+1)
i = argmin

Xi

fki (X(k)
i ) +∇fki (X(k)

i )T (Xi −X(k)
i ) + Lki

2

∥∥∥Xi −X(k)
i

∥∥∥2

2
+ gi(Xi),

where Lki denotes a numerical constant, for which we will take the Lipschitz constant of ∇fki in
the following. This can be reformulated using the proximal operator of the regularization gi:

X(k+1)
i = prox

1
Lk
i

gi

(X(k)
i −

1
Lki
∇fki (X(k)

i )).

The PALM algorithm for the general framework is presented in Alg.8.

Algorithm 8 PALM algorithm

1: procedure PALM(X̃1
(0)
, X̃2

(0)
, .., X̃n

(0))
2: while do not converge do
3: for i=1,...,n do
4: Compute the Lipschitz constant Lki of ∇fki
5: X̃i

(k+1) ← prox 1
Lk
i

gi

(
X̃i

(k) − 1
Lk
i

∇fki
(
X̃i

(k)))
. Proximal gradient step

6: k ← k + 1
return X̃1

(k)
, X̃2

(k)
, ..., X̃n

(k).

Remarks. The PALM algorithm converges towards a stationary point in our framework [17,
Theorem 3.1]:
• The functions gi are proximable, and satisfy the Kurdyka-Lojasiewicz property (see the ex-

amples in [17] and [136]).
• f (quadratic loss) is C2 and also satisfies the Kurdyka-Lojasiewicz property.
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• The function f is differentiable for the n variables, and the gradient of the ith component at
the kth iteration is Lki - Lipschitz, Lki is bounded.

In contrast with BCD, PALM does not exactly minimize the subproblems, the components are
only updated with one proximal gradient step Alg.9 and Alg.7. From this point of view, PALM
differs from the BCD and the projected gradient as well: the updates of PALM are functions of
all the variables, whereas for BCD and PALS, the update of the component Xi does not depend
on the previous estimate of Xi.

Example. The specific implementation for solving sparse BSS (3.11) can be found in Alg.9.

Algorithm 9 PALM sparse BSS
1: procedure PALM sparse BSS(Ã(0), S̃(0))
2: while do not converge do
3: Compute LS =

∥∥Ã(k−1)T Ã(k−1)
∥∥
s,2

4: S̃(k) ← S Λ
LS

(
S̃(k−1) + 1

LS
Ã(k−1)T (X− Ã(k−1)S̃(k−1))

)
. Proximal gradient step for S

5: Compute LA =
∥∥S̃(k)S̃(k)T

∥∥
s,2

6: Ã(k) ← Ã(k−1) + 1
LA

(X− Ã(k−1)S̃(k))S̃(k)T . Gradient descent for A
7: (Ã(k))i ← (Ã(k))i

max(1,‖(Ã())i‖2)
∀i = 1, ..., n . Proximal Operator for A

8: k ← k + 1
return Ã(k), S̃(k).

The difference between PALM and BCD is clearly appearing with this problem: only one
proximal gradient step updates the components with PALM Alg.9, whereas each component is
updated until convergence with a proximal gradient step with BCD Alg.7

3.2.5 Proximal updates

PBC Algorithm. This last algorithm, which has been studied in [136], [6], minimizes al-
ternatively a proximal approximation of each subproblem. It has not been intensively employed
in the literature, neither during this thesis. However, it has interesting properties which deserve
to be mentioned.
For the ith component Xi, the modified subproblem to be minimized at the kth iteration is given
by:

X(k+1)
i ← argmin

Xi

fki (Xi) + gi(Xi) + 1
2Lki

∥∥∥Xi −X(k)
i

∥∥∥2

2
, (3.14)

or equivalently
X(k+1)
i ← prox

Lk
i
(fk
i

+gi)
(X(k)

i ),



3.2 Block Coordinate algorithms for component separation problems 53

where Lki is a numerical constant, strictly lower bounded by 0 and upper bounded (cannot be
∞). Hence, this version amounts to minimize locally the cost function, as a proximal operator
does.

Algorithm 10 Proximal Block Coordinate algorithm

1: procedure PBC(X̃1
(0)
, X̃2

(0)
, ..., X̃n

(0))
2: while do not converge do
3: for i=1..n do
4: Choose the constant Lki ,

5: X̃i
(k+1) ← argminX̃i

fki (X̃i) + gi(X̃i) + 1
2Lk

i

∥∥∥X̃i − X̃i
(k)
∥∥∥2

2
6: k ← k − 1

return X̃1
(k)
, X̃2

(k)
, ..., X̃n

(k).

Remarks. Similarly to PALM, PCB does not exactly minimize each subproblem, and the
update of X(k)

i depends on X(k−1)
i . However, the approximation is different, as well as its leading

effect on the algorithm: in the PALM algorithm, the function fki is replaced by its local second
order approximation (whose curvature is upper bounded thanks to the Lipschitz-constant of the
gradient of fki ), whereas for the proximal update, only a proximity term is added (the curvature
of the cost function is modified and ’increased’).

Besides, if the proximal operators of gi are explicit, then every step of PALM has a closed
form expression. In contrast, minimizing eq.3.6 may necessitate the use of the FB algorithm. In
that case, the Proximal Block Coordinate (PBC) implementation with FB sub-routines is given
in Alg.11.

Algorithm 11 Proximal Block Coordinate algorithm

1: procedure PBC-FB(X̃1
(0)
, X̃2

(0)
, ..., X̃n

(0))
2: while do not converge do
3: for i=1..n do
4: Choose the constant Lki , and the Lipschitz constant L′ki of (∇fki + 1

Lk
i

I)

5: X̃i
(0) ← X̃i

(k−1)

6: while do not converge do
7: X̃i

(j+1) ← prox 1
L′k
i

gi

(
X̃i

(j) − 1
L′k
i

(
∇fki

(
X̃i

(j))+ 1
Lk
i

(
X̃i

(j) − X̃i
(k−1))))

8: j ← j + 1
9: X̃i

(k) ← X̃i
(j)

10: k ← k − 1
return X̃1

(k)
, X̃2

(k)
, ..., X̃n

(k).

This algorithm is quite similar to the BCD implementation, using the FB algorithm for solving
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the subproblems. However, the proximal gradient steps are different since a proximity term has
been added in PBC. This proximal gradient step, for PBC, can be also written as:

X̃i
(j+1) ← prox

1
L′k
i

gi

X̃i
(j) + 1

Lki L′ki

(
X̃i

(k−1) − X̃i
(j))

︸ ︷︷ ︸
’extrapolation’

− 1
L′ki

(
∇fki

(
X̃i

(j)))
 .

Extrapolation is commonly used to accelerate FB implementation (see FISTA for instance [8]).
In our case, this is not, strictly speaking an extrapolation, since the weighting depends on the
previous estimate of the outer-loop and not of the FB implementation. However, one can still
expect PBC to require less outer loops than BCD, thanks to the proximity term: there are less
strong changes from one update to another, what can smooth the regularization path, and thus
leads to a fastest convergence, especially if not initialized far from the optimum.

This proximal gradient step can also be rewritten as:

X̃i
(j+1) ← prox

1
L′k
i

gi

X̃i
(j) + 1

Lki L′ki
X̃i

(k−1) − 1
L′ki

(
∇fki + 1

Lki
I
)

︸ ︷︷ ︸
’preconditioning’

(
X̃i

(j))
 .

The presence of the proximity operator can also be seen as a sort of Tikhonov regularization. If
fki has a large condition number (the Lipschitz constant of its gradient is likely to be large), this
solution, with an appropriate Lki can greatly fasten the process, and may enhance the solutions.

Therefore, PBC may be a good alternative to BCD. This strategy is shown to converge for
our setting in [136], and [6]. Nonetheless, no systematic and efficient strategy for the choice of
the Lki has been proposed in the literature, yet.

Example. The PBC implementation for solving sparse BSS eq.3.8 in the direct domain is
presented in Alg.12.

3.2.6 Remarks and summary

Summary. In this section, we have focused on the most common optimization strategies for
sparse matrix factorization. A summary can be found in Tab.3.1.

A more general framework. Last, we recall that we have restricted the framework of
these optimization strategies on several points, which are not exhaustive:
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Algorithm 12 Proximal Block Coordinate for sparse BSS with FB implementation of the sub-
problems
1: procedure PBC sparse BSS(X,Ã(0))
2: while not converge do . PBC
3: S̃(0) ← S̃(k)

4: Choose the term L and compute LS =
∥∥Ã(k)T Ã(k) + 1

LI
∥∥
s,2

5: while not converge do . FB
6: S̃(j) ← S Λ

LS

(
S̃(j−1) + 1

LS

(
Ã(k)T (X− Ã(k)S̃(j−1)) + 1

L

(
S̃(j−1) − S̃(k−1))))

7: j ← j + 1
8: S̃(k+1) ← S̃(j)

9: Choose L and compute LA =
∥∥S̃(k)S̃(k)T + 1

LI
∥∥
s,2

10: Ã(0) ← Ã(k)

11: while not converge do . FB
12: Ã(j) ← Ã(j−1) + 1

LA

(
(X− Ã(j−1)S̃(k+1))S̃(k+1)T + 1

L

(
Ã(j−1) − Ã(k−1))) .

Gradient descent
13: (Ã(j))i ← (Ã(j))i

max(1,‖(Ã(j))i‖2)
∀i = 1, ..., n . Proximal Operator

14: j ← j + 1
15: Ã(k+1) ← Ã(j)

16: k ← k + 1
return Ã(k), S̃(k).

• Convexity: The regularizations are assumed to be convex, whereas it is not necessary: the `0
pseudo-norm can also be used for example [17].

• Mixed strategy: The three strategies have been presented separately, but it is possible to have
a ’mixed approach’ by minimizing completely one subproblem, and using a prox-linearization
for the other variables [136].

• Cyclic updates: The updates with the PALM algorithm do not need to be cyclic (i.e. the
ith component is updated at the kth iteration if k ≡ 0mod(i), k is a multiple of i): several
gradient steps can be done for one of the variable and the components can be updated with
an non-cyclic order [34].

• Acceleration and preconditioning: Accelerated versions (for FB [107], [8] and PALM [136])
have not been presented. As well, adaptive preconditioned versions (GFBS [111], or PALM
[34]) are of interest to fasten the process.

Sparse BSS. Last, we point out that in the framework of the sparse BSS, if the sources and
mixing matrix are orthonormal, PALS, BCD and PALM lead to the same algorithm. Otherwise,
they are all different and may converge (PALS cannot be guaranteed to converge) to different
stationary points.



56 Algorithmic framework for sparse Matrix Factorization

Strategies Advantages Weaknesses Comments

Projected Gradient
/ PALS [14], [106]

Fast.
Easy to implement.

May not converge.
Pointless if the

proximal operators
of the regularizations are

not explicit.

Lack of stability
and precision.

BCD [128], [136] Provably convergent. Can be time
consuming.

Exact minimization of
each subproblem.

Prox-linear -
PALM [17], [136]

Provably convergent.
Can be fast.

General framework.

Does not minimize
the subproblems exactly.
Computationally efficient

only if the proximal
operators are explicit.

The updates of the
components depend

on the current
estimates.

Proximal -
PBC [6] [136]

Provably convergent.
Can be faster
than BCD.

General framework.

Does not minimize
the subproblems exactly.
Computationally less

efficient than
PALS and PALM.

The updates of the
components depend

on the current
estimates.

Choice of the
numerical constants
for the proximity

terms.

Table 3.1: Outline of some common optimization strategies for sparse matrix factorization

3.3 Heuristics for sparse BSS

The recent advances in optimization, in particular in proximal calculus, have broadened the
variety of cost-functions that can be proposed and minimized efficiently. However, proposing a
data model and the associated cost function is just the tip of the iceberg.

Two main problems arise in practice: setting the regularization parameters and proposing an
efficient minimization scheme for the considered problem.
Indeed, setting the hyperparameters involved in cost functions has a crucial influence on the
returned solutions. For instance in eq.3.8, the parameters Λ determines the trade-off between
the reconstruction error and the sparsity level of the sources. Unfortunately, they are challenging
to determine, since only few information is known a priori.
Second, with the general framework of proximal calculus, numerous optimization schemes are
now available to minimize various cost-functions. However, they do not exhibit similar perfor-
mances, in term of computational time, precision or reliability. This last feature is of particular
importance in some real-world applications for which the multi-starts approach is unreasonable.

In this section, we introduce the strategies implemented during this thesis for solving sparse
BSS: the automatic setting of the thresholds and a two-steps minimization scheme (robust ini-
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tialization and precise refinement). We present and extend the rationales of the strategies first
introduced in [14], [112].

3.3.1 Influence of the thresholds: illustration with toy-examples

We start by discussing the influence of the threshold values in the framework of standard sparse
BSS 3.11. For this purpose, we will compare the performances of the different algorithms4 solving
3.8 when varying the values of Λ. The experiments will be carried on 3 illustrative settings.

3.3.1.1 Data setting. For illustration purposes, we consider 3 settings. In these 3
experiments, 10 sources are mixed into 10 observations, with t = 4096 samples. They are mixed
with the same mixing matrix A, whose entries are drawn from a centered Gaussian law and with
its columns normalized. The experiments then differ on the following points:
• Case A - Ideal setting - fig.3.1a: the sources are exactly sparse, generated from a Bernoulli-

Gaussian law, with an activation parameter of 10%, and a standard deviation of 1000 (centered
Gaussian law). This case is almost noiseless (SNR of 120 dB).

• Case B - Noisy setting - fig.3.1b: the same sources as for case A are generated. In contrast
with case A, the observations are corrupted with a Gaussian noise N. The SNR is set to 30
dB.

• Case C - Approximately sparse sources - fig.3.1c: the sources are generated with a Generalized
Gaussian law with a probability density function given by ρ

2Γ( 1
ρ ) exp−

∣∣ x ∣∣ρ , ∀x ∈ R (unit
variance and centered generalized Gaussian law with shape parameter ρ, noted G(ρ)) with
shape parameter ρ = 0.5. The amplitude of the sources is set so that the energy of these
sources is equal to the energy of the sources in the cases A and B (with an amplitude of the
significant spikes around 1000). The SNR is set to 120dB. Expansion coefficients of natural
images using wavelets would have similar distributions. Thus, this setting is more realistic.
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Figure 3.1: Scatter plot of two projected sources
(
A†X

)
1 and

(
A†X

)
2 for the 3 cases.

The initialization matrix Ã(0) is generated so that Ã(0) = A + dA. The entries of dA are
4The PBC implementation has not been intensively exploited during this thesis. It will not be used in this

second section.
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drawn from a Gaussian law, centered. The columns of dA have a norm equal to 2×sin( θ2 ), where
θ is a scalar that will vary in the following experiments. The columns of the mixing matrix are
then normalized. This assures that the spectral angles made between the initial columns of A
and the initialization matrix Ã(0) are at most θ: θ ≥ maxi arccos(< Ãi(0),Ai >), in degree.

3.3.1.2 Protocol and performance indicators. We employ the algorithms

7, 9, 5 for solving eq.3.11. They share a similar stopping criterion ‖S̃(k)−S̃(k−1)‖2
‖S̃(k)‖2

< 10−7. The

FB algorithms in BCD are stopped whenever ‖S̃(j)−S̃(j−1)‖2
‖S̃(j)‖2

< 10−8. The maximal numbers of
iterations are large enough for the FB, BCD and PALM algorithms and they reach the stopping
criterion. It may be not the case for PALS, which is stopped after 2000 iterations.
The values of the spectral angles θ will vary between 0 and 45 degrees. The estimated sources
are initialized with SΛ

(
Ã(0)†X

)
, where Λ varies between 1 and 500.

For the different values of Λ and θ, we will study the following performance indicators:
• Maximal angle (MA) made between the recovered and ground truth columns of A:

maxj=1..n arccos〈Ãj ,Aj〉, in degree. This illustrates the unmixing performance of the al-
gorithms, with a conservative point of view (only the largest angle).

• The minimal value of the SDR App.C. Even if A is correctly recovered, the sources can be
not precisely estimated. The Signal to Distortion Ratio presented in [131] provides a global
criterion on the source estimation. A large value of SDR means that the recovered sources
are correctly estimated, with small interferences, artefacts or noise residual.

• The computational time (CT), in second.

3.3.1.3 Ideal setting - Case A.

Numerical Experiments. The performance indicators values obtained by the three algo-
rithms for the ideal case A are displayed in fig.3.2.

The PALM and BCD implementations perform similarly in this experiment. Besides, they
are not influenced by the initialization: they reach the same precision for the different values of
θ. That is not the case of PALS which is very sensitive to the initialization if Λ is not large.
On the overall, the results are more precise if Λ is small (except for PALS if the initialization is
far from the ground truth).

Influence of Λ for Case-A. With this perfect setting, the `1 penalty only helps to discrim-
inate between the sources. In that case, using a very small value for Λ (but not null) would lead
to the best results: more precise, and less biased sources. Indeed, the `1 norm, whose proximal
operator is the soft-thresholding operator, biases the sources with a factor Λ. Hence if Λ is large,
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(e) PALM- SDR.
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(g) PALS- MA.
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Figure 3.2: Performances of BCD, PALM and PALS for varying initialization and regularization
parameters values, Case A.

the sources estimates are much more biased, have stronger artifacts fig.3.3.
If the implementation is robust to the initialization such as PALM and BCD in this experiment,
and that the sources are exactly sparse with noiseless observations, then setting Λ to small values
would return the best results.

However, it appears for PALS, which is not robust to the initialization, that using large values
of Λ makes the algorithm robust to the initialization fig.3.2g.
We remark that the largest entries, thanks to sparse modeling, are the most discriminant for the
separation [14]. Indeed, with the morphological diversity principle 1.2.2, the largest entries of
S are likely to be significant for only one source. That is, the associated samples of X provide
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Figure 3.3: First samples of the recovered source S1 with PALM (we cannot distinguish the
results from PALM and BCD), with Λ = 1 and Λ = 100 for the ideal case - A.

already a good estimation of A, and almost no unmixing is needed fig.3.4.
Besides, the residuals, due to the interferences between the sources while the mixing matrix is not
correctly estimated, are thresholded with large values of Λ. On the other hand, with small values,
the residues are kept and updated until the mixing matrix is correctly estimated. Therefore, the
errors due to the mis-estimations of A, are less propagated from one update to another if the
thresholds are high.
That is why PALS is much more robust when using large values of Λ.
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Figure 3.4: On the left: scatter plot of two of the initial observations, X1 versus X2. On the
right, scatter plot of two ’thresholded’ observations X̃ = AS1000(S).
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Differences PALM-BCD. One can notice that BCD and PALM in this experiment per-
form very similarly in term of precision (MA fig.3.2a, 3.2d and SDR fig.3.2b,3.2e). Whenever
the problem is quite simple (few sources, small condition numbers of S and A), BCD and PALM
perform generally quite similarly, and well. Indeed, in this experiment, the two implementations
are not influenced by the initialization: the performances do not depend on the value of θ but
only on Λ.
However, one can notice that PALM is much faster than BCD fig. 3.2f and 3.2c (when they
both perform similarly). Indeed, PALM does not exactly minimize the subproblems, but simply
updates the components with one proximal gradient step: it can converge more straightforwardly
and more smoothly to a minimum fig.3.5.

x2

x1

Figure 3.5: Illustration of the minimization paths for BCD (blue), and PALM (red), with two
components x1 and x2. The cost function is represented by some of its level sets, the yellower,
the lower.

If the problem is more challenging, BCD and PALM can perform differently because the prob-
lems are not convex and their minimization schemes are different. In particular, the components
updates in PALM depend on all the current components: for example S̃(k) depends on S̃(k−1)

and Ã(k−1) whereas with BCD, S̃(k) only depends on Ã(k−1).

3.3.1.4 Case B - Noisy setting.

Numerical Experiment. In contrast with the first ideal example, the observations are
corrupted by an additional Gaussian noise N. The performances of the PALM (BCD performs
similarly except for the CT.) and the PALS implementations with varying parameters are dis-
played in fig.3.6.
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(c) PALS- MA.
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(e) MA - θ = 0. (f) SDR - θ = 0.

Figure 3.6: Performances of BCD/PALM and PALS for varying initializations and regularization
parameters values, Case B.

Similarly to Case A, PALM/BCD and PALS do not perform similarly: PALM/BCD are
robust to the initialization fig.3.6a,3.6b whereas PALS is not, except with large values of Λ
fig.3.6c,3.6d . In contrast with Case A, the performances of the implementations do not evolve
monotonically with Λ: they reach a maximum of precision for a significant value of Λ fig.3.6f,3.6e
.

Role of Λ in the noisy setting. If the observations are noisy, the `1 regularization does
not only help to discriminate between the sources, but also to denoise the recovered signals.
Indeed, we recall that when fixing A, the subproblem associated with the update of S is the
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following:
argmin

S

1
2 ‖X−AS‖22 + ‖Λ� S‖1 .

When the sources are exactly and jointly sparse and the observations are noiseless, such as in
Case A, setting Λ to a small value, amount to solve a least-square problem, and reaches the
best precision. However, if the data are noisy, then it is necessary to denoise the sources and
to set accordingly the values of Λ: too small, the sources are still noisy, too large, the sources
are unnecessary biased fig.3.6f. Appropriate values of Λ should properly handle the trade-off
between the sparsity constraint (numerous source entries set to zero, effective denoising) and the
data fidelity term (good fit of the data, less biased but corrupted recovered sources).

In BSS, the mixing matrix should also be learned, and similarly, the most precise A is
recovered when the sources are correctly denoised fig.3.6e.

Differences between PALM/BCD and PALS. We notice that the values of Λ reaching
the maximum of precision are different for PALS and PALM/BCD: in contrast with PALM/BCD,
PALS does not exactly the cost function (3.11), and is not affected similarly by the noise.
Besides, PALS is based on pseudo-inversion, which makes the algorithm very sensitive to the
presence of noise, especially if the mixing matrix has a large condition number. For instance, in
fig.3.6f, we can notice that the best SDR value is around 27dB for PALS whereas it is around
32dB for PALM/BCD.
In the presence of noise, using PALM/BCD which do not involve pseudo-inversion lead to a
better precision, if one is able to determine a correct value of Λ and if PALM/BCD are robust
to the initialization for the given setting.

3.3.1.5 Case C - Approximately sparse sources.

Numerical Experiments. In contrast with the first ideal example A, the sources are ap-
proximately sparse. This setting is more realistic. The performances of PALM/BCD (which also
perform similarly in this experiment) and the PALS implementations with varying parameters
Λ and θ are displayed in fig.3.7.

In contrast with Case A and B, the parameters Λ do not influence similarly PALM/BCD and
PALS, and PALS performs better than PALM/BCD (if θ is not too large).

Unmixing with approximately sparse sources - BCD/PALM. The unmixing of ap-
proximately sparse sources is more challenging than with perfectly sparse sources, with disjoint
supports. From an unmixing point of view, noisy observations or observations of approximately



64 Algorithmic framework for sparse Matrix Factorization

0 9 18 27 36 45

θ

1

3

10

30

100

320
Λ

, 
lo

g
. 
sc

a
le

0

2

4

6

8

≥10

(a) BCD/PALM- MA.

0 9 18 27 36 45

θ

1

3

10

30

100

320

Λ
, 
lo

g
. 
sc

a
le

0

5

10

15

20

25

30

(b) BCD/PALM- SDR.

0 9 18 27 36 45

θ

1

3

10

30

100

320

Λ
, 
lo

g
. 
sc

a
le

0

2

4

6

8

≥10

(c) PALS- MA.

0 9 18 27 36 45

θ

1

3

10

30

100

320

Λ
, 
lo

g
. 
sc

a
le

0

5

10

15

20

25

30

(d) PALS- SDR.

Figure 3.7: Performances of BCD/PALM and PALS for varying initialization and regularization
parameters values, Case C.

sparse sources share the same difficulty: the largest samples of X are not exactly in the direction
of the columns of A and it is necessary to unmix, even the large entries, to recover A. By
increasing Λ, the influence of the small entries becomes negligible and the unmixing is improved
fig.3.7a.
However, the best estimation of the sources (SDR) is obtained with the smallest values of Λ.
Indeed, since there is no noise, a small value of Λ leads to less bias fig.3.7b. If A were exactly
known, estimating S with a least squares would return the best solution.
Since A and S are linked, especially when solving exactly (3.11) with PALM/BCD, it becomes
challenging a find a trade-off for the value of Λ: a large value leads to a good estimation of A,
whereas the source estimates are more precise with small values.

Unmixing with approximately sparse sources - PALS. In contrast with PALM/BCD,
the influence of Λ for PALS is similar to Case A: the smallest Λ is, the more precise (and less
robust to the initialization) the results are fig.3.7c, 3.7d.
This can be explained by the fact that, for PALS, the minimization of the data-fidelity term and
the `1 are dissociated (least-squares and then soft-thresholding). By estimating S first with a
least-squares estimation, the sources are ’virtually’ estimated with Λ = 0, and then thresholded
with the correct value of Λ. That is why, PALS is much less sensitive to the parameters setting
(regardless of the initialization). We point out that, even if the results appear to be closer to the
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ground-truths with PALS, the values of the cost-function (3.11) are smaller with PALM/BCD
than with PALS. In fig. 3.8a, the objective function has a smaller value with the components
returned by PALS/BCD (the values obtained with BCD differ from less than 1e−9% with the
ones of PALM in this example) than with the components returned by PALS or the ground
truth, even if the SDR obtained by PALS is clearly larger while θ is small (but greatly increases
when θ is large). The minimization is, strictly speaking, better handled with PALM/BCD.
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Figure 3.8: Variations of the SDR and cost function values for PALS and PALM and Λ = 7

3.3.2 Influence of the parameters Λ: summary

The regularization parameters Λ play a key role in sparse BSS since their values affect all the
properties that an efficient algorithm should meet:

• Robustness: in order to be robust to Gaussian noise, the values of Λ should be large enough
to denoise the sources.

• Accuracy: In the noiseless setting, small values of Λ provide precise estimates of the sources.
However, in the presence of noise, the best tuple is obtained with significant values of Λ.

• Reliability: Only the large values of Λ make the implementations insensitive to the initializa-
tion.

These properties are conflicting, and are difficult to meet altogether if using constant values
of Λ. Besides, finding a-priori the values of Λ is not possible without further information.
That is why, instead of considering a constant Λ, the authors in [14] rather propose an adaptive
path for Λ for PALS. The so-called coarse to fine strategy for PALS starts from a large value of
Λ, which is progressively decreases towards a final value. The unmixing is fastened and not less
accurate. This is reminiscent to the fixed point continuation strategy proposed in [69] within the
compressive sensing framework with `1 regularization.
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3.3.3 Adaptive threshold strategy

We propose first to present more precisely this adaptive threshold strategy, for PALS and its
extension for PALM and BCD employing proximal calculus and introduced in [112]. Then, we
will see how this strategy alleviates the main difficulties arising with fixed thresholds, which have
been discussed previously.

3.3.3.1 Updates of the regularization parameters in practice. We
then present how, precisely, we have implemented the threshold updates in the different algo-
rithms. We recall that the thresholds should meet the two following properties:
• i) Denoise the sources efficiently, i.e. the final thresholding values should be set according to

the noise level contaminating the sources.
• ii) Start at large values in order to threshold the non-discriminant entries and only keep the

largest samples to determine the orientation of A during the first iterations.

Parameter updates in PALS. We start by presenting how the final threshold values are
set. As stated above, they are chosen in order to denoise the sources efficiently. Let us assume
that the mixing matrix A is recovered. Each estimated source S̃i before the thresholding, is
given by S̃i = Si + (A†N)i, where (A†N)i is the Gaussian noise corrupting the ith source.
The denoising of a sparse signal, here Si, from a Gaussian corruption (A†N)i is a well under-
stood problem which can be seen as a detection procedure, see App.B. It amounts to set, for each
source i, a threshold value Λi which will put to zero the entries corresponding to the noise, and
keep the entries larger than Λi corresponding to the support of the ith source. This hypothesis
testing problem is generally handled with the k-σ˝rule: the probability that an entry of S̃i with
an amplitude larger than 3σi, where σi is the standard deviation of the Gaussian noise (A†N)i
corrupting the ith source, corresponds to the Gaussian noise indeed is only of 0.4%. The value
of k, generally taken between 1 and 3 depends on the applications, [124].
The value of the standard deviation σi of the projected noise (A†N)i is generally unknown, but
can be approximated using the Median Absolute Deviation (mad) of the signal: σi ≈ 1.48 ×
mad((A†N)i), where mad(x) = mediani(

∣∣xi −mediani(xi)
∣∣). Besides, given that the mad oper-

ator is robust to sparse contamination, we have mad((A†N)i) = mad((A†N)i) + Si) = mad(S̃i).
In other words, we can estimate the Gaussian noise level directly from the estimated sources
S̃i (before the thresholding) and set the final thresholds Λi = kS mad(S̃i), with kS = 1.48 × k.
Details on this procedure can be found in App.B.

Then, we discuss the decreasing strategy for the thresholds. During the unmixing process,
the current estimated sources may vary strongly from one iteration to another while the mixing
matrix is not fairly estimated. That is why, the threshold parameters are set directly according
to the estimated sources S̃ = Ã†X in order to fully take into account their evolution, eq.3.15. We
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recall that we aim, during the first iterations, to only consider the largest and most discriminant
entries for the separation. For this purpose, we select an increasing percentage of the source
entries larger than the final threshold values kS mad(S̃), eq.3.16. More precisely, at the kth
iteration given a total number of K loops, the estimation of Λi is twofold: first, we only keep the
entries of S̃i larger than the final threshold kS mad(S̃); and second, the threshold value is set to
the 100× K−k

K percentile of the kept entries |S̃i||S̃i|>kS mad(S̃i). This ensures that an increasing
number of entries are considered, and that the final threshold will indeed be kS mad(S̃). In
summary, we propose the following source update permitting a precise control of their sparsity
level, at the kth iteration given a total number of K loops:

Compute the least-squares estimates:S̃ = Ã(k−1)†X (3.15)

Update the thresholds : Λj = pct(|S̃j ||S̃j |>kS mad(S̃j), 100× K − k
K

),∀j = 1, ..., n (3.16)

Soft-thresholding of the sources : S̃(k) = SΛ
(̃
S
)

(3.17)

where kS is a numerical constant usually between 1 and 5 [124] and pct(Y, k) denotes the
kth percentile of the set composed of the entries of Y.
The number of outer loops is generally fixed to few hundreds (300 for the following numerical
experiments). This implementation corresponds to the GMCA algorithm, [14].

Parameter updates in BCD and PALM. The parameter update is quite different
with BCD based on proximal calculus since we do not have access to the projected sources.
In [112], [113], the authors propose to update the regularization parameters before each update
of the sources at the outer loop level, based on the current estimated projected noise level.

The update of the thresholds still follows the same strategy: i) final threshold values set
according to the noise level, and ii) large threshold values during the first iterations.

Let us assume that the sources and mixing matrix are recovered. At every proximal gra-
dient step, the update of the sources is two-steps: a gradient descent step, and then the soft-
thresholding. This situation is similar to the two-steps update of the sources with PALS (ex-
cept that the process is iterative with BCD): we have a first noisy estimate of the sources
S̃ = S + 1

LS
AT (X−AS), where LS is the gradient step, which is thresholded in the second step

S Λ
Ls

(
S + 1

LS
AT (X−AS)

)
.

As discussed previously, we aim to recover a sparse signal S from its noisy observations S̃.
The noise level corrupting the sources S̃ in this case is given by 1

LS
AT (X −AS) = 1

LS
AT (N).

In other words, the noise is projected on the source domain with ATN with PALM or BCD
(proper minimization of the LASSO problem), whereas it is projected with A†N with PALS.
Thus, by keeping the k-σ˝rule for setting the final value of the thresholds, we obtain: Λi

LS
=
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kS mad( 1
LS

AT (X − AS)), where kS ∈ (1, 5). One can notice that it amounts to set Λ to
mad(AT (X−AS)), the gradient of the quadratic term. More details can be found in App.B.

In order to only select the largest entries of the sources at the beginning of the algorithm,
the authors of [112], [113] propose to further select a large value of kS , which usually belongs
to (1, 5) for the BCD implementation. The parameters are updated before each estimation of S
(before the inner loop with ISTA or FISTA):

Compute the gradient:G = Ã(k−1)T (X− Ã(k−1)S̃(k−1))

Update the thresholds : Λj = kS mad(Gj),∀j = 1, ..., n

where kS decreases linearly from mini(
‖G0‖∞
mad(Gi) ) (with G(0) the gradient at the first outer

loop) to the final value in (1, 5) during 80% of the iterations for BCD [112], [113]. The parame-
ters are then fixed for the convergence. This ensures that only the largest entries are considered
during the first iterations.

The dynamics of PALM are not similar to BCD or PALS, for which a complete ’inversion’
of the components is undertaken for every update. With PALM, only a proximal gradient step
is done at every iteration. If PALM is initialized closely to the sought-after solutions, using a
k − mad setting of the parameters (similarly to BCD but with fixed k) works well in practice.
However, this strategy is not reliable for the PALM implementation in general.

We underline that these strategies may not be satisfactory for BCD/PALM. Indeed, they are
much more sensitive to the parameters setting than PALS. The latter, broadly speaking, only
needs to start with large parameters (robustness with respect to the initialization) and then to
decrease towards the approximated noise corrupting the sources (robustness against Gaussian
noise). On the other hand, the final values of the regularization parameters greatly influence the
results returned by BCD and PALM, but the proposed strategy does not yield a precise control
of the thresholds.

3.3.3.2 Numerical experiments. With the adaptive thresholds, we will see that
GMCA becomes very interesting: precise, reliable and very fast. We present the results obtained
by GMCA for the three previous settings 5.

We remark in fig.3.9, that the threshold strategy makes the algorithm not influenced by the
initialization. Besides, even if the threshold ’paths’ are not exactly identical (the initializations
are different and the parameters are based on the current values of the estimates), the algorithm

5In the framework of this thesis, there is no interest of using BCD because all the regularizations that we will
use, have an explicit proximal operator: GMCA can be employed and is much faster than BCD.
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(a) MA - Case A. (b) MA - Case B (c) MA - Case C.

(d) SDR - Case A. (e) SDR - Case B (f) SDR - Case C.

Figure 3.9: Performances of GMCA for the 3 data-sets, and varying initializations.
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Figure 3.10: Mean value of Λ for Case B during GMCA, and the 16 different initializations.

GMCA returns a very similar solution, for every θ: the parameters Λ stabilize towards similar
values fig.3.10.

The mixing matrix A is on the overall correctly estimated, but the SDR for Case B and Case
C are quite low: this strategy permits a correct unmixing, but the estimation of the sources can
be improved.

3.3.4 Benefits and drawbacks of the adaptive threshold strategy

Let us start with the benefits of the proposed strategy.

First, the thresholds start with large values. Indeed, while the sources are not correctly un-
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mixed, they are not jointly sparse. As a consequence, the estimated noise levels are influenced
by the interferences and larger: for example with PALS mad(Ã†X) = mad(Ã†ÃS̃ + Ã†N) ≥
mad(Ã†N). Hence, the thresholds should be adapted to the level of interferences: a large residue
leads to large thresholds, and only the largest and most discriminative samples are kept.

One the other hand, whenever the mixing matrix is correctly estimated, the residue level
decreases (no interferences between the sources): the source estimates are refined. If the sources
are exactly sparse, or the noise level is significant, and if A has been fairly retrieved, the esti-
mated noise level is close to the one corrupting the sources.

For these reasons, the proposed strategy is interesting (for PALS): it provides robustness
against Gaussian noise and the initialization. However, it also suffers from some drawbacks.

The projected sources with PALS correspond to A†X = S + A†N: the noise is projected,
with the pseudo-inverse, on the source subspace. This projection tends to amplify the noise in
some directions if A has a large condition number. A fortiori, the corresponding Λ, computed
from the mad of this projection, is also larger for the sources which have been more corrupted
(and these sources are more biased). Besides, if the sources are approximately sparse, then
their mad is not null: the global mad of the projected sources is larger than the noise level
mad(A†X) > mad(A†N). Last, PALS is on the overall less precise than BCD and PALM since
it does not exactly minimize the subproblems.

The adaptive thresholds strategy of PALS is very efficient, and makes it, most of the times,
reliable, robust and fast, but does not yield precision.

3.3.5 Enhancing the results of GMCA

The proposed implementation of PALS is most of the times, very efficient to unmix the data.
However, it suffers from a lack of precision, due to an over-estimated noise level inducing bias,
and the projections which do not rigorously solve the subproblems.

3.3.5.1 Combining the strategies. We propose to combine PALS and PALM to
increase the precision and obtain a strategy that is provably convergent:

• Warm-up: the components are initialized with PALS. It provides a fair estimation of the
components, is robust with respect to the initialization and Gaussian noise thanks to the
adaptive thresholding strategy, and fast. However, it can be quite imprecise if the components
have a large condition number. Besides, it is not provably convergent.

• Refinement: the components are refined with PALM, which is faster than BCD. In this step,
the thresholds are fixed, and based on the components returned by PALS. It is provably
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convergent and more precise because the cost function is rigorously minimized.

We would like to highlight that the need for appropriate heuristics to build reliable matrix
factorization procedures has also been pointed out in the framework of NMF in [64].

3.3.5.2 Bias and large dynamics between the sources. The `1 norm is
very efficient in sparse BSS [115, C.2.3]. The main counterpart of the `1 is that it introduces
artifacts due to the source shrinkage.

We propose a reweighting `1 strategy [26] during the refinement procedure to reduce the bias.
It consists in modifying the thresholds given the current values of the components. An entry
with a large value is likely to be correctly estimated, and relatively less influenced by the noise:
it can be thresholded with a smaller value. On the other hand, an entry whose amplitude is
similar to the noise level/threshold does not certainly belong to the signals to be retrieved. As
so, its threshold value should remain stable and large. More precisely, we propose to define a
weighting matrix WS ∈ Rn×t such as:

WS = Λ
Λ + |S̃|

(3.18)

The sources, sparse in the direct domain, will be then thresholded by WS � Λ. That is, a
large entry is less thresholded than a small entry. The weights are generally updated few times.
We underline that the weighting depends on the data: if the data are approximately sparse, a
stronger weighting can help.

In a certain extend, the reweighting `1 strategy can be seen as a way to manage the variabilities
intra-sources. The dynamics inter-sources are automatically handled by the proposed threshold
strategy since one regularization parameter is chosen per source.

3.3.5.3 Latest version of GMCA for sparse BSS. The final form of the
proposed sparse matrix factorization algorithm (in the direct domain) is presented in Alg.13.

The numerical results obtained with this algorithm are presented in tab.3.2, for θ = 45°.
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Algorithm 13 Enhanced GMCA
1: procedure GMCA(X,Ã(0))
2: for k=1,...,K do . WARM-UP
3: if cond(Ã(k−1)) < 10000 then . Pseudo-inverse if small condition number
4: S̃(k) ← Ã(k−1)†X
5: else: . Truncated inversion otherwise
6: L =

∥∥Ã(k−1)T Ã(k−1)
∥∥

2,s
7: for j=1,...,100 do:
8: S(k) ← S(k) + 1

LÃ(k−1)T (X− Ã(k−1)S(k))
9: Compute Λ Λj = pct(|S̃j ||S̃j |>kS mad(S̃j), 100× K−k

K ),∀j = 1, ..., n
10: S̃(k) ← SΛ

(̃
S(k)) . Soft-thresholding

11: if cond(S̃(k)) < 100 then . Pseudo-inverse if small condition number
12: Ã(k) ← XS̃(k)†

13: else: . Truncated inversion otherwise
14: L =

∥∥S̃(k−1)S̃(k−1)T
∥∥

2,s
15: for j=1,...,100 do:
16: Ã(k) ← Ã(k) + 1

L (X− Ã(k)S(k))S̃(k)T

17: Ã(k)i ← (Ã(k)i)i

‖Ã(k)i‖2
,∀i = 1, ..., n . Projection

18: S̃(1) ← S̃(K), Ã(1) ← Ã(K)

19: for j=1,...,J do . REFINEMENT
20: Compute the residue: G = Ã(j)T (X− Ã(j)S̃(j)) . Compute the thresholds
21: Λj = kS mad(Gj),∀j = 1, ..., n . Thresholds
22: Λ← Λ

Λ+
∣∣ S̃(j)

∣∣ . Reweighting

23: S̃(0) ← S̃(j), Ã(0) ← Ã(j)

24: while do not converge do . PALM
25: Compute LS =

∥∥Ã(k−1)T Ã(k−1)
∥∥
s,2

26: S̃(k) ← S Λ
LS

(
S̃(k−1) + 1

LS
Ã(k−1)T (X− Ã(k−1)S̃(k−1))

)
. Proximal gradient step

for S
27: Compute LA =

∥∥S̃(k)S̃(k)T
∥∥
s,2

28: Ã(k) ← Ã(k−1) + 1
LA

(X− Ã(k−1)S̃(k))S̃(k)T . Gradient descent for A
29: (Ã(k))i ← (Ã(k))i

max(1,‖(Ã())i‖2)
∀i = 1, ..., n . Proximal Operator for A

30: k ← k + 1
31: S̃(j+1) ← S̃(k), Ã(j+1) ← Ã(k)

return Ã(J+1), S̃(J+1).
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GMCA GMCA+ refinement
Case MA SDR CT MA SDR CT

A- Ideal 0.04 60 2.4 0.04 60 2.6
B- Noisy 0.3 23.5 2.4 0.1 37.7 2.6

C- Approx. Sparse 3.1 8.4 2.7 3.9 22.4 29

Table 3.2: Performance indicators for GMCA and GMCA+refinement for the 3 illustrative ex-
amples.

With the combination, the computational cost is slightly increased (significantly for case -
C, which requires more updates of the weights, or a stronger weighting scheme). The sources
estimates are much more precise: we have a gain of 14dB for the cases - B and C, tab. 3.2 by
adding the refinement step.

3.4 Summary and extensions

In this chapter, we have presented the latest minimization scheme employed for solving standard
sparse BSS algorithms. It consists in two phases: first, a fair estimation of the components
and the associated regularization parameters are retrieved with a PALS implementation and the
adaptive threshold strategy. The results are finally refined with a PALM implementation of the
minimization problem.
This strategy meets the following criteria:
• Robustness: Robustness to Gaussian noise is provided by the adaptive threshold strategy.
• Accuracy: The refinement step, based on reweighted `1 and the PALM implementation yield

precise results.
• Reliability The coarse-to-fine threshold strategy [14] during the warm-up aims to return a

robust estimate of the mixing matrix.
• Convergence: The decreasing threshold strategy makes PALS empirically stable. The refine-

ment with PALM is provably convergent.
• Easy-to-use: The thresholds are automatically set according to the noise level corrupting the

data during the warm-up.
The proposed heuristics (PALS with adaptive thresholding strategy, followed by PALM with

reweighting `1) are still efficient in more complex settings.

Sparsity in a transformed domain. In many applications, such as in imaging, the sources
are sparsely represented in a dictionary ΦS. In that case, the authors of [14] propose rather to
estimate directly A and the expansion coefficients of S in ΦS by solving the sparse BSS problem
in ΦS directly with PALS:
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minimize
A,αS

1
2
∥∥XΦT

S −AαS
∥∥

2 + ‖Λ�αS‖1 .

This way, we obtain a fast approximation of Ã, S̃, where S̃ = αS̃ΦS. Then, similarly to
the sparse BSS problem in the direct domain, we can use PALM with the reweighted `1. The
thresholds are based on the residual expressed in ΦS, and the weighting on S̃ΦT

S , see for instance
Chapter 5.
In other words, the proposed heuristics can be quite straightforwardly transposed if S is sparsely
represented in a transformed domain.

Handling composite priors. Whenever the priors on the components cannot be easily
handled with the projections (for example non-negativity and sparsity in a transformed do-
main [113]), PALS cannot be used.
It is possible to use the BCD implementation with the associated threshold strategy [113].
Nonetheless, this approach is time consuming.

Another approach would be to develop an appropriate threshold strategy for PALM, since it
is generally faster than BCD (especially if the proximal operator are explicit). In contrast with
BCD, we have access to the projected sources at each update (after the gradient descent, and
before the proximal operator), similarly to PALS. As so, we may replicate the fine control of
the sparsity level of the sources that is powerful for PALS. However, and contrary to PALS, the
inversion of the mixing matrix requires several outer loops for PALM, what might bring further
difficulties.
Providing an efficient implementation of PALM, with an automatic setting of the regularization
parameters would be very interesting. It would provide a very generic algorithm, able to handle
complex priors.

Robust BSS. We will see in the following chapters that most of the heuristic strategies can
be kept and transposed to the framework of robust BSS: automatic setting of the regularizations
parameters, two-steps approach and projected least-squares.
Besides, the explicit estimation of the outliers makes possible the presence of leakages between
the sources and the outliers, additionally to the interferences between the sources. Handling
the interactions between the sources and the outliers, as well as between the sources themselves,
requires the developments of additional heuristics that will be presented in the following chapters.



Chapter 4

Robust BSS in the presence of
sparse outliers

Summary
4.1 Robust sparse BSS: recoverability . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Spectral differences between the source contributions and the outliers 77

4.1.3 Separation between the source contribution and the outliers . . . . . . 78

4.2 Robust GMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 A naive extension of GMCA . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 The rGMCA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.3 Evaluation of rGMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Robust AMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 An analogy with partially correlated sources . . . . . . . . . . . . . . . 86

4.3.2 Robust AMCA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Simulations for synthetic data . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3 Application to NMR spectral unmixing . . . . . . . . . . . . . . . . . 102

4.5 Summary and future works . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Sparse BSS methods are sensitive to the presence of spurious large errors, which are unfor-
tunately ubiquitous in some applications 2.1.1. In this chapter, we will focus on the sparse BSS
problem in the presence of outliers and sources sharing the same morphology.
We will present two algorithms which explicitly estimate the mixing matrix, sources and outliers
by exploiting sparse modeling of the data. Besides, they both further implement a weighting
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scheme to penalize the corrupted samples during the unmixing yielding reliable algorithms.
For both, the rationale of the weighting schemes, algorithms and numerical experiments are pro-
vided, and compared with state-of-the-art robust BSS methods.
This chapter has been adapted from [33] and [31].

4.1 Robust sparse BSS: recoverability

4.1.1 Data Modeling

In this chapter, we focus on the presence of outliers and sources sparsely represented in the same
dictionary. This situation is encountered in many applications, including in spectrometry, or in
astrophysics where spurious point sources and the foreground emissions can be both sparsely
represented in the wavelet domain 2.1.1.

Priors on the components. In this chapter, we will assume that the following priors on
the components hold true:

• Sources: The sources are assumed to be sparsely represented in a dictionary ΦS. For instance,
in the LC/MS data analysis 2.1.1, the sources are quite sparse in the direct domain, but using
1D wavelets would result in sparser decompositions. The number of sources is supposed to
be known.

• Mixing matrix: In order to avoid the scaling indeterminacy between A and S, the columns
of A will be normalized. We make no further assumption on A. The following methods and
numerical experiments are influenced by some characteristics of A, especially its condition
number. This will be discussed in the following.

• Outliers: Each row of O is sparsely represented in ΦS, similarly to S: O = αOΦS and αO is
composed of few significant entries. We will also assume that the outliers do not significantly
cluster in a given direction. For this purpose, we will assume in the beginning of this chapter
that some of the non-zero entries of αO are independently distributed, and some of the
columns of αO are entirely active. We will detail this assumption in the following paragraph.

For the sake of clarity, we will assume that ΦS = It×t. In other words, the outliers and
sources are sparse in the domain of observations. Similarly to [14] and [13], all the results could
be generalized to any orthogonal transform ΦS and provide a good approximation for redundant
sparse representations such as tight frames, which have diagonally dominant Gram matrices (e.g.
undecimated wavelet transforms, curvelets [124], etc.).
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4.1.2 Spectral differences between the source contributions and the
outliers

As stated above, we assume that the outliers do not significantly cluster in any direction, Sec-
tion 2.1.2. The rationale of the proposed robust BSS method is based on the difference of spectral
properties (column-space) between AS and O:

• The source contribution AS is clustered along the directions given by the mixing matrix. We
remark that this clustering aspect is a consequence of the sparse modeling of the sources, and
the morphological diversity principle 1.2.2.

• In contrast, the corrupted samples {(O)k}k=1..t do not cluster in any specific direction fig.4.1a.
We will consequently not consider the presence of numerous and independently corrupted
entries (more generally, row or row and column sparse outliers), which are clustered along the
canonical axes, fig.4.1b. Besides, we remark that independently distributed outliers (column
and row sparse) are not frequent in multi/hyperspectral imaging: many anomalies are visible
at several wavelengths and thus column-sparse.
We also point out that on the other hand, if the outliers are indeed column and row sparse,
then the problem is easier. Besides, the exact separation between the outliers and sources
is possible if the columns of A contain several active entries. In such cases, the separation
between the components can be achieved using the problem eq.4.2.

Broadly speaking, robust BSS methods aim to find the n directions which aggregate the most of
data samples. If the outliers are also clustered in a specific given direction, it becomes impossible
to distinguish between a source contribution and the outliers. Besides, if a corrupted sample Xk

has a direction similar to one of the columns of A, it will necessarily be estimated as belonging to
the source contribution (the elements sharing a same spectral signature belong to a same class,
correspond to a same emission).

Thus, if the outliers and sources share the same morphology, the outliers should be spectrally
well spread out in contrast with the source contribution which clusters along the directions given
by A, in order to recover A.

We underline that most of the state-of-the-art methods of robust BSS rely on a stronger
spectral diversity assumption 2.2.1: they require the outliers to not lie in the subspace spanned
by A and thus cannot handle the determined case m = n, if A is full-rank.
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Figure 4.1: Three sparse sources are mixed into 3 observations (sources contribution in blue),
corrupted by 0.2% of outliers (red stars). In (a), the outliers are column sparse whereas they are
row and column sparse in (b), the amplitudes of the active entries are identical for (a) and (b).

4.1.3 Separation between the source contribution and the outliers

If the outliers do not cluster too strongly, with respect to the source contribution, it is possible
to retrieve A. However, separating AS from O is a challenging problem, even if A is perfectly
known.

The separation between the outliers and the sources can be solved pixel-wise, in contrast with
the unmixing. Let us recast the data model in the compressive sensing framework [25]:

Xk =
[
A Im×m

] [Sk

Ok

]
=
[
A Im×m

] [
yk
]
, ∀k = 1, ..., t,

where
[

Sk

Ok

]
=
[
yk
]
is the sought-after vector.

Several characteristics impact this problem: the sensing matrix
[
A Im×m

]
(in brief, the

correlation between the columns of the sensing matrix), and the sparsity pattern of the signal
yk to be recovered (we can assume that S is highly sparse thanks to the MDP, Section 1.2.2, but
the entries of Ok can all be active). Depending on these properties, the previous problem can
be studied with different approaches:

• Classical compressive sensing: This particular structure has been studied in [85] and [84] (in
a more general framework where the sensing matrix is composed of 2 particular submatrices).
The vector yk can be recovered using a standard iterative algorithm (e.g. IHT [11]) as long as
its number of active entries is small (very small if n = m). Another approach proposed in [24]
also needs the vector yk to be highly sparse. This mandates the outliers to be row-sparse.
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• ’Cross and bouquet’ model [133]: In [133], the authors show that the vector yk can be recov-
ered in the presence of a large level of corruption (more than 50%) if the columns of A are
highly correlated. For given dimensions (m,n), if the columns of A are highly correlated,
they “span”only a small area of Rm (together with the sparsity constraint and the MDP, AS
is close to the cone generated by A): this can be seen as a “relaxation”of the rPCA frame-
work, Section 2.2.1. However, a highly correlated mixing matrix A would clearly hamper the
unmixing. Besides, completely corrupted columns of X are still not recoverable.

• Outliers with known spectra: Let us suppose that the spectra of the outliers are known. More
precisely, let OD ∈ Rm×T be composed of these normalized spectra, where T designates the
number of corrupted columns, such that ODαO = O and αO ∈ RT×t is column and row
sparse. If the outliers are uniformly distributed, we end up with the previous data model and
OD = I.
The data model can be recast as:

Xk =
[
A OD

] [ Sk

αO
k

]
.

Assuming that the vector
[

Sk

αO
k

]
is K = ks + ko-sparse in D =

[
A OD

]
with ks =

∥∥Sk∥∥0

and ko =
∥∥Ok

∥∥
0, a sufficient condition for the identifiability of

[
Sk

αO
k

]
is given by1 [47]:

K <
1
2

(
1 + 1

µD

)
,

where µD designates the so-called mutual coherence of the dictionary D. The mutual coher-
ence of D is defined as µD = maxi,j |〈di,dj〉| where di stands for an atom of dictionary D.
In this specific case, the mutual coherence is given by:

max
(

max
(i,j)
|〈Ai,Aj〉|,max

(p,q)
|〈Op

D,O
q
D〉|,max

(l,k)
|〈Al,Ok

D〉|
)
, (4.1)

In general terms, the separation between the outliers and the sources requires: i) the mixing
matrix A to have a small coherence (the sources should have clearly different spectra), ii)
the spectra of the outliers to not be highly correlated (and so they cannot cluster in close
directions), iii) the spectra of the outliers and the sources to not be too correlated as well.
Unfortunately, this last condition is not easy to satisfy in the determined case/when m is
small. For instance, for the Planck mission 2.1.1, m = 9, whereas there are more than a
thousand of point source emissions: their emissions laws are necessarily correlated.

1This general result can be refined using the special structure of the sensing matrix, [84]



80 Robust BSS in the presence of sparse outliers

In brief, the joint estimation of A, S, and column-sparse O is possible if the supports of the
outliers and sources are disjoint, or if the outliers lie in the subspace orthogonal to the span of
A.
Otherwise, one can only expect (if the outliers are in general position - column sparse), to retrieve
the support of the outliers not strictly lying in the span of A, and A. This is quite similar to the
results of Outliers Pursuit [135],2.2.1. However, we will further aim to retrieve A and not only
its span, including in the determined case.

4.2 Robust GMCA

In the following of this chapter, we will present two robust BSS methods which aim to retrieve
A, by estimating jointly the components A, S, and O. They both build upon sparse modeling
of the data to highlight the structural difference between AS and O.
More precisely, we start with an algorithm coined robust GMCA (rGMCA), extending GMCA
to robust BSS 2. It will be assumed that the corrupted samples are composed of both entirely
corrupted columns and (few) uniformly distributed corrupted entries.

4.2.1 A naive extension of GMCA

A straightforward strategy to account for the presence of outliers in the framework of GMCA is
done by including an extra sparse term O enforcing the sparsity of the outliers. This approach,
named Naive robust GMCA (NrGMCA), can be formulated as:

argmin
O,A,S

1
2 ‖X−AS−O‖22 +

n∑
j=1

λj ‖Sj‖1 + α ‖O‖1 , (4.2)

where the first term is the data-fitting term, well suited to deal with the Gaussian noise N,
and the two others terms enforce the sparsity of the sources and the outliers. This formulation
was proposed in [5], [1] and [60] (with an `2,1 norm for the outliers, column-sparse) both in the
framework of dictionary learning.
This problem is very effective for column and row sparse outliers. Indeed, let us assume for the
sake of clarity that m = n and that the outliers and sources have at most one active entries per
column. The outliers can be factorized as O = In×nO. Hence the norm of the outliers seen as
a source contribution (factorized with I), is still equal to ‖O‖1: there is no gain for factorizing
the outliers, fig.4.2b. On the other hand, if A is quite dense (several entries active per column),
then ‖AS‖1 =

∑n
j=1

∥∥Aj
∥∥

1 ‖Sj‖1 (for exactly sparse and disjoint sources) is larger than ‖S‖1
since much more entries are active, fig.4.2a. In summary, there is no gain for the cost-function

2This section has been adapted from [33]
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to wrongly estimate the outliers as a source contribution nor to estimate a part of AS as cor-
responding to some outliers: the sparsest separation should lead to a good estimation of the
outliers and AS.

A S AS

=

(a) Source contribution.

O

O

1

kO1k2
O1 O

kOk1 ⇡
tX

k=1

kOkk2  kOk1

=

I O

(b) Outliers

Figure 4.2: Schematic illustrations of the behavior of the source and outlier contributions in the
source domain (S and O on the left), and in the observation domain (AS and O on the right).
The sources are sparse in the direct domain with disjoint support. The outliers are also sparse
in the direct domain, and with a support uniformly drawn at random.

=

U V W

Figure 4.3: Schematic illustration of the factorization of a matrix W, which is column sparse
and whose active columns are collinear. This term can be factorized as W = UV.

However, this first naive approach cannot handle large and column-sparse outliers, especially if
A is not dense (only few entries of A are active). Indeed, whenever the outliers are column-sparse,
there is a gain in term of sparsity, for factorizing the columns of O sharing a same direction. Let
W ∈ Rm×t be a column sparse matrix, whose active columns are collinear. This matrix can be
factorized with the product UV, where U ∈ Rm×1 a normalized vector collinear with the active
columns of W, and V ∈ R1×t, whose columns are such Vk = sign(< U,Wk >)×

∥∥Wk
∥∥

2. The
term W can represent the contribution of a source i: AiSi, with U = Ai, and V = Si. It can
also be employed to represent some outliers sharing a same spectrum/orientation, see fig.4.3.
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In this case, we have ‖W‖1 = ‖U‖1 × ‖V‖1. Thus, we observe a gain when factorizing W:
‖W‖1 − ‖V‖1 = (‖U‖1 − 1)× ‖V‖1:
• (‖U‖1 − 1) ≥ 0: this term depends on the ’density’ of U. Indeed, if the vector U is exactly

1-sparse, then there is no benefit in term of sparsity, for factorizing the contribution. This is
the case for column and row sparse outliers, fig.4.2b. On the other hand, if several entries of
U are active, then the factorization is costless.
Thus, if at least one column of A is 1-sparse but one column of O is not, it becomes impossible
to avoid the misestimation of the two terms with eq.4.2.

• ‖V‖1: whenever the vector U is not exactly sparse, the benefit in term of sparsity (`1) is
proportional to ‖V‖1. Consequently, if there is at least one column of O having more than
1 active entry and an amplitude much larger than the one of the sources, then NrGMCA
should factorize this outlier contribution and consider the less energetic source contribution
as corresponding to outliers.

That is why, in cases where the outliers are the dominant contribution to the data, NrGMCA
erroneously estimates these largest samples as being the most discriminant entries of the sources
for the separation and thus fail to estimate A.

4.2.2 The rGMCA algorithm

The MDP-based algorithms (with `1 enforcing sparsity) assume that the most discriminant sam-
ples for the source separation are the largest ones 1.2.2. This assumption is no longer valid in
the presence of large outliers, which mislead the estimation of the mixing matrix, Section 2.1.3.
Estimating O, A and S becomes more challenging and requires at least improving the robust-
ness of the estimation of A against the influence of the outliers. For this purpose, we propose
to extend NrGMCA building upon the AMCA algorithm [13] (further details on AMCA will be
given in 4.3.2).

In a different context, the AMCA algorithm extends GMCA in the special case of sparse and
partially correlated sources, where the MDP does not hold [13]. In brief, this method relies on
an iterative weighting scheme that penalizes non-discriminant entries of the sources. Inspired by
this approach, we propose to implement a similar weighting scheme to penalize samples that are
likely to be contaminated with large outliers, similarly to the weighting scheme proposed in [79].
In the spirit of AMCA, the influence of the corrupted samples are weakened by using a weighting
scheme in the mixing matrix update stage with the following cost function:

argmin
O,A,S

1
2 ‖(X−AS−O)W‖22 +

n∑
j=1

λj ‖Sj‖1 + α ‖O‖1 ,
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where W is the penalizing diagonal matrix of size t× t. The role of the weighting procedure is to
penalize the samples of the sources that are likely to be corrupted with outliers. It is therefore
natural to define the weights W based on the current estimate of the outlier matrix Õ. In the
spirit of [13], an efficient weighting procedure consists in defining the weights based on the level
of corruption of the columns of the outlier matrix as follows: Wi,i = 1

ε+‖Õi‖1
, where ε stands for

median|S(i,i)|>0|S(i,i)|
10 . Subsequently, the penalization of a given data sample will increase with the

amplitude of the outliers as well as the number of outliers per data sample (entirely corrupted
columns are more difficult to distinguish from the sources contribution, assuming that all the
entries of A are active). Besides, the value ε depends on the source amplitude: the outliers are
damaging if they are larger than the source contributions (and so should be penalized according
to the source level).
Following the structure of the GMCA algorithm, this problem is solved by using PALS 3.2.2.
The structure of the algorithm is presented in Algorithm 14. Instead of estimating alternatively
O, S and A, we found that applying GMCA to the current estimate of X− Õ for estimating A
and S and then to estimate O from X− ÃS̃ provides the most effective estimation procedure:

• Estimating jointly Ã and S̃ from X − Õ amounts to estimate the subspace ÃS of rank n,
embedding most of the samples, and to unmix the data samples. This is the non-convex part
of the problem, but building upon GMCA and its thresholding strategy 3.3.3, we can develop
a robust and efficient unmixing.

• Estimating O from X− ÃS aims to recover the corrupted data samples, not correlated with
A.

Choice of parameters and initialization. The large outliers are the most damaging
as they can severely mislead the estimation of the mixing matrix if they are not estimated as
outliers from the start. That is why, the algorithms NrGMCA and rGMCA start by estimating
the largest values of X as outliers. On the other hand, the orientation of the mixing matrix Ã,
which is initialized as a random matrix whose columns are normalized and entries are Gaussian,
is deduced from the data cleaned from these large outliers X − Õ: our first estimation of Õ
should not be too conservative to keep the clustering aspect of X − Õ. For this purpose, we
propose to estimate Õ with a soft-thresholding at the value α̃0 = median|X|>3σ|X|, where σ
denotes the standard deviation of the Gaussian noise N. The thresholding strategy employed
during the unmixing was presented in Section 3.3.3. The threshold α decreases linearly towards
its final value, 3σ, see Appendix B.3

In practice, the algorithm is stopped whenever the mixing matrix A is stable.

3The thresholding strategy, especially for the outliers, can be largely improved. This version requires the
knowledge of σ, whereas it could be estimated directly from the data.
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Algorithm 14 rGMCA Algorithm
1: procedure rGMCA(X, n)
2: Set α̃0, Õ0, Ã0,0, λ̃0, S̃0,0, and W̃0.
3: while k < K do
4: while j < J do
5: S̃k,j = Sλ̃j

((
Ãk,j−1)† (X− Õk−1)

)
6: Ãk,j = (X− Õk−1)W̃k(S̃k,jW̃k)†
7: Set λ̃j+1 < λ̃j

8: Õk = Sα̃k
(
X− Ãk,J−1S̃k,J−1)

9: Update W̃k

10: Set α̃k+1 < α̃k

11: Set Ãk+1,0 = Ãk,J−1

return S̃(k−1), Ã(k−1), Õ(k−1).

4.2.3 Evaluation of rGMCA

In this subsection, we evaluate rGMCA in the field of the biomedical engineering with simulated
data. We propose to separate the different Nuclear Magnetic Resonance spectra of a simulated
mixture, which can represent the data provided in NMR spectroscopy. By performing BSS on the
mixture of spectra, we should be able to identify the different molecules of the mixture [113].4

The estimated NMR spectra of the menthone, the folic acid, the ascorbic acid and the myo-
inositol from SDBS 5 are convolved with a Laplacian kernel of 2-samples width at half maximum
(implementation from pyGMCA 6). The number of observations is set according to fig.4.4. The
Gaussian noise N is drawn from a Gaussian law with a standard deviation of 0.1. The outliers
are drawn from a Gaussian law with standard deviation 103, so that 20 columns and 1% of the
entries, broadly distributed, are corrupted (the maximal amplitudes of the sources is around
1000 also, fig.4.5).

4.2.3.1 NMR spectrum identification and influence of the number
of observations. We compare the performances of rGMCA with standard BSS methods:
GMCA [14], PCP+GMCA (the outliers are first estimated with PCP 2.2.1 and then discarded
from X [23]), the minimization of the β-divergence with statistical independence prior 2.2.2 (im-
plementation from [63]) and NrGMCA. The values of the free parameters for PCP (λ in [23])
and the β-divergence minimization algorithm (β) are tuned to return the best results based on
several trials. We set J=500 and K=20 (typical values are a few hundreds and tens respectively).
The minimization of the β-divergence only returns an estimate for A, and thus we propose to
compare the methods by using a criterion depending only on A [14]: ∆A = ‖PÃ†A−I‖1

n2 , where
P stands for the scale/permutation indeterminacies correction, App.C. The medians of ∆A ob-

4These mixtures have a morphology similar to the LC-MS data introduced in Section 1.1.1. That is why they
served as realistic data sets in [115], prior to the utilization of the algorithms on the real LC-MS data.

5http://sdbs.db.aist.go.jp
6http://www.cosmostat.org/software/gmcalab/
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tained from 80 Monte-Carlo simulations are displayed in fig.4.4.

Figure 4.4: ∆A versus the number of observations.

The GMCA and minimization of the β-divergence are not able to perform correctly with this
setting. Besides, we can observe a clear difference between the results obtained by NrGMCA
and rGMCA, illustrating the benefit of the weighting scheme to provide robustness fig.4.4.
Despite the effectiveness of rGMCA and PCP+GMCA if m� n fig.4.4, none of these algorithms
are able to handle the outliers if m = n. The algorithm rGMCA is the only one that provides a
correct estimate of A for m ≥ 5 by means of the weighting scheme. However, rGMCA cannot
clearly separate the outliers from the sources: some leakages from the outliers towards the
estimated sources are present fig.4.5.

Figure 4.5: Estimates of the menthone’s NMR spectrum (original spectrum: top of the images)
with rGMCA (middle) and GMCA (bottom), with m = 6. Red stars denote samples corrupted
by outliers.
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4.2.3.2 Limitations of rGMCA. We introduced a novel method to separate
sparse sources in the presence of outliers. The proposed method relies on the joint sparsity-based
separation of the outliers and the sources. This strategy allowed us to implement a weighting
scheme that penalizes corrupted data samples, which showed to highly limit the impact of the
outliers during the unmixing process. Numerical experiments demonstrated the good perfor-
mances of our algorithm to robustly estimate the mixing matrix.

However, the proposed rGMCA is unable to estimate robustly the mixing matrix in the de-
termined case. The latter is particularly difficult to tackle since the outliers also lie in the span
of A. This makes the weighting scheme of rGMCA inefficient. Indeed, the current outliers can
be almost null and very difficult to detect since for any mixing matrix Ã, X = Ã(Ã†X) - the
residual X− ÃS̃ can be very small (and so is Õ).

Last, we point out that instead of using O for the weighting, it would have been also efficient
to base our weighting scheme on X−ÃS̃ instead of O: even if the outliers were wrongly estimated
during the initialization, the weighting would have been efficient (for m > n).

4.3 Robust AMCA

In this section, we propose a novel algorithm, named robust Adaptive Morphological Component
Analysis (rAMCA), that extends the rGMCA algorithm 7. Unlike the rGMCA algorithm, the
proposed algorithm further relies on two novel elements: i) a refined modeling of the outliers in
the source domain based on an analogy with partially correlated sources, and ii) an improved
outlier estimation procedure. The proposed method is shown to yield a highly effective estima-
tion of the mixing matrix. It also performs very well when the number of observations is close
or equal to the number of sources; a challenging setting for which currently available robust BSS
methods fail.

In contrast with the rGMCA framework, we will assume that the outliers are only column-
sparse. This sparsity pattern is well suited for multi/hyperspectral images analysis: it corre-
sponds to the presence of anomalies, visible at every frequency, such as the point source emissions
in the Planck data 2.1.1.

4.3.1 An analogy with partially correlated sources

In the previous section, it clearly appears that solving robust BSS problems requires discriminat-
ing between the outliers and the sources. Since both the outliers and the sources are assumed to

7This section is adapted from [31]
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(a) X1 versus X2. (b) Ŝ1 versus Ŝ2. (c) S̃1 versus S̃2.

Figure 4.6: Three sparse sources are mixed into 4 noisy observations. Fig.(a): scatter plot of two
noisy observations, (b): scatter plot of two of the projected data given by Ŝ = A†X, (c): scatter
plot of the estimated sources given by S̃ = Ã†X, where Ã has been estimated with GMCA and
is far from the initial A. The initial source contribution is represented in blue, and the one of
the outliers with the red stars.

be sparsely represented in the same domain, sparsity alone cannot be the right separation crite-
rion. Fortunately, both components are assumed to have different distributions: source samples
tend to cluster along the canonical axes in the source domain while the samples of the projected
outliers Ô = A†O (i.e. projection of O in the source domain) do not have any preferred cluster-
ing direction8. This is testified by the difference between the distributions in the source domain
of the sources samples (blue dots) and corrupted samples (red stars) in fig.4.6b.
If the mixing matrix A were perfectly known, the sources would be approximated by projecting
the corrupted data onto the span of A: Ŝ = A†X. The estimated sources are the linear combi-
nation of the clean sources and the projected outliers: Ŝ = S + Ô. Due to the projected outliers
contribution which is broadly distributed, some of the largest entries of Ŝ are active simultane-
ously in several sources (c.f. the red contribution in fig.4.6b). These shared active samples are
reminiscent of the partial correlations of the sources discussed in [13]. Indeed, the samples of
partially correlated sources can be similarly divided into two groups: the discriminant samples
respecting the MDP (the jointly sparse contribution in blue in fig.4.6b) and the samples corre-
sponding to the partial correlations which active simultaneously in several sources (the broadly
distributed contribution in red in fig.4.6b). Unlike the rGMCA algorithm we introduced previ-
ously, we propose to exploit the analogy between the impact of the projected outliers and sparse
and partially correlated sources, which yields a novel robust BSS algorithm that is described in
the following.

4.3.2 Robust AMCA Algorithm

Following the analogy between the impact of outliers and partial correlations, the rAMCA algo-
rithm will be built upon the AMCA algorithm (Adaptive Morphological Component Analysis),

8They do not cluster along the canonical axes: they are not jointly sparse and do not respect the MDP. They
can ’cluster’ in the source domain if A has a large condition number.
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which has been designed to deal with partially correlated sources [13]. In this specific context,
it was underlined in [13] that the ability to identify correlated entries is critical to perform the
separation. For that purpose, the AMCA algorithm builds upon an adaptive weighting scheme
that assigns to each column of the observation coefficients X a weight, whose goal is to penalize
correlated entries in the separation process. Details about the weighting procedure will be given
below. The AMCA algorithm performs by minimizing the following problem:

minimize
A,S

1
2 ‖(X−AS) W‖22 +

n∑
i=1

λi ‖Si‖1 , (4.3)

where W ∈ Rt×t is the weight matrix.

In the spirit of rGMCA, we propose to estimate jointly A,S and O by exploiting the sparsity
of the sources and the outliers. Unlike this first algorithm, we propose to further employ a
weighting scheme similar to AMCA, penalizing the correlated entries of the estimated sources.
This can be done by substituting the problem in eq. 4.3 with the following one:

minimize
S,A,O

1
2 ‖(X−AS−O) W‖22 +

n∑
i=1

λi ‖Si‖1 +β ‖O‖2,1 . (4.4)

The `2,1 norm, defined such as ‖O‖2,1 =
m∑
j=1

∥∥Oj
∥∥

2, favors solutions O with few entirely active

columns. This regularization term is well suited to capture outliers that are distributed in general
position in the data domain.

This problem is non-convex but can be tackled using a minimization procedure such as BCD
or PALS 3.2, which sequentially minimize subsets of variables. A natural choice would consist in
estimating alternatively the three variables of interest A,S, and O. However, we found that this
choice performs poorly in practice since errors are more likely to propagate from one variable
to the other during the sequence of minimization steps. Besides, the propagation of errors is
strengthened by the joint estimation of the regularization parameters, depending on the current
variables. We rather opted for a sequential minimization of two blocks of variables (similarly to
rGMCA):

• Joint estimation of (A,S): This is the non-convex part of the problem. This unmixing step
is robustified by means of the weighting scheme, penalizing the corrupted samples. Besides,
the regularization parameters λi can be estimated using the decreasing threshold strategy of
GMCA 3.3.3: we can start with large thresholds λi to provide robustness, without modifying
the estimation of O since they are fixed (more precisely λi can be large without facing strong
leakages from the sources towards the estimated outliers).

• Estimation of the outliers matrix O: The outliers correspond, in this problem, to the contribu-
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tions not lying in the column-span of A (ifm > n) or to the correlated entries of the estimated
sources. They are thus easiest to detect and estimate given a current tuple (Ã, S̃). As well,
the regularization parameters are adapted to discard the samples that appear to be corrupted.

The algorithm is presented in Alg.15.

Procedure 15 rAMCA Algorithm
1: procedure rAMCA(X, n)
2: Initialize Ã(0) (randomly or with a PCA), S̃(0) = 0 and Õ(0) = 0.
3: while k < K do
4: Set S̃(0,k) ← S̃(k−1) and Ã(0,k) ← Ã(k−1)

5: while i < I do . Joint estimation of A and S
6: Update S̃(i,k) from (4.6)
7: Update W̃ from (4.8)
8: Update Ã(i,k) from (4.7)
9: Set S̃(k) ← S̃(i−1,k) and Ã(k) ← Ã(i−1,k)

10: Update Õ(k) from (4.10) . Estimation of O
return S̃(k−1), Ã(k−1), Õ(k−1).

4.3.2.1 Estimating the sources and the mixing matrix. Applying the
PALS technique to estimate the mixing matrix and the sources amounts to minimizing the
problem in Eq. 4.4 assuming O is fixed:

minimize
S,A

1
2 ‖(X−AS−O) W‖22 +

n∑
i=1

λi ‖Si‖1. (4.5)

The problem shares similarities with the problem solved by the AMCA algorithm (see (4.3))
with the exception that it applies to the residual X − O rather than the raw observations X.
Following the AMCA algorithm, the problem in (4.5) is tackled by minimizing alternately the
cost function with respect to A and S with the two following steps (PALS based procedure 3.2.2):

• Updating S assuming A is fixed : Minimizing (4.5) with respect to S consists in solving the
following convex problem:

minimize
S

1
2 ‖(X−AS−O) W‖22 +

n∑
i=1

λi ‖Si‖1.

Unless A is orthogonal, the previous problem does not admit a closed form solution. In the
spirit of alternated least-square minimization techniques proposed in [13] to rather approxi-
mate this step with a projected least-square, which highly limits the computational cost of
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the update 9:
Si = Sλi

([
A† (X−O)

]
i

)
. (4.6)

• Updating A assuming S is fixed : Minimizing (4.5) with respect to A amounts to solving the
following convex problem:

minimize
A

1
2 ‖(X−AS−O) W‖22.

which admits a closed form solution:

A = (X−O) W (SW)† . (4.7)

In practice, to avoid the balance indeterminacy between A and S, we assume that the columns
of A are normalized for the `2 norm. Similarly to what is done with AMCA, this additional
constraint is handled by normalizing the columns of A after the projected least-squares.

Similarly to the AMCA algorithm, the weights play a central role. In the setting of robust
BSS, they help providing robustness to the remaining outliers contribution in the estimated
residual X −O. Following the analogy with partial correlations, the weights aim at penalizing
entries of the estimated sources which are in general position rather than clustered along a
canonical axis fig.4.6b. The former are more likely related to residuals of outliers while the latter
are characteristics of the sources. Following [13], samples in general position can be traced by
measuring the sparsity level of the columns of the estimated sources using an `q norm, q ∈ (0, 1).
For illustrative purpose, we display in fig.4.7 the value of the `q norm of the projected sources
samples: the correlated entries (corresponding to A†O) correspond to the entries having the
largest `q norm, especially when q is small.

Therefore, the diagonal elements of the weight matrix W are defined as follows:

Wi,i = 1√
‖Si‖q + ε

, ∀i = 1, ..., t (4.8)

where S denotes the normalized sources Si = Si
‖Si‖2

and where ε is a scalar typically small used to
avoid numerical issues. The sources are normalized in order to take into account large dynamics
between the sources: a coefficient can be significant and discriminant for a source with a small
amplitude while being smaller than the non-discriminant samples of larger sources. The param-

9The weights W are taken into account in the parameters λi which are varying.
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Figure 4.7: Left- top to bottom: projected sources S̃ = A†X, then
∥∥S̃k∥∥1 and

∥∥S̃k∥∥0.1 ∀k = 1..t.
Right: sources samples projected on the `q ball.

eter q is chosen in the range [0, 1]. More precisely, it is set according to 0.1
k
K

2 . It starts with a
larger value, to not penalize too strongly the unmixed sources, and then decreases to penalize
the non-sparse entries, the projected outliers fig.4.7: starting directly with a too small value of q
may prevent any unmixing by forcing the solutions to stay at it is, and on the other hand, very
large outliers require a strong penalization obtained with a small value of q.

In fig.4.8, we display an example of the current estimated sources S̃ and the ones ’perceived’
during the unmixing with AMCA. In practice, it amounts to project the normalized sources on
the `q ball, fig.4.7b. Thanks to the weighting scheme, the influence of the large correlated entries
of S (the corrupted entries) is clearly lessened: they do not hinder the unmixing.

4.3.2.2 Estimating the outliers. In the rAMCA algorithm, the estimation of O
given A and S is carried out by solving the problem in (4.4):

minimize
O

1
2 ‖(X−AS−O) W‖22 + β ‖O‖2,1 .

Given that only the diagonal terms of W are non-zero, this problem is separable. It amounts
to solve for each sample k ∈ {1..t}:

minimizeOk

1
2

∥∥∥((X−AS)k −Ok
)

Wk
k

∥∥∥2

2
+ β

∥∥Ok
∥∥

2 .
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Figure 4.8: Left: scatter plot of two estimated sources S̃ during AMCA. Right: scatter plot of
the ’appearing’ sources for the unmixing S̃W, for q = 0.2

This problem is equivalent to:

minimizeOk

(Wk
k)2

2

∥∥∥(X−AS)k −Ok
∥∥∥2

2
+ β

∥∥Ok
∥∥

2 .

Then, by setting β̃ = β
(Wk

k
)2 , we end up with:

minimizeOk

1
2

∥∥∥(X−AS)k −Ok
∥∥∥2

2
+ β̃

∥∥Ok
∥∥

2 .

This problem has a closed form solution which has been derived in [83]:

Ok = (X−AS)k ×
(

1− β̃k

‖(X−AS)k‖2

)
+
. (4.9)

Detecting the outliers. Most sparsity-based thresholding procedures can be interpreted as
detection procedures: detecting sparse samples out of dense noise. In that case, it is customary
to fix the value of the threshold based on the noise statistics [124], see App.B. Similarly, and ac-
cording to (4.9), the support (i.e. the set of active columns) of O is defined by the set of columns
whose `2 norm exceeds the threshold β̃. Ideally, the columns having an `2 norm smaller than β̃
should correspond to the remaining Gaussian noise. Consequently, the values of β̃ should also be
fixed based on the Gaussian noise statistics. In that case, only the Gaussian noise contributes to
the residual outside the support of O. Therefore, the samples

{∥∥∥(X−AS)k
∥∥∥

2

}
k:‖Ok‖2=0

follow

a χ law with m degrees of freedom. The value of β̃ can then be chosen based on the expected
value of the χ law: σ×

√
2×Γ(m+1

2 )
Γ(m2 ) , where σ corresponds to the standard deviation of N, App. B.
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Nevertheless, relying on the noise statistics only provides a detection procedure that is not
reliable in the determined case. Indeed, even if A is correctly recovered, the outliers are very
likely to leak into the estimated sources S̃ since they also lie in the span of A: S̃ = S + A†O,
such that AS̃ = AS + O. An accurate detection of the outliers based on the residual X −AS̃
is then not possible. To overcome this issue, we propose to rather build the detection procedure
on a quantity that allows discriminating between the outliers and the sources, especially in the
determined case.
We emphasized in Section 4.3.1 that in the source domain the entries of S are jointly sparse,
i.e. clustered along the canonical axes, whereas the projected outliers behave as correlated non-
sparse entries. In this context, the δ-density, which has been introduced in [125], provides a
convenient measure of sample sparsity that permits to discriminate between sparse and non-
sparse columns of S̃10. The δ-density of any jth non-zero sample of the estimated sources is
defined as δ(S̃j) = ‖S̃j‖1

‖S̃j‖∞
. This quantity takes its values between 1 (for one active entry, i.e.

1-spars column vector S̃j) and n (for a column whose entries have the same amplitudes, i.e.
highly non-sparse, ’non-informative’ vector S̃j). More interestingly, it is independent on the
amplitude of the columns and well suited for sparse and approximately sparse signals. Since
the corrupted columns of S̃ are non-sparse, they consequently have large δ-density values. In
this framework, detecting the support of O can be performed by identifying the columns of the
estimated S̃ whose δ-density is larger than a certain threshold α that needs to be determined.
This is somehow reminiscent of the outlier detection discussed in [134].
In the general setting, determining an optimal numerical value for α is challenging without an
accurate statistical modeling of the sources and the outliers. We propose to use the following
statistical modeling:
• the sources are drawn from a generalized Gaussian law with parameter ρ denoted by G(ρ).
• the amplitudes of the outliers in the sources domain follow a Gaussian law N , well suited to

model samples that are distributed in general position.
Let us notice that the variances of these statistical models do not matter since the δ-density is
independent on the amplitude. From this statistical model, the threshold α is derived from a
classical hypothesis testing procedure such that, for any random variable X of size n:

Pr (δ(X) < α|X ∼ G(ρ)) = Pr (δ(X) > α|X ∼ N ) .

where Pr (δ(X) < α|X ∼ G(ρ)) stands for the probability for the δ-density to be smaller than
α assuming that every entry of X is distributed according to a centered generalized Gaussian
law with unit variance and shape parameter ρ. Figure 4.9 illustrates three different cases with
n = 10: (a) the case ρ = 1, which corresponds to a low sparsity level, and then (b) and (c),
the cases ρ = 0.5 and ρ = 0.3 that correspond to realistic sparsity levels for the coefficients of

10The δ-density should be performed on normalized sources if the sources do not share the same dynamics.
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sparse representations of natural signals. The value of α varies from 3.9 to 3.3. Since we have
no precise prior knowledge about the distributions, we derive numerically the value α for the
corresponding n from the Laplacian law (the largest possible for sparse sources respecting the
MDP). This choice is quite conservative for the sources since only the samples having a δ-density
larger than α are estimated as being corrupted.
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Figure 4.9: Numerical approximations of the cumulative distribution functions of δ(.) for
different values of ρ and n = 10. In blue: fig.(a): Pr(δ(X) < γ|X ∼ G(1)), fig.(b)
Pr(δ(X) < γ|X ∼ G(0.5)), fig.(c) Pr(δ(X) < γ|X ∼ G(0.3)). In red: Pr(δ(X) > γ|X ∼ N ).

According to (4.9), the amplitude of the detected outliers is derived from the estimated
residual X − ÃS̃. Previously, we underline that X − ÃS̃ is very likely to contain some errors.
A more conservative but more effective choice consists in deriving the amplitude of the detected
outliers from the data X.
As a summary, the outliers O are estimated as follows:

Õk =


0 if δ(S̃k) < α

Xk ×
(

1− β̃

‖Xk‖2

)
otherwise,

(4.10)

where β̃ = mad(X −AS −O) ×
√

2 × Γ(m+1
2 )

Γ(m2 ) and mad(X −AS −O) corresponds to a good
estimate of the standard deviation of N if it is not known. Despite the simplicity of the statistical
model used to derive a value for α and consequently β, the proposed scheme has performed
correctly in the numerical experiments of Section 4.4.2. Furthermore, at each iteration of the
rAMCA algorithm 15, the couple (A,S) is fully re-estimated, which also makes the algorithm
less sensitive to mis-estimations of the outliers O.

4.3.2.3 Choice of the parameters. Strategy for λ: We adopt the decreasing
thresholding strategy that was presented in 3.3.3. More precisely, given the total number of
iterations I, the jth projected source S̃(i,k)

j =
(
Ã(i−1,k)†(X− Õ(k))

)
j
is thresholded at the ith

iteration by:

λj = pct
(
|S̃(i,k)
j ||S̃(i,k)

j
|>3σj

, 100× I − i
I

)
.
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Number of inner loops I: The number of iterations is set to I = 1000, which turned to be a
good compromise in the numerical experiments.
Strategy for β: In the spirit of the decreasing value strategy used for λ̃ in AMCA, the number of
eligible active samples of the estimated outliers is increased during the algorithm. More precisely,
at the kth iteration, we select the outliers among the 5k% largest entries of the residue in order to
limit the number of false estimations. We underline that these parameters are also automatically
determined: α depends only on the number of sources and β on the number of observations.
Number of outer loops K: Last, the number of outer loops is maximally set to 100. In practice,
the algorithm is stopped when Ã and Õ are jointly stabilized fig.4.10. More precisely, rAMCA
stops at the kth outer loop if: maxj=1..n〈Ã(k−1)j , Ã(k)j〉 < 5°, and supp

(
Õ(k−1)) = supp

(
Õ(k)) ,

where supp(x) denotes the support of the vector x.

4.3.2.4 Stability of rAMCA. Since the problem (4.4) is not convex, we can only
expect to converge to a local minimum of the cost function of interest. Besides, given that the
proposed strategy uses varying parameters, the convergence to a critical point, strictly speaking,
cannot be proved. However, the stability of the two variables of interest, the support of the
corrupted samples and the mixing matrix, is heuristically well motivated.
We propose to minimize the function using the PALS method, to fasten the standard BCD
strategy, Chapter 2. It has been shown in [128] that minimizing (4.4) alternately for each
variable with fixed parameters and the BCD strategy converges to a stationary point. However,
in practice, minimizing (4.4) with the cyclic rule and with fixed parameters performs poorly: it is
challenging to estimate jointly the variables and regularization parameters without propagating
the errors. That is why, we minimize 4.4 using a sequential minimization alternating between
the blocks (A,S) and O, as well as a strategy with decreasing parameters.
Once the detrimental outliers (or the data estimated as being detrimental) have been removed
from the observations, the AMCA algorithm, whose stability has been discussed in [13], returns
a similar A from one iteration to another (since the input X − O is constant from one outer
iteration to another one), fig.4.10a, 4.10b.
For illustrative purpose, we display the maximal angle made between the columns of Ã(k) and
Ã(k+1) (see App. C for the metrics) as well as the percentage of estimated corrupting columns for
n = m = 10 sources generated according to Section 4.4.1 and 30% of corrupting columns. After
few outer loops, the number of estimated columns fig.4.10a and Ã almost not vary fig.4.10b (a
variation with the maximal order of magnitude of 10−3ř is observed for A due to the projected
least squares).
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Figure 4.10: Convergence of rAMCA.

4.4 Numerical Experiments

4.4.1 Experimental protocol

In this section, rAMCA is compared with various robust BSS algorithms:
• GMCA 1.3.2: this standard sparse BSS method is used to illustrate the sensitivity of the

non-robust BSS algorithms to the presence of outliers.
• AMCA [13] whose performances show the benefits of the weighting scheme (difference between

AMCA and GMCA) and of the explicit estimation of O (difference between AMCA and
rAMCA).

• rGMCA: the discrepancy between its performances and the ones of rAMCA illustrates the
key role of the novel penalization and outliers detection procedure, which are, unlike rGMCA,
based on the refined modeling of the outliers in the source domain.

• the robust minimization of the β-divergence Section 2.2.2, [100], (implementation similar
to [63]), which assumes that m = n and only estimates the mixing matrix.

• the robust combination PCP+GMCA: the outliers are first estimated with PCP Section
2.2.1, [23] which assumes that m� n, and then the sources and mixing matrix are estimated
with GMCA.

The parameters of PCP+GMCA and of the minimization of the β-divergence are manually
tuned. In the first part of this section, their performances are evaluated on various scenarios
with synthetic data, which allows performing Monte-Carlo simulations.

4.4.1.1 Performance criteria. We emphasize that the algorithms listed above
do not yield a precise estimation of the sources but rather provide a robust estimation of A.
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Therefore, we will focus on assessing the performances of these algorithms with respect to the
mixing matrix. More precisely, we propose to evaluate the accuracy of the different algorithms
as well as their reliability, which is particularly relevant since BSS problems are non-convex.
The quantity ∆A = ‖Ã†A−I‖1

n2 is used as a global indicator of the mixing matrix estimation
accuracy [14]. Additionally, for every simulation and for each algorithm, we record the number
of runs for which A has been correctly recovered (normalized to 1). The mixing matrix is said to
be correctly recovered if, for every column of A, the angle between the estimated and true ith
column is smaller than 5◦: arccos(

〈
Ãi,Ai

〉
) < 5°, see Appendix C.

4.4.1.2 Data Setting. The comparisons are first carried out on synthetic data in
order to illustrate the impact of parameters such as the percentage of corrupted data or the
number of observations with Monte Carlo simulations (48 simulations). The data are generated
as follows:
• A total of 8 sources (unless otherwise stated) are drawn from a Bernoulli-Gaussian law whose

activation rate is fixed to 5%, and the standard deviation of their amplitude σS to 100. The
number of samples t is fixed to 4096.

• The mixing matrix is drawn according to a normal law with zero mean. The columns of A
are normalized to unit `2 norm.

• The outliers are generated so as to corrupt at random a low number of columns of X. The
activation of these columns is drawn according to a Bernoulli process with probability ρ,
which fixes the average number of corrupted columns to ρt. The amplitude of the outliers is
drawn at random from a Gaussian distribution with zero mean and standard deviation σO.

• The noise is generated according to a Gaussian distribution with zero mean. Its standard
deviation is set to 0.1.

4.4.2 Simulations for synthetic data

4.4.2.1 Influence of the number of observations. We underlined in Sec-
tion 4.1.3 that the separation of the sources contribution and the outliers is more challenging
if m is close to n. This was further illustrated in Section 4.2.3. The ratio m

n is therefore a
crucial parameter in BSS, especially in the presence of outliers. In this paragraph, the data are
composed of m observations (or bands in hyperspectral imaging). The amplitude of the outliers
is fixed to σO = 100 for n = m and then the amplitude ratio between the outliers and the source
contribution is kept constant. The percentage of outliers is fixed to 10% with ρ = 0.1.
As shown in fig.4.11a, rAMCA tends to be less influenced by the number of observations. The
results of all the methods (except the β-divergence minimization algorithm) are better if m is
very large: the condition number of A is smaller and the outliers can be better distinguished
from the source contribution since the energy of the outliers lying in the subspace generated by
A is lower when m is large. In this regime, the low-rankness of the term AS becomes a valid
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Figure 4.11: Influence of the number of observations on the estimations of A, S and O.

assumption, which makes PCP more efficient [23].
The results are not strictly improved with an increasing number of measurements for the β-
divergence algorithm. Since the β-divergence minimization algorithm has been designed for the
determined case only (m = n), its application to the over-determined case (m > n) requires
first, a dimension reduction step. This pre-processing step, which is performed by PCA, is also
impacted by the presence of outliers and hampers the performances of this algorithm.

In order to further illustrate the impact of the ratio m
n , the errors ‖S‖2

‖S−S̃‖2
and ‖O‖2

‖O−Õ‖2
are

displayed for a single example. Since the minimization of the β-divergence does not explicitly
return O and S, we (re)-estimate O and S by minimizing (4.4) for fixed A, the mixing matrices
estimated by the different algorithms. A good separation of S and O is possible ifm� n because
the outliers are less likely to lie in the span of A; this is clearly shown in fig.4.11b. Despite an
accurate recovery of A for rAMCA whenm is small, the error made on the estimated outliers and
sources is large fig.4.11b: the separation is not possible without any additional assumption on
the sources and the outliers. Moreover, these errors decrease when the ratio m

n increases whereas
the error made on A remains more stable: the separation benefits from enhanced estimation of
A as well as from a lower contribution of the outliers in the range of A.

4.4.2.2 Influence of the condition number of A. The condition number of
the mixing matrix A is a crucial parameter for BSS. Given that the columns of A are normalized,
a large condition number implies that the columns of A are correlated. In multi/hyperspectral
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unmixing it means that some of the components to be separated have quite similar spectral
signatures: as so, they are difficult to differentiate.
The condition number of A is even more important in robust BSS since it influences the behavior
of the projected outliers in the sources domain. Indeed, the projected outliers A†O have larger
amplitudes, and as so are more detrimental. Indeed, the thresholding has a relatively smaller
impact on these data.
In order to illustrate its impact on the unmixing, we will compare the performances of rAMCA,
AMCA and GMCA with varying amplitude of the outliers, and varying condition number such
as in fig.4.12. The number of sources and observations are fixed to 6, in the presence of 10% of
outliers.
One can notice with fig.4.12 that for a given amplitude of the outliers, the methods (especially
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Figure 4.12: Median over 20 runs of ∆A for varying A and amplitude of the outliers.

GMCA) are hampered with an increasing condition number of A. Since GMCA is based on
the MDP, it fails whenever the projected outliers are larger than the sources, see also Section
2.1.3 (hence, broadly, whenever σS

σO
is smaller than the condition number of A). The AMCA

algorithm is much robust than GMCA thanks to the weighting scheme, which is still able to detect
and penalize the correlated entries/the outliers. However, AMCA may fail when the condition
number (with respect to the amplitude of the outliers) is too large: first, the unmixing is itself
more challenging, and second, even with the weighting scheme, it is costless to have broadly
distributed projected outliers than “clustered”projected outliers when the condition number of A
is large. In particular, if two columns of A are very close, it is generally costless to approximate
them with only one column of the estimated Ã, and orientate the other column of Ã in the
direction of the large outliers samples. On the other hand, by further removing the outliers,
rAMCA is much reliable.

4.4.2.3 Influence of the number of samples t. In the following experiment,
we investigate the influence of the number of samples. In order to observe the impact of this
data dimension on the combination PCP+GMCA, we consider that 6 sources are mixed into
30 observations (the low-rank assumption is valid), which are corrupted by ρO = 10% of active
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outliers with σO = 50. We set σN to 0.1. The number of samples t varies according to the x-axis
of fig.4.13.
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Figure 4.13: Performance results of the methods versus the number of samples t.

As shown in fig.4.13, all the algorithms are less reliable if only few samples are available since
the clustering aspect of the source contributions is not significant (an unmixing, even without
outliers, is challenging if only few samples are available). Besides, all the strategies become more
and more precise as the number of samples t increases.
Increasing the number of samples has several favorable effects on the unmixing: the number of
samples available to unmix the sources becomes sufficient regardless of the presence of outliers,
and the clustered aspect of AS has a greater importance since there are more and more clustered
samples in the term AS but the outliers are still in general position (generating randomly several
outliers in a same direction is quite unlikely).
The results would have been different if the proportion of corrupted samples in a given di-
rection had been set constant from one value of t to another. For instance, if one resizes an
multi/hyperspectral data cube, these proportions are kept constant, and for the largest image
size, few but several outliers are in a same direction. There are some applications (most of the
observations of physical processes) were the outliers are not strictly speaking in general position
(e.g. a point source emission in the Planck data corresponds to more than only one pixel), but
whose contributions are less structured/clustered than the one of the sources. The weighting
scheme penalizes the less clustered solutions, and so, still returns A. That is why AMCA and
rAMCA requires less samples than the others methods to perform accurately fig.4.13.

In the following, the impact of two other parameters will be investigated: the percentage
of corrupted data and their amplitudes. We will focus on the determined case which is more
challenging. Since the low-rankness assumption makes no sense in the determined case, the
algorithm PCP+GMCA will not be evaluated.
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4.4.2.4 Influence of the amplitude of the outliers. In the following ex-
periments, we consider that 10% of the data samples are corrupted with outliers. Fig.4.14a shows
the behavior the algorithms when the amplitude of the outliers σO varies.
The figure 4.14a shows that the standard GMCA rapidly fails to correctly recover the mixing
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Figure 4.14: Influence of the amplitude and the activation rate of the outliers.

matrix when the amplitude of the outliers increases. In these experiments, the algorithms AMCA
and β-divergence minimization algorithms provide very similar results. Interestingly, rAMCA
tends to be the least impacted by the amplitude of the outliers, especially when their amplitude
is of the order of the source’s level or very large. When the amplitude of the outliers and the
sources are close, the weighting schemes of AMCA and rGMCA are less effective at penalizing
the outliers. Unlike AMCA, the rAMCA algorithm progressively removes a certain level of the
outliers’ component, which further enhances the separation performances.

4.4.2.5 Influence of the percentage of corrupted data. In this section,
the amplitudes of the outliers σO is fixed to 100. The figure 4.14b shows the behavior of the
BSS algorithms when the percentage of corrupted columns ρ varies according to the values of
the x-axis.
As illustrated in fig.4.14b, the β-divergence algorithm is able to recover correctly the mixing
matrix when the number of corrupted columns of X is low (i.e. typically below 10%). The
rGMCA algorithm is rapidly impacted by an increasing number of corrupted data. On the
other hand, the AMCA-based algorithms are less influenced by the percentage of outliers. The
rAMCA algorithm provides a significantly better estimate of the mixing matrix when the number
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of outliers is larger than 10%.

4.4.3 Application to NMR spectral unmixing

In this section, we propose to compare the different algorithms in a more realistic setting: the sep-
aration of Nuclear Magnetic Resonance (NMR) spectra, similarly to Section 4.2.3. The presence
of instrumental artifacts is very frequent in spectrometry and makes difficult the interpretation
of the data. Such artifacts can be approximated by outliers contaminating entire columns of the
data matrix, such as for the LC-MS data, Section 2.1.1.
Following Section 4.2.3, the sources are composed of 6 theoretical NMR spectra of the cholesterol,
folic acid, adenosine, oleic acid, menthone and saccharose extracted from the SDBS database11

with t = 2048 samples. These spectra are further convolved with a Laplacian kernel of varying
width at half maximum (implementation from pyGMCA12), which models the resolution of the
instrument, fig.4.15a. The set of artificially corrupted data samples is fixed to 10 blocks of 20
consecutive columns. Their amplitudes are drawn according to a Chi-distribution with 1 degree
of freedom, and they are further convolved with the same kernel as the sources. The amplitude
of the outliers is set so that the energy of each block of outliers corresponds to the average contri-
bution of a source in the observations ‖O‖210 = ‖AS‖2

n , fig.4.15c. In the following experiments, the
data are made of 10 mixtures computed with a positive mixing matrix their entries are drawn
from a Chi-law with 1 degree of freedom and then the columns are normalized) and corrupted
also by the presence of the centered Gaussian noise with σN = 0.1.
Given that all the variables are non-negative, we will also compare AMCA and rAMCA with
rNMF [58], whose code is online. This method exploits the low-rankness of AS, the non-
negativity and the “sum-to-one”constraint (that is, the amplitudes of each sample of S sum to
one) to differentiate between the low-rank subspace and the outliers. The “sum-to-one”constraint,
which is not a valid assumption in this setting, is replaced by the constraint on the columns of A,
which are assumed to be normalized. We use the following inputs for rNMF: the ground truth
A, the projected sources

(
A†X

)
+ and the non-negative part of the corresponding residue.

The resulting sources admit a sparser distribution in the wavelet domain. Subsequently, the
data are transformed with the undecimated wavelet transform [122] prior to applying the BSS
algorithms, except for rNMF. Let us notice that a same wavelet transform is used for the outliers
and the sources because they have a similar morphology in the present setting. In the previous
experiments, we evaluated the separation performances of the algorithms in the case of exactly
sparse signals. The NMR sources we consider in this section rather exhibit an approximately
sparse distribution in the wavelet domain. We propose to evaluate the behavior of the robust
BSS algorithms when both the sources and the outliers follow an approximate rather than exact
sparse model. A simple way to evaluate the behavior of the algorithms with respect to the sparse

11http://sdbs.db.aist.go.jp
12http://www.cosmostat.org/software/gmcalab/
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Figure 4.15: Top: illustration of one observation Xi, without (left) and with outliers (right,
corrupted entries are represented with the red dashed line). Bottom: estimated sources with
rAMCA and PCP+GMCA for a width of the kernel of 6 (left) and right, performances of the
different algorithms versus the width of the kernel (right).

model is to evaluate their performances when the width of the convolution kernel increases. Low
width values will make the source model close to the exact sparse model while large values will
provide approximately sparse sources.
Figure 4.15d displays the evolution of the mixing matrix criterion when the width of the con-
volution kernel varies. It is interesting to notice that the minimization of the β-divergence,
PCP+GMCA, and the rNMF algorithms do not provide satisfactory separation results. This
experience is particularly challenging for these methods since: the low-rank assumption is not
valid, ’the sum-to-one’ constraint necessary to the separation between AS and O for rNMF has
been removed, and the outliers are less and less sparse as the width of the kernel increases. As
well, the rGMCA provides good separation results when the width is low but it rapidly yields
incorrect results when the width of the kernel increases. Indeed, let us recall that the outliers are
also approximately sparse, which makes these separation scenarios close to the cases we investi-
gated previously where the number of outliers is very large. This is typically the kind of settings
where these methods tend to fail. The rAMCA and AMCA provide the most accurate estimates
of the mixing. The discrepancy with respect to the other algorithms is particularly large when



104 Robust BSS in the presence of sparse outliers

the kernel has a large width. In this regime, the level of correlation between the sources increases,
a phenomenon to which the AMCA algorithm is robust [13]. Last, one of the sources estimated
by rAMCA and PCP+GMCA is displayed in fig.4.15b. Contrary to PCP+GMCA, the source
is correctly recovered by rAMCA outside the support of O because A is correctly estimated by
rAMCA. However, the leakages from the outliers into the sources estimated by rAMCA are still
important: they come from the coarse scale of the wavelet coefficients, which is not sparse and
for which we cannot differentiate the two contributions. Taking into account the non-negativity
of the signals would limit these leakages, but necessitates the use of proximal algorithms, Sec-
tion3.1, if combined with sparsity in a transformed domain [113]. Nonetheless, the weighting
scheme of rAMCA and AMCA is sufficient to obtain a robust estimation of A.

4.5 Summary and future works

In this chapter, we introduce new algorithms for tackling BSS problems in the presence of outliers.
The proposed rAMCA algorithm performs by estimating jointly the mixing matrix, the sources
and the outliers. Inspired by the AMCA algorithm, it first provides a robust estimation of
the sources and the mixing matrix. Additionally, it exploits the difference of structures of the
outliers and the sources to provide a robust detection and estimation of the outliers based on
their sparsity level in the source domain. Numerical experiments have been carried out on Monte-
Carlo simulations with various experimental scenarios, which show that rAMCA yields a robust
and reliable estimation of the mixing matrix. It provides the state-of-the-art separation results
especially in the highly challenging determined case.

Future works and improvements.

Refinement step: The presented algorithms rGMCA and rAMCA only provide a good esti-
mation of the mixing matrix. Even if a perfect separation between the sources and outliers is not
always possible as observed in Section 4.1.3, a refinement step for separating the outliers from
the source contribution would be of interest, for fixed A. The separation between the outliers
lying in the subspace orthogonal to the span of A (in the over-determined case) and the source
contribution would be at least improved.

Estimating the number of sources Estimating the number of sources is a topical issue in
BSS [97], [141]. That is why, assuming the knowledge of the exact number of sources is a
common assumption in BSS since most of the standard BSS methods are very sensitive to a mis-
estimation of this number. At best, if the number of sources ñ (provided) is under-estimated,
one can only expect to recover ñ of the initial n columns of A and resulting mixed sources. On
the other hand, if the number of sources ñ is over estimated, we can expect that n of the ñ
estimated columns correspond to the initial columns of A.
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In this chapter, we have seen that AMCA-based algorithms are able to retrieve robustly the
mixing matrix in the presence of outliers. In other words, they can estimate robustly the n most
clustering directions. One can then draw a connection with the estimation of the number of
sources: the outliers can been seen as less clustering sources contributions.

In order to investigate the influence of the hypothetical number of sources, we generate 10
sources, mixed into 16 noisy observations corrupted with 10% of outliers with σO = 100, and
a Gaussian noise with σN = 0.1. Then, we use AMCA and rAMCA with varying number of
estimated sources ñ (x-axis of fig.4.16). In cases where ñ < n, we check if the ñ recovered
columns correspond to ñ of the n initial columns of A. On the other hand, if ñ > n we check if
n among the ñ recovered columns correspond to the n initial columns of A.

Figure 4.16: Performances of rAMCA and AMCA versus the number of looked-after sources in
the presence of outliers

It can be observed in fig.4.16, that AMCA and rAMCA are robust to an underdetermined
and overdetermined number of sources, except if the number ñ is much smaller than the initial n.

These preliminary results show the potential of AMCA-based methods to estimate the number
of sources jointly with the mixing matrix and sources.
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The methods rAMCA and rGMCA, introduced in the previous chapter, can robustly estimate
the mixing matrix in the presence of outliers sharing the morphology of the sources. However,
they cannot separate precisely the source contribution from the outliers.
In this chapter, we propose to exploit the difference of morphology/geometrical content be-
tween the outliers and the sources to separate precisely the two contributions. This difference
of morphology, introduced in Section 1.2.2, is often encountered in imaging problems: strip-
ping lines due to malfunctions of captors have a different morphology than natural images
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in multi/hyperspectral imaging or point-source emissions have a different geometry than the
sought-after signals in the ESA-Planck mission, 2.1.2. By only assuming that the outliers and
the sources have a different morphology, the proposed strategy coined tr-rGMCA (robust Gener-
alized Morphological Component Analysis in transformed domains), is able to separate precisely
the sources and the outliers, in a wide variety of problems, including in the challenging deter-
mined case (n = m).
We will start this chapter by focusing on the separation of the outliers from the source contribu-
tion for which we explain why the morphological diversity is a powerful assumption for robust
BSS. Then, we introduce the tr-rGMCA problem, the associated algorithm and the strategies
used for the automatic choice of the parameters. Last, the results of numerical experiments on
1D Monte-Carlo simulations and 2D simulated astrophysics data are displayed for the compari-
son of tr-rGMCA with standard robust BSS methods.
This chapter corresponds to [32] and its submitted extension.

5.1 Separation between the outliers and the sources

As pointed out in Section 2.2, robust blind source separation can merely be split into two distinct
problems: i) the robust estimation of the mixing matrix A from the data without considering
outlier removal and ii) the exact or accurate separation between the outliers O and the sources
AS. In this section, we discuss how the morphological diversity between the components can
help tackling simultaneously these two problems.

5.1.1 Combining spectral and morphological diversity

In this section, we introduce an additional prior that helps differentiating between the sources
and the outliers: the morphological diversity between O and S, previously introduced in Section
1.2.2 (for transformed domains). While spectral diversity refers to the relative distributions of
the sources and the outliers in the column-space, morphological diversity deals with their relative
distribution in the row-space.

In a large number of applications, the sources to be retrieved and the outliers share different
morphologies, such as in Planck data fig.5.1. In this case, spurious points sources are the perfect
example of column sparse outliers. These components are local singularities that are morpholog-
ically distinct from more diffuse astrophysical components. Therefore, building upon the concept
of morphological diversity, we hereafter propose to reformulate robust BSS as a special case of a
multichannel MCA problem (see Section 1.2.2). In the remaining of this chapter, we will make
use of the following assumptions:

• Morphological diversity between the sources and the outliers: We assume that the
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(a) Simulated synchrotron
emission.

(b) Simulated point-source
emissions.

Figure 5.1: Simulated components of the ESA-Planck mission: synchrotron’s map (one row of
S) (a) and observation of the point-source contamination at a given frequency (one row of O).

sources are sparsely represented in the transformed domain or dictionary ΦS ∈ RdS×t, whose
number of atoms is such that dS ≥ t and that the outliers have a sparse representation in
ΦO ∈ RdO×t, with dO ≥ t:

Oj = αOj
ΦO, ∀j ∈ {1, ...,m} and Si = αSiΦS, ∀i ∈ {1, ..., n} ,

where
{
αOj

}
j=1,...,m and {αSi}i=1,...,n are composed of few significant samples. A toy exam-

ple is provided in fig.5.2. It highlights the benefits of exploiting the morphological diversity: in
ΦS, the outlier contribution is broadly distributed with a very small amplitude fig.5.2d,5.2f,
whereas in ΦO, they can be easily detected fig.5.2a,5.2c (and reciprocally for the sources
samples).

• Sparse modeling of the outliers: We also consider that the sparse representations of the
outliers corrupt entirely some columns and are broadly distributed in all the directions. For
this purpose, we will assume that OΦT

O is column sparse such as in fig.5.2.

5.1.2 Robust (non-blind) source separation as a sparse decomposition
problem

A special case of sparse decomposition in an overcomplete dictionary. The sources’
contribution L = AS to the data X is sparsely represented in the multichannel dictionary:
A⊗ΦS, whose atoms are composed of tensor products between the columns of A and the atoms
of ΦS.

Similarly, the rows of the outlier matrix O are assumed to be sparse in some dictionary ΦO so
that O = αOΦO, where the coefficients αO are column sparse. Let OD be the submatrix made
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Figure 5.2: Two sources sparse in DCT are mixed into three observations, corrupted with sparse
outliers. (a): scatter plot of the two first rows of O in ΦO, (d): scatter plot the same rows of O
in ΦS, (b): scatter plot of the first two sources in ΦO, (e): scatter plot of the same sources in
ΦS, (c): scatter plot of the two first corrupted observations in ΦO and last, (f): scatter plot of
the same observations in ΦS. The source contribution is represented with the blue dots and the
outliers with the red stars.

of the normalized non-zero columns of αO, built so that the kth non-zero column of αO at the
position t equals Ok

D = αO
t

‖αOt‖2
. We then denote αO′ the expansion coefficients of O in OD⊗ΦO,

such that ODαO′ = αO. The matrix αO′ is then column and row sparse and ‖αO′‖1 = ‖αO‖2,1.
With this parameterization, the outliers are sparsely represented in the multichannel dictionary
OD ⊗ΦO.

The observations are consequently sparsely represented in the multichannel dictionary D =
[A⊗ΦS,OD ⊗ΦO]:

X =
[
A OD

] [αS 0
0 αO′

][
ΦS

ΦO

]
.

Assuming that A and OD are known, estimating the sources S and the outliers O from X boils
down to tackling a sparse decomposition problem in the overcomplete multichannel dictionary
D, similarly to Section 4.1.3. In the following, we also make use of the mutual coherence of the
dictionary to provide a deeper insight into the proposed robust component separation.
Assuming that the components are K-sparse in D with K = ‖αS‖0 + ‖αO′‖0, a sufficient
condition for the identifiability of αS and αO′ [47] is given by (see [7] for a more precise recovery
condition):

K <
1
2

(
1 + 1

µD

)
,



5.1 Separation between the outliers and the sources 111

where the mutual coherence µD of D is defined as µD = maxi,j |〈di,dj〉|, where di stands for an
atom of the multichannel dictionary D (i.e. multichannel atoms are composed of tensor products
of atoms from the spectral dictionaries and morphological dictionaries). Furthermore, the same
condition also guarantees that the αS and αO′ can be recovered by solving the following basis
pursuit problem [47]:

argmin
αO′,αS

‖αO′‖1 + ‖αS‖1 s.t. X = AαSΦS + ODαO′ΦO. (5.1)

The term of interest in the above recovery condition is the mutual coherence µD, which is equal,
in this specific case, to:

max
(

max
(i,p)6=(j,q)

|〈Ai,Aj〉||〈Φp
S,Φ

q
S〉|, max

(m,u) 6=(n,v)
|〈Om

D ,On
D〉||〈Φu

O,Φ
v
O〉|, max

(l,c),(k,d)
|〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉|
)
,

(5.2)
where the columns of A, ΦO and ΦS are normalized to have unit `2 norm. In this expression, the
cross-terms max(l,c),(k,d) |〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉| are the most relevant to discriminate the outliers

and the source contribution and provide a different way to re-interpret robust (non-blind) source
separation:

• Spectral diversity or rPCA regime, Sections 2.2.1 and 4.1.3 In case the outliers and
sources share a same morphology, (see Section 4.1.3 for a more complete discussion), only the
cross-term between the mixing matrix and the outliers columns max(l,c) |〈Al,Ok

D〉| is relevant
for the separation. In the framework of rPCA, whenever the source contribution AS has low
rank, max(l,k) |〈Al,Ok

D〉| vanishes when OD lies in the subspace that is orthogonal to the
span of A, which naturally ensures the identifiability of both the sources and the outliers.
In the general case, assuming that O has independently and sparsely distributed entries and
that A is broadly distributed such as in the setting of rPCA, leads to spectral dictionaries
A and OD with low coherence. This is precisely in this regime that rPCA can ensure the
identifiability of the components.

• Morphological diversity or MCA regime, Section 1.2.2: When the low-rankness of
the observations is not a valid assumption or when the span of A and OD are not incoher-
ent, such as in the determined case, only the morphological diversity can help identifying
the components. In that case, the dictionaries ΦO and ΦS are assumed to be incoherent,
which makes max(c,d) |〈Φc

S,Φ
d
O〉| the relevant term for the separation. This is precisely in this

regime that MCA can ensure the separation between components that can only be identified
thanks to their difference of morphologies. In this case, robust component separation can be
solved in the determined case.

• Morpho/Spectral diversity: In the general case, both the spectral and morphological dic-
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Estimation Diversity Regime Methods Advantages Weaknesses

AS and O Morphological m ≥ n MCA [54]
No assumption on
the collinearity of

O and A.

AS should be
sparse in ΦS.
The spectral
structure may

not be preserved.

Spectral m � n
PCP [23],

or refinements
e.g. [142], [105]

Proven separability. OΦT
O column

and row sparse.

OP [135] OΦT
O column
sparse.

No identifiability
of O.

A, S
and O Spectral m � n rNMF [58]

Well adapted
for hyperspectral

unmixing.

Non-negativity,
sources samples
in the simplex
and presence of

almost pure-pixels.

m ≥ m rAMCA [31] Estimation of A No identifiability
of O.

Morphological
& spectral m ≥ n tr-rGMCA Identifiability in

all regimes

Table 5.1: Strategies able to separate AS and O.

tionaries are incoherent, the relevant coherence term is the product
max(l,c),(k,d) |〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉|. In this regime, robust component separation benefits from

incoherence of both the morphological and spectral dictionaries:
max(l,c),(k,d) |〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉| ≤ min(max(l,k) |〈Al,Ok

D〉|,max(c,d) |〈Φc
S,Φ

d
O〉|).

This is expected to greatly improve the accuracy of the separation. For instance, in this
regime, column-sparse outliers can be identified while methods that only make use of the
spectral diversity like Outliers Pursuit [135] can only ensure the identification of the support
of the outliers and not their amplitude.

In the framework of robust blind source separation, the spectral dictionary
[
A OD

]
is not

known and has also to be learned. For this purpose, we describe in the next section a novel
algorithm coined tr-rGMCA that makes use of both spectral and morphological diversities to
estimate jointly A, S and O given the two dictionaries ΦS and ΦO so as to build upon the
spectral and the morphological diversities between the components. Based on whether they
rely on spectral or morphological diversity, currently available blind separation strategies are
summarized in table.5.1, which completes the presentation in 2.3.
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5.2 Robust GMCA in transformed domains

In this section, we introduce the tr-rGMCA (rGMCA in transformed domains) algorithm that
builds upon both spectral and morphological diversities to estimate simultaneously A, S and O.
The tr-rGMCA algorithm performs by minimizing a cost function whose elements are based on
the following assumptions:

• Data fidelity term: The data are assumed to be described by the linear mixture model X =
AS+O+N. The squared Frobenius norm ‖X−AS−O‖22 is used as fidelity term to measure
a discrepancy between the data and the model. This distance is well suited to account for
the additive Gaussian noise N that usually contaminates the data.

• Penalty term for the sources: The compressibility of S in ΦS is enforced with a weighted `1
norm of the expansion coefficients of S:

∥∥Λ� SΦT
S
∥∥

1. The weighting matrix Λ ∈ Rn×t in-
cludes both the regularization parameters and the weights defined in standard re-weighting
`1 penalization [26], Section 3.3.5.

• Penalty term for the outliers: The sparsity pattern of O is enforced in the cost function using
the composite `2,1 norm [58, 83]:

∥∥Υ�OΦT
O
∥∥

2,1. Again the matrix Υ ∈ R1×t contains the
regularization parameters as well as weights in the sense of re-weighting `2,1. The morpho-
logical diversity assumption implies that ΦO and ΦS are somehow incoherent.

• Scaling indeterminacy: In order to control the scaling indeterminacy between A and S, the
columns of A have an energy bounded by 1. The columns of A are constrained to lie in the
`2 ball with unit radius: χY:‖Yk‖2≤1,∀k (A).

Therefore, the algorithm tr-rGMCA estimates jointly A, O and S by minimizing the following
cost function:

minimize
A,S,O

1
2 ‖X−AS−O‖22 +

∥∥Λ� SΦT
S
∥∥

1 +
∥∥Υ�OΦT

O
∥∥

2,1 + χY:‖Yk‖2≤1,∀k (A) . (5.3)

The resulting cost function is a multi-convex non-smooth optimization problem: it is globally
non-convex but subproblems with all variables fixed except one are convex. Hence, it is customary
to optimize this type of cost function using Block Coordinate methods, Section 3.2.

5.2.1 Block Coordinate Minimization

Updating each block A, S and O alternately at each iteration can be carried out in different
ways. The subproblems associated with the minimization of the problem 5.3, assuming all the
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blocks are fixed but one are given by:

PA : minimize
A

1
2 ‖X−AS−O‖22 + χY:‖Yk‖2≤1,∀k (A) . (5.4)

PS : minimize
S

1
2 ‖X−AS−O‖22 +

∥∥Λ� SΦT
S
∥∥

1 . (5.5)

PO : minimize
O

1
2 ‖X−AS−O‖22 +

∥∥Υ�OΦT
O
∥∥

2,1 . (5.6)

These three problems can be written as argminY fY (Y) + gY (Y), where fY (.) is related to a
differentiable data-fidelity term (whose gradient denoted as ∇fY is LY -Lipschitz) and gY (.) is
the proximable regularization associated with the component Y (see Section 3.1). In general,
they do not admit a closed-form solution and therefore require resorting to iterative minimization
procedures such the Proximal Forward-Backward Splitting algorithm (FB) [38], [107] presented
in Section 3.1.2. Whether it is based on BCD or PALM, it is possible to design a minimizer
that provably converges to a local stationary point of the problem 5.3. In this context, either
the BCD or the PALM algorithm can be chosen. However, BCD, introduced in Section 3.2.3,
yields a computationally intensive minimization strategy. In the sequel, we therefore opted for
the prox-linear approach, which is at the origin of the PALM algorithm presented in Section3.2.4.

5.2.2 A prox-linear implementation

In the framework of PALM, each component is updated with one proximal gradient step eq.5.7
at the kth iteration (Section 3.2.4):

Ỹ(k) ← prox
1
LY

gY

(Ỹ(k−1) − 1
LY
∇fY ((Ỹ(k−1))). (5.7)

From this generic update, the three steps that compose the tr-rGMCA algorithms are described
as follows:

• Update of the sources. AssumingΦS is orthonormal, the proximal operator of the function
S 7→

∥∥ΛSΦT
S
∥∥

1 is exactly S 7→ SΛ
(
(S)ΦT

S
)
ΦS. Therefore, at iteration k of the PALM

procedure, the update of S̃(k) is given by:

S̃(k+1) ← S Λ
LS

((
S̃(k) + 1

LS
Ã(k)T

(
X− Ã(k)S̃(k) − Õ(k)

))
ΦT

S

)
ΦS, (5.8)

where the step size LS is chosen to be equal to the Lipschitz constant of the gradient, i.e.
the maximal eigenvalue of Ã(k)T Ã(k).
When ΦS is not orthonormal, the proximal operator of the function S 7→

∥∥ΛSΦT
S
∥∥

1 does not
admit a closed form. However, in the next experiments, the dictionaries used of ΦS will be
tight frames (e.g. undecimated wavelets) whose Gram matrix is close to the identity matrix.
In that specific case, the update (5.8) provides a good approximation for the proximal oper-
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ator.

• Update of the outliers. Assuming ΦO is orthonormal, the update of the outliers at the
kth iteration of the PALM procedure is given by:

Õ(k+1) ← α̃OΦO where, ∀j = 1..t and ∀i = 1..n : (5.9)

α̃O
j
i ←

((X− Ã(k)S̃(k)
)
ΦT

O

)j
i
×max

0, 1− Υj
i∥∥∥((X− Ã(k)S̃(k)
)
ΦT

O
)j∥∥∥

2

 .

In contrast with S, the proximal gradient step eq.5.9 exactly solves PO.
Besides, in this chapter, we assume that the outliers corrupt entirely few columns of the
observations in their associated transformed domain. However, it would be straightforward
to account for row and column sparse outliers in ΦO by replacing the `2,1 norm with the `1
norm. In this case, (5.9) is simply replaced by: Õ← SΥ

(
(X−AS)ΦT

O
)
ΦO.

• Update of the mixing matrix. The proximal gradient step for A is two step: ((a) corre-
sponds to the gradient step, and (b) to the proximal operator of the characteristic function):

(a) Ã(k+1) ← Ã(k) + 1
LA

(X− Ã(k)S̃(k) − Õ(k))S̃(k)T ,

(b) Ãi(k+1) ← Ãi(k+1)

max
(
1,
∥∥Ãi(k+1)

∥∥
2

) ,∀i = 1..n,

where LA is chosen to be equal to the Lipschitz constant of the gradient, i.e. the maximal
eigenvalue of S̃(k)S̃(k)T .

Algorithm. The prox-linear minimization of (5.3) can be found in Alg.16.

Limitations of the standard block coordinate minimizers. The proposed prox-linear
implementation is sensitive to the setting of the parameters and the initialization, which makes
the joint estimation of the regularization parameters and the components highly challenging.
As introduced in Section 3.3, the additional heuristics deployed with GMCA (or its extensions
AMCA, rGMCA and rAMCA, Chapter 4) permit a robust estimation of the components and
regularization parameters. If these heuristics, which are further detailed in Section 5.2.3, yield
more robust minimization procedures, they lack provable convergence. Therefore the global op-
timization strategy used in the tr-rGMCA algorithm is composed of two successive steps:

• The warm-up step: a solution of the problem in Equation (5.3) is approximated using a PALS-
based algorithm with heuristics. This first step, which is described in Section 5.2.3, aims at
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providing a robust first guess of the components for the next, provably convergent, step.
• The refinement step: The goal of this stage, which we described in Alg.16, is to provide a

local stationary point of (5.3). The associated regularization parameters are based upon the
values of the components returned in the warm-up step, with 5.12.

This two-step strategy was proposed for the basic GMCA in Chapter 3.3.5.

Procedure 16 PALM
1: procedure PALM(X, S̃, Õ, Ã,Λ, Υ )
2: Set S̃(0) ← S̃, Õ0 ← Õ and Ã0 ← Ã
3: while p < P do
4: Compute LA
5: Ã(p+1) ← Ã(p) + 1

LA
(X− Ã(p)S̃(p) − Õ(p))S̃(p)T

6: Ãi(p+1) ← Ãi(p+1)

max(1,‖Ãi(p+1)‖2)
,∀i = 1..n

7: Compute LS
8: S̃(p+1) ← S Λ

LS

((
S̃(p) + 1

LS
Ã(p+1)T (X− Ã(p+1)S̃(p) − Õ(p)))ΦT

S

)
ΦS

9: Õ(p+1) ← αÕ(p+1)ΦO where ∀j = 1..t and ∀i = 1..m :

10: αÕ(p+1)
j
i ←

(((
X− Ã(p+1)S̃(p+1))ΦT

O
)j
i
×max

(
0, 1− Υj

i∥∥((X−Ã(p+1)S̃(p+1))ΦTO)j
∥∥

2

))
return S̃(P−1), Ã(P−1), Õ(P−1).

5.2.3 Warm-up procedure

In this section, we describe the so-called ’warm-up’ stage of the tr-rGMCA algorithm. This
procedure aims at providing an approximated solution of the problem (5.3) as well as robustly
determining the regularization parameters (similarly to the rAMCA algorithm, in Chapter 4).
The proposed strategy builds upon an appropriate choice of the variables to be updated based
on either morphological or spectral diversity, that leads to the following PALS procedure:

• Joint estimation of O and S based on morphological diversity. Jointly estimating O
and S for fixed A amounts to solving the following convex optimization problem:

minimize
S,O

1
2 ‖X−AS−O‖22 +

∥∥Λ� SΦT
S
∥∥

1 +
∥∥Υ�OΦT

O
∥∥

2,1 . (5.10)

which we previously interpreted as some multichannel extension of Morphological Component
Analysis. This step, which is detailed in Section 5.2.3.1, essentially exploits the morpholog-
ical diversity between the outliers and the sources. Besides, we can extend the thresholding
strategy proposed for MCA to distinguish between the two contributions, without risking a
modification of A.
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• Joint estimation of A and S based on spectral diversity. Updating A and S boils
down to tackling the sparse BSS problem from the residual term X−O:

minimize
S,A

1
2 ‖X−AS−O‖22 +

∥∥Λ� SΦT
S
∥∥

1 + χY:‖Yk‖2≤1,∀k (A) . (5.11)

While being non-convex, algorithms like GMCA, Section 3.3.5, or AMCA, Section 4.3, pro-
vide efficient approximate minimization that yields fair estimates of the tuple (Ã, S̃). This
stage is described in Section 5.2.3.2.

The warm-up procedure alternates between these two problems to minimize (5.3), such as
presented in Alg.17. The combination of these two subproblems fully exploits the two types
of diversity between the contributions. Besides, the independent reassessment of the sources S
from one subproblem to another limits the propagation of errors and destabilizes local minima,
improving the robustness of this initializing scheme.
As it will be described in the remaining of this subsection, the warm-up procedure involves key
heuristics that rely on particular parameter strategies and approximations, which are made to
fasten the process and improve its robustness with respect to the initialization, noise residual
and parameters setting (cf. Section 3.3).

In the numerical experiment section 5.3.2, we provide a comparison between the performances
of the warm-up step alone, the refinement (PALM-based) step alone, and the combination of both
(tr-rGMCA), showing the robustness of the warm-up procedure as well as the benefit in term of
accuracy for using the refinement step.

5.2.3.1 Estimating O and S using the morphological diversity. For
fixed A, the outliers O and the sources S are the solutions of the problem (5.10). Since, for fixed
sources, updating the outliers allows a closed-form expression, we opted for the BCD strategy
that alternates between estimations of O and S:1

• Updating the sources. The estimation of S is given by PS (5.5). As stated in Section 3.1,
PS can be solved with ISTA 3.1.2. We point out that in practice, the accelerated FISTA [8]
is preferred.

1The joint estimation of S and O can be highly fastened by using a PALS procedure, in the spirit of MCA.
However, whenever A does not have a small condition number or ΦO and ΦS are not highly incoherent, this
process yields an inaccurate separation, which is then very likely to further hamper the unmixing: the errors
propagate.
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Procedure 17 WarmUp Procedure
1: procedure WarmUp(X, Ã, S̃, Õ)
2: Initialize S̃(k=0) ← S̃, Ã(k=0) ← Ã and Õ(k=0) ← Õ.
3: while k < K do
4: Set αS

(i=1,k) ← S̃(k−1)ΦT
S , Ã(i=1,k) ← Ã(k−1), and

5: αX−O ←
(
X− Õ(k−1))ΦT

S
6: while i < I do . Joint estimation of A and S
7: αS

(i,k) ← SΛ
(
Ã(i−1,k)†α(X−O)

)
8: Ã(i,k) ← α(X−O)αS

(i=1,k)†

9: Decrease Λ
10: Set S̃(k) ← αS

(i=I−1,k)ΦS and Ã(k) ← Ã(I,k)

11: Set S̃(`=0,j=0,k) ← S̃(k) and Õ(`=0,j=0,k) ← Õ(k−1)

12: for ` < L do . Reweighting Procedure
13: while j < J do . Joint estimation of S and O
14: Update S̃(`,j,k) with FISTA using the proximal gradient step (5.8)
15: Update Õ(`,j,k) with the closed form (5.9)
16: Update Λ and Υ for the reweighting procedure according to (5.12)
17: Set S̃(`+1,0,k) ← S̃(`,J,k), Õ(`+1,0,k) ← Õ(`,J,k)

return Ã(K), S̃(L,J,K), Õ(L,J,K).

• Updating the outliers. The estimation of O is given by PO (5.6). The corresponding
update with the FB algorithm is the closed form eq.5.9.

Parameter updates. In this subproblem, an adapted setting of the parameters Λ and Υ is
important to control the leakages between the two components and so achieve a good separation
between AS and O.

• Reweighting scheme: The `1 and `2,1 norms introduce some biases, which can be detrimen-
tal to the BSS problem in the presence of outliers, or at least lead to inaccurate solutions
with artifacts (we refer to the Section 3.3.5). For this reason, a reweighting scheme is imple-
mented [26,113]: the values of the parameters Λ and Υ depend on the values of the estimated
variables. More precisely, we will set Λ = λ �WS and Υ = υ �WO, where λ ∈ Rn×1 is
a fixed vector setting the sparsity level of each source, and WS ∈ Rn×t corresponds to the
varying weights. Similarly υ ∈ R is the scalar setting the global sparsity level of the columns
of OΦT

O, while WO ∈ R1×t contains the weighting parameters.

• Fixed parameters λ and υ, App.B: Similarly to the rAMCA algorithm, Section 4.3.2, the val-
ues {λi}i=1..n are fixed to kσi, where σi are obtained with the mad of

(
AT (X−O−AS)ΦT

S
)
i
.

The value of υ is set so as to limit the impact of the remaining Gaussian noise on the es-
timation of O. Outside the support of OΦT

O, the `2 norm of the columns of the centered
Gaussian residual follows a χ-law with m degrees of freedom, whose expectation is given by
σ×
√

2 × Γ(m+1
2 )

Γ(m2 ) , where σ can be estimated with the value of the mad of (X−AS−O)ΦT
O.
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The parameter υ is set to υ = k × σ ×
√

2 × Γ(m+1
2 )

Γ(m2 ) .

• Weights WS and WO. At every iteration ` > 1 such as in Alg.17, the parameters WS and
WO are updated according to the current values of S and O respectively with:

WS = λ

λ+ |
(
S̃ΦT

S
)
|
and Wq

O = υ

υ +
∥∥∥(ÕΦT

O
)q∥∥∥

2

∀q = 1..t. (5.12)

We point out that WS and WO are reset to 1 for ` = 1 so as to limit the propagation of the
errors and make full benefit of the new estimation of A by not enforcing the solutions to be
similar to the previous ones.

5.2.3.2 Sparse BSS for the joint estimation of A and S. The joint
estimation of A and S with fixed O amounts to perform a standard sparse BSS on the current
denoised observations X−O. For that purpose, we will make use of either the GMCA, Section
1.3.2, or the AMCA, Section 4.3.2, algorithms to update these variables.
During the very first iterations of the warm-up stage, a large part of the outliers is very likely
to be mis-estimated and still present in the residual X − Õ, what will eventually hamper the
unmixing process. Choosing the BSS algorithm that is the most robust to this residual will help
enhancing the estimation A. For that purpose either GMCA or AMCA will be used based on
the relative choices of ΦS and ΦO:

• Highly incoherent dictionaries: If ΦO and ΦS are highly incoherent, the outlier residual is
likely to be dense in ΦS, similarly to the case displayed in fig.5.2. Using the standard fast
GMCA, which is robust to the presence of Gaussian noise, and more generally to dense noise,
is the best choice.

• Mildly incoherent dictionaries: In this case, the algorithm AMCA should be preferred. In-
deed, the representations of the outliers and their residues in ΦS are likely to be mildly sparse.
In that case, we showed in Chapter 4 that the AMCA algorithm provides a more robust es-
timate of A.

• Additional priors on the sources: Besides the morphology of the residual of the outliers in ΦS,
another additive knowledge on the data may justify the use of a specific sparse BSS algo-
rithm. For example, if the sources are correlated, the algorithm AMCA, which was originally
developed to handle partially correlated sources, should be preferred to GMCA, even if the
residual of the outliers is dense in ΦS.

Since AMCA and GMCA only differ by this weighting scheme, we will present the warm-up
procedure using GMCA. The AMCA algorithm is implemented by adding the weighting proce-
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dure presented in Section 4.3.2.

Component updates. The fast version of GMCA performs the separation directly in the
transformed domain ΦS. If ΦS is orthonormal, the returned results are exact, and provide a good
approximation if ΦS is diagonally dominant [14]. The GMCA algorithm estimates alternatively
A and αS by minimizing:

minimize
A,αS

1
2
∥∥((X−O)ΦT

S −AαS
)∥∥2

2 + ‖Λ�αS‖1 .

The algorithm estimates alternatively A and the coefficients αS with projected least-squares to
fasten the unmixing process. The corresponding updates are given in Alg.17 and further details
can be found in Sections 1.3.2 and 3.2.2.

Parameter updates. The strategies used for the setting of the parameters involved in
GMCA are crucial for the robustness against the noise and local minima. They are presented
below:
• The values of Λ = λ �WS plays a key role in AMCA and GMCA. In order to adopt the

efficient scheme used presented in Section 3.3.3 and to limit the propagation of the errors due
to a previous mis-estimation of S, the weights WS are set to 1 during the unmixing process.
The final threshold λi for each αSi is kσi where σi corresponds to the standard deviation of
the noise corrupting the coefficients of the ith source, and k ∈ (1, 3) [14]. The value of σi,
if not known, can be estimated with the value of the mad of the coefficient αSi before the
thresholding operation, (see App.B and Section 3.3.3 for further details).

5.3 1D Monte-Carlo Simulations

We compare tr-rGMCA with standard robust BSS methods. These methods as well as the
different criteria used to compare the algorithms are presented at the beginning of this section.
The different strategies are compared first with simulated data allowing Monte-Carlo simulations
(40 runs for each varying parameter). Last, they are compared on realistic simulated data
from the ESA-Planck mission in the presence of additional point-sources emissions which act as
outliers.

5.3.1 Performance criteria and algorithms for comparison

5.3.1.1 Algorithms for the comparison. Only few methods presented in the
literature can handle the considered problem. Most of these strategies require additional as-
sumptions, and consequently, cannot be used without regarding the setting. In this section, we
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present the selected strategies for the comparison explaining in which experiments they will be
used.

Proposed optimization strategy. In order to highlight the robustness of the proposed
minimization strategy, we will compare it with the following other implementations:

• Oracle with A known. In this case, we assume that A is known, and we separate the
outliers from the source contributions using the morphological diversity between the two
components. The difference between its results and the ones of tr-rGMCA illustrates the loss
of accuracy leaded by the blind unmixing process.

• The PALM procedure only. To underline the advantage of using the initialization pro-
cedure, we also minimize 5.3 using only the refinement step in Alg.1. Since a reweighted
procedure is implemented in tr-rGMCA, the refinement procedure is run three times: first,
it is initialized with null S and O and the matrix A used for tr-rGMCA, and for the second
and third times, with the current estimates of S and O (it is important for the update of the
regularization parameters, Section 5.12).

• The warm-up step only. The intermediate performances, obtained by the initialization
step only, will be also displayed. A difference between these results and the PALM procedure
would bring out the robustness of this initialization step, and the dissimilarity with the all
process tr-rGMCA would show the gain of using a more precise refinement step.

Methods used for the comparisons.
• The combination Outliers Pursuit (OP)+GMCA. The outliers that are not laying in

the subspace spanned by A are first estimated by applying the Outlier Pursuit algorithm on
XΦT

O, [135], Section 2.2.1. Then the algorithm GMCA is applied on the denoised observations(
X− Õ

)
ΦT

S . This strategy requires the term AS to have low-rank, and thus, it will only be
used when m > n. Given that the parameter proposed in [135] does not return satisfactory
results, we choose to tune its value: we select the best Ã among the ones obtained from GMCA
after the Outlier Pursuit for which we set the parameter λ (notations of [135]) between 1

5
√
t

and 10√
t
with a step-size of 1

5
√
t
.

• The rNMF algorithm [58]. This component separation method, presented in Section 2.2.3,
estimates jointly A, S and O. It assumes that the sources and the outliers are non-negative,
and that the outliers corrupt entirely (in the domain of observations) few columns of X. It
necessitates also the low-rank assumption, and that the data samples lie in the simplex with
almost pure pixels. This method will be used in the last experiment (detection of point-
source emissions in astrophysics), in which the outliers, sources and mixing matrix are all
non-negative. All the conditions required for the rNMF to be efficient will not be valid.
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• ICA-based on a β divergence minimization [100], Section 2.2.2 2. This ICA-based
method assumes that the sources are mutually independent and that m = n. That is why,
we will only use this method when m = n since otherwise, a dimension reduction technique
is needed (and is challenging in the presence of outliers, see Section 4.4.2). Besides, it only
returns A, and thus, does not perform the separation between the outliers and the sources
contribution.
In contrast with the other methods, a strong morphological diversity makes the unmixing
more challenging for this method. Indeed, it should be performed in a domain in which
few samples are corrupted, and so in ΦO. However, if the morphological diversity is strong,
then the expansion coefficients of the sources in ΦO are highly non-sparse (see for example
fig.5.2(c), the sources coefficients inΦO almost follow a Gaussian distribution): this is difficult
to handle for ICA-based methods. On the other hand, ifΦS andΦO are not highly incoherent,
then the outliers are likely to not corrupt all the samples in ΦS. It is then preferable to
perform the minimization in ΦS since the sources are better represented and the outliers do
not corrupt all samples.
Last, setting the value of β is challenging in practice. We select the best A for the 20
preselected values of β, starting from 10−4 to 0.85.

• GMCA. It will be performed on XΦT
S . Its results illustrate the sensitivity of the standard

(non-robust) methods to the outliers.
• The combination MCA+GMCA. Similarly to the combination OP+GMCA, the outliers

are first discarded from the observations using MCA presented in 1.2.2, and the unmixing is
then performed on the cleaned data. Instead of using the spectral diversity such as done by
the OP algorithm, this combination only exploits the morphological diversity to discard the
outliers.
It is indeed possible to separate AS from O, without regarding the ratio n

m , as long as AS is
sparse in ΦS. We point out that this hypothesis can be valid only in the presence of a small
number of sources. Besides, this approach does not take into account the clustered, structural
aspect of the product AS.

5.3.1.2 Performance criteria. In this section, we present the different criteria
used to compare the algorithms. In the context of robust BSS, they should assess the unmixing
of the sources (recovery of A), the separation between the outliers and the sources as well as
the reliability of the separation (especially because the problem is not convex) - see App.C for
further details on the metrics.

Unmixing.

• For each recovered Ã, the global quantity ∆A = −10 log 10
(
‖Ã†A−I‖1

n2

)
is computed.

2python implementation from [63]
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• For each recovered Ã, the maximal angle between the estimated and actual columns of A is
computed: maxj=1,...,n arccos〈Ãj ,Aj〉 (in degree).
For every considered parameter, we sum the number of runs for which an algorithm has re-
turned a mixing matrix whose maximal angle is smaller than 5 degrees (normalized to one).

Estimation of the sources and outliers.
• In Section 5.3, we will only display the median over the n sources of the SDR: it provides a

global criterion on the precision of the source estimation. In Section 5.4, the medians as well
as the minima for the n sources of the SDR, SAR, SIR and SNR will be displayed, so as to
describe more precisely the obtained estimations.

• The sources can be erroneously estimated whereas the outliers and AS are correctly esti-
mated (for the Frobenius norm). To measure the quality of the separation between AS and
the outliers, the two components of interest for MCA and OP, we also compute the following
metric for the outliers: OSE = −10 log ‖Õ−O‖2

‖O‖2
, where O denotes the initial outliers, Õ the

estimated ones.

5.3.2 1D Simulations

We start by comparing the different strategies on 1D data permitting Monte-Carlo simulations,
with varying parameters. For this purpose, we will generate two kinds of data sets, which are
described in the next part.

5.3.2.1 Data setting.
• Data setting 1: we consider n sources whose expansion coefficients are exactly sparse in

DCT. They are drawn from a Bernoulli-Gaussian law, with an activation parameter of 5%
and a standard deviation of 100. These sources are mixed into m observations, which are
corrupted by outliers and an additive Gaussian noise. The outliers are sparse in the direct
domain (ΦO = I). The support of the active columns of O follow a Bernoulli law, with
varying activation rates fig.5.3. The amplitude of the active entries are drawn from a centered
Gaussian distribution, with a standard deviation equal to 100 × 8

m (so that for the two
considered numbers of observationsm = 8 andm = 40, it will remain quite constant relatively
to the amplitude of AS). The number of samples is fixed to 4096. For the two data-sets,
the entries of the mixing matrix are drawn from a Gaussian distribution and the columns of
A are then normalized for the `2 norm. Besides, A is generated so as to have a condition
number smaller than 100.

• Data setting 2: this is a more realistic setting, with a same number of samples t = 4096.
The sources are first generated from a Bernoulli Gaussian law in the direct domain, with an
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activation rate of 2% and a standard deviation of 100. The sources are then convolved with a
Laplacian kernel (FWHM equal to 20). They can be sparsely represented using redundant 1D
wavelets [122]. The outliers are generated so as to correspond to a high frequency structured
noise- approximately column sparse in the DCT domain. First, we generated a 1×4096 vector
whose entries are drawn from a generalized Gaussian distribution with scale parameter 0.1.
In order to obtain a high frequency texture, the amplitude of the DCT coefficients are scaled
(from 10−4 for the lowest frequency to 1 for the highest one, with a logarithmic range), and
the lowest 500 coefficients are manually set to 0. Last, this vector is multiplied (dot-wise) by
a matrix generated from a Gaussian distribution, whose columns are normalized for the `2
norm, so that OΦT

O is approximately column sparse.
The first data setting is almost ideal since the expansion coefficients are exactly sparse and the
mutual coherence between the DCT and the direct domain is very low. On the other hand,
the second one is more realistic: approximately sparse expansion coefficients and the mutual
coherence between the wavelets and the DCT is larger than the one between DCT and the direct
domain.

5.3.2.2 1D Monte-Carlo simulations - Optimization strategy. In this
first set of experiments using the first data-setting for 8 sources and 8 observations, we consider
an easy setting to compare different optimization strategies which can be used to minimize (5.3).
The SNR for the additive Gaussian noise is set to 30dB.

10 20 30
% of corrupted columns

0
5

10
15
20
25
30
35
40
45

SD
R

10 20 30
% of corrupted columns

0

5

10

15

20

25

O
S
E

Oracle tr-rGMCA Initialization PALM

10 20 30
% of corrupted columns

5

10

15

20

25

30

∆
A

10 20 30
% of corrupted columns

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

ov
er

ed
A

Figure 5.3: Performance indicators for a varying percentage of corrupted columns in the deter-
mined case for different optimization strategies.

First, one can notice in Fig.5.3 that in the presence of very few outliers (percentage of cor-
rupted columns equal to 1%), the different strategies perform similarly in term of precision and
reliability. Moreover, their corresponding values of the SDR Fig.5.3 is also close to the one
obtained by the oracle: the unmixing task does not hinder the estimation of the sources. How-
ever, in the presence of numerous outliers, some disparities appear: the different strategies do
not perform similarly and as well as the oracle. The PALM implementation (refinement step
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of tr-rGMCA) is more precise than the initialization step for the unmixing (∆A has larger val-
ues Fig.5.3), but it is not as robust: except when there are only very few outliers, it cannot
recover A for all the runs, contrary to the initialization step (with a percentage smaller than
30%) Fig.5.3. However, adding the refinement step after the initialization step (the proposed
strategy for tr-rGMCA) permits a significant gain in term of precision: all the values of the per-
formance indicators are higher with tr-rGMCA than with the initialization step only. Moreover,
the SDR and the error for the outliers Fig.5.3 obtained with tr-rGMCA are very close to the
ones of the oracle: the unmixing of tr-rGMCA is robust and does not deteriorate the estimation
of the sources while the percentage of corrupted columns is smaller than 30%. On the overall,
tr-rGMCA is almost not influenced by the percentage of corrupted columns while this one is
smaller than 30%. However it quickly fails, similarly to the oracle, in the presence of a larger
percentage. Even if the dictionary chosen for O is not the most adapted one (O does not have
a very sparse representation), the separation between the outliers and the source contribution
can be good as long as the components have sparser representation in their associated dictionary
than in the other one.
These results support the proposed strategy used for tr-rGMCA. In the following, only the results
obtained by the oracle and tr-rGMCA will be displayed.

5.3.2.3 1D Monte-Carlo simulations - Comparison in the deter-
mined case. Only few methods able to handle the presence of outliers in the determined
case are present in the literature. We propose to compare these methods with tr-rGMCA in this
challenging setting.

Influence of the percentage of corrupted columns - 2 Sources. In this experiment,
the data are generated with the first data-set with 2 sources and 2 observations. The SNR, for
the Gaussian noise, is set to 60dB. In the determined setting, one can envisage using the mini-
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Figure 5.4: Performance indicators for a varying percentage of corrupted columns in the deter-
mined case for 2 sources.
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mization of the β-divergence, and the combination MCA+GMCA (which can also be used in the
over-determined setting). The results obtained by the minimization of the β-divergence, fig.5.4
are better than the ones of GMCA but not as reliable or as precise as the ones of tr-rGMCA or
MCA+GMCA. However, we explained in the presentation of the different methods used for the
experiments, that this setting is challenging for the minimization of the β-divergence. Besides,
the parameter β needs to be finely tuned, and we only tried 20 different values for this parameter.
The second comment that can be made regarding fig.5.4, is on the impressive performances of
the combination MCA+GMCA which performs very similarly to tr-rGMCA and the so called
oracle. We will see in the next experiments that the combination MCA+GMCA is nonetheless
not able to handle the presence of a larger number of sources.

Influence of the outlier amplitude - 8 Sources . The data are generated from the second
data-setting. We consider that 8 sources have been mixed into 8 observations. The SNR for the
Gaussian noise is set to 50dB. In this experiment, we observe the influence of the amplitude of
the outliers. For this purpose, we define the SOR (signal to outlier ratio), similarly to the SNR:
SOR = 20 log ‖AS‖2

‖O‖2
. The support of the outliers remains constant for a given run, and only

their amplitude is modified, by setting the SOR according to the value of the x-axis of Fig.5.5.
On the overall, the values of the different performance indicators are smaller than with the
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Figure 5.5: Performance indicators for a varying amplitude of the outliers in the determined case
for 8 sources.

first data-set: the second data-set, more realistic, is indeed more complicated. More specifically,
one can note the significant gap for the SDR between the oracle and the other methods fig.5.5,
whereas the outlier estimations have a similar precision fig.5.5: the additional unmixing clearly
affects the results. The discrepancy between the minimization of the β-divergence and tr-rGMCA
is reduced in this setting: the minimization of the β-divergence is performed in ΦS, which is
favorable to the unmixing.
With this data set and this number of sources, MCA fails to separate precisely the outliers from
the source contributions, and the consecutive GMCA returns erroneous solutions. It fails because
the component AS is not sparse enough in ΦS (the number of sources is too large), and that
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it does not take into account the structure, the clustered aspect of the product AS. This is
illustrated in Fig.5.6: the estimation of AS obtained by MCA+GMCA is fair, but the resulting
sources are clearly not correctly estimated. On the other side, the proposed tr-rGMCA is robust
to outliers having large amplitudes, at least, much more than the standard BSS method GMCA.

(a) First observation.
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(c) Estimation of the first source.

Figure 5.6: Illustrations of the estimated signals for a SOR equal to −10dB. Top: noisy X1
and noiseless (AS)1 first observation. On the left, restoration of the first observation, on the
right, estimation of the first source. In blue, the initial signals, in black, the ones recovered by
tr-rGMCA and in green by the combination MCA+GMCA.

5.3.2.4 1D Monte-Carlo simulations - Comparison in the over-de-
termined case. In Section 5.1.1, we underline the importance of the ratio m

n in robust BSS.
To illustrate it, we vary the number of observations, for 6 sources, with the two data-settings.
The SNR is fixed to 50 dB and the SOR to −10dB for the 1st data set and 10dB for the second.
Besides, the condition number of A, which plays a crucial role in robust BSS (we refer to the
numerical experiments dedicated to the influence of the condition number in Section 4.4.2), is
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very likely to decrease with an increasing m. In order to limit the influence of this parameter,
the condition number of A is limited to 5.

First data-set. We start with the first data-set. The results obtained by the different meth-
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Figure 5.7: Performance indicators for a varying number of observations, m, for 6 sources for
the first data set

ods are improved if m� n, fig.5.7. Given that the outliers in ΦS are broadly distributed, they
act similarly to an additive Gaussian noise with a large variance. Most of the methods used for
the comparison used GMCA which is robust to the presence of a large Gaussian noise thanks
to the thresholding operator whose threshold value varies according to the current noise level.
However, this large threshold value leads to the presence of artifacts and biased source coeffi-
cients. When the number of observations becomes large, the projection of outliers in the span
of A has a smaller energy, and so, the corresponding apparent noise level becomes also smaller:
the artifacts become also smaller, and both A and S are more accurate. That is why, most of
the methods are able to estimate A, and S fairly when m� n.
It can also be noticed that even ifm is close to n, the combination Outlier Pursuit (OP) + GMCA
is able to retrieve A, while GMCA alone cannot. The sources and the outliers are not precisely
retrieved, but the results are the second best after tr-rGMCA. With the strong morphological
diversity, the outliers are very sparse in ΦO while the source contribution is very dense: sparsity
is discriminative enough, and OP can discard a part of the outliers. Removing the largest outlier
contribution is sufficient, since this data set is very favorable to GMCA.

Second data-set. The different methods are on the all less performant with the second
data set, even if an improvement is also noticeable if m � n, especially for the combination
OP+GMCA fig.5.8. The proposed tr-rGMCA is the only method able to estimate precisely
and reliably the three variables, including when the number of sources is close to the number
of observations. The combination MCA+GMCA struggles to solve the problem because the
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Figure 5.8: Performance indicators for a varying number of observations, m, for 6 sources.

number of sources is too large (AS is not sparse enough). The algorithm Outlier Pursuit (OP)
cannot identify precisely the outliers and the term AS, but can discard efficiently the part of the
outliers that are detrimental for the unmixing (the results obtained for A are fair).
These results strongly differ with the ones obtained by rAMCA in Chapter 4, which was able to
estimate the mixing matrix, but not the sources in the determined case.

5.4 Application to simulated astrophysical data

BSS made possible the estimation of high accuracy estimates of the Cosmological Microwave
Background (CMB) from multi-wavelength microwave Planck data, Section 1.1.1. However, the
presence of point-source emissions and spectral variabilities of some of the galactic foreground
emissions is not precisely described by the standard linear mixture model. That is why most
of the component separation methods only seek for a partial CMB map, in which the galactic
center and the point source emissions of known locations are masked. Since each point source has
a specific spectral signature, they cannot be modeled as individual components and are rather
considered as outliers, Section 2.1.1. We therefore propose applying the tr-rGMCA algorithm
to robustly estimate the galactic emissions (once the CMB is estimated and its contribution
discarded from the observations) in the presence of unknown point source emissions.

5.4.1 Simulated data

In the following, we simulate 20 realistic CMB-free observations in the microwave range at the
proximity of the galactic center, which have been produced using the Planck Sky Model [44].
These observations correspond to the mixture of 4 galactic emissions, namely, synchrotron, spin
dust, free-free, and thermal dust. Since the rank of AS is 4 and the number of observations is
fixed to 20, it will make sense to apply as well separation methods that assume the low-rankness
of the source contribution. Each observation is an image of size 128 × 128. The signal-to-
noise ratio (for the Gaussian noise N) is set to 60 dB. Ten extra point source emissions with
different emission laws are added. The point sources are modeled as Diracs convolved with a
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same Gaussian kernel with varying width w, accounting for the point spread function (beam) of
the instrument fig.5.9.

(a) Synchrotron emission. (b) Spin dust emission. (c) Free-free emission. (d) Thermal dust emission.
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(e) Normalized spectra of the emissions. (f) X1. (g) X2.

Figure 5.9: Top row: the 4 initial emissions. Second row: (left) normalized spectra of the
emissions (i.e. columns of A), and then examples of the observations, for a width of the kernel
equal to 1.

5.4.2 Upgrades of tr-rGMCA

In contrast with the tr-rGMCA algorithm we used so far, additional properties can be accounted
for in the separation:
• Non-negativity of the outliers and the sources. In this application, all the variables are non-

negative. Taking into account non-negativity of S and O is particularly efficient to limit the
leakages and artifacts between the two contributions. Non-negativity is constrained in the
version of the tr-rGMCA algorithm that we used in the next experiments.

• Convolutive model for the point sources. The outliers are sparse in the direct domain. How-
ever, each one is perfectly described with the convolution of the instrument PSF and a Dirac
with unknown position and amplitude. Therefore, the tr-rGMCA algorithm is extended so
as to account for this convolutive model.

Consequently, we slightly modify the cost function of tr-rGMCA as follows:

minimize
A,S≥0,O≥0

1
2 ‖X−AS−H ∗O‖22 + ‖Υ �O‖2,1 +

∥∥Λ� SΦT
S
∥∥

1 + χY:‖Yk‖2≤1,∀k (A) , (5.13)
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where H denotes the Gaussian kernel. The non-negativity constraints and the deconvolution are
taken into account during the joint estimation of O and S of the warm-up procedure as well as
the refinement step. This does not change the structure of the algorithm and the BSS method
that is used to estimate jointly A and S (AMCA). Only the updates of O and S are changed
during their joint estimation in the warm-up and the PALM algorithm.
The cost function of the subproblem associated with the update of O is composed of one dif-
ferentiable term, with a Lipschitz gradient, and a regularization term (non-negativity and `2,1

norm) whose proximal operator has a closed form: the update of O can be efficiently tackled
using the FB algorithm presented in 3.1.2.
On the other hand, the minimization problem associated with the update of S is also composed
of a differentiable term with Lipschitz gradient, and two regularization terms (non-negativity
in the direct domain and sparsity in a transformed domain such as in [113]), having both ex-
plicit proximal operators. This subproblem is handled with the Generalized Forward Backward
Splitting algorithm [110], introduced in 3.1.3.

5.4.3 Experiments

5.4.3.1 A challenging setting. First, we underline that the proposed problem is
particularly difficult to tackle:
• It has first been noticed that the large scales of these astrophysical sources are partially cor-

related [13], which dramatically hampers the performances of standard BSS. This is precisely
for this type of sources that the AMCA algorithm [13] has been designed. Therefore, the
AMCA algorithm will be used in the warm-up stage to provide robustness with respect to
these partially correlations.

• Some features of the thermal dust emission 5.9d have morphologies that are close to the one
of the outliers 5.1b. The dictionary ΦS should be chosen so that all the sources are well
represented, and also so that ΦO and ΦS are incoherent. More precisely, the astrophysical
sources admit an approximately sparse representation in the wavelet domain. The spurious
outliers are modeled as the convolution of Dirac functions with the point spread function
of the instrument (PSF). More precisely, the convolution kernel is modeled as a Gaussian

function exp−
((x−x0)2+(y−y0)2))

w , where (x, y) denotes the position of the pixel , and (x0, y0),
the pixel in the center of the image (the kernels are then normalized). In the following,
the amplitude of O is fixed from one experiment to another (and so their energy increases
with w). Consequently, this setting makes the particular choice of wavelet functions critical
since it will largely impact the coherence between the ΦS and ΦO. On the one hand, highly
oscillating wavelet functions (i.e. with a large number of vanishing moments) will yield
more incoherent dictionaries but at the cost of slightly less sparse representations for the
sources. On the other hand, more localized wavelet functions are likely to provide better
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sparse representations but at the cost of lowering the morphological diversity between the
dictionaries. Therefore, in this particular robust BSS problem, one needs to make a trade-
off between the compressibility of the sparse representations, which is essential for source
separation, and the morphological diversity between ΦS and ΦO, which is of paramount
importance for the separation of the sources and the outliers. In the next experiments,
ΦS will be chosen as undecimated Daubechies wavelet transforms with varying vanishing
moments.

5.4.3.2 Influence of the dictionary ΦS. To further highlight the role played
by the mutual coherence in the proposed tr-rGMCA algorithm, we propose to investigate the
influence of the vanishing moments of the Daubechies wavelet functions used for ΦS. We only
compare the different methods that are influenced by the choice of ΦS: the so-called oracle,
tr-rGMCA, AMCA performed on X and X − O (the combination MCA+AMCA performs so
poorly that the influence of ΦS cannot be commented, and the influence of ΦS on OP+AMCA
can be deduced by the performances of AMCA).
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Figure 5.10: Performance indicators for a varying number of vanishing moments.
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Vanishing Moments: 4 8 12 16 20
‖SΦTS‖1
‖SΦTS‖2

143.36 142.18 142.48 143.06 143.64
‖HΦTS‖1
‖HΦTS‖2

21.97 31.48 38.42 45.13 52.19

Table 5.2: Influence of the number of vanishing moments on the representation of S and the
outliers.

First, the choice of ΦS does not significantly impact the AMCA algorithm that is performed
by X −O fig.5.10: the representation coefficients of the sources are sufficiently sparse, for the
different dictionaries, to perform the unmixing (the ratio ‖SΦTS‖1

‖SΦTS‖2
, which somehow measures the

level of sparsity of the sources in ΦS, does not significantly change in table 5.2). However, one
of the sources, the thermal dust emission is not very accurately recovered: it is hampered by the
correlations between sources and as well as their spectra, which is illustrated in fig.5.9.
The influence of ΦS for the oracle and tr-rGMCA are similar. The SIR and SAR decrease when
the number of vanishing moments increases. Indeed, the largest scales of the astrophysical sources
are partially correlated. Therefore, the most discriminative coefficients in the wavelet domain
are located in the finest wavelet scales, while the number of vanishing moments is small. On the
other hand, the SNR increases, especially the minimal one: the outliers do not leak towards the
estimated sources when the number of vanishing moment is large enough (the outliers are less
sparsely represented in ΦS, table 5.2).
In the following, we will make use of the Daubechies wavelets with 20 vanishing moments so
as to recover all the sources fairly while providing an improved separation with respect to the
outliers.

5.4.3.3 Influence of the kernel width. In this experiment, ΦS is fixed and the
width of the Gaussian kernel w, which also tends to alter the coherence between ΦS and ΦO

and as well the morphological diversity between O and S, is varying. The kernel width w will
vary according to the x-axis of fig.5.11.

Variance - parameter w: 0.1 0.5 1 1.5 2
‖SΦTO‖1
‖SΦTO‖2

* 105.7 104.5 96.9 79.6 76.9

Table 5.3: Influence of the width of the Gaussian kernel on the representation of S. * the sources
are artificially deconvolved with H.

As illustrated in fig.5.11, all the methods are impacted by the width of the kernel (i.e. the
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Figure 5.11: Performance indicators for a varying variance of the Gaussian kernel.

morphology of the outliers).
First, we recall that the unmixing is very difficult when w is small: the outliers contaminate the
high frequency content of the sources, which is discriminant for the unmixing (the large scales of
the sources are correlated). That is why, the results are on the overall improved when w increases
but is small.
On the other hand, we can notice that the methods are hindered by a large w. In that case,
the ’low-frequency’ (similar to the kernel) content of the sources, which contains most of their
energy, become highly sparse in ΦO tab.5.2: they leak towards the estimated outliers. Conse-
quently, the SAR fig.5.11 decreases as w increases. This is especially true for the thermal dust
emission (associated with the minimal SAR), whose singularities have a morphology very similar
to the one of the kernel. The leakages are also reinforced by the fact that the large scales of the
sources are correlated: the `2,1 penalization in ΦO is less expensive than the `1 in ΦS for the
correlations. Besides, the energy of the outliers on the coarse-scale of ΦS increases, but is not
thresholded (because it is not sparse): this is clearly hampering the SNR when w is large.
Only the combination OP+AMCA is able to outperform tr-rGMCA in term of highest SDR,
while the kernel is not too large. However, only tr-rGMCA is able to fairly recover the thermal
dust emission, as well as AMCA performed on X − O. We underline that the parameter of
OP was manually tuned knowing the ground truth, and presumably, if the parameters involved
in tr-rGMCA were similarly tuned, its performances would be, at least, similar to the ones of
OP+AMCA. The rNMF method, even if it is initialized from the ground truth A, was not able
to correctly unmix the sources and separate the outliers from the source contribution: the fact
that the data samples do not lie in the simplex makes this method inefficient in this experiment
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Figure 5.12: First row: ground truth signals. Estimated sources with tr-rGMCA (second row),
OP+AMCA (third row) and rNMF (fourth row) with w = 1 and 20 vanishing moments for the
wavelets.

since O cannot be separated from the AS.
Illustrative results are provided in fig.5.12, 5.13. Outlier residuals are present in the sources
estimated by rNMF and OP+AMCA, fig.5.12. On the other hand, the highest frequency contri-
butions of the sources are not correctly recovered by tr-rGMCA (the SAR are quite low fig.5.12),
and have leaked towards the estimated outliers. The spectra recovered by tr-rGMCA are the most
precise, the other methods have failed to recover the thermal dust spectrum precisely fig.5.13.
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Figure 5.13: Estimated spectra, with w = 1 and 20 vanishing moments for the wavelets. Red
lines: estimated spectra, black dashed lines: ground truth.

5.5 Summary and future works

In this chapter, we introduced a new solution for the BSS problem in the presence of outliers that
permits a robust estimation of the mixing matrix and an accurate separation of the sources and
the outliers. The proposed tr-rGMCA algorithm estimates jointly the mixing matrix, the sources
and the outliers so as to simultaneously unmix the sources and separate the outliers from the
source contribution. Building upon sparse modeling, it first exploits the morpho-spectral diver-
sity between the outliers and source contribution to distinguish between them, including in the
challenging determined setting. The tr-rGMCA algorithm builds upon a two-stage optimization
procedure: i) a warm-up stage based on heuristics that yield a reliable algorithm with enhanced
robustness and ii) a refinement step based on the PALM algorithm that provably converges to a
stationary point to the problem. Numerical experiments have been carried out on Monte-Carlo
simulations showing the robustness of the proposed approach, which provides state-of-the-art
results.
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In remote-sensing, hyperspectral images provide a fine spectral description of the observed
scene. From these data, it is possible to estimate the composition of the observed region: nature
of the elements by identifying their spectral signatures, and their spatial distribution.
In many scenarios, the spectral signatures of the components are spatially variant. These variabil-
ities are not taken into account in the standard linear data model, what hampers the associated
unmixing methods. An explicit estimation of the variabilities is thus necessary to recover pre-
cisely the composition of the observed region.
In this chapter, we will start by reviewing some of the unmixing methods handling spectral
variabilities. We will then extend the robust BSS methods that were introduced in this thesis to
estimate the variabilities.

6.1 Hyperspectral unmixing

6.1.1 Linear Mixture Model

LMM. The linear mixture model (LMM) [80] assumes that hyperspectral data can be mod-
eled as followings:

X = AS + N,

where X denotes the observations, A the spectral signatures (also called endmembers), S the
spatial distributions of the elements (designated as abundances), and N a Gaussian noise.

This model and significances of the components (spatial distribution of the components for
S and their spectral signatures for A) are exactly the same as for multichannel data analysis
1.1.1. Consequently, blind unmixing (the endmembers are unknown) of hyperspectral data is
fundamentally similar to a standard BSS problem with multichannel data.
Nonetheless, the large number of channels (hundreds for hyperspectral versus tens for multi-
channel) provides a finer spectral description of the observed scene. Consequently, hyperspectral
data have some spectral properties which are not shared by multichannel data, e.g. low-rankness
(m� n) or smoothness of the spectral signatures [102].

Simplex assumption. In the special context of ’terrestrial’ remote-sensing1, it is generally
further assumed that the variables are non-negative (spectra and spatial distributions are non-
negative), and that, for each pixel t, the abundances sum to one:

n∑
i=1

Sti = 1, [80]. With this

simplex assumption, the sources entries indicate the relative proportions of the elements at each
1In this chapter, we will focus on ’terrestrial’ hyperspectral images, for which the simplex assumption holds

true (in opposition to astrophysical hyperspectral images, for which the simplex assumption can be not valid).
Unless specified otherwise, we will consider that this hypothesis is valid.
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pixel. This is a strong assumption, since the sources are no longer independent: the jth entry of
S at a pixel k can be inferred from the other entries with Skj = 1−

n∑
i=1,i6=j

Ski .

With these assumptions, the data samples {Xk}k=1..t live in the convex hull of A fig.6.1: {Xk :
Xk =

∑n
i=1 SkiAi,

∑n
i=1 Ski = 1,S ≥ 0}.

A1

A2

A3

X3

X2

X1

Simplex

Xt

Figure 6.1: Illustration of the simplex defined by 3 endmembers A1, A2, A3. The three end-
members (red stars) define the vertices of the simplex (light blue triangle). The data samples
(blue circles) lie in the simplex.

We point out that this assumption is not always valid in hyperspectral data analysis e.g., in
astrophysics, there may be a region of the observed sky with no observable element.

6.1.2 LMM based methods

Simplex assumption. Several methods have been proposed to solve the blind unmixing
problem using the LMM and the simplex hypothesis, see - [10], [98] for a more detailed overview.

Some of these methods assume that, for each component i, there is a pixel ti such that
Xti = Ai (pure pixel assumption) fig.6.2a. It is then possible to estimate the endmembers from
the data samples by looking for n data-samples {Xtj , tj ∈ (1, ..., t), j = 1, ..., n} defining the sim-
plex enclosing all the other data samples. In practice, one can look for n data samples, among
{Xj}j=1..t, whose associated simplex has the maximal volume, as done by example by VCA [104]
or N-FINDR [132].

Another strategy consists in estimating directly A and S, without the pure pixel assumption.
In that case, looking for (A,S) is an all-posed problem without further assumption. The non-
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X3
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X1

Pure pixels

(a) Presence of pure pixels.

X3

X2

X1

Data samples
on each facet

(b) Presence of pixels on the facets

X3

X2

X1

Simplex with
minimal volume

(c) Only highly mixed pixels

Figure 6.2: Simplex representations of the data for 3 cases. The black arrows symbolize the
positions of initial endmembers, the blue circles the data samples, the light blue triangle the
simplex defined by the endmembers, and the yellow triangle, the simplex with minimal volume
enclosing the data samples.

negativity and simplex assumptions are not sufficient: there is an infinite number of A such that,
A generates a simplex in which the data samples are enclosed. By assuming that there are well
spread out data samples on each facet of the simplex to be recovered fig.6.2b, it is possible to
estimate jointly A and S by looking for the simplex of minimal volume enclosing the data [93].
On the other side, if there is no pure pixel and if the pixels are too highly mixed, the solution
with minimal volume is not the one that we aim to recover fig.6.2c.

Sparsity. If the simplex assumption holds true, the sources have a special structure which
can be recovered with sparse BSS, without enforcing the simplex assumption (enforcing the
simplex assumption is meaningful only if the sparsity promoting term is not based on an `1

norm), [65], [108]:

• If there are numerous pure pixels fig.6.3a, 6.2a the sources are nearly jointly sparse. This is
the ideal case for sparse BSS.

• The presence of many broadly distributed data samples on the facets of the simplex 6.3b,
6.2b, is also well handled by sparse BSS. Indeed, even if there is no pure pixel, but a large
number of not too highly mixed pixels, then sparse BSS will be effective. For instance, any
rotation or transformation of the sources in fig.6.3b, results in less sparse sources (in the sense
that they will be enclosed in an `1 ball with larger radius).

Interestingly, the conditions required for the minimal-volume and sparsity-based methods are
very similar. Sparse BSS can also be seen as a minimal-volume based technique. Indeed, in the
source domain, sparse BSS looks for the tuple (A,S) so that S is enclosed in the `1 ball with
minimal radius.
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S1

S2 Discriminant Samples:
Nearly pure pixel

(a) Presence of pure pixels.
S1

S2 Broadly distributed
pixels on the facet.

(b) Presence of pixels on the facets

Figure 6.3: Scatter plot of two over three abundances: (a) in the presence of numerous (nearly)
pure pixels, (b) in the presence of broadly distributed data-samples on the facets - not highly
mixed pixels.

6.1.3 Spectral variability in the literature

The Linear Mixture Model has been widely used for the analysis of hyperspectral data, but
cannot account for the spectral variabilities encountered in practice 2.1.1. These spectral vari-
abilities hamper the standard methods based upon the LMM fig.6.4, and are of interest in some
situations, for example for crop monitoring [90].

A1

A2 A3

(a) Simplex representation for the
LMM.

A1

A2 A3

(b) Simplex representation for the
PLMM

Figure 6.4: Simplex representations of the data. The red stars denote the vertices (endmembers),
the dark-blue circles the data sample in the simplex, and the light-blue circles the data samples
not living in the simplex with the LMM. The minimal volume simplex enclosing all the data is
larger than the one defined by the reference endmembers.

With the recent advances in hyper-sensors, the estimation of the spectral variabilities (SV)
has become a burning issue during the last years. More precisely, efforts have been undertaken to
model non-linearities and/or SV. The non-linearity can be, in a certain extend, related to the SV
if considering that the deviations from the linear model can be recast as spectral perturbations.
Reviews of the first strategies can be found in [119], [45], [138], and some are presented below:

• The bilinear/multilinear/post-nonlinear approaches (non-linearity [45]): based on physical con-
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siderations (multiple reflections for instance), this class of strategies assumes that each pixel
can be expressed as a combination of the spectra, but also multiplicative combination of
the spectra, e.g Ai � Aj , i, j = 1, ..., n or any higher order relations between the spectra
- [71], [3], [73] (with a more general framework). These models have been more precisely
developed to handle non-linearities, but the residuals from the first order endmember con-
tribution can be interpreted as spectral variabilities. However, it seems in practice that,
all the variabilities cannot be expressed precisely with such models unless considering high
enough moments such that all the combinations create an (over-)complete spectral dictionary.

• Non-linearity as another component (non-linearity [58], [4]): In [58] and [4], the authors pro-
pose to model the non-linearity as a third component, similarly to what was done in the
previously presented robust BSS methods with O. The deviations are assumed to be also
non-negative in [58]: it cannot precisely model the SV (it makes more sense to assume that
the perturbations from the LMM created by the SV are centered). In [4], the authors pro-
pose, in a Bayesian framework, to estimate the three components, without the non-negativity
assumption on the outliers.

• Regression with spectral library (spectral variation, [138], [77]): This approach consists in es-
timating the abundances and endmembers, given that the endmembers belong to a predefined
spectral library. In practice, selecting the active endmembers per pixel and associated abun-
dances amounts to solve a compressive sensing problem [77], [25]. The effectiveness of this
method strongly relies on the spectral library: there is a trade-off between the capability
to represent various spectral variations (many spectra), and the possibility to separate the
contribution (low coherence of the mixing matrix [25]).

• Endmembers as realizations of multivariate distributions (spectral variation, [138]): This strat-
egy is more flexible than the method restraining the endmembers to a predefined set. In this
case, the endmembers are seen as a realization of a multivariate distribution, whose parame-
ters depend on the pixel and element [72]. Nonetheless, the accuracy of this method crucially
depends on the distribution and parameters. Besides, and in contrast with the regression
from a spectral library, the user has fewer control on the returned endmembers.

• SV as a perturbation from reference endmembers (spectral variation, [127]): In [127], the au-
thors propose to model the SV as a perturbation from some reference endmembers. We will
build upon this approach, and describe it in the following.
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6.1.4 Perturbed Linear Mixing Model (PLMM)

In order to account for the SV, we will assume that the data can be well described by the PLMM
that was first proposed in [127]:

Xt =
n∑
i=1

Sti × (Ai + ∆Ai
t) + Nt, (6.1)

where Xt denotes the tth pixel (column vector of size m) of the hyperspectral cube X ∈ Rm×t,
Sti the tth pixel of the ith source S ∈ Rn×t, Ai the endmember (column vector of A ∈ Rm×n)
associated with the ith source, N ∈ Rm× n the Gaussian noise corrupting the observations and
last, ∆Ai

t the spectral perturbation of the ith element at the tth pixel (column vector of size
m), ∆Ai ∈ Rm×t, ∀i = 1..n.
This model can be recast with the following matrix form:

X = AS︸︷︷︸
best rank−n approximation

+
n∑
i=1

∆Ai � Si︸ ︷︷ ︸
local deviations

+N (6.2)

=
n∑
i=1

(
Ai + ∆Ai

)︸ ︷︷ ︸
local endmembers

�Si.+ N (6.3)

Properties of the components.

Abundances S: The sources are non-negative since they correspond to the spatial distribution
of the components.

Endmembers A: The mixing matrix is also non-negative because each column represents the
spectral signature of one element.

Spectral variations ∆Ai: The local spectra should be non-negative: Ai + ∆Ai ≥ 0, ∀i =
1, ..., n. Indeed, they correspond to the local spectral signature of one component, and as so,
should be non-negative.
We will further assume that these elements are centered, i.e., for each component i, its local
spectra

(
Ai + ∆Ai

)
are centered around the reference endmember Ai. For illustrative purpose,

we display in fig.6.5b the endmembers of pure pixels of water, extracted from a MOFFETT data
scene fig.6.5a and associated deviations for one pixel fig.6.5c.

Moreover, the deviations from the LMM,
∑n
i=1 ∆Ai�Si are likely to not cluster in a specific

direction. From this point of view, they correspond to the outliers term O which was estimated
in the previous chapter.
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Figure 6.5: Spectral variations of the water for a MOFFETT scene. The local endmembers
{Ai + ∆At

i}t (in black in (b) and (c)) have been extracted from pixels estimated as being pure
{Sti}St

i
=1 (a). The SV (∆At

i in green in (c)) are particularly important for this component.

However, and in contrast with the deviations previously studied, these deviations are not inde-
pendent from the sources and mixing matrix.

6.1.5 Constraining the components

In this chapter, we will compare the influence of the basic hypotheses made on S or A on the
recoverability of the SV: data samples living in the simplex, or spectra and local spectra living
on the hyper-sphere (standard prior for BSS).

Data samples in a simplex - Model A. This model is the one proposed in [127]. It is
assumed that fig.6.6a:
• The data follow the PLMM model 6.1.
• The sources are non-negative and the data samples live in the simplex defined by S ≥ 0, and

1nS = 1t 2.
• The mixing matrix is non-negative A ≥ 0, and the local spectra are also non-negative Ai +

∆Ai ≥ 0, ∀i = 1, ..., n.
With this model, the endmembers are not normalized, but rather take into account the energy
of the components.

Endmembers on the hypersphere - Model B . In many applications, including with
hyperspectral data, the source samples do not live in a simplex. For instance, in astrophysics,
some regions of the sky do not contain observable elements. That is why, we have preferred
another approach, whose hypotheses would be valid for a wider range of applications. Similarly
to the robust BSS problems we have studied so far, we will assume that the spectra belong to
the hypersphere Sm−1 fig.6.6b:

2Strictly speaking, the data samples do not longer belong to a simplex because of the SV. But we will say that
the data belong to the simplex if the sources sum-to-one and are non-negative. The use of the Hadamard product
is also an abuse of notation since the matrices do not have the same dimensions: the matrices are multiplied
entry-wise along their common dimension
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• The data follow the PLMM model 6.1.
• The sources are non-negative: S ≥ 0.
• The mixing matrix is non-negative A ≥ 0, and the local spectra are also non-negative Ai +

∆Ai ≥ 0, ∀i = 1..n. We will further assume that the estimated endmembers live on Sm−1:∥∥Ai
∥∥

2 = 1, ∀i = 1, ..., n, and
∥∥Ai + ∆Ak

i

∥∥
2 = 1 ∀i = 1, ..., n, k = 1, ..., t. This assumption

was used previously to constrain the scaling indeterminacy between A and S. It will be also
useful for constraining the SV in this application.

A1

A2

Simplex defined by
the two endmembers

Xk

(a) Model- A.

A1

A2

Xk

Plan defined by
the two endmembers

Convex cone defined by
the two endmembers

(b) Model-B.

Figure 6.6: Illustration of the possible positions of the data samples Xk given the reference
endmembers, for 2 elements and 3 observations.

6.2 Indeterminacy of the models

First, we underline that this problem is particularly ill-posed: even if A and S are perfectly
known, there is still an infinite number of SV fitting the data for the non-pure pixels. Indeed,
without additional assumption, estimating the SV amounts to seek for a local mixing matrix,
A′k ∈ Rm×n such that A′ki = Ai + ∆Ak

i , and Xk = A′kSk at every pixel k. In other words,
without effective constrains of the SV, estimating the SV is independent from A.

6.2.1 Characterization of the admissible solutions

The basic assumptions made by the two models lead to different admissible solutions for the
local mixing matrix A′. We will assume that A and S are known in the following of this section.

Possible solutions with Model - A. We point out that with the model A, the energetic
contribution of each element is no longer related to the source amplitudes. For instance in fig.6.7a
(with a same Sk), the contributions of each element to the sample Xk are different for the two
set of local endmembers. Consequently, for fixed S, neither the energy nor the direction of the
local endmembers are known fig.6.7a, even if S is perfectly known.
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Figure 6.7: Illustration of possible local endmembers contribution for a fixed Sk, for 2 endmem-
bers and 3 observations.

Possible solutions with Model - B. Given that the local endmembers should belong to
the hypersphere, the energetic contributions of the elements are still proportional to the source
entries with Model-B. For fixed S, we can recover the local endmembers up to a rotation (axial
rotation with axis given by the direction of the data Xk), with non-negative local endmembers.

6.2.2 Local endmembers as a deviation from the reference endmembers

In order to constrain the SV, we propose to illustrate them with two examples.

Detection of illumination variations. We point out that models A and B are very dif-
ferent, and that Model-A is more sensitive to the presence of deviations fig.6.6. Indeed, a data
sample, which does not live in the simplex generated by the reference endmembers A, is easily
detected as being “corrupted”with model A: the SV of this sample are not null and should be
consequently adapted. On the other hand, as long as a data sample belongs to the convex cone
generated by A, no spectral variation can be detected easily. The SV contribution is rather
accounted by modifying the amplitudes of the sources. This greatly influences the detection and
recoverability of the components.

In particular, the model A is sensitive to variations of illumination (if Xk is on the simplex,
αXk is not, ∀α > 0, α 6= 1). In contrast, a variation of illumination can be directly handled
by the model B, by changing the amplitudes of the sources. For instance, fig.6.8a illustrates a
change of illumination. The sample Xk does not lie in the initial simplex (even by changing
Sk): the variations of illumination should be accounted in the perturbation. In this case, the
orientation of the endmembers and the abundances are unchanged, and the endmembers are
only scaled. The variation of illumination can only be detected with model-B by analyzing the
variations of the amplitude of the sources samples.
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Figure 6.8: Estimation of the SV. (a) Variation of illumination - model A, (b) SV with mod-
ification of the shape and norm of the endmembers - model A, (c) SV with modification of
orientation, model B. The red arrows designate the two reference endmembers, the arrows in
purple and blue the spectral perturbations, and in dashed lines: the novel simplex associated
with the perturbations for model A and the novel directions of the local endmembers with model
B.

Variation of direction/shape. Whenever a sample Xt does not lie in the cone generated
by A, a modification of the shape/direction of the endmember is required for the Model B (and
consequently A).
For example in fig.6.8b, the estimated local spectra are not proportional to the reference end-
members, their norm as well as their direction have changed.
With the model B, the norm of the local spectra is fixed, and only the direction is changed
fig.6.8c.

6.2.3 Regularization of the SV

For both models, there is an infinite number of spectral variations fitting the data, even if S
is known. Whether the basic model is based on model A or model B, different priors can be
added to retrieve meaningful solutions, to ensure that the recovered local spectra are close to
the reference endmembers (the retrieved elements belong to n classes, sharing similar spectral
signatures).
We will assume that either model A or B is used, and focus on the additional priors that can be
added on the SV to constrain the proximity of the local endmembers with the ones of references.

Global penalization of the SV. In [127], the authors propose to penalize the spectral
variations with an `2 norm in order to minimize the global energy of the SV:

Total Deviation: 1
2

n∑
i=1
‖∆Ai‖22
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With this regularization, the problem, for fixed (A,S) becomes well-posed: there is a unique
solution for models A and B.
Nonetheless, the unique regularization parameter chosen for these deviations cannot account for
the difference of energy between the components. Indeed, this regularization assumes implicitly
(by seeing this term as a MAP) that the SV are generated according to a same Gaussian centered
distribution. Consequently, the different SV are similarly penalized whereas they may have very
different energies. This may be particularly inappropriate if using Model A, since the energy of
the component is accounted by the endmembers (for example the endmembers of the MOFFETT
scene of fig.6.5 are represented in fig. 6.9, Model-A).
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Figure 6.9: Endmembers (Model-A) recovered by VCA for a MOFFETT scene.

In order to fully take into account the inter-variability that exists between the components,
and intra-variability between one pixel to another for a same component, the total deviation
penalization could be weighted:

Total Deviation - multivariate: 1
2

n∑
i=1
‖Υi∆Ai‖22 ,

where Υi ∈ R1×t contains the regularization parameters for ∆Ai, i = 1, ..., n.

Pixel-wise penalization. As mentioned in [127], the `2,1 can also be of interest to promote
spatial sparsity of the SV. However, it appears in practice that the SV are not really spatially
sparse - only the strongest deviations are indeed localized.
Nevertheless, we point out that the `2,1 can also be considered as a flexible penalization of the
energy:

Pixel-wise Deviation:
n∑
i=1
‖Υi∆Ai‖2,1 ,
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where Υi ∈ R1×t. With the `2,1, the SV will be thresholded pixel-wise and not globally.
Nonetheless, there is no obvious advantage of using the `2,1 norm in comparison to the weighted
`2 squared norm for model A, especially given that the `2,1 norm is not differentiable. The
use of the `2,1 is however meaningful if one wants only to recover the areas with the strongest
deviations, or using a transformed domain to work with sparse representations of the SV. This
last point will be discussed later. In the framework of the Model B, we will see that the `2,1
norm has an interesting interpretation which supports its utilization.

Roles of the penalizations. Depending on the data model that is employed, the penal-
ization has not the same influence.
Model - A: With the model A, the endmembers are representative of the directions/shapes of the
spectral signatures and also of the energies of the elements. Indeed, we have observed previously
that if S is perfectly known, the explicit estimation of the SV brings a double indeterminacy:
energy and direction. The regularization thus tackles both indeterminacies by looking for the SV
with the smallest energy. For instance in fig.6.8, the sample Xk is less expensively represented
with the deviations of fig.6.8b than fig.6.8a (with similar values of the regularization parameters).
Hence, even if the problem is no longer ill-posed, looking for the SV with minimal energy may
not yield the true SV.

Model - B: With the model B, the endmembers are only representative of the directions/shapes
of the spectral signatures. Minimizing the `2,1 norm of the deviations amounts to seek for the
smallest spectral angles fig.6.10. Indeed, for each pixel k and component i, the angular deviation
θki between the local and reference spectrum (non-negative), and the SV ∆Ak

i are linked by the
formula

∥∥∆Ak
i

∥∥
2 = sin

(
θki
2

)
× 2 leading to:

n∑
i=1
‖∆Ai‖2,1 =

n∑
i=1

t∑
k=1

sin
(
θki
2

)
× 2. (6.4)

Consequently, the minimization of the `2,1 norm of ∆Ai provides a proxy for the minimization
of the angular deviations between the local spectrum and the reference, for each pixel.

Last, we recall that for fixed S, the local spectra are recovered up to a rotation. By adding the
`2,1 regularization, this indeterminacy is removed, which makes this model very powerful. How-
ever, if the angular deviations are large for a given pixel, the return solution will not correspond
to the sought after one.
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Figure 6.10: Illustration of a local spectra perturbation and associated local spectrum. The circle
represents a slice of the sphere embedding the spectra.

6.2.4 Minimization problems

We present two minimization problems, one for each model, aiming to recover jointly the com-
ponents A,S,∆Ai, of the form:

minimize
A,S,∆Ai

1
2

∥∥∥∥∥X−AS−
n∑
i=1

∆Ai � Si

∥∥∥∥∥
2

2

+ J1(A) + J2(S) + J3(∆A1, ..,∆An), (6.5)

where Ji denote the regularization functions associated with the components to be retrieved.

6.2.4.1 Problem formulation Model A - [127]. The authors of [127] aim
to retrieve the components with the following priors:
• Abundances: The abundances are assumed to be non-negative and to “sum-to-one”. These

properties are enforced using two characteristic functions. The authors have also proposed
to promote the spatial smoothness of the abundances with the term: 1

2 ‖SH‖22, where H
computes the difference between the abundances of a given pixel and its 4 closest neighbors.

• Endmembers: The endmembers are non-negative. Similarly to the standard LMM model,
the volume of the simplex enclosing the data (not strictly for the PLMM because of the SV)
defined by the endmembers should be minimal. The authors propose 3 different penalizations
for constraining the volume, which seem to perform quite similarly in the tested numerical
experiments in [127]: proximity of the endmembers to the ones estimated by VCA, minimal
mutual distance between the endmembers (implicit minimal volume) and minimal volume
with pure pixel assumption - (the one used in the numerical experiments of this chapter). For
the latter, it consists in minimizing directly the volume of the simplex defined by the projec-
tion of the reference endmembers on the subspace spanned by the n−1 principal components
of X, [127] and references therein.
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• Spectral variations: As presented previously, the authors propose to minimize the energy of
the SV with

∑n
i=1 ‖∆Ai‖22 . Besides, the endmembers plus the SV (the local spectra) are

non-negative.

The complete cost function is the following [127]

minimize
A,S,∆Ai

1
2

∥∥∥∥∥X−AS−
n∑
i=1

∆Ai � Si

∥∥∥∥∥
2

2

+ γ ‖SH‖22 + Υ

n∑
i=1
‖∆Ai‖22 + β|det(

[
T
11,n

]
)|2

s.t.A ≥ 0,S ≥ 0, (Ai + ∆Ai) ≥ 0,11×nS = 11×t,∀i = 1..n, k = 1..t,

where T denotes the projection of A on the subspace spanned by the n−1 principal components
of the observations X.
The minimization is tackled using an ADMM algorithm and the regularization parameters are
chosen by cross-validation.

6.2.4.2 Problem formulation Model B. Based on the model B, we aim to
retrieve the components with the following priors:

• Abundances: We consider that the abundances are non-negative (characteristic function) and
“sparse”in the direct domain (`1 norm).

• Endmembers: We assume that the endmembers are non-negative, and belong to the hyper-
sphere.

• Spectral perturbations: We suppose that the local spectra are non-negative, and also live
on the hypersphere. Besides, we will penalize the `2,1 norm of the spectral deviations
n∑
i=1
‖Υi∆Ai‖2,1, where Υi ∈ R1×t

+ , ∀i = 1, ..., n. It should ensure that among the possible

local spectra, the ones recovered are close to the reference endmembers with minimal spectral
angle deviations.

Our minimization problem is the following:

minimize
A,S,∆Ai

1
2

∥∥∥∥∥X−AS−
n∑
i=1

∆Ai � Si

∥∥∥∥∥
2

2

+
n∑
i=1
‖Υi∆Ai‖2,1 + ‖Λ� S‖1 (6.6)

s.t. A ≥ 0,S ≥ 0,(Ai + ∆Ai) ≥ 0,Ai ∈ Sm−1, (Ai + ∆Ak
i ) ∈ Sm−1,∀i = 1..n, k = 1..t.

The associated algorithm and parameters setting are described in the next section.
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6.2.5 Recoverability of the components

None of the two problems is able to recover exactly the components in practice. Model A suffers
from a lack of priors for estimating the SV (the double indeterminacy in direction and norm
cannot be solved using only the minimal energy assumption, and the perturbed data samples
lying on the data simplex cannot be detected), and model B cannot detect the perturbed data
samples lying in the convex cone generated by A (model B can fairly estimates the SV only if
A and S are correctly estimated).

Since the SV contribution is in general position, estimating fairly A is possible with GMCA
or AMCA but recovering correctly the sources is very challenging. Indeed, the SV contribution
lying in the convex cone defined by A should not leak toward the estimated ÃS̃. This problem is
quite similar in the spirit to the separation between the outliers and the sources contribution in
robust BSS. Likewise for the robust BSS framework, sparse modeling can be exploited to recover
a good estimate of S.

Source thresholding. The source estimates in the direct domain before thresholding are

broadly given by S̃ ≈ S + A†(
n∑
i=1

∆Ai�Si). Hence, if it were possible to set the thresholds Λ so

that the residuals A†(
n∑
i=1

∆Ai � Si) are thresholded, running GMCA or AMCA would provide

fair estimates of A and S. Unfortunately, this was not possible in practice with the tested data
sets for two reasons.
First, the difference of energy between the elements makes the setting of the thresholds quite
complicated. For instance, let us consider two elements with very different amplitudes (e.g. the
water and the soil in the studied MOFFETT scenes fig.6.9). The projection of the SV contri-
bution associated with the soil onto the water source estimate is similar to the amplitude of the
water source itself, and so cannot be thresholded without hampering strongly the water source
estimate.
Second, even in the presence of sources with similar dynamics, a significant thresholding of the
sources will hamper the sources estimates since the sources are not significantly sparse fig.6.3b.
However, if the data are composed only of nearly pure pixels with sources having similar dynam-
ics, it is then possible to recover fairly the sources and mixing matrix by just running AMCA.

Sparse modeling in transformed domains. In the spirit of tr-rGMCA, it would be pos-

sible to separate accurately the term AS from O =
n∑
i=1

∆Ai�Si if these two terms had different

morphologies, or if there were a domain in which the sources were highly (and jointly) sparse
and the SV contribution still broadly distributed.
Finding such dictionary is not straightforward with the sought-after abundances. Indeed, given
that the sources are not independent, sparsifying the expansion coefficients may rather highlight
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the dependence between the sources and returns highly correlated expansion coefficients (that is
the case with the data sets used in the experiments and the wavelets for instance).
Likewise robust BSS, additional information may be needed to separate the SV from the sources
contributions: such as a spatial prior. We remark that even if the SV and the source contribu-
tions are linked, they can still have a different morphology, for example if the SV are due to
variations of illumination.
For instance, the curvelet transform is of interest to recover the SV along the boundaries between
the components in the studied MOFFETT scenes. Indeed, the borders between the components
define some smooth curves. Using the curvelets would then bring the morphological diversity
(curvelets versus direct domain), and spatial smoothness along the borders. However, let us
mention that using a redundant transform for the SV greatly raises the computational cost of
the methods (the size of the SV is already m× t× n).

Our first idea was to extend the previous works, ideally tr-GMCA to correctly recover the
components. As explained above, the extension is in fact not possible with the terrestrial data
that we have studied: sparse modeling cannot easily be exploited to estimate and separate the
different contributions.

6.3 Algorithm

We will detail in this section the algorithmic scheme that we employed to minimize eq.6.6.
The minimization strategy is a 2-step approach, in the spirit of the robust BSS algorithms that
were previously presented. The proposed procedure is composed of first: an initialization of A
and S with AMCA (see Section 4.3) followed by a BCD minimization (see Section 3.2.3) of the
cost function for estimating jointly A, S and ∆A.

6.3.1 Initialization

This first step consists in initializing jointly A and S, ı.e. we look for the best rank-n linear
approximation of the data. We will build upon the AMCA algorithm to unmix robustly the data.

Given that the deviations are in general position, we propose to build upon the AMCA al-
gorithm to estimate robustly the mixing matrix, similarly to the previous robust BSS problems.
Even if the deviations are not sparse, some areas are more affected by the spectral deviations,
and will be more penalized using AMCA. We have also preferred AMCA to GMCA to be robust
to the presence of other components which may have not been taken into account but would
hamper GMCA.

The sources are not, strictly speaking, sparse in the direct domain. The decreasing threshold
strategy introduced in 3.3.3, is in this case particularly efficient: by starting with a large thresh-
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old, AMCA estimates the endmembers from the nearly pure pixels; and then by decreasing the
thresholds towards zero, the source estimates are not biased by the `1 norm. Besides, the non-
negativity of A and S is enforced during the AMCA algorithm by projecting A and S on the
non-negative orthant after every component update.

The sources are then refined with few proximal gradient updates (10 iterations) in order to
take into account the non-negativity of the sources more properly. During this refinement, the
source samples which contribute for less than 10% of a sample are set to zero. This is a conserva-
tive choice, but estimating the SV associated with small coefficients is particularly challenging:
it is complicated to differentiate the SV from the influence of the residual.

The initialization scheme is presented in Alg.18.

Procedure 18 Initialization Abundances-Endmembers
1: procedure Initialization(Ã)
2: Ã,S← AMCA(X) . Λ decreases towards zero
3: Compute LA =

∥∥ÃT Ã
∥∥

2,s
4: for k=1..10 do . Refinement of the sources
5: S̃← [S + 1

LA
ÃT

(
X− ÃS̃

)
]+ . Proximal gradient step with non-negativity

6: S̃← S
Λ:Λt=‖

S̃t‖1
10

(̃
S
)

. Conservative threshold

return Ã, S̃.

6.3.2 Joint estimation of ∆A, S and A

In this step, we aim at estimating the SV and refine the sources and mixing matrix with a BCD
like procedure. The algorithm is presented in Alg.19.

Procedure 19 Joint Estimations A, S and ∆A
1: procedure Joint Estimation(Ã(0), S̃(0))
2: while do not converge do
3: ∆̃A

(k)
← GFBSeq.6.7(X, Ã(k−1), S̃(k−1))

4: Update Λ
5: S̃(k) ← FISTA(X, Ã(k−1), ∆̃A

(k−1)
,Λ)

6: Recenter A(k) from A(k−1) + ∆̃A
(k)

and compute the associated ∆̃A
(k)

7: k ← k + 1
return Ã(k), S̃(k), ∆̃A

(k)
.
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Source estimation:. The cost-function, for fixed A and ∆A, can be solved pixel-wise and
parallelized, ∀k = 1..t:

minimize
Sk≥0

1
2
∥∥Xk −A′kSk

∥∥2
2 +

∥∥Λk � Sk
∥∥

1 ,

where A′ki = Ai + ∆Ak
i represents the local endmembers at the kth pixel. The proximal oper-

ator of the combination of the `1 norm and the non-negative constraint has a closed form [112],
see Appendix A. Consequently, the subproblem, for each pixel, is easily minimized with the FB
algorithm presented in 3.1.2.

The parameters Λ are set to 3 mad
(

AT

(
X−AS−

n∑
i=1

∆Ai � Si
))

(see Section 3.3.3 and

App.B).

Spectral variation estimation:. The estimation of the SV is given by:

minimize
∆A

1
2

∥∥∥∥∥X−AS−
n∑
i=1

∆Ai � Si

∥∥∥∥∥
2

2

+
n∑
i=1
‖Υi∆Ai‖2,1 (6.7)

s.t. (Ai + ∆Ai) ≥ 0,Ai ∈ Sm−1, (Ai + ∆Ak
i ) ∈ Sm−1,∀i = 1, ..., n, k = 1, ..., t,

Similarly to the sources, this problem can be easily parallelized since all the pixels are indepen-
dent.
The proximal operator of the `2,1 norm term plus the characteristic functions is not explicit but
is efficiently solved using the GBFS algorithm introduced in Section 3.1.3, [110].
The values of Υi are set according to the gradient ∇

1
2

∥∥∥∥X−AS−
n∑
i=1

∆Ai�Si

∥∥∥∥2

2

(∆A) of the differ-

entiable term. In contrast with the sources, it does not yield clearly an estimate of the noise
affecting the SV, but has two similar properties:

• It is large if the residual is large (only the largest SV are updated, with a large bias), which
is interesting during the first iterations.

• It decreases towards 0 when the residual is nearly null (the small SV are also updated, and
there is less bias and so a better fitting of the data).

In the spirit of the thresholding strategy which was proposed for the `2,1 norm, App.B, the
thresholds are set according to this ersatz of noise standard deviation, to which we added a
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weighting3:

Υi =
√

2
Γ(m+1

2 )
Γ(m2 ) ×mad(∇

1
2

∥∥∥∥X−AS−
n∑
i=1

∆Ai�Si

∥∥∥∥2

2

(∆A))

︸ ︷︷ ︸
standard threshold for `2,1

× max(Si)
max(S)︸ ︷︷ ︸

inter-variability
between the sources

× Wi︸︷︷︸
intra-variability
of the source i

.

The term max(Si)
max(S) permits to rescale the values of Υ according to value of the sources (otherwise

the residuals would be fit by the sources of largest energy). Indeed, we underline that the values of
the gradients are much larger with the largest sources. However the SV represent only directions,
not an energy depending of the pixel (the situation would be different with Model-A). That is
why, we rescale the different gradients during parameter estimations.
The weighting term is such that Wt

i = min(10, ‖St‖1
St
i

), ensures that the most significant source,
at the pixel t, will handle the SV, and that a small entry will not be associated with large SV
(otherwise, we risk to overfit the residuals with the smallest samples).

Mixing matrix:. The estimation of the mixing matrix is given by:

minimize
A

1
2

∥∥∥∥∥X−AS−
n∑
i=1

∆Ai � Si

∥∥∥∥∥
2

2

(6.8)

s.t. (Ai + ∆Ai) ≥ 0, (A) ≥ 0,Ai ∈ Sm−1, (Ai + ∆Ak
i ) ∈ Sm−1,∀i = 1..n, k = 1..t,

In contrast with the other components, the mixing matrix is (too) constrained. Once the SV are
not null, the constraint (Ai + ∆Ak

i ) ∈ Sm−1 makes any update of A impossible. To alleviate
this issue, we recenter ’manually’ A by taking the means of the local spectra, and adapting the
SV consequently.

6.3.3 Algorithm improvements

This algorithm and associated numerical experiments are preliminary, but illustrate the interest
of constraining the endmembers to live on the hypersphere.
Numerous improvements, and even reformulation of the problem would be of interest. We pro-
pose some of them:

3This threshold strategy is the one used in the numerical experiments. We would like to mention another
procedure, developed after the first submission of the thesis. Let us suppose that the sources, mixing matrix and
deviations are exactly recovered. The first order condition for eq.6.7, at the tth pixel and ith component gives us:
∆At

i = 1
(St
i
)2 proxΥ ti `2,1 (∆At

i × (Sti)
2 + Nt × (Sti)). Then, one can threshold the deviation whose impact has an

energy smaller than the Gaussian noise level with standard deviation σ (estimated with the mad on the residual)

with Υ ti = σ×
√

2 Γ(m+1
2 )

Γ(m2 ) × Sti (non-negative sources). One can prefer to threshold the deviation according to a

minimal angle deviation θ by setting Υ ti = 2× sin( θ2 )× (Sti)
2. They both directly, and locally, take into account

the dynamics of the sources.
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• The proposed formulation cannot be properly minimized. It would be however possible to
consider directly the local spectra Aloc ∈ Rm×n×t with Ai

loc = Ai + ∆Ai and to reformulate
the problem as follows:

argmin
A,Aloc,S

1
2

∥∥∥∥∥X−
n∑
i=1

Ai
loc � Si

∥∥∥∥∥
2

2

+
n∑
i=1

∥∥Υi(Ai −Ai
loc)
∥∥

2,1 + ‖Λ� S‖1 (6.9)

s.t. A ≥ 0,S ≥ 0, (Ai
loc) ≥ 0,Ai ∈ Sm−1, (Ai

loc) ∈ Sm−1,∀i = 1..n.

With this formulation, we avoid the trivial local minimum with respect to A once the ∆Ai

are not null, and the reference endmembers A can be properly recentered.

• The setting of the regularization parameters for the ∆A, Υ , is not completely satisfactory.
They start with a large value and then decrease towards zero, which is necessary to avoid a
too quick overfitting of the data (without the updates of the sources). However, it seems that
using the relation (6.4) between the norms of the ∆A and the spectral deviations θi would
be more efficient. Indeed, it is possible, by setting correctly the entries of Υ to control exactly
the spectral deviations.

• The regularization parameters for the sources can mimic the simplex assumption: one can
envisage to threshold the mixed pixels so that the corresponding sources entries are not larger
that the amplitudes of the sources for the pure pixels. It would limit the leakages from the
SV contribution towards the estimated sources.

6.4 Numerical Experiments

In the following, we will display the results obtained from simulated and real hyperspectral data
(MOFFETT scenes). For the 3 data sets, we will look for 3 components: soil, vegetation and
water.

6.4.1 Datasets

We will consider 3 datasets:
• Dataset 1: A first real hyperspectral data cube, with m = 189, and t = 50× 50 pixels.
• Dataset 2: A second real hyperspectral data cube (same area), with m = 177, and t =

128× 128 pixels.
• Dataset 3: A simulated hyperspectral data cube, generated from the first data set with m =

189, and t = 50 × 50 pixels. The observations are generated from the results obtained by
VCA [104] on the first data set (A and S). Spectral variations are added to the data: the ∆A
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are drawn from a centered Gaussian distribution, and the local spectra are then normalized.
The maximal spectral angle is set to 15°for the water and 5°for the soil and vegetation.

For the 3 datasets, the abundances and spectra recovered from VCA (or the ground truth) are
available. Besides, for the first data-set, the results obtained in [127] will be also displayed4.
Last, the data sets have been multiplied by a factor of 100 for convenience.

6.4.2 Initialization

We first propose to describe the results obtained after the initialization with the dataset #1,
and to compare them with the one obtained by VCA. For illustrative purpose, the endmembers
estimated by VCA are normalized, and the energy of the abundances is modified accordingly.

Abundances. The abundances retrieved by AMCA and VCA are represented in fig.6.11.
The results are on the overall quite similar. The main differences appear for the abundance of
the water:
• The amplitude of Swater is abnormally large on the shore with AMCA fig.6.11c,6.11f. This

can be explained by the fact that the data (including the SV contribution) lying in the convex
cone are estimated as belonging to the source contribution (whereas it is not the case with
VCA thanks to the simplex assumption 6.11i). Given that the energy of the water is much
smaller than the other contributions, relatively small residuals from the two other components
become very significant when projected on Swater.

• One can also remark the abnormal presence of soil on the lake surface, due also to the
projection of SV on the water contribution 6.11d.

Endmembers. The normalized spectra obtained by the initialization and VCA are dis-
played in fig.6.12.
The spectra of the soil and the vegetation are quite similar. The ones of the water differ more
significantly. In fig.6.12b, the spectra of the pure pixels of water are also displayed. One can
notice that the spectrum recovered by our initialization is closer to the mean of these spectra:
the spectral signatures are robustly estimated by AMCA.

Detection of the largest SV. From the components returned by the initialization, it is
already possible to localize the largest deviations.
We set X̃ = Ã(max(0, Ã†X)), the non-negative projection of X on the span of the retrieved
spectra, with non-negative contribution.
On can notice that the largest residuals are obtained for the water (whose SV are the most

4We are grateful to P.-A. Thouvenin for providing their results, as well as the datasets.
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Figure 6.11: Abundance maps for the first data set. First row: after the initialization process,
second row: energetic contribution of the element per pixel / projection of the sources with

S̃k

‖S̃k‖1
∀k = 1, ..., t where S̃ are associated with normalized spectra, third row: abundances of

VCA, fourth row: abundances of VCA similarly projected.

important), and the coastline fig.6.13a: the SV on these areas do not lie in the span of Ã.
Besides, when further looking at the δ-density (introduced in 4.3), we can remark that all the
source entries are active, with similar amplitude, at the level of the coastline fig.6.13b: the best
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(b) Spectra of pure water pixels

Figure 6.12: Left: normalized spectra recovered by VCA and the initialization. Right: spectral
signature of the water recovered by VCA and the initialization, and the spectral signature of the
pure water pixels.
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Figure 6.13: Left: residual error per pixel k ‖X̃k−Xk‖2
‖Xk‖2

, in percent. Middle: δ-density of the pixel

k
‖S̃k‖1

max(S̃k) . Right: residual error per band:
∥∥X̃k −Xk

∥∥
2, k = 1..m

fit (for the `2) needs to active simultaneously all the sources. Last, we underline that even if
some bands have been removed before the analysis, some are still very corrupted/have a very
low SNR fig.6.13c. It would be of interest to penalize these bands. This can be achieved for
instance, by adding a weighting scheme when estimating the sources in the spirit of the rGMCA
algorithm presented in Section 4.2:

S← SΛ
(
(WA)†)(WX)

)
,

where W is a diagonal matrix, such that Wm,m = 1
ε+‖X̃m−Xm‖2

. With this kind a penalization,
the sources would be estimated directly from the less-noisy bands.

6.4.3 Spectral variation retrieval

In order to illustrate the benefit of constraining the local spectra to live on the hypersphere, we
propose to only estimate the spectral variations.
For this purpose, we fix A and S with the ground truths using the third data set, and seek for
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the corresponding SV.

Data fitting. By estimating the SV, we almost perfectly fit the observations fig.6.14. Whereas
the initial relative residual was up to 25% fig.6.14a, it decreases to less than 0.2% after estimating
the SV fig.6.14b. The largest deviations are still encountered at the level of the coastline.
However we point out that the residual error is not representative of the accuracy reached for
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Figure 6.14: Left: residual error per pixel k ‖(AS)k−Xk‖2
‖Xk‖2

, in percent. Right: residual error per

pixel after estimating the SV ‖((A+∆A)�S)k−Xk‖2
‖Xk‖2

, in percent .

the estimation of the SV: the problem is clearly ill-posed and fitting the observations is (too)
simple.

SV estimation. We propose to analyze more precisely the accuracy reached for the SV esti-
mation. It appears that the SV of the dominant components (per pixel) are correctly estimated.
It is indeed very easy to estimate the SV of pure pixels (whose spectra are directly obtained
by normalizing the observations), whereas estimating the SV of a mixture is more challenging.
It can be clearly observed in fig.6.15: all the zones with one dominant component are correctly
estimated (for example for the water in fig.6.15d, 6.15a), whereas there are significant errors for
the coastline.

6.4.4 Joint Analysis

6.4.4.1 Dataset 1 - comparison Model A- Model B. Last, we present
the final local spectra and sources returned by our method and compare them with the ones
obtained in [127]. In order to clarify the comparison, the results of [127] are normalized as the
following: the local spectra are normalized for the `2 norm, and the scaling factor is added to
the sources: S̃ki ← Ski ×

∥∥Ai + ∆At
i

∥∥
2, ∀i = 1..n, k = 1..t.
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Figure 6.15: Pixel residual per component. Initial contribution of the component i: xi = (Ai +
∆Ai) � Si, without the SV: yi = (Ai) � Si, with estimated SV: x̃i = (Ai + ˜∆Ai) � Si. Top
row: initial residual per pixel k: ‖x

k
i−y

k
i ‖2

‖xki ‖2
, in percent. Bottom row: residual with estimated

SV:‖x
k
i−x̃

k
i ‖2

‖xki ‖2
, in percent.

Source Estimation. The components returned by the two models are similar enough to be
compared. We can observe the presence of stronger leakages from the SV contribution towards the
estimated water map for Model B fig.6.16. However, the simplex assumption does not completely
avoid these leakages: the amplitudes of the water map entries at the border between the water
and the soil are much larger than for the water alone. Besides, it seems that Model B was more
successful to determine the energy fraction of the components pixel-wise: the pixels returned by
model A at the level of the water are only composed of 80% of water fig.6.16 (we recall that the
simplex assumption does not longer determine the fraction of energy of each component since
the energy is also accounted in the varying ∆A with model A). The abundances maps of the soil
and vegetation are more similar for models A and B, except for the pure water region.

Spectral Estimation. The estimated references endmembers returned by the two ap-
proaches are displayed in fig.6.19. The spectra of the vegetation and the soil are quite similar,
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Figure 6.16: Returned components for the water for the real data set 1. Top row, from left
to right: estimated sources model B and then A [127], water contribution to the pixel: S̃kwater

‖S̃k‖1
,

∀k = 1..t for model B and A. Bottom: local spectra, with in red the reference spectra Ã with
model B (left) and model A.

especially the ones of the soil. However, the estimated spectra for the water differ significantly.

The local spectra of the water present very large deviations for both methods fig.6.17f. This
component is less energetic and is thus more sensitive to the presence of noise and residual (even
the pure pixels of water present large variabilities fig.6.12b).
We can observe larger deviations for the local spectra of the soil and vegetation with model B
than with model A fig.6.18, fig.6.17. This can be explained by the fact than a unique regu-
larization parameter for the different SV was used for model A: ’a same amount of energy’ is
considered per element whereas the reflectance values of the soil are much higher than the ones
of the water fig.6.9. However, it is quite difficult to state on the quality of the retrieved SV
without any ground truth.
For the two models, we remark abnormal large deviations at the limit of the discarded bands:
this was expected from the large residuals encountered in fig.6.13c.

We have also displayed in fig.6.20, the covariance matrix of the estimated local endmembers,
in the spirit of [116]. We can remark that only few local endmembers have been wrongly es-
timated, in the sense that they are almost all more correlated with the other local spectra of



164 Hyperspectral unmixing with spectral variabilities
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Figure 6.17: Returned components for the soil for the real data set 1. Top row, from left to right:
estimated sources model B and then A [127], water contribution to the pixel: S̃ksoil

‖S̃k‖1
, ∀k = 1..t

for model B and A. Bottom: local spectra, with in red the reference spectra Ã with model B
(left) and model A.

their class (water, soil and vegetation) than the ones belonging to the other classes. Besides, one
can observe that the intrinsic variabilities of the spectra of the water are indeed more significant
than for the others elements (smallest values for the correlations). Last, even if the soil and the
vegetation spectra are inherently quite correlated, it seems that the returned local spectra are
not too similar (the separation is fair).

Last, we have observed significant differences for the estimation of the water contribution
(abundance maps and spectra). In order to assess the quality of the components retrieved by
Model B, we display the normalized spectra of 100 pure pixels of water (namely, 100 pixels
from the top of the image, which should be composed only of water) fig.6.21. We can observe
that the corresponding local spectra recovered with Model B are much closer to the ’true’ local
spectra. Consequently, the reference endmember and local spectra recovered by model B are
probably more correctly estimated than with model A: this illustrates the possible benefit of the
hypersphere constraint.

6.4.4.2 Dataset 2. The results obtained for the second dataset are displayed in
fig.6.22.
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Figure 6.18: Returned components for the vegetation for the real data set 1. Top row, from left
to right: estimated sources model B and then A [127], water contribution to the pixel: S̃kveg

‖S̃k‖1
,

∀k = 1..t for model B and A. Bottom: local spectra, with in red the reference spectra Ã with
model B (left) and model A.
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Figure 6.19: Estimated reference endmembers with model A and model B.

Once again, the results obtained by our method or VCA mainly differ for the water estimates.
The energy of the water is 20 times smaller than the other components and it has large SV: the
impact of the residuals is much more significant for this element fig.6.22a, 6.22b. Notably,
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Figure 6.20: Covariance matrix of the returned local endmembers Model B.
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Figure 6.21: Normalized spectra of pure pixels of water and comparison with the corresponding
local spectra obtained by Model A and Model B.

one can observe the presence of 2 paths, strongly appearing on the water abundance with our
method fig.6.22b, but whose local spectra are very similar to a combination of soil and vegetation
with strong deviations. However, the local spectra exhibit acceptable variations (thanks to the
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Figure 6.22: Returned components for the real data set 2. Left column: sources obtained from
VCA. Middle : estimated sources. Right: local spectra, with in red the reference spectra Ã.

reweighting, the local spectra of the water are not too affected by the mis-estimation of the
abundance) fig.6.22.

6.5 Summary and perspectives

In this chapter, we aimed to extend the robust BSS methods to estimate spectral variations in
hyperspectral images. By using the data model proposed first in [127], we introduce another
approach to constrain the components, namely by enforcing the local spectra to live on the hy-
persphere.
In practice, extending the previous methodology developed for robust BSS is not straightfor-
ward because the sources of interest, which are not independent in remote sensing, do not admit
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highly jointly sparse representations. However, and even if we cannot prevent from the leakages
between the spectral variations contribution towards the estimated sources (sparsity cannot be
strongly enforced), the preliminary results are encouraging.

In order to improve the estimation of the components for terrestrial hyperspectral images,
we should find another prior on the sources to limit the leakages from the spectral variability
towards the estimated sources. A prior on smoothness, such as the one proposed in [127] would
be of interest.

Future work also includes the applications of the method to astrophysical scenes, for which
the simplex assumption does not hold, but whose sources can be (highly) sparsely represented
in the wavelet domain. It is an easier framework for this method.



Conclusion

Blind Source Separation is a powerful tool to extract meaningful information from multivalued
data. Unfortunately, most BSS methods are hampered by large and structured deviations from
the linear mixture model, which are frequently encountered in some domains including astro-
physics or remote-sensing. In this thesis, we studied and proposed new robust BSS methods
aiming to jointly estimate the mixing matrix, the sources and also these outliers.

The novel methods studied in this thesis rely on a joint estimation of the different compo-
nents building upon sparse modeling. Emphasis has been placed on the reliability of the proposed
methods in a wide range of settings, including the determined case.
In Chapter 4, we focused on the BSS problem in the presence of outliers and sources sharing the
same morphology. While the outliers cannot be exactly identified, an accurate estimation of the
mixing matrix has been shown to be possible. The robustness of the unmixing process relies on
an adaptive detection and penalization of the corrupted samples.
In Chapter 5, we take advantage of the morphological diversity between the deviations and
sources which is encountered in many imaging problems. The developed strategy exploits jointly
the spatial and spectral diversities between the different components, to precisely separate out-
liers and sources contributions.
Last, in Chapter 6, we studied the estimation of the spectral variabilities in hyperspectral im-
ages. In particular, we compare the influence of two fundamental model assumptions: samples of
the abundances ’summing to one’ versus spectral signatures belonging to the hypersphere. The
sparsity level of the sources of interest does not yield a precise estimation of the components but
still leads to comparable results with the state-of-the-art strategies.

We underline that the proposed strategies have been developed to be efficient in a large
variety of settings, without requiring a fine tuning of the few parameters. The corresponding
codes will be made available at http://www.cosmostat.org/software/gmcalab.

http://www.cosmostat.org/software/gmcalab
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Outlook

Several improvements for the proposed works and new perspectives come on the scene during
this thesis. Here are some of them.

Algorithmic consideration. Matrix factorization problems using sparse modeling are chal-
lenging for two main reasons. First, the problems are non-convex and local minima should be
avoided. Second, the parameters should be learned from the data as well. Performing both tasks
jointly is not simple. Up to know, the most performing scheme we have developed consists of
two steps: i) a broad estimation of the components together with the regularization parameters
based on projected least-squares, ii) a refinement step using proximal calculus (PALM).
It would be interesting, in terms of computational time, precision and flexibility, to design an
efficient strategy built jointly, on proximal calculus and parameter estimation. This requires a
deeper understanding of the dynamics, propagation of the residuals, and sensitivity to the pa-
rameters, involved in matrix-factorization using prox-linearization.

Broader variety of deviations. We mainly consider in this work, the presence of devia-
tions well described by an extra linear term, independent of the two variables of interest A and
S. This model is in particular, well suited to handle the presence of unexpected physical events,
but not effective enough to handle more complex deviations, such as component variabilities
(spatial or spectral variations).

More generally, the observations can be related to the source contribution with the following
generic model:

X = F (A,S) ,

where F : Rm×n × Rn×t → Rm×t is a degrading mapping.

We mention two special cases of degrading mappings which are frequently encountered in
practice but not well handled, yet:

• Component variabilities. Several types of component variabilities can be met: spectral (vari-
ations of the spectral signature of a component from one pixel to another) or even tempo-
ral/spatial (variations of the component itself from one channel to another one - for example
due to a delay between the observation).
Various potential improvements can be studied. First, if one keeps the hypersphere con-
straint for the spectra, deploying adapted tools such as wavelets on the hypersphere, could
be relevant. Besides, it would be also interesting to better exploit the fine spectral details of
hyperspectral images by using a sparsity constraint on the spectra represented in a transform
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domain as well [102]: it would be easier to denoise and to control the shape of the recovered
spectra. However, these improvement steps would only be beneficial if another hypothesis
(e.g. shape conservation or spatial/spectral smoothness of the variabilities) is meaningful for
the data for interest.
In particular, in some applications, the local spectra we aim to recover correspond to shifted
versions of the reference spectral signature. In such cases, it would be appropriate to directly
seek for these special features by minimizing the displacements, [101].

Also, the underlying physical process associated with the spectral variations is quite well
known for the Planck data. More precisely, the emissions depend on some physical param-
eters, such as the local temperature, or gas densities in the sky. Instead of estimating the
emissions, it would be more efficient and precise to look directly for these physical parame-
ters, building upon an improved physical modeling of the observations. That is, the unknown
mapping F(A,S) can be efficiently replaced by G(Y1, . . . ,Yn), where Y1, . . . ,Yn are the
sought after physical parameters, and G is a fairly well known mapping [55].

• Other noise process In many imaging applications including in astrophysics, too few pho-
tons are reaching the sensors: the noise is not Gaussian. In this case, the observations
are better described by a Poisson process, with X = P(AS). This noise, which affects
randomly the observations, is not well handled by the standard BSS methods. The com-
bination of the latest developments in optimization with an adaptation of the heuristics
employed for sparse BSS in the presence of Gaussian noise may lead to encouraging re-
sults.

For illustrative purposes, we mention the observations of the supernova Cassiopeia A, taken
by the Chandra telescope5, fig.6.23. The noise, at these high energies, mainly originates from
a counting process, fig.6.23a6. The observations are thus well described by a Poisson process.
Besides, the expansion of the supernova leads to spectral variabilities, broadly speaking due to
Doppler effect, fig.6.23c. Estimating precisely the components and spectral variabilities from
a Poisson process is a challenging task, from which it would be possible to map the different
components and infer the geometry of the expansion of the supernova.

5http://chandra.harvard.edu
6Extracted from https://github.com/facero/BHESS.
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(a) Signatures of some components.

(b) Observation at 5keV (c) Normalized signatures of the iron

Figure 6.23: Observations of Cassiopeia A by Chandra. Top: spectral signatures of some compo-
nents of the supernova. Bottom-left: observation at 5keV. Bottom-right: some recovered spectral
signatures of the iron (blue and green, reference in red).
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Proximal Operators

In the following table, we present the different functions that are used in this thesis and their
associated proximal operators.
Similarly to

∥∥Λ.ΦT
S
∥∥

1, we do not find a closed form formulation for
∥∥Υ.ΦT

O
∥∥

2,1 when ΦO is not

Function Proximal operator
χY:‖Y‖2≤1 (X) X′ : (X′)i = Xi

max(1,‖Xi‖2)∀i [38]
‖Λ�X‖1 SΛ(X) [38]∥∥Λ�XΦT

S
∥∥

1 SΛ
(
XΦT

S
)
ΦS [124]

(exact if ΦS is orthonormal and good approximation if
transformation with diagonally dominant Gram matrix)

‖Υ �X‖2,1 X′ : (X′)i = Xi ×
(

1− Υ i

‖(X)i‖2

)
+
,∀i, [83].∥∥Υ �XΦT

O
∥∥

2,1 X′ΦO : (X′)i = (XΦT
O)i ×

(
1− Υ i

‖(XΦTO)i‖2

)
+
,∀i

(exact if ΦO is orthonormal and good approximation if
transformation with diagonally dominant Gram matrix)

‖Υ �X‖2,1 + χY:Y≥0 (X) X′ : (X′)i = Xi
+ ×

(
1− Υ i

‖(X)i+‖2

)
+
,∀i , [137, Theorem 1].

orthonormal. In the spirit of the approximation made for the `1 norm, we propose to threshold
the columns of the expansion coefficients, and then come back to the domain of observations.
In practice, these approximations made to handle sparsity in a transformed domain give better
results than the synthesis formulation, what supports the use of these approximations.
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Threshold value

Let us consider the following robust BSS problem:

minimize
A,S,O

1
2 ‖X−AS−O‖22 +

n∑
i=1

λi ‖Si‖1 + β ‖O‖p

Setting the values of the parameters {λ}i=1..n and β is crucial. Thanks to sparse modeling, the
choice of these parameters can be based on noise removal theory. Indeed, estimating the outliers
or the sources, w.r.t the other variables amounts to solve a detection problem as described in the
following.

B.1 Noise removal/detection with sparse modeling

Sparse modeling is particularly suitable for Gaussian noise removal [49], [36], [53]. For illustrative
purpose, we consider a sparse 1D signal y ∈ R1×t, and the noisy observation x = y+ n, where n
accounts for the presence of Gaussian noise, whose entries are i.i.d., with standard deviation σ,
see fig.B.1.
The energy of the sparse signal y is concentrated in few active samples, whereas the one of the
Gaussian noise n is broadly distributed over all the samples. In order to retrieve the signal y,
one can then select only the largest samples of x, i.e. the ones corresponding to the support of
y. This can be achieved by minimizing the following problem:

argmin
y

1
2 ‖x− y‖

2
2 + λ ‖y‖1 ,

whose closed form solution is given by: ỹ = Sλ(x) .
That is, the signal y is recovered from x by thresholding/putting to zero, the entries of x smaller
than λ: the proposed value of λ in fig.B.1 would select properly the support of y. The choice
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Figure B.1: Illustration of the noisy observation x (in blue) of a sparse signal y (in red). The
value of λ should be based on the value of the noise.

of λ can be seen as an hypothesis testing problem [124]: an entry xt corresponds only to the
Gaussian noise contribution n, or not and thus corresponds to a noisy active entry of the signal
y + n.
The “k-σ”rule is commonly used for setting the value of λ [124]: the probability that an entry
with an amplitude larger than 3σ corresponds only to the Gaussian contribution is 0.4% only.
The value of k depends on the application: a large k is more conservative (less false recoveries)
whereas a smaller k induces more detections.
The standard deviation of the Gaussian noise n is generally not known in practice, but can be
estimated with the median absolute deviation (mad) of x. Indeed, the mad of n corresponds to
a good approximation of σ, and given that the mad operator is almost not influenced by sparse
contribution, we end up with σ ≈ 1.4826 × mad(n) ≈ 1.4826 mad(x) since mad(y) ≈ 0 if y is
sparse enough.

If the signals are sparsely represented in a transformed domain Φ, the rationale and setting
of the parameters are kept identical, (performed in Φ). In case of multi-resolution transforms, a
threshold value can be chosen on each scale.

B.2 Noise removal for the sources

Estimating the sources, for fixed A and O amounts to solve the following problem:

argmin
S

1
2 ‖X−O−AS‖22 +

n∑
i=1

λi ‖Si‖1 ,

which is reminiscent of the previous denoising problem. However, we aim to jointly separate and
denoise the sources.
In this thesis, it is assumed that the entries of N are Gaussian i.i.d.. This does not imply that
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the Gaussian noise contribution in the source domain (i.e. A†N) has the same statistics from
one source to another. That is why, a threshold value is computed for every source.

With pseudo-inversion

In the fast version of GMCA, or AMCA, the sources are estimated first from the projection:
S̃ = A† (X−O), and then thresholded. If A is fairly well recovered, each projected source
corresponds to S̃i = Si +

(
A†N

)
i
, ∀i = 1, ..., n. We recover exactly the setting of B.1, with

y ← Si and n ← (A†N)i. For each i, the entries of (A†N)i are indeed Gaussian, but with an
unknown associated standard deviation σ ≈ 1.4826 mad(S̃i). Consequently, the final threshold
value, for each source i, is chosen equal to kmad(S̃i), and k ∈ (1, 5) generally.

With proximal gradient updates

A proximal gradient update also is two-steps: (i) a gradient update yielding, broadly, to a
noisy estimate of the sources, and (ii) the soft-thresholding. Hence, if the mixing matrix is
correctly recovered, the noisy sources, before the soft-thresholding, correspond to S̃ = S +
1
LAT (X−O−AS), where L =

∥∥ATA
∥∥

2,s. These noisy sources can be decomposed with y ← S
and n ← 1

LAT (X−O−AS), the projected noise on the sources domain 1. Consequently, the
ith source S̃i can be denoised with a threshold equal to kmad( 1

L [AT (X−O−AS)]i). This
amounts to set λi = kmad([AT (X−O−AS)]i)2.

We propose also another approach for the derivations of these thresholds. Using BCD or
PALM, the minimization problem for fixed A is properly handled. Consequently, we can use the
Karush–Kuhn–Tucker condition:

AT (X−AS−O) = λP with P ∈ ∂ ‖S‖1 .

The condition P ∈ ∂ ‖S‖1 implies that ‖P‖∞ = 1, and thus that
∥∥(AT (X−O−AS))i

∥∥
∞ = λi.

Since we aim to obtain X − O − AS ≈ N, we end up with
∥∥(AT (N))i

∥∥
∞ ≈ λi. By setting

λi = 3σi, where σi is the standard deviation of the noise corrupting the ith source (ATN)i
1We point out that one can also use the first order condition to obtain this result. Let s = Sj be the jth

source, a = Aj its associated column vector, and R = X−O−
n∑

i=1,i 6=j
SiAi. The estimation s for fixed R and

a is given by:
argmin

s

1
2
‖R − as‖22 + λi ‖s‖1 .

This problem has a closed form, which is given by s = Sλi
(
aTR

)
, by using the fact that aT a = 1 since the

columns of A are normalized. If we assume that we know perfectly the other sources and the mixing matrix:

R = AS+O+N−
n∑

i=1,i 6=j
SiAi−O = as+N. Hence, the closed form solution can be written as s = Sλi

(
s+ aTN

)
,

or equivalently, the sources are corrupted by ATN.
2We point out that if A is orthonormal, the value obtained for each source i with the two noise projections

mad
(

AT ((X−O)−AS)
)
i
or mad(

(
A† (X−O)

)
i
) are equivalent.
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(approximated with the mad operator on AT (X−O−AS)), we indeed ensure that more than
99% of the corrupted entries will be set to zero, which provides an approximation of

∥∥AT (N)i
∥∥
∞.

B.3 Noise removal for the outliers

The update of the outliers, for fixed A and S is given by:

argmin
O

1
2 ‖X−AS−O‖22 + β ‖O‖p ,

where p depends on the sparsity pattern of the outliers: p = (2, 1) for column-sparse outliers,
and p = 1 for row and column sparse outliers.

B.3.1 With the `1 norm

In contrast to the sources, the outliers are not mixed and are thus estimated directly with
Sβ(X−AS). Since we assumed that N is i.i.d, the noise level should be constant from one
observation to another. Hence, the threshold β is chosen to be equal to kmad(X−AS−O)
similarly to B.1, since mad(X−AS−O) ≈ mad(N).

B.3.2 With the `2,1 norm

The `2,1 norm promotes column-sparse outliers. In that case, the detection process is performed
on the norm of the samples: this better preserves the structure of the component and makes the
detection easier see fig.B.2.

(a) First observation. (b) Norms of the samples.

Figure B.2: Illustration of noisy observations (in blue) of column sparse outliers (in red). On
the left: observation of only one channel, on the right: observation of the norms of the samples.
The value of β should be chosen according to the contribution of the Gaussian noise.

The estimation of the outliers is performed by minimizing:

argmin
O

1
2 ‖X−AS−O‖22 + β ‖O‖2,1 .



178 Threshold value

Every sample k ∈ 1, ..., t of the closed form solution is such that (X−AS)k×
(

1− β

‖(X−AS)k‖2

)
+
.

Hence, the value of β should be chosen so that, with a high probability, the samples having an
energy larger than β correspond to the outliers, the signal of interest, and the ones with an
energy smaller than β to Gaussian noise only.
The Gaussian noise contribution (the `2 norm of a column vector of N) follows a Chi distribution
with m degrees of freedom. Similarly to what was done in the previous sections, it would be
possible to set the value of β so that, the probability (chosen) that a sample with a norm larger
than β correspond to a Chi distribution with m degrees of freedom is very small.
We have rather preferred using a more conservative threshold, related to the kσ residual of the
sources. The expected value of a Chi distribution with m degrees of freedom generated from a
Gaussian law with standard deviation σ is σ ×

√
2 × Γ(m+1

2 )
Γ(m2 ) . The value of β in this thesis is

k × σ ×
√

2 × Γ(m+1
2 )

Γ(m2 ) , where σ ≈ 1.4826 mad(X−AS−O).
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Performance criteria

Assessing the quality of the separation and estimation of the sources is necessary for comparing
different strategies. Many criteria have been proposed in the literature, which do not provide
similar insights on the performances. In this appendix, we present the criteria that have been
used in this thesis along with a description of the features of the algorithms they evaluate.

We underline that in BSS, the algorithms should yield an accurate unmixing (estimation of
A) and a precise recovery of the sources (estimation of S). These raise two remarks: first, a
correct estimation of the mixing matrix may not lead to a precise estimation of the sources (in
the presence of outliers or significant Gaussian noise), and second, a fair recovery of AS does not
mean that A and S are correctly recovered. For instance, in the noiseless determined case, any
invertible matrix Ã, and corresponding sources Ã†X perfectly fit the data, whereas the unmixing
can be completely wrong.

Unmixing.

• For each recovered Ã, the quantity ∆A =
(
‖Ã†A−I‖1

n2

)
is computed [14] (or the inverse of this

quantity in dB in Chapter 5). This provides a global criterion for the quality of the unmixing.
However, a fair but inaccurate A cannot be easily distinguish from a mixing matrix A, where
all but one column have been very accurately estimated.

• For each recovered Ã, the maximal angle made between each of its column and the ones of
the initial A is return: maxj=1..n arccos〈Ãj ,Aj〉 (in degree).
We sum the number of runs for which an algorithm has returned a mixing matrix whose
maximal angle is smaller than 5 degrees. This quantity, normalized to 1, provides a good
indicator of the reliability of the algorithms. Besides, it allows for a better interpretation of the
quantity ∆A by differentiating between an inaccurate (all the columns are fairly estimated)
and a ’wrong’ (all but few columns are precisely estimated) unmixing.
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Estimation of the sources.
• In [131], the authors decompose each retrieved source s as the sum:

s = starget + sinterference + snoise + sartifacts,

where starget denotes the projection of the retrieved source on the sought-after one, sinterference
the residue due to the interferences with the other sources, snoise accounts for the part due to
the presence of noise (the outliers in our case), and last, sartifacts, represents the remaining
artifacts. This decomposition is used to derive the following indicators [131]:
- Signal to Distortion Ratio SDR(s) = 20 log

(
‖starget‖2

‖sinterference+snoise+sartifacts‖2

)
.

- Signal to Interference Ratio SIR(s) = 20 log
(

‖starget‖2
‖sinterference‖2

)
.

- Signal to Noise Ratio SNR(s) = 20 log
(
‖starget+sinterference‖2

‖snoise‖2

)
.

- Signal to Artifact Ratio SAR(s) = 20 log
(
‖starget+sinterference+snoise‖2

‖sartifacts‖2

)
.

If not stated otherwise, the median over the n sources are displayed.
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Publications

Refereed articles

• C.Chenot and J.Bobin. Blind Source Separation with outliers in transformed domains. Sub-
mitted

• C.Chenot and J.Bobin. Blind separation of sparse sources in the presence of outliers. Signal
Processing, Elsevier, vol.138, 2017.

• C.Chenot, J.Bobin and J.Rapin. Robust sparse blind source separation. SPL, IEEE, vol.22,
2015.

Conferences

• C.Chenot and J.Bobin. BSS with Corrupted Data in Transformed Domains. LVA-ICA 2017,
Grenoble, France.

• C.Chenot and J.Bobin. Sparse BSS with corrupted data in transformed domains. iTwist’16,
Aalborg, Denmark.

• C.Chenot, J.Bobin and J.Rapin. Sparse BSS in the presence of outliers.SPARS 2015, Cam-
bridge, UK.
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Titre : Parcimonie, diversité morphologique et séparation robuste de sources.
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Résumé : Cette thèse porte sur le problème de
Séparation Aveugle de Sources (SAS) en présence
de données aberrantes. La plupart des méthodes
de SAS sont faussées par la présence de déviations
structurées par rapport au modèle de mélange li-
néaire classique: des évènements physiques inatten-
dus ou des dysfonctionnements de capteurs en sont
des exemples fréquents. Nous proposons un nou-
veau modèle prenant en compte explicitement les
données aberrantes. Le problème de séparation en
résultant, mal posé, est adressé grâce à la parci-

monie. L’utilisation de cette dernière est particu-
lièrement intéressante en SAS robuste car elle per-
met simultanément de démélanger les sources et
de séparer les différentes contributions. Ces tra-
vaux sont étendus pour l’estimation de variabilité
spectrale pour l’imagerie hyperspectrale terrestre.
Des comparaisons avec des méthodes de l’état-de-
l’art montrent la robustesse et la fiabilité des algo-
rithmes associés pour un large éventail de configu-
rations, incluant le cas déterminé.

Title : Sparse modeling, morphological diversity and robust source separation.
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Abstract : This manuscript addresses the Blind
Source Separation (BSS) problem in the presence
of outliers. Most BSS techniques are hampered by
the presence of structured deviations from the stan-
dard linear mixing model, such as unexpected phy-
sical events or malfunctions of sensors. We propose
a new data model taking explicitly into account
the deviations. The resulting joint estimation of the
components is an ill-posed problem, tackled using
sparse modeling. The latter is particularly efficient

for solving robust BSS since it allows for a robust
unmixing of the sources jointly with a precise se-
paration of the components. These works are then
extended for the estimation of spectral variability
in the framework of terrestrial hyperspectral ima-
ging. Numerical experiments highlight the robust-
ness and reliability of the proposed algorithms in
a wide range of settings, including the full-rank re-
gime.
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