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Résumé : L'effet de lentille gravitationnel est la
distorsion des images de galaxies lointaines par des
objets massifs et constitue une sonde puissante de
la structure a grande échelle de notre Univers. Les
cosmologistes utilisent la lentille (gravitationnelle)
faible pour étudier la nature de la matiére noire
et sa distribution spatiale. Ces études nécessitent
des mesures trés précises des formes des galaxies,
mais la réponse instrumentale du télescope, ou
fonction d'étalement du point (PSF), déforme nos
observations. Cette déformation peut &tre confon-
due avec des effets de lentille faible dans les
images de galaxies, ce qui constitue I'une des prin-
cipales sources d'erreur systématique. Par consé-
quent, I'estimation d’'un modéle de PSF fiable et
précis est cruciale pour le succés de toute mission
de lentille faible. Le champ de PSF peut étre inter-
prété comme un noyau de convolution qui affecte
chacune de nos observations d'intérét et qui va-
rie spatialement, spectralement et temporellement.
Le modeéle de PSF doit faire face a ces variations
et est contraint par des étoiles spécifiques dans le
champ observé. Ces étoiles, considérées comme des
sources ponctuelles, nous fournissent des échan-
tillons dégradés du champ de PSF. Les observa-
tions subissent différentes dégradations en fonc-
tion des propriétés du télescope, notamment un
sous-échantillonnage, une intégration sur la bande
passante de |'instrument et un bruit additif. Nous
construisons finalement le modéle de PSF en utili-
sant ces observations dégradées, puis nous utilisons
le modéle pour déduire les PSFs aux positions des
galaxies. Cette procédure constitue le probléme in-
verse mal posé de la modélisation de la PSF. Le
coeur de cette thése a été le développement de nou-
veaux modéles non-paramétriques pour estimer les
PSFs & partir des étoiles observées dans les images
acquises.

Optique, Mission spatiale Euclid.

Nous avons développé un nouveau modéle de
PSF pour les télescopes terrestres, appelé MCCD,
qui peut modéliser simultanément |'ensemble du
plan focal. Par conséquent, MCCD dispose de plus
d'étoiles pour contraindre un modéle plus com-
plexe. La méthode est basée sur un schéma de
factorisation matricielle, les représentations parci-
monieuses et une procédure d'optimisation alter-
née. Nous avons inclus le modéle de PSF dans un
pipeline de mesure de forme & haute performance
et I'avons utilisé pour traiter ~ 3500 deg? d'obser-
vations en bande r provenant du Canada-France
Imaging Survey. Un catalogue de formes a été pro-
duit et sera bientét publié.

L'objectif principal de cette thése a été de de-
velopper un modéle de PSF basé sur les données
qui puisse répondre aux défis soulevés par |'une des
missions les plus ambitieuses en matiére de lentille
faible, la mission spatiale Euclid. Les principales
difficultés liées a la mission Euclid sont que les
observations sont sous-échantillonnées et intégrées
dans une large bande passante unique. Par consé-
quent, il est difficile de récupérer et de modéliser
les variations chromatiques de la PSF a partir de
ces observations. Notre principale contribution est
un nouveau cadre pour la modélisation de la PSF
basée sur un modéle optique différentiable permet-
tant de construire un modéle de front d’onde basé
sur les données. Le nouveau modéle, appelé Wa-
veDiff, est basé sur un schéma de factorisation
matricielle et des polynémes de Zernike. Le mo-
déle s'appuie sur des méthodes modernes basées
sur le gradient et la différenciation automatique
pour |'optimisation, qui n'utilise que des observa-
tions dégradées et bruitées. Les résultats montrent
que WaveDiff peut modéliser les variations chro-
matiques des PSF et gérer la super-résolution avec
une grande précision.
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Abstract : Gravitational lensing is the distortion
of the images of distant galaxies by intervening
massive objects and constitutes a powerful probe
of the Large Scale Structure of our Universe. Cos-
mologists use weak (gravitational) lensing to study
the nature of dark matter and its spatial distribu-
tion. These studies require highly accurate mea-
surements of galaxy shapes, but the telescope’s
instrumental response, or point spread function
(PSF), deforms our observations. This deforma-
tion can be mistaken for weak lensing effects in
the galaxy images, thus being one of the primary
sources of systematic error when doing weak len-
sing science. Therefore, estimating a reliable and
accurate PSF model is crucial for the success of
any weak lensing mission. The PSF field can be
interpreted as a convolutional kernel that affects
each of our observations of interest that varies spa-
tially, spectrally, and temporally. The PSF model
needs to cope with these variations and is constrai-
ned by specific stars in the field of view. These
stars, considered point sources, provide us with
degraded samples of the PSF field. The observa-
tions go through different degradations depending
on the properties of the telescope, including un-
dersampling, an integration over the instrument's
passband, and additive noise. We finally build the
PSF model using these degraded observations and
then use the model to infer the PSF at the po-
sition of galaxies. This procedure constitutes the
ill-posed inverse problem of PSF modelling. The
core of this thesis has been the development of
new data-driven, also known as non-parametric,
PSF models.

We have developed a new PSF model for
ground-based telescopes, coined MCCD, which
can simultaneously model the entire focal plane.
Consequently, MCCD has more available stars to
constrain a more complex model. The method
is based on a matrix factorisation scheme, spar-
sity, and an alternating optimisation procedure.
We have included the PSF model in a high-
performance shape measurement pipeline and used
it to process ~ 3500 deg? of r-band observations
from the Canada-France Imaging Survey. A shape
catalogue has been produced and will be soon re-
leased.

The main goal of this thesis has been to de-
velop a data-driven PSF model that can address
the challenges raised by one of the most ambitious
weak lensing missions so far, the Euclid space mis-
sion. The main difficulties related to the Euclid
mission are that the observations are undersam-
pled and integrated into a single wide passband.
Therefore, it is hard to recover and model the PSF
chromatic variations from such observations. Our
main contribution has been a new framework for
data-driven PSF modelling based on a differen-
tiable optical forward model allowing us to build
a data-driven model for the wavefront. The new
model coined WaveDiff is based on a matrix facto-
risation scheme and Zernike polynomials. The mo-
del relies on modern gradient-based methods and
automatic differentiation for optimisation, which
only uses noisy broad-band in-focus observations.
Results show that WaveDiff can model the PSFs'
chromatic variations and handle super-resolution
with high accuracy.
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Extended abstract

Context

Gravitational lensing is the distortion of the images of distant galaxies by intervening
massive objects and constitutes a powerful probe of the Large Scale Structure of our
Universe. Cosmologists use weak (gravitational) lensing to study the nature of dark
matter and its spatial distribution. These studies require highly accurate measurements
of galaxy shapes, but the telescope’s instrumental response, or point spread function
(PSF), deforms our observations. This deformation can be mistaken for weak lensing
effects in the galaxy images, thus being one of the primary sources of systematic error
when doing weak lensing science. Therefore, estimating a reliable and accurate PSF
model is crucial for the success of any weak lensing mission. The PSF field can be
interpreted as a convolutional kernel that affects each of our observations of interest
that varies spatially, spectrally, and temporally. The PSF model needs to cope with
these variations and is constrained by specific stars in the field of view. These stars,
considered point sources, provide us with degraded samples of the PSF field. The
observations go through different degradations depending on the properties of the
telescope, including undersampling, an integration over the instrument’s passband,
and additive noise. We finally build the PSF model using these degraded observations
and then use the model to infer the PSF at the position of galaxies. This procedure
constitutes the ill-posed inverse problem of PSF modelling. The core of this thesis has
been the development of new data-driven PSF models.

The next generation of wide-field cosmological surveys, such as Fuclid, will observe
the Universe on an unprecedented scale and generate a vast amount of valuable
information. The ever-increasing quality and amount of data pose severe challenges
for the PSF model as well as very stringent requirements on its performance.

The PSF modelling problem for weak lensing studies resides in the intersection
of three disciplines: optics, cosmology, and inverse problems in imaging. Therefore,
the first part of this thesis introduces all the necessary concepts required to develop
a comprehensive understanding of this problem. We started by describing the basic
concepts of cosmology and weak lensing required to understand the final goal of a
PSF model in the weak lensing analysis. We continued with an overview of the main
building blocks of a shape measurement pipeline to depict the context in which the
PSF model will work. The introduction continues with essential notions in optics
and a review of the contributors to the PSF field. Finally, we present an overview of
state-of-the-art PSF models and conclude with validation methods for PSF models.
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PSF models for ground-based telescopes

Modelling the PSF in the full focal plane at once

There are several sources of spatial variations of the PSF. Some cover the entire focal
plane, like the optical aberrations of the telescope and the atmosphere, while others
are specific for each Charge-Coupled Device (CCD) chip. The focal plane of current
wide-field imaging cameras comprises an extensive array of CCDs, constituting a CCD
mosaic. Most of the current PSF models are built independently on each CCD which
is a simple solution to account for both variations. However, this choice has some
drawbacks. First, it limits the number of available stars to constrain the model, thus
favouring simpler models. Second, spatial variations covering the entire focal plane
cannot be well modelled when approximated by simple piecewise models. Consequently,
PSF modelling errors arise. In order to tackle both problems simultaneously, we
proposed a new PSF model, coined MCCD, that can model the full focal plane and
handles both types of variations. MCCD can successfully include the camera geometry
into the PSF model. The proposed PSF model is based on a matrix factorization
scheme that uses different mathematical tools, such as sparse regularisations for PSF
denoising and graph theory to handle localized spatial variations, among others. We
developed the training algorithm by combining these concepts with block coordinate
descent, efficient convex optimization methods, and proximal algorithms. We validated
the model with simulations and real observations. Finally, our results show that the
proposed PSF model can build more complex models, improve performance with
respect to state-of-the-art methods, and be robust to handle real data.

Modelling the PSF for UNIONS/CFIS

The Canada-France Imaging Survey (CFIS) is an ongoing legacy survey at the u and r
bands at the Canada-France-Hawaii Telescope (CFHT). It will cover 4800 deg?, and its
main objective is to contribute to deep surveys like Fuclid with its photometric redshift
estimation. The excellent r-band image quality allows conducting weak lensing science.
I have contributed to the high-performance shape measurement pipeline, ShapePipe,
in several aspects of the PSF modelling and the validation tests. We produced a shape
catalogue using 1700 deg® with the widely-used PSF model PSFEx.

Later, we included the MCCD PSF model into ShapePipe and validated its
performance with real data. We have run the pipeline in a high-performance computing
environment with our PSF model to produce a new shape catalogue spanning ~
3500 degz, one of the largest areas for weak-lensing studies at the time of writing. We
then present the results of several PSF validation methods using the new catalogue.
The results show that the MCCD model improves the PSF model performance with
respect to the previous model and confirms the robustness and maturity of the method
for handling real data.

PSF models for space-based telescopes

Rethinking data-driven PSF modelling with a differentiable optical model

The Fuclid survey represents one of the most arduous challenges for PSF modelling.
Because of the very broad passband of Fuclid’s visible imager (VIS) ranging from
550nm to 900nm, PSF models need to capture not only the PSF field spatial variations
but also its chromatic variations. Each star observation is integrated over the entire VIS
passband with the object’s spectral energy distribution (SED). As the observations are
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Figure o1 — Different representations of a space-like PSF at a single position in the
field of view. (a) Noisy polychromatic PSF at observation resolution, (b) Noiseless
polychromatic observation at observation resolution, (c¢) High-resolution noiseless
polychromatic observation, (d) Wavefront error map representing the aberrations in
the optical system. Units are in pum, (e) High-resolution chromatic variations of the
PSF at equally spaced wavelengths in the passband [550, 900]nm.

undersampled, a super-resolution step is also required. Figure o1 present an example
of an Fuclid-like PSF, its under-sampling and its chromatic variations. Current data-
driven PSF models cannot model chromatic variations. The state-of-the-art model
designed for Euclid, the Resolved Component Analysis (RCA) model, is ~ 200 and
~ 10 times over shape and size error requirements, respectively. These models are all
built in the pixel space with some dimensionality reduction method using different
constraints. We propose a paradigm shift in the way data-driven PSF models are
built.

The addition of a differentiable optical forward model into the proposed modelling
framework changes the data-driven modelling space from the pixels to the wavefront.
The optical forward model is based on Fourier optics and fundamental optic principles.
Our framework, presented in Figure 02, allows building powerful physically motivated
interpretable models that do not require special calibration data. The new model,
coined WaveDiff, relies on a matrix factorisation scheme and Zernike polynomials.
The model relies on modern gradient-based methods and automatic differentiation
for optimisation, which only uses noisy broad-band in-focus observations. WaveDiff
is the first data-driven model that can successfully model chromatic variations on
top of handling spatial variations and super-resolution (x3). It also represents a
breakthrough in performance for data-driven models by decreasing over one and two
orders of magnitude Fuclid’s error requirements of size and shape, respectively. The
proposed model is modular, differentiable, built in the TensorFlow framework and
entirely runs on GPUs.

Applying WaveDiff to Fuclid

The WaveDiff PSF model constitutes a promising approach for the Fuclid mission.
Nevertheless, transitioning from good performance with simulations to good perform-
ance with real data is far from trivial. This chapter addresses several emerging issues
when we will deal with real Fuclid observations. We intend that the studies and
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Figure 02 — A schematic of the proposed framework for data-driven wavefront PSF
modelling for the Fuclid space mission.

extensions presented in this chapter will smooth the transition from simulated to real
data for the WaveDiff model. We proceed with a list of the issues addressed:

Prior optical information about the telescope will be available. This information
can come from high-fidelity simulations or complementary observations in space.
However, the optical prior is expected to have some degree of error. We modify the
WaveDiff model to include an optical prior and to correct it in a non-parametric
way. The results show that the model can exploit the prior information and
considerably improve the model performance.

In previous studies, we assumed the same wavefront dimension to generate the
observations, i.e. ground truth model, and for WaveDiff. We study how the
wavefront dimension affects the PSF’s modelling when the observations are
generated more realistically.

Up to this point, we have not used more than the number of stars in one exposure
to constrain the WaveDiff model. The stability of Fuclid might allow us to use
subsequent exposures and therefore increase the number of stars to constrain
the PSF model. Consequently, we study how the WaveDiff model exploits
information from a denser stellar field.

We have considered, in the previous studies, that the input SED information was
flawless and had used 20 bins for the observations and the WaveDiff model. In a
real scenario, the observations are generated without any spectral discretisation.
In addition, real SED information comes in a reduced number of bins containing
errors. We study how spectral discretisation affects the modelling of the PSF
and ways to improve the results.

Previous results showcased the ability of the WaveDiff model to estimate a useful
wavefront representation that allows us to obtain a low pixel error. However,
suppose we are in a new scenario where the parametric part of the WaveDiff
model can reproduce the ground truth wavefront field. In that case, the current
WaveDiff model cannot recover this wavefront field. It is indeed a phase retrieval
problem. Nonetheless, in this new scenario, the solution to the phase retrieval



ACRONYMS 5

problem is also the global minimum of our PSF modelling problem. We propose
a new optimisation procedure for addressing this phase retrieval problem. The
procedure is based on a proposed projection from the non-parametric to the
parametric part of the model. We show with numerical experiments that the
WaveDiff model can estimate the ground truth wavefront field with low errors
only using degraded in-focus observations.
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HIS chapter introduces the background and context of the Point Spread Function
T (PSF) modelling methods that will be later presented in this thesis. We start with
a short presentation of general cosmological concepts and some current challenges in
cosmology. We then continue to describe the basic theory of weak gravitational lensing,
the main cosmological probe we will use to tackle such challenges. The description is
narrowed down to the cornerstone of a Weak Gravitational Lensing (WL) analysis,
the shape measurement pipeline. We will see the role of the PSF model in the pipeline
and its crucial task in controlling severe systematic errors in a WL analysis. We end
the chapter with a brief overview of the Fuclid space mission and introduce the new
challenges it poses for the PSF model.
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1.1 Introduction to cosmology

1.1.1  General relativity and an isotropic, homogeneous Universe

Einstein’s theory of General Relativity (GR) is at the core of our current understanding
of the Universe. GR describes the gravitational force as the curvature of a 4-dimensional
spacetime allowing us to specify how matter and radiation influence the geometry of
space and time. The mathematical framework allowing this geometrical description of
gravity is the Riemannian geometry, a branch of differential geometry. When applied
to cosmological scales for a Universe governed by gravity, GR allows linking the matter
and energy content of the Universe with its geometry and their dynamical temporal
evolution. The field equations of GR allow us to study the spacetime geometry and
its matter content, which we express as follows

RI“/ - %Q,WR + Ag;u/ = 8LTTGTMV ) (1'1)
where g,,,, is the metric tensor and describes the local geometry of space-time. The
Ricci curvature tensor is R, and the Ricci scalar is R, and can be expressed as a
function of the metric tensor and its derivatives. Then, A is the cosmological constant
associated with dark energy in cosmology, c is the speed of light in vacuum, G is the
Newtonian constant of gravitation, and 7}, is the energy-momentum tensor that is
related to the source of the spacetime curvature.
Within this formulation and with the help of the metric tensor, we can define the
line element allowing us to compute distances in the GR description of the Universe
as follows

3
ds? = Z gupdatda” (1.2)

p,v=0

where z# is a set of coordinates with the index 0 being the time and 1-3 the indices
related to space by convention.

To study the motion of particles in this theory, one has to solve the geodesic
equation coming from Equation 1.1 which is difficult in a general case. Solving
analytically GR’s field equations without any simplification is in general not possible.
The study of the Universe through GR requires further simplifying assumptions. The
simplest, yet powerful, assumption we can make is that the Universe is isotropic
and homogeneous at large scales which translates to a rotational and translational
invariance of the Universe. These assumptions give rise to one of the cosmological
pillars, the Cosmological Principle. This principle has been verified by observations
of the Cosmological Microwave Background (CMB) and the Large Scale Structure
(LSS). The symmetries arising from the Cosmological principle allow a great deal of
simplification to be made to Einstein’s field equations. The metric describing such a
Universe is unique and is known as Friedmann-Lemaitre-Robertson-Walker (FLRW),
and simplifies Equation 1.2 into

ds® = dt* — a*(t) (dx* + fx(x) (d6* + sin® 0 dg?)) , (1.3)

where we expressed the line element in spherical coordinates (r, 0, ¢), in a comoving
reference frame. Then, x is the time-independent comoving radial distance, and a(t)
is the scale factor that is free to vary with time and describes how distances between
points change as the Universe contracts or expands. In an expanding Universe, the
distance between two comoving points, i.e. observers moving along with the expansion,
is always changing (increasing). The comoving formalism allows us to define a distance
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unaffected by the Universe’s expansion which is described by the scale factor a. We
define the comoving transverse angular distance as fx (), which is the ratio of the
comoving separation between two points at x to their separation angle. The distance
depends on the curvature K of the Universe. It has three expressions depending on
the value of the curvature, if it is a spherical (K > 0), flat (KX = 0), or hyperbolic
(K < 0) Universe. There has been much evidence, e.g. Planck Collaboration et al.
[Pla+20], that we live in a flat Universe which gives fx(x) = x. See Kilbinger [Kil15,
§2] for a more information on the comoving angular distance fg.

A quantity that can be interpreted as a proxy for distance and that we will use in
the next section is the cosmological redshift z. The expansion of space-time causes
Electromagnetic (EM) wavelengths to increase resulting in a shift to red. The change
of frequency can be expressed from the following relation

)\ob _ Qob (1 4)

Aem Gem

where on the left-hand side, we have the ratio of the observed and emitted
wavelengths, and on the right-hand side, the ratio of the scale factors. In an ex-
panding Universe, we have that ac, > @em and therefore the observed wavelength is
shifted towards the red, which gives origin to the name redshift. Finally, the redshift

can be defined as
/\ob - /\em

z = v (1.5)

1.1.2 The Lambda-CDM cosmological model

There exist several cosmological models to describe the Universe and its evolution.
Nevertheless, compared to the observations, the most successful model is the Lambda
Cold Dark Matter (ACDM) model. A is the cosmological parameter from GR field
equations in Equation 1.1 and is related to a fluid known as Dark Energy (DE). The
model parametrises the cosmology described using GR and the FLRW metric we
have seen in the previous section. ACDM has been very successful in describing the
evolution of the Universe and predicting observations using a small set of parameters
presented in Table 11.

Dark energy has been included in the cosmological model as an explanation for
the accelerated expansion of the Universe [Per+9g]. In turn, dark matter has been
included in the model to explain several observations, for example, the mass deficit
of visible matter from observations of the rotational speed of peripheral galaxies in
a cluster [Zwi37]. Dark matter is a non-baryonic matter that does not have any
electromagnetic interaction and is thus invisible.

The density parameters (£2) seen in Table 11 shows that dark energy is the most
significant contributor to the energy-matter density of the Universe with roughly the
~ 69% (see ©24). The remaining density that is encoded in the matter density 2, can
be decomposed between a 26.2% contribution of cold dark matter (£2.) and a 4.8%
contribution of baryonic (or ordinary) matter (€2).

The nature and physics of dark energy and dark matter remain largely unknown
even though they are the main contributors to the energy-matter content of our
Universe. Understanding the nature of dark energy and dark matter is one of the main
challenges of modern cosmology. Future surveys like Euclid, described in section 1.4,
have been designed to enlighten our understanding of dark energy and dark matter
with the help of techniques like weak gravitational lensing, described in section 1.2.
Making sure that the mission accomplishes its goals is the main motivation of this
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Parameter Symbol Value

Hubble parameter H, (67.66 +0.42) kms~—! Mpc ™+
Total matter density Qi 0.3111 +£ 0.0056

Dark matter density Q.h? 0.11933 4 0.00091
Baryon density Qyh? 0.02242 4 0.00014
Dark energy density Qp 0.6889 +£ 0.0056
Power spectrum normalisation os 0.8102 £ 0.0060
Spectral index Ng 0.9665 4 0.0038
Reionisation optical depth T 0.0561 + 0.0071

Table 11 — Main cosmological parameters for ACDM with a 68% confidence limit from
Planck Collaboration et al. [Pla+20, Tab. 2] using a combination of CMB TT, TE,
EE + lowE + CMB lensing + Baryonic Acoustic Oscillations (BAO).

Figure 1.1-1 — Deep image from JWST using the Near-Infrared Camera, which shows
the gravitational lensing effect of the galaxy cluster SMACS o0723. Credit: NASA and
ESA.
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thesis. Figure 1.1-1 shows the gravitational lensing effect of foreground objects due to
a massive galaxy cluster.

1.2 Weak gravitational lensing

This section summarises the most relevant aspects of weak gravitational lensing for
this thesis and is based on Schneider et al. [SEFg2], Seitz et al. [SSEg4], Bartelmann
et al. [BSo1], Kilbinger [Kili5] and Mandelbaum [Man18].

1.2.1 Light propagation in the Universe

One way to describe the deflection of light in the presence of massive bodies is to
use Fermat’s principle of minimal light travel time. The photons travel through null
geodesics given by the line element ds coming from the field equations of GR. The
following equation gives the time taken by the ray to travel through the Universe

t:i/(l—Qz) dr (1.6)

where @ is the gravitational potential, dr is the light path, and we are assuming
the weak-field approximation ® < ¢2. Following an optic analogy, the gravitational
potential acts as a medium with variable refractive index n = 1 — 2®/c?. We proceed
by computing the deflection angle of the light ray due to the presence of massive
bodies whose effect is encoded in the gravitational potential. The deflection angle
is the difference in directions between the emitted and received light rays. We need
to apply Fermat’s principle to obtain this angle to get the Euler-Lagrange equations
for the refractive index n. Then, if we integrate along the light path we obtain the
deflection angle that writes

. 2
a:—?/vj_q)dr, (1.7)

where V& := V& — e(e - V®) denotes the projection of V® onto the plane
orthogonal to the direction of the light ray where e is the unit tangent vector of the
ray.

Let us now consider a fiducial light ray presented as the bottom red light ray in
Figure 1.2-2. As we continue, we will consider distances in the source plane with
respect to the intersection of the fiducial ray with the source plane. In addition, the
angles we measure from the observer are with respect to the incoming fiducial light
ray. The transverse comoving separation, xy, which lies in the source plane seen in
Figure 1.2-2, between two light rays as a function of comoving distance can be written
as

xo(x) = fx(x) 0, (1.8)

where we consider the small angle (or Oth-order) approximation for 8 [SEFg2],
and it corresponds to the absence of lensing. Figure 1.2-2 illustrate the angles and
distances used. Following the formulation and assumptions of Equation 1.8 we can also
express the other transverse comoving separations as a function of angles as follows

x(x) =fx(x) B, (1.9)
dx(x) =fr(x — x) d&, (1.10)

where the first equation shows the angle 8 that corresponds to the observation
angle if there were no gravitational potential perturbations. The second equation
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Lens plan Source plan

Vs x=x

Figure 1.2-2 — Illustration of two light rays emitted from an object in the source plane,
located at y, that are then lensed by a massive object in the lens plane, located at x/,
and that finally arrive at an observer located at the origin. The bottom light ray is
considered the fiducial ray. The apparent angular separation of the rays is @, while the
angle between the true positions of the source, without any lensing effect, is 8. The
angle a represents the difference between the two previous angles. Credit: Illustration
from Guinot [Guizo].

considers an observer located in the lens plane and illustrates the angle deflection
due to the gravitational potential. Let us now rewrite Equation 1.7 expressed in the
comoving frame as

R 2
dé = =5V 8(x, ) dY . (111)

which describes the deflection angle due to the presence of a potential ® at a
distance x’ from the observer. To estimate the total separation, x(x), we need to
integrate over the line of sight along /. As the gravitational potential affects both light
rays, including the fiducial ray, we need to consider the difference in the transverse
gradient of the gravitational potential. The total separation writes

x(x) = fx(x)0 — 622/; felx = X) [VL@(x(X),X) = VLe(0,x)]dx",  (112)

where ®(0, x') represents the potential along the fiducial light ray. The total scaled
deflection angle, a, is difference between the apparent angle 8 from Equation 1.8 and
the observation angle from an unperturbed Universe from Equation 1.9. Introducing
Equation 1.9 into Equation 1.12 we arrive to the expression of the standard lens
equation
2 X frk(x—X)

*=0P=G ), T

Vi@(x(x'),x") = VLe(0,x)] dx" - (1.13)

Integrating the potential over the perturbed light path is not simple. We can
assume that the value of the potential evaluated at the perturbed ray does not differ
substantially from the potential on an unperturbed path. This assumption is known
as the Born approximation and allows us to replace the separation vector x by its 0-th
order approximation xg = fx (x)@ in the evaluation of the potential. See Krause, E.
et al. [KH10] for a study on the impact of this approximation on cosmological analyses
based on WL power spectrum. Then, the lens equation under the Born approximation
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reads

2 " fxk(x =X
a=0-p8= *2/ fxlx = x) Vi®(fr(x)0,X) = V.120,x)] dx" .  (114)
¢ Jo fr(x)
In a nutshell, Equation 1.14 expresses the difference between the apparent ob-
servation angle 0 of a source with the true angle 8 due to the perturbations in the
gravitational potential between the observer and a source at a distance Y.

1.2.2 Shear and convergence

The lens equation gives us the relation between the observed lensed coordinates, 0,
and the unlensed coordinates, 8. To study the effect of the lensing potential, we
can define a linear mapping from the lensed coordinates to the unlensed coordinates
by linearizing the lens equation. We define the amplification matriz as the Jacobian
A = 08/90, whose elements write

dB; 8 Oa;
A’LJ (0 X) ag = 52 “ ( )
82 / / / 1.15

where we have used that V| = (8/8:1:1, 0/0x2), with z; and x5 the comoving
transverse components, and the potential evaluated at the fiducial ray drops out as it
does not depend on 6. We can extract from Equation 1.15 a useful quantity known as
the lens potential that writes

2 [ fr(x— Xl) ’
(0, x) = — o2 2L B(f(x)0, X)) dY . 1.16
0,x) = 5 0 (fx(X)0,X") (1.16)
The expression above is helpful as it allows us to define the amplification matrix
with derivatives of the lens potential as follows

_ 0%(0, x)
Aij = 6” — W . (1.17)

Let us remind that the amplification matrix provides a linear transformation
between the lensed and unlensed coordinates as follows

(i)-4(3)

By observing Equation 1.17 and Equation 1.18 we can see some physical intuition
of these quantities. The Kronecker delta ¢;; represents the unlensed scenario. The
deviation from this scenario is quantified with the lens potential’s derivatives that
express the gravitational potential’s impact in the light paths’ directions.

The amplification matrix is parametrized using the scalar convergence, k, and
the two-component shear, v = (v1,72), that is usually defined as a complex number
v = +1i72 = |y|exp(2i$). Both of these components are related by the reduced

shear as follows i

1—k"

gi 1= (1.19)

We can now express the amplification matrix as a function of the aforementioned
quantities, and the new expressions writes

l—-m-—k —2 =g —g2
A= =(1-k , 1.20
< —72 1+’71—/€) ( )< 92 l4+aqn (1:20)
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Figure 1.2-3 — Hlustration of the effect of shear on the circular object at the origin.
The complex shear amplitude is left constant while the angle is changed from 0 to 2,
showing the evolution of the orientation of the ellipse. The ellipse’s eccentricity is
constant throughout the angles as the shear amplitude remains unchanged. Credit:
Image from Kilbinger [Kili5].

where these quantities can be expressed directly as derivatives from the lens
potential as follows

1 1 0? 0?
:7A = —
PR =5 (5991391 * 392302) v,
1 02 0?
Ny (amel - 892802> v G.21)
1o
=2 90,00,

From Equation 1.20 we can disentangle the effects of convergence and shear by
separating the matrix into the difference between two matrices. The first matrix is
diagonal and only contains the convergence, and the second matrix is symmetric with
zero trace and only contains shear elements. This matrix decomposition is written as

follows
[ 1-x 0 [ m
A—< 0 1/@) (72 o ) . (1.22)

The above equation helps us to obtain an intuitive understanding of the effects
of the convergence and the shear to the observed images. The convergence acts as
an isotropic deformation of the images. In turn, the shear causes an anisotropic
deformation of the images. This second effect turns a circle into an ellipse with an
orientation depending on the complex shear angle, ¢, and an eccentricity depending
on the shear amplitude, |vy|. Figure 1.2-3 illustrates the effect of shear with constant
amplitude to a circle as the angle of the complex shear varies. Both effects of the
amplification matrix, shear and convergence, are shown in Figure 1.2-4.
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Figure 1.2-4 — lustration of the shear and convergence effects. The circular source
image is S, and lensed image is I. The effect of the convergence k, shown in red, is
an isotropic magnification or contraction. The effect of the shear -y, shown in blue, is
an anisotropic deformation. The orientation of the ellipse ¢ depends on the complex
v phase, and the ellipse’s eccentricity depends on the complex v amplitude. The
amplification matrix A relates the image coordinates, providing a linear transformation
of (01,02) to (B1,B2). Credit: Image from Ajani [Aja21].

1.2.3 Estimating the shear from observations

Let us now consider the task of estimating the shear from the observed galaxy images.
We will be working in the weak lensing regime which assumes that the values of shear
and convergence are on the order of a few per cent (|y| < 1 and |x| < 1). In addition,
the amplification matrix is supposed to be invertible, there are no multiple images
caused by lensing, and each source is mapped uniquely into one image.

From the observed galaxy images, we can estimate its shape, which is described
using the complex ellipticity, which in turn is a function of the quadrupole moments
of an image. These moments, M,,,, are defined as follows

_ [T, v] dudy Lo
n= [ Iu,v] dudv (-23)
- JTuw] (p— ) (v—v) dudo Lo
My = [ Iu,v] dudv ’ (-24)

where I[u,v] is the galaxy image, (,v) is its centroid, and y,v € {u,v}. There
are two definitions for the complex ellipticity used throughout the literature, and both
of these write

(Muu - Mvv) + 12Muv

€ =€] + i€ := , 1.2
! ? Muu + M'uv + 2 \V MuuM'uv - M?v ( 5)
Muu - M'uv i 2Muv
e =ep + e 1= ( ) +i . (1.26)

Muu + MU'U
The ellipticity can also de defined as a function of the parameters of the ellipse,
both semi-axes, a and b, and the orientation ¢. These are specific cases valid for
elliptical isophotes and write
L‘bem o — a? — b2 210
a+b ’ a? + b2

(1.27)
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The two ellipticities definitions can be related by the following equations from
Bartelmann et al. [BSo1] as follows

e 2e
€= , €= .
L+ /1= e]? L+ |ef?

We can use either of those definitions, provided we do not mix their formulations.
When we observe galaxy images we can measure the observed ellipticity parameters,
€°Ps and €. Let us assume that there exists an intrinsic ellipticity of the source
galaxy, € and e®. Then, the effect of the shear field is to modify the intrinsic ellipticity
to the observed one, and Seitz et al. [SSg7] quantified the change for |g| < 1 as follows

(1.28)

e€+g
obs _ 7o e (1.29)
s _9 2 8%
obs € g + g-e (1.30)

T 1+ g —2Re(gest)

where * denotes complex conjugation, and Re(:) denotes the real part of its
argument. In the WL-regime, and focusing on the first ellipticity definition, we can
approximate the aforementioned relation by the following equation

x4y, (1.31)

where we approximated the denominator to unity. Measuring the ellipticity of a
single galaxy does not allow us to estimate the shear. The difficulty resides in the fact
that both quantities, the intrinsic ellipticity and the shear, are unknown. Nevertheless,
there is a way to isolate the shear from the intrinsic ellipticity. We can assume that
the intrinsic ellipticity of the galaxies is random without any prefered orientation.
This assumption translates to a vanishing expectation of the intrinsic ellipticity, or
(%) = 0. Therefore, if we measure the ellipticity of many galaxies, we can have an
estimate of the shear as follows

() m gy, (1.32)

where we have also assumed that the shear applied to those galaxies is constant
over the area under study and that there were no systematic errors in the galaxy shape
measurement. The variance of the ellipticity can be written as 02 (e°%) = 02(¢%)+02(y),
where o2 (%) is known as the shape noise. This noise determines the number of galaxies,
N, required to measure the shear with a given Signal-to-Noise Ratio (SNR). The
expression of the SNR writes v N'/2 /o (e*). WL surveys aim to have a good SNR in
the shear estimation and, therefore, try to maximize the density of observed galaxies
in the survey area.

Forthcoming WL surveys require high precision of the shear estimation, so some
assumptions must be revisited. There is interest in the study of the assumption that
the expectation of the intrinsic galaxy shapes vanishes. Indeed, there is an effect
known as intrinsic alignment, where the shapes of galaxies are up to some degree
aligned due to interactions between the different galaxies and the surrounding tidal
fields without the action of gravitational lensing. This effect biases our estimation of
the shear and is a source of concern for WL surveys like Fuclid or Large Synoptic
Survey Telescope (LSST). See Troxel et al. [TTi5] for a review of this topic.

Finally, working in the WL regime and under the approximations in Equation 1.32,
we have seen that we can have an unbiased estimator of the shear directly from
our observations. However, the convergence, k, is not directly measured from the
observations. Inversion methods are required to estimate the convergence from the
shear, as we will later see.
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1.2.4 Relations between the convergence and the shear

We have seen in the previous section that we can estimate the shear from the obser-
vations of galaxies through the measurement of their ellipticities. However, we have
not specified how to estimate the convergence, which will be important to relate the
observations to the cosmology, as we will see in subsection 1.2.5. We have seen in
Equation 1.21 that the shear and the convergence are related through the lensing
potential. Applying the Fourier Transform (FT) to Equation 1.21 we obtain

O, Fo=lile, & P, (1.33)

where f denotes the FT of f, and £ = (£1, £3) is the 2-dimensional (2D) Fourier wave
vector, the Fourier-conjugate of 8. Working with the expressions from Equation 1.33
we can find a relation between the shear and the convergence that writes

30 = B ) — ey (130

where £ = \/¢3 + (3, and 3 is the polar angle of the complex quantity £. Equa-
tion 1.34 is valid for £ # 0.

The previous equation motivates the introduction of an important statistic highly
used in cosmological analyses, the power spectrum. When considering cosmic shear,
the first-order statistic of the shear and convergence fields is zero, as the mean of both
fields vanishes. We should note that in other lensing studies, like cluster lensing, this
statement does not hold. Consequently, for cosmic shear, higher-order statistics of the
fields are studied, and as we will later see, they carry essential information that allows
us to constrain cosmological models. The convergence power spectrum, Py, can be
expressed as its Two-Point Correlation Function (2PCF) in Fourier space as follows

(RO (L)) = (2m)* op (£ — €) Pa(l) (1-35)

where Jp is the Dirac delta distribution. Note that the power spectrum only
depends on the modulus of the wave vector, ¢, which derives from the cosmological
principle where k is statistically homogeneous and isotropic. The previous assumption
means that in real space the 2PCF, (k(3)x(9 + 0)), only depends on the modulus
of the separation vector between the two angles. We recall that when using the F'T
to express the power spectrum, we implicitly use the flat-sky approximation. This
approximation implied that the sky is flat and lies in two dimensions, which is as
good approximation when considering small sky patches. The angles 6 represent
coordinates in the celestial sphere. Therefore, the most accurate alternative would be
to use spherical harmonics to describe the power spectrum.

Equation 1.34 shows us that the power spectrum of the convergence coincides with
the one of the shear, P, = P,. Because of Parseval’s theorem, the 2PCF of x and
are also identical.

Mass mapping methods

We have seen that our observable is the shear field that we can estimate from our
observations using the galaxies’ ellipticities. We have just pointed out that the
shear field is tightly related to the convergence field, which carries much cosmological
information, as we will see in subsection 1.2.5. One way to analyse the convergence field
is to use an inversion technique to estimate it from the shear field. These techniques
are known as mass mapping methods.
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Figure 1.2-5 — Mass maps using DES year 3 data release generated with the KS method

[KS93], and the sparsity-based method GLIMPSE [Lan+16]. Credit: Figures from

Jeffrey et al. [Jef+21].

One of the classical inversion methods is Kaiser-Squires (KS) inversion method
[KS93] which combines Equation 1.33 to form an estimator of the convergence as a
function of the shear as follows

GG 2000y 03+ 03
= —|— = 5
/2 71 72 V2 (r +i£2)2 Y

(1.36)

g3

which is not defined for £ = 0. The KS method cannot estimate a constant
convergence, represented by the zeroth Fourier value. The shear field is invariant
to a constant convergence and, therefore, cannot be recovered by the method. This
problem is known as the mass-sheet degeneracy. More mass mapping methods were
developed throughout the years based on inpainting [Pir+o9], sparsity [Lan+16], deep
learning [Jef+20], and hybrid approach using sparsity and Gaussian random fields
[Sta+21]. Jeffrey et al. [Jef+21] produced the largest, up to now, convergence maps
from the Dark Energy Survey (DES) year 3 data release using different mass mapping
methods. In Figure 1.2-5 we show two of the mass maps generated using the classical
method from Kaiser et al. [(S93] and a new method from Lanusse, F. et al. [Lan-+16].
The map being plotted is the E-mode of the convergence field, which corresponds to
the curl-free component of the gradient field defined by the potential . See Kilbinger
[Kilir, §3.6] for more details on E- and B-modes.

Shear two-point correlation function

Another way to study the properties of the convergence field is to exploit its relation
with the shear 2PCF. The shear 2PCF can be easily computed without passing
through the Fourier space. Each measured shear can be decomposed into a tangential
component, v, and a cross-component, 7y, which are defined as

% =—Re(ye #?) | 7y, =—Im(ye ??) (1.37)

where ¢ is the polar angle of the complex quantity 6, and Re(:) and Im(-) are
the real and imaginary parts of their arguments. There are three possible 2-point
correlators can be built, which are (i), (vx¥x), (7tvx). These correlator should be
invariant through a parity transformation, that is exchanging & — —8, which changes
the sign of vy, but leaves unchanged ;. Using the two non-zero correlators, we can
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build the two components of the shear 2PCF

§4(0) =) (0) = (v () + (v 7<) (0) (1.38)
§-(0) =(r7)(0) = (171 (0) — (¥ ¥x)(8) - (1.39)

There exist other formulations for the shear 2PCF, for example, in Jarvis et al.
[Jar+03], which exploits the fact that the positive cross-component is rotated by /4
with respect to the tangential component. Schneider, P. et al. [Sch+o02] provided a
useful estimator for the shear 2PCF using the following formula

£ (6) — Zua it (G°7(0)E(60;) & (6)(6)
* - Zi,j wiwj

, (1.40)

where €; and ex are the tangential and cross ellipticity that can be computed
following the recipe in Equation 1.37, and the weights w; and w; correspond to the
measurement uncertainty of the corresponding ellipticities ¢; and ¢;. The summation
is over pairs of galaxies (4,j) with corresponding sky positions 9; and 9; whose
separation [9¥; — 9| lies in an angular distance bin around 6.

The proposed shear 2PCF estimator uses the observed ellipticity that, as we have
seen, contains an intrinsic ellipticity component in addition to the shear. Correlating
the observed ellipticity would give us the sum of the correlations between these two
components, for £, it would be: (€ ej*), (€75), (i e§*>, and (y;7;). Sticking to the
weak lensing regime and the assumption made in subsection 1.2.3 that the mean
intrinsic ellipticity is zero, the first three correlations vanish, and we only get the last
one.

1.2.5 Relation to cosmology

We have described how to estimate the shear field from our observations, i.e. galaxy
images. We continued to study the relations between the shear and the convergence
fields and how we can estimate the convergence from our shear estimation. Later, we
have seen that the shear 2PCF also provides us with valuable information about the
2-point statistics of the convergence field. It is now time to relate the WL products
we studied to cosmology.

We are particularly interested in the convergence as we will see that it can be
interpreted as the projected matter density distribution over the line of sight between
the observer and the source. Let us recall from Equation 1.21 that the convergence
is related to the lensing potential through a 2D Poisson equation. Introducing the
lensing potential formula in Equation 1.16 to the Poisson equation, we obtain

1 frkix—=x")
cJo fr()fr(X')

where the Laplacian, V2, is taken with respect to the angular coordinates 6. Let
us now introduce the matter density contrast which writes

5(8,3) = 5 V(0. X) = VER(fic )0V s ()

p—p
§="—" 1.42
F ( )

and its relation to the gravitational potential through the Poisson equation using
a 3-dimensional (3D) Laplacian as follows

V20 = 47Ga®pé (1.43)
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where p is the energy-matter density, p is the mean energy-matter density, and the
matter density contrast ¢ represents the energy-matter density fluctuations around
its mean. The 2D angular Laplacian from Equation 1.41 can be turned into the 3D
Laplacian in comoving coordinates of Equation 1.43 by adding an additional term
82<I>/Bx’2 to the integrand of Equation 1.41. Then, we can use the argument that
the added term is expected to vanish in the line of sight integral under homogeneity
arguments. Equation 1.43 is a consequence of considering that Newtonian physics
suffices to describe non-relativistic perturbations in a matter-dominated era of the
Universe on scales smaller than the horizon® [Pee80]. We refer the reader to Peebles
[Pee80; Peeg3] for more details on the matter density and its evolution in the Universe
through time. Using Equation 1.43 and p o< a2 we can rewrite Equation 1.41 in terms
of the density contrast § as follows

B0 [ il k() SR
(6, x) = 2¢2 /0 fre(x) a(x

where we have expressed the mean matter density p as a function of the matter
density €,,, Hy is the Hubble constant, and a is the scale factor. Equation 1.44
expresses how the convergence field is the result of integrating over the line of sight of
the density contrast, weighted by the scale factor a and geometrical considerations
of the observer, the lens and the source comoving distances. In other words, we can
consider the convergence as the projected mass or projected overdensity on the sky.

We now extend the analysis to different distances and consider a WL survey
that probes the Universe until a limiting distance xi, and observes a given sample
of galaxies. Let us define n(x) as the Probability Density Function (PDF) of the
galaxy samples as a function of distance. The n(x) function informs us about how
far away the observed galaxies are from us. It is common to see this PDF expressed
in terms of redshift, previously explained in section 1.1, as n(z) which can be related
to the formulation using the comoving distance using n(z)dz = n(x)dx. The mean
convergence of the sample of galaxies under study can be written as

E)O’X/)dx/ , (1.44)

w(6) = / 00 K(8,x) d (1.45)

For a given position 8 in the sky, we can put together Equation 1.44 and Equa-
tion 1.45, and obtain

BHEQYn [ fx(x) 9(x)
0) = —2 ) 6,x)d :
‘%( ) 202 /0 G(X) (fK(X) 7X) X (1 46)
where g is the lens efficiency that is defined as
Xlim f ( o )
nNJEKWX —X ’
= n(y') —=—>=dy’, 1.
9(x) /X (X O] X (1.47)

represents the strength of the observed lensing signal at a distance x given some
background galaxies at a distance x’. Equation 1.45 and Equation 1.46 show the
line of sight projection for the population of all observed galaxies, averaging over
all the distances. In practice, performing the analysis binning the source redshift
n(z) is more informative. When we do averages over different redshift bins for the
observed galaxies, we can study how the cosmic structure has grown with time. This
WL analysis in redshift bins is known as tomographic WL, which leads to a lens

*The distance from which one could possibly retrieve information.
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efficiency per redshift bin, and it has more constraining power than the 2D analysis
from Equation 1.46. However, the tomographic analysis relies on the availability of
redshift information for the observed objects, which can be estimated from photometric
redshifts or photo-z. This method estimates an object’s redshift from photometric
measurement in different spectral bands. See Salvato et al. [STH18] for a review on
photometric redshift measurement methods.

We have seen until now that the convergence field is related to cosmological
quantities in Equation 1.46. We can now extend the analysis to the 2PCF of the
convergence by applying the F'T to Equation 1.46 and using the result in Equation 1.35
to finally obtain the convergence power spectrum

where Pjs is the density power spectrum, and g is the lens efficiency from Equa-
tion 1.47. To obtain the previous expression, we have used several approximations: the
limber approzimation|[Limsg3; Kaig2] where we neglect correlations along the line of
sight; the small-angle approximation where we approximate trigonometrical functions
by their first order expansion; and the flat-sky limit where instead of working with
spherical harmonics we use Fourier modes and neglect the spherical nature of the sky.
Kilbinger et al. [Kil+17] studied the impact of the Limber approximation and the
flat-sky limit on the shear and the convergence power spectrum. They concluded that
future WL surveys will require working with a spherical sky and that a second order
Limber approximation is necessary.

We have introduced the building blocks that relate our observations to cosmo-
logical information. We described the relation between the gravitational potential
perturbations to the deflection angle due to gravitational lensing. Then, how can these
deflections be quantified in the shear and convergence fields that are finally probing
our Universe, providing us with a rich source of cosmological information. Until now,
we have focused on the theoretical formulation of a WL analysis. However, given the
statistical nature of the analysis, its success relies upon controlling the systematic
errors introduced in practice. The shape measurement pipeline, which is in charge of
producing a WL shear catalogue, is in the centre of the systematic control. The latter
of this chapter will focus on the practical part of the WL analysis.

1.3 Main ingredients of a shape measurement pipeline

In the previous section, we have seen how we can exploit the shapes of the observed
galaxies to learn from and analyse our Universe. However, we have not detailed how
to estimate such shapes from real observations and the many difficulties it implies.

In this section, we introduce the principal components of a shape measurement
pipeline, whose main job is to process the observed images and create a calibrated
shape catalogue. We emphasise the importance of the different calibration parts as
they constitute a crucial part of the overall task. There are many sources of systematic
errors in the shape measurement process, with the impact of the PSF in the images
being the most noticeably. In the WL analysis, we have seen that we use the mean
galaxy ellipticity as a shear estimator. This formulation is sensible to systematic errors
in the measurement that will turn into estimation biases which will finally impact
the cosmological analyses carried out with the shape catalogue. The overview we will
present will allow us to understand better where and how the PSF plays a role in the
shape measurement pipeline and finally in the WL analysis.
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This section is greatly based on my contributions to ShapePipe, a modular shape
measurement pipeline described in Farrens, S. et al. [Far+22a]. The pipeline has been
used to produce the first version of the shape catalogue of Canada-France Imaging
Survey (CFIS) in Guinot et al. [Gui+22] (see Guinot [Gui2o] for a more detailed
description). I contributed to the implementation of a new PSF modelling method
described in chapter 3 as well as in its validation with real data and its compatibility
with the shape measurement method used. These contributions will be described in
more detail in chapter 4. Dr Martin Kilbinger led the production of a second version
of the catalogue, including the new PSF model and doubling the area analysed with
respect to the first version. ShapePipe was used to analyse the data, and the results
will soon be published. We refer the reader to Bosch et al. [Bos+17] (Jarvis et al.
[Jar+16]) for a detailed description of the shape measurement pipeline used to process
HSC (DES) data, and Mandelbaum et al. [Man-+17] (Zuntz et al. [Zun+18]) for a
description of the produced shape catalogue with different validation procedures. In
addition, see Mandelbaum [Man18] for a review of the steps needed to go from images
to a shape catalogue.

In Figure 1.3-6 we give a simple overview of the shape measurement pipeline’s
building blocks, emphasising the PSF as it is the main topic of this thesis. In this
overview, we are not making distinctions over using single exposures or stacked images
in the processing steps for the sake of simplicity. In the following subsections, we will
continue by describing the main processes seen in Figure 1.3-6.

1.3.1 Image preprocessing

In the image preprocessing stage, we regroup several important tasks. We start with
the astrometry and photometry calibrations. Astrometric calibration refers to having
a good knowledge of the positions of the pixels in the sky. The sky curvature and
some detector effects make mapping pixel positions to sky positions non-linear and not
trivial. Most astronomical studies need a good knowledge of the World Coordinate
System (WCS) transformation, which maps local pixel position to sky positions.
Photometric calibration refers to converting instrumental magnitudes (measurements
of brightness or flux) to calibrated apparent magnitudes in a standard system. This
calibration is important in order to be able to compare observations from different
instruments and surveys, but also subsequent observations of the same instrument. See
Hogg [Hog22] for a detailed description of what magnitudes and apparent magnitudes
are. It is common to use another survey as a reference for calibration, for example,
using Furopean Space Agency (ESA)’s Gaia mission for the astrometry and Sloan
Digital Sky Survey (SDSS) for the photometry. The MegaPipe pipeline was used for
preprocessing the CFIS images used in chapter 4, and is described in Gwyn [Gwyo8]
(with a its new version in Gwyn [Gwy19)]).

Other preprocessing steps are related to handling the Charged Coupled Device
(CCD) technology. They include the detrending of the images (bias-subtracting, flat-
fielding, etc...), handling the CCD-specific backgrounds, and other electronic effects
like cross-talk or saturation. The Elixir pipeline [MCo4] was used to perform these
preprocessing steps for the CFIS images.

Next, many detector effects need to be corrected. These effects include Charge
Transfer Inefficiency (CTI) [Rho+10; Mas+14], and Brighter-fatter Effect (BFE)
[Cou+18] that will be described with more detail in subsection 2.3.2. The preprocessing
must also address cosmic rays and satellite trails in the images.

Finally, another aspect of preprocessing is the stacking of images. This procedure
combines different single exposures of the same region of the sky to produce a single
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Figure 1.3-6 — Overview of the main building blocks of a shape measurement pipeline.
Circles represent data or models, and rectangles represent processes. PSF' catalogue
represents the PSFs at the position of galaxies, while Test PSF catalogue represents
the PSFs at the position of the test stars. We present the colour description of the
different stages: green represent the common input data processing; red represent the
PSF modelling part; violet represent the PSF validation part; blue represent the shape
measurement part; yellow represent the shape measurement calibration; and grey the
shape catalogue validation.

image known as a stacked image or co-added image. This procedure has advantages
and disadvantages, and it depends on the image’s ultimate goal. Stacking images
reduce the noise level, thus increasing the SNR. It can also help to deal with cosmic
rays and to fill the boundaries between the focal plane CCD chips. However, modelling
the PSF becomes extremely challenging when we stack the images. Every single
exposure has a specific PSF affecting the observation that depends on the properties
of the atmosphere and the telescope at the time of the observation. Then, the PSF
affecting the stacked image depends on the PSF of every single exposure modified
by the stacking procedure. When processing the CFIS observations using ShapePipe
[Gui+22] we used the single exposures to build a PSEF model for each exposure that
we then used for the shape measurement. However, we used the stacked images as
input for the detection algorithm. This choice is useful, as the stacked images’ high
SNR allowed better detection results. The single exposures and the stacked images
are related by the sky coordinates, that are common to both of them.
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Figure 1.3-7 — Example of a CCD image and the mask produced by ShapePipe.
The colour bar shows the pixel mask values. Credit: Image from Farrens, S. et al.
[Far+22a].

1.3.2 Masking

There are regions of the images that are unusable for a WL analysis. Masking refers
to identifying those regions and their automated masking (i.e. mark the pixels as
unusable). The principal sources of unusable regions are bright stars that saturate the
pixels and have large diffraction spikes and nearby galaxies that are too close to us to
be useful for WL. Also, problematic pixels that are damaged or too close to the CCD
edge are often masked. Figure 1.3-7 provides an example of the original CCD image
and the mask produced by ShapePipe.

1.3.3 Object detection and deblending

Object (or source) detection refers to the task of converting a CCD image into a
list of objects, each one represented as a small subset of pixels extracted from the
original CCD image. For example, in the case of CFIS, the CCD image is a matrix of
2048 x 4612 pixels, and then each object’s postage stamp is an extraction of 51 x 51
pixels centred in the object. The size of a WL survey obliges automatizing the process.
SExtractor [BAg6; Beri1] is the reference and widely used software and is being used
in ShapePipe [Far+22a]. On top of detecting the objects, SExtractor also measures
several properties of the object.

Another essential task is to identify blended objects and eventually mask or deblend
them. Blended objects refer to objects whose projection in the focal plane overlaps,
meaning that one pixel has a flux contribution of more than one object. SExtractor can
identify blended objects and mask them. More sophisticated methods [Mel+18] were
developed to deblend the objects and rely on multi-band observations and constrained
matrix factorization optimization techniques. The deblending procedure refers to
producing, from a single image, two or more postage stamps where each one contains a
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Figure 1.3-8 — ShapePipe star selection from a magnitude-size diagram. The size is
represented as Full Width Half Maximum (FWHM) expressed in pixels. The FWHM
expressed in the legend is in arcsec. Credit: Image from Farrens, S. et al. [Far+22a).

single object. The new era of WL surveys, with Fuclid and LSST, will go deeper than
before, being able to increase the number of observed objects. However, this increases
the probability of observing blended objects, making it an even more critical task.
Another approach based on deep neural networks was recently developed [Far+22b],
but it still lacks the maturity to handle the difficulties of working with real data. We
refer the reader to Melchior et al. [Mel+421] for a review in deblending for large sky
surveys.

1.3.4 Star-galaxy separation

In the pipeline description, we are at the point where we built a list of objects from
the observations. It is now the moment to classify them into stars or galaxies, use the
former to build the PSF model and the latter to measure their shapes. On the one
hand, it is important to have a pure star sample as we are going to consider that the
observations give information of the PSF field, which on the contrary, would bias our
PSF model. On the other hand, it is also important that the galaxy sample is pure.
Otherwise, the WL analysis will be biased as the measured ellipticity will be the one
of a star, unsheared, and not of a galaxy. We can conclude with the importance of
trustworthy classification.

A common approach to identify stars is to exploit the fact that they are not
resolved objects. These objects share a similar size, the size of the PSF, and do not
change size regardless of their luminosity. The previous statement assumes that the
images are not saturated. If we plot the observed objects in a single exposure in a
size-magnitude scatter plot, we can identify a straight line of objects that vary in
magnitude but not in size, which is known as the stellar locus. This fact is exploited
to select the stars used to build the PSF model. Figure 1.3-8 shows the selection of
stars in a CFIS exposure by ShapePipe.

The selection of galaxies seems trivial after the stars have been removed. Never-
theless, there are spurious detections considered as objects and objects not well suited
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for WL analyses. It is then necessary to make a further selection of objects that will
constitute the galaxy sample to be used for the WL analysis. A common approach is
to compute the spread model [Moh+12; Des+12]. This quantity is built based on the
ratio of the comparison of the object to a parametric PSF and an extended parametric
object. Then, the galaxy sample is selected using some cuts (selection criteria) on the
spread model quantity and other variables like the magnitude and SNR.

1.3.5 PSF modelling

Once a clean star sample has been selected, we can proceed to build the PSF model.
The entire set of stars is usually divided into two subsets. The first subset (~ 80%),
or train star catalogue, will be used for learning or estimating the PSF model, and the
second subset (~ 20%), or test star catalogue, will be used to validate the PSF model.
When we work with real data, we do not know the ground truth or the underlying
PSF field. Therefore, we evaluate the performance of the learned PSF model when
predicting the PSF field at the test positions compared to the observed test stars.

Once the PSF model has been trained, it will be used to infer the PSF at the
position and wavelengths from the selected galazy catalogue to produce the PSF
catalogue. The inferred PSFs will be later used by the shape measurement algorithm.

A more detailed description of the PSF is given in chapter 2. We discuss how
the PSF affects our images in section 2.1 and how we model the effect of the PSF in
section 2.2. Then, we continue describing the contributors to the PSF in section 2.3,
and end with the validation of the PSF model in section 2.6. An in-depth study of
the modelling of the PSF is given in the following chapters of the thesis.

1.3.6 Galaxy shape measurement

The WL analysis relies on the measurement of the shear, which in turn relies on the
measurement of the galaxies’ shapes. The shape measurement method aims to provide
the best estimate for the galaxies’ shapes, expressed in terms of their ellipticity and
size, taking into account the PSF effect on the images. The orders of magnitude
considered for the shear in the weak-lensing regime are considerably smaller than the
anisotropy of the PSF, which changes the shape of the observed galaxy. Therefore, it
is crucial to properly consider the PSF in the shape measurement.

Many approaches exist for shape measurement and have been evolving throughout
the years to more powerful instruments and surveys that require higher precision
and tighter constraints on systematic errors. The first approaches were based on the
measured moments of the images, the galaxy and the PSF. Then, a correction term
was deduced as a function of the PSF shape. This constitutes the main idea of the
Kaiser-Squires-Broadhurst (KSB) method [KSBg5], which was later improved Kaiser
[Kaioo] and Viola et al. [VMBu1].

Recently, a machine-learning-based method was proposed by Tewes, M. et al.
[Tew+19]. The method uses shallow neural networks trained in a supervised manner
with simulations to learn to regress the shear from specific measured properties of the
galaxy.

In another family of methods, the shape measurement considers the effect of
the PSF on the galaxy image in the pixel space. These methods, known as model-
fitting, use a parametric family to describe the galaxy image, for example, a Sérsic
profile Sérsic [Sér63]. A forward operator then takes in the galaxy profile and the
PSF, and outputs an estimated observed galaxy image. Once the pixel sampling
matches the galaxy observation sampling, the estimation can be compared to the
observation. The previous procedure allows to optimise over or infer the galaxy profile
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parameters, representing the galaxy prior to the effects of the PSF. Then, the shape
of the parametric family is estimated or computed in case there is an analytic formula
relating the galaxy profile to its ellipticity. This family of methods have been used
in several surveys: imgshape® [Zun+13] in DES [Zun+18; Gat+21]; ngmix3 [She1s;
SH17] in DES [Zun+18] and CFIS [Gui+22]; and lensfit Miller et al. [Mil413] in
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) Miller et al. [Mil413]
and Kilo-Degree Survey (KiDS-1000) [Kui+15; Gib+-21].

Another line of research exists that proposes to infer the ensemble shear statistic
from a posterior shear estimate. The driving idea is to bypass the need to estimate each
object’s ellipticity and avoid estimating the shear from averaging galaxy shapes. These
methods heavily rely on Bayesian formalism and are more principled. However, they
have not yet been used for a WL survey. The first of these methods is Bayesian Fourier
Domain (BFD) [BA14; Ber+16], which builds the method in the Fourier domain. The
method attempts to estimate the lensing-induced shear directly in the Fourier space
instead of going through per-object shape measurements. For the second method,
Schneider et al. [Sch+15] proposed a Bayesian hierarchical model approach to infer
the shear. Even if the method sounds promising, it must tackle the computational
burden of performing inference in high-dimensional spaces.

1.3.7 Calibration

Once we have carried out all the previous steps to have a shear estimate, we will
inevitably have some bias in our estimate. The shear bias can have several sources
from different pipeline parts. The most important sources are: model bias [Kac+14],
a consequence of using parametric families of profiles for the galaxies that cannot
faithfully represent the observed galaxies; noise bias [MV12; Kac+14], a consequence
of the noise present in the observations and the non-linear relationship between the
image pixels and the galaxy’s true shape; PSF bias [Jar+16], a consequence of PSF
modelling errors and also errors in the handling of the PSF by the shape measurement
algorithm; detection bias [She+20], a consequence of the fact that the criteria used
to detect galaxies depends on the shear applied to the galaxies; and blending bias
[Mac+21], a consequence of the presence of neighbouring galaxies impacting the shape
measurement of the target galaxy. See Pujol, Arnau et al. [Puj+20] for a study on
different sources of shear bias.

The shear estimate is usually parametrized using a first-order Taylor expansion.
We follow Jarvis et al. [Jar+16], and we write the shear estimate as

G~ (L+my) gi +ci +ael 5" (1.49)

where ¢ € {1,2}, g; is the error-free estimator, m; is the multiplicative bias, c; is
the additive bias, eZ-PSF is the PSF ellipticity, and « is the leakeage of the PSF shape
to the shear estimation. Some authors include the leakage term into the additive bias
term. The main objective of the shear calibration in a WL pipeline is to estimate
the terms from Equation 1.49 to be able to correct them. There are different ways to
attempt to estimate these terms.

A usual way to calibrate the shear measurement, which reduces to estimating
the parameters from Equation 1.49, is to use simulations. The procedure consists
in building a set of simulations that should be as realistic as possible. The shape
measurement pipeline is then used to process the data and estimate the shear. As

2https://bitbucket.org/joezuntz/im3shape-git/src/master/
3https://github.com/esheldon /ngmix
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the ground truth shear is known, the one used to generate the simulations, the shear
estimation bias can be computed. [Man-+18] followed this approach to calibrate the
data from Hyper Suprime-Cam survey (HSC).

A new approach was recently developed in Huff et al. [IM17] and Sheldon et al.
[SH17]. The method is coined metacalibration and bypasses the need for simulations
that require considerable effort to produce at a realistic level and that are computa-
tionally expensive. The main idea is to estimate with the real data a response matrix
that represents the response of the shape measurement to a change in the shear. In
other words, the method estimates the derivative of the measured ellipticity with
respect to the shear using a finite difference approximation. The method expands the
ellipticity estimator, coming from the shape measurement method, in a Taylor series
around zero shear as follows

96
é:é|,Y:0+fe v, (1.50)
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where R is the response matrix.

In practice, the method builds on observations, a shape measurement method and
a PSF model. The galaxy observation is deconvolved by its corresponding PSF in
Fourier space to account for the PSF anisotropy. This step is done without specific care
about the image noise. The deconvolved galaxy is then reconvolved by an isotropic
PSF which is larger in size than the original PSF. This last step helps to attenuate
the high-frequency content generated in the deconvolution step, as a convolution with
an isotropic PSF is equivalent to applying a low-pass filter. A positive and negative
shear per component is applied to the galaxy observation, fyli, 'yQi, following the linear
transformation from Equation 1.18 and Equation 1.20. The shapes of each the resulting
images are computed giving éli and éQi. The response matrix, R, is then computed as
follows

A+ A—
e —é;
R~ 24— (1.52)
T Ay
where Av; = ’y;' — 7, is the difference between the two applied shears, and
fyi'f ;= —";, giving A7 j = 27, ;. Finally, the shear calibration is done as follows
—1 4 -1
()= (R) (&)~ (R) (Ry) . (153)

This calibration method was used in the shape measurement pipeline to process
DES data in Zuntz et al. [Zun+18] and Gatti et al. [Gat+21]. There is an extension of
the method, named metadetection [She+20], that aims to calibrate the selection bias.

1.4 The Fuclid space mission

We have seen in the previous section the main blocks involved in a shape measurement
pipeline synthesized in Figure 1.3-6. The job of the PSF model and its interaction
with the other blocks of the pipeline were described. The final product of the pipeline
is a calibrated shape catalogue that can be used as a fundamental input for a WL
analysis, as we have seen in section 1.2. There are several successful ground-based
surveys that produced WL shape catalogues like KiDS-1000, DES, and HSC. These
three surveys correspond to Stage III cosmological experiments from the definition
of Albrecht et al. [Alb+06]. In order to produce an even better and more powerful
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Figure 1.4-9 — A contour plot illustrating the potential perceived by an object at rest
in the Sun-Earth system. The different Lagrange points can be identified. Credit:
NASA.

catalogue, the ESA started to build one of the Stage IV cosmological experiments, the
Fuclid space mission [Lau+11]. Fuclid is a medium class mission from ESA’s Cosmic
Vision program. See Laureijs et al. [Lau-+11] for Fuclid’s study report and Racca et al.
[Rac+16] for Fuclid’s mission design.

The main objective of Fuclid is to learn about the Dark Universe, the nature
of dark energy and the distribution of dark matter. FEuclid has been designed to
maximize the power of its two main cosmological probes. First Weak Gravitational
Lensing (WL), which we have introduced in section 1.2. Second, Galaxy Clustering
(GC), which refers to the 3D distribution of galaxies, measured from the positions of
the sky and their distance or redshift. GC requires measuring the redshift distribution
of galaxies through their Ha emission line using slitless spectroscopy.

The FEuclid mission has a lifespan of 6 years, and it will be launched to the L2
Sun-Earth Lagrange point. Figure 1.4-9 shows a contour plot of the gravitational
potential that relates to the force applied to an object at rest in the Sun-Earth system.
The L2 point is a saddle point, making it stable and particularly attractive for surveys
interested in the night sky. A satellite at the L2 point always keeps the Sun, Earth, and
the Moon behind it, providing regular communication with the Earth and solar power.
The L2 point is currently home for the Planck and James Webb Space Telescope
(JWST) satellites.

FEuclid uses a Korsch telescope consisting of a 1.2 m primary mirror with a focal
length of 24.5 m designed to provide a large Field-of-View (FOV). It will carry two
instruments specially designed for the two main cosmological probes. Euclid’s VIS
Instrument (VIS) [Cro+16] for WL and Fuclid’s Near Infrared Spectrometer and
Photometer instrument (NISP) [Euc+22b] for GC. From now on, we will focus on
WL and the former instrument. Fuclid’s VIS Instrument (VIS) has a focal plane
composed of 36 CCDs, where each one is a matrix of 4096 x 4132 pixels. The scale of
each pixel is 0.1 arcsec which gives a wide FOV of about 0.57 deg® (around two orders
of magnitude greater than Hubble Space Telescope (HST) FOV). The VIS instrument
has a single spectral band ranging from 550 nm to 900 nm.

Cropper et al. [Cro+13] stated that the power of a WL survey depends on five
primary factors, which are the driving parameters when designing a space-based WL.
Let us review the five factors and see why Fuclid will be a powerful WL survey:
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Figure 1.4-10 — The observation regions of Fuclid as from an L2 point perspective.
The four regions in blue are the regions of interest for the Fuclid wide survey. The
red and yellow regions correspond to the galactic and ecliptic planes, respectively,
and will be avoided. The galactic plane contains objects from our galaxy and is thus
uninteresting to probe far-away zones of the Universe. The zodiacal light from our
Sun contaminates the ecliptic plane. Credit: Image from Euclid Collaboration et al.
[Euc+22a).

(i)

(i)

The size of the survey: FEuclid will observe 15,000 deg2 of extragalactic sky, a
large fraction of the celestial sphere. Figure 1.4-10 shows the part of the sky
being imaged by the Fuclid wide survey. As a reference for comparison, the
current largest contiguous space-based WL catalogue corresponds to Cosmological
Evolution Survey (COSMOS), which was observed with HST and spans an area
of 1.64 deg?.

The limiting magnitude of the survey: FEuclid will be extremely sensitive reaching
a lower bound of an AB magnitude of 24.5 (100) in the visible band. The VIS
wideband allows observing very faint galaxies aiming to get a galaxy number
density of ~ 30 gal/arcmin?.

The size and shape of the instrument PSF: The high quality optical system
provides a small PSF with a FWHM smaller than 0.18 arcsec. The satellite’s
location in the L2 Lagrange point gives a stable PSF.

How well this PSF is known: The knowledge of the PSF principally depends on
the performance of the PSF model for Euclid. This factor will be discussed later
and constitutes the driving force of this thesis.

How well we can correct for the sources of systematics: This factor depends on
the performance of the shape measurement pipeline, which includes the handling
of the PSF model.

Some particularities of the Fuclid mission make the PSF modelling particularly
challenging. The factor (i), having a large FOV and therefore covering a large part of
the sky, motivates using a larger pixel scale, which makes the observations, including
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the stars, undersampled. As a consequence, the PSF model will need to super-resolve
the PSF. Nevertheless, the observing strategy accounts for four dithers, consecutive
observations of the same region with small pointing variations. In practice, the dithers
increase the number of observed stars available to constrain the PSF model. Another
difficulty coming from the factor (i) resides in the vast amount of data to process,
which imposes constraints on the computing time for the PSF model. The factor (ii)
motivates using a single wideband in the VIS instrument to collect as much light as
possible. As a result, the PSF model needs to properly model the spectral variations of
the PSF in the wideband. The design of the Fuclid telescope includes mostly reflective
elements, e.g. mirrors, from which the spectral variations follow the diffraction theory
and are known. However, the optical system uses a dichroic plate which allows using
both instruments simultaneously as their bandpasses are disjoint. It was recently
discovered that the dichroic introduces spurious spectral variations, e.g. Venancio
et al. [Ven+20, Fig. 28], introducing a great challenge to the PSF model. The
fact that Fuclid is a space mission and the factor (iii) makes the PSF to be almost
diffraction-limited, making the shape of the PSF more complex. Finally, the factors
(iv) and (v) impose extremely tight requirements on the performance of the PSF
model.

The power of WL analyses requires tight control of the systematic errors, making
the PSF model an essential component of the Fuclid mission. The existing PSF models
are not adapted for the challenges and particularities of the FEuclid PSF. This fact
motivates the development of new PSF models, a parametric approach led by Prof
Lance Miller, and the novel data-driven method described later in this thesis.
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HIS chapter discusses more in detail the Point Spread Function (PSF) and should

help to understand the PSF modelling choices of the following chapters of this
thesis. We start by introducing optical concepts required to analyse optical imaging
systems that will be later used for the proposed PSF models for space-based telescopes.
Then, motivated by the optical introduction, we describe the general observational
forward model that we consider in this thesis. We proceed by introducing the different
physical contributors to the PSF. The chapter continues with an overview of state-
of-the-art PSF modelling techniques that include comments on what are desirable
properties of a PSF model. We end the chapter by describing different techniques for
validating PSF models.
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Figure 2.1-1 — Illustration of the Huygens-Fresnel principle and the modification of a
wavefront due to an obstacle.

2.1 Introduction to optics

This section introduces important optical concepts for the understanding of this thesis
and is based in the formalism of Goodman [Gooog]. For a profound and rigorous
description of optical theory we refer the reader to the seminal book of Born et al.
[BWG4] or the more concise work seen in Gross [Groos, S. 12]. For more information
on practical wave propagation we refer the reader to Schmidt [Schio].

2.1.1  Scalar diffraction theory

When studying the PSF we are studying how an optical system with a specific
instrument contributes to and modifies our observations. To understand how the
optical system interacts in the propagation of light, we need to dig into the nature of
light, an EM wave. If one would like to make a fundamental analysis, one would need
to use Maxwell’s equations, solve them with the optical system under study, and obtain
the electric and magnetic fields. Solving a set of coupled partial differential equations
is an arduous task. Several approximations can be made, given that some conditions
are met, to alleviate the mathematical burden of solving Maxwell’s equations without
introducing much error into the analysis.

Diffraction theory provides a fundamental framework for analysing light propagation
through an optical system. It is especially the case when working with EM waves in
the optical spectra when the optical image is situated close to the focus region. The
Huygens-Fresnel principle states that every point of a wavefront may be considered as
a secondary disturbance giving rise to spherical wavelets. The wavefront, at any later
instant, may be regarded as the envelope of all the disturbances. Fresnel’s contribution
to the principle is that the secondary wavelets mutually interfere. This principle
provides a powerful method of analysis of luminous wave propagation. In Figure 2.1-1,
we can observe the propagation of an incident plane wavefront through an obstacle,
a single slit. We can appreciate how the secondary wavelets constitute the plane
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Figure 2.1-2 — Illustration of the coordinate system for the diffraction equations.
Credit: figure from Ngolé Mboula, Fred Maurice [Ngo16].

wavefront before the obstacle. Then, we observe how the wavefront shape is modified
due to the obstacle, following the Huygens-Fresnel principle.

The secondary waves mutually interfere, and according to their phases, they can
be constructive or destructive. The analysis of the light propagation in a homogeneous
medium is simple as the spherical wavelets interfere, and the total wavefront propagates
spherically in the medium. However, suppose the wave encounters an obstacle. In
that case, the secondary waves in the vicinity of the boundaries of the obstacle will
interfere in ways that are not obvious from the incident wavefront.

Gustav Kirchhoff was a pioneer in providing a solid mathematic foundation to
the Huygens-Fresnel principle using Green’s theorem. First, by deriving the integral
theorem by Kirchhoff which expresses the solution of the homogeneous wave equation
at an arbitrary point in terms of the values of the solution and its first derivative
at all points on an arbitrary closed surface surrounding the point. Then, he studied
the diffraction by a planar screen, a simple setup which allows making assumptions
simplifying the integral theorem. The assumptions are commonly known as the Kirch-
hoff boundary conditions. Although accurate in practice, these boundary conditions
were proved inconsistent and were eliminated by Sommerfeld, who gave origin to
Rayleigh-Sommerfeld diffraction theory that we will continue below.

Let us consider a diffractive aperture that lies in a plane (£,7) illuminated in the
positive z direction. We will study the diffracted wave in a parallel plane (z,y) at a
normal distance z from the first plane. The z axis is orthogonal to both planes and
intersects both of them at their origins. Figure 2.1-2 illustrates the coordinate system
described above. The diffracted wave writes

// ) ERU ’:’"Ol) dedn (2.1)

where ) is the wavelength, k = 27/X, po = (£,1,0), p1 = (2,9, 2), 701 = ||P1—Po||2;
Y is the aperture in the (£, 7n) plane, and U is the electric field. The incident wave is
U(po) and the diffracted wave is U(p1).

There are two approximations in the derivation of Equation 2.1. The first ap-
proximation is that we are considering a scalar theory of diffraction, a scalar electric
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and magnetic field, and not the fields in their full vectorial form. The scalar theory
provides a full description of the EM fields in a dielectric medium that is linear,
isotropic, homogeneous, and non-dispersive. However, if the medium does not verify
these properties, the scalar theory is no longer exact. Even if the medium verifies
these properties, if some boundary conditions are imposed on a wave, for example,
an aperture, some coupling is introduced between the EM field components. In this
scenario, using the scalar theory introduces a bias. Nevertheless, the EM fields are
modified only at the edges of the aperture, and the effects extend over only a few
wavelengths into the aperture. Therefore, if the aperture is large compared to the
wavelength, the error introduced by the scalar theory is small.

Although the current formulation is powerful in representing the diffraction phenom-
ena, it is still challenging to work with the integral from Equation 2.1. As a consequence,
we will explore further approximations to the Rayleigh-Sommerfeld diffraction theory
that will give origin to the Fresnel diffraction and Fraunhofer diffraction.

2.1.2 The Fresnel approximation

The Fresnel approximation is based on the binomial expansion of the square root in
the expression v/1 + b for some b'. The distance r9; can be expressed as

rm:z\/1+<xzf)2+(”f)2, (2.2)

that can be approximated, using the first two terms of the binomial expansion, as
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The r¢; appearing in the exponential of Equation 2.1 has much more influence in
the result than the r3; in the divisor. Therefore, we use Equation 2.3 to approximate

the 791 in the exponential, and for the divisor we approximate r2; ~ 22. Then, we can
express the diffracted field as

b0 = [[vboen (5L [@-02+ -] ) detn. @)

and if we expand the terms in the exponential, we get
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The FT expression can be recognised in Equation 2.5 with some multiplicative
factors. The diffracted wave is the F'T of the product of the incident wave and
a quadratic phase exponential. In this case, we have approximated the spherical
secondary waves of the Huygens-Fresnel principle by parabolic wavefronts. The region
where the approximation is valid is known as the region of Fresnel diffraction. In
this region, the major contributions to the integral come from points (£, 1) for which
¢ =~ x and n = y, meaning that the higher-order terms in the expansion that we are
not considering are unimportant. The region of Fresnel diffraction can be seen as the
(x,y,z) that verify

2 2 2
#> S (@-9"+w-n") . vEmex (2.6)

*The binomial expansion is given by v/1+b=1+ %b — éb2 + -
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Figure 2.1-3 — Illustration of the different diffraction regions behind an aperture.
Credit: Figure from Gross [Groos).

2.1.3 The Fraunhofer approximation

We continue to present a further approximation that, if valid, can greatly simplify
the calculations. The Fraunhofer approximation is based on the assumption that the
exponential term with a quadratic dependence of (£, 7) is approximately unity over
the aperture. The region where the approximation is valid is the far field or region of
Fraunhofer diffraction. The required condition to be in this region reads

k 2 + 2
z> M , V(& n) ex. (2.7)
The Fraunhofer diffraction formula is given by
elk? ;
U(p1) = Tej £ (2*+y? / {U(po)} e 32 (w&+ny) dédn (2.8)
J
where we can reformulate the previous equation using the FT as follows
ejkz ji(az2+y2) .
U(p1) = S/ IR (i (po)U (po)) (29)

where FT is the Fourier transform, and iy is an indicator function over the
aperture. Cameras are sensitive to the light’s intensity reaching their detectors. The
instantaneous intensity of a EM wave is equal to its squared absolute value. Therefore,
we can write the intensity of the diffracted wave as

I(p1) = [U(py)[* = /\2 S [FT {is(po)U(po)}I? | (2.10)

which is significantly simpler than the original Rayleigh-Sommerfeld expression
from Equation 2.1.

Figure 2.1-3 illustrates the different types of diffraction as a function of the distance
to the aperture.
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Figure 2.1-4 — Illustration of the generalised black box concept of the imaging system
and its corresponding coordinate systems. The image plane coordinates are (u,v), the
output aperture plane coordinates are (z,y), and the object plane coordinates are
(&,7m). Credit: Figure from Goodman [Gooos].

2.1.4 Analysis of optical imaging systems

Let us analyse a general optical imaging system composed of one or many lenses of
possibly different characteristics. We treat the optical system as a black bor which
is characterized by the transformations done to an incident object scalar wave, U,,
into an output image wave, U;. The subscript , will refer to the object wave, not
the output wave. Similarly, the subscript ; will refer to the image wave and not the
input wave. Figure 2.1-4 illustrates the black box interpretation of the general optical
system. We assume that the effect of the optical system between the input and output
waves is well described by geometrical optics, which is an affine transformation. All
the diffraction effects can be associated with one of the two pupils, input or output
(see [Gooop, S. 6.1.2] for more discussion). We choose the latter one and consider the
diffraction of the output wave between the output pupil and the image plane.

Let us write the output wave as a function of the input wave using the superposition
integral as follows

+o00
Us(u,v) = / /_ B, v €, ) Uy (€, m)dedy (211)

where h is the field’s value at image coordinates (u,v) due to a unitary point-source
object at position (&, 7).

On the one hand, it is cumbersome to work with non-stationary systems as h in
Equation 2.11. On the other hand, the study of h is the main topic of this thesis
which is strongly non-stationary in systems with a large FOV. However, despite being
central to this work, we can consider h to be stationary in the isoplanatic region. This
region consists of close-by points in the FOV, where the light has travelled similar
paths giving small deviations of h. We are assuming a certain regularity in h due
to the physical system under study that allows the deviations to be small. In other
words, we consider h to be locally stationary or stationary in patches. Figure 2.1-5
illustrates the idea of an isoplanatic region. This assumption limits the size of the
objects being imaged, as they should have a certain size range with respect to h
support so that all the objects being imaged lie within the aforementioned region.
Then, for a set of positions {(u,v), (§,n)}, assuming the stationarity of h, we have
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Figure 2.1-5 — Illustration of the isoplanatic region. Two rays from the same isoplanatic
region travel through almost the same turbulence and suffer almost the same distortions.

that h(u,v;&,m) = h(u — &, v —n). A shift in the object space translates as a shift in
the image space without a change of h’s morphology.

The effect of the geometrical optics inside the black boz on the input (object) wave
writes

. 1 ¢ F - .
Ug (6777) :MUO (|€]\4|7|nj\4|) ’ and §:M€7 n:an (2'12)

where M is the magnification factor of the optical system. Following the aforemen-
tioned approximations, we can rewrite Equation 2.11 as a convolution as follows

o0 5 - B
Ui(uav) :// h(u_fvv_ﬁ) Ug (§7ﬁ) dﬁdﬁ ) (2'13)
where the impulse response h, under the Fraunhofer approximation, writes
A +oo o
o) =5 [ Pla)e 5Oy, (2.14)
)\ Zi —o

where P is the pupil function, a binary mask indicating the obscurations in the exit
pupil’s aperture, A is a constant amplitude, and z; is the distance between the exit pupil
plane and the image plane. In this general case, where the system has no aberrations,
we see that the output image is formed by a geometrical-optics transformation followed
by a convolution with an impulse response that is the Fraunhofer diffraction of the
exit aperture.

Polychromatic illumination: the coherent and the incoherent case

Until now, we studied a system with ideal monochromatic light. It is the turn to shift to
polychromatic light as it has meaningful implications in the analysis. Even if we study
the system’s behaviour to light with a particular wavelength, it is practically never
the case as real illumination is never perfectly chromatic, even for lasers. Therefore,
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we consider a narrowband polychromatic illumination centred at a given wavelength A.
The narrowband assumption states that the bandwidth occupied is small with respect
to the central wavelength. For a polychromatic light, we follow Goodman [Gooog]
and consider a time-varying phasor of the field, U;(u, v;t), where its intensity is given
by the time integration of its instantaneous intensity

T/2

T N A | 2
I(u,v) = (|Ui(u,vit) ), —h%nT/_T/QWZ(u,v,t) dt, (2.15)

where we consider that the detector integration time is much greater than the optical
bandwidth. We can generalise the field expression from Equation 2.13 considering
polychromatic light and that the impulse response h is wavelength independent due
to the narrowband assumption. Then, the field writes

+oo N B B
Ui(u,v;t):/[ h(u—f,v—ﬁ) U,y (5,17;15—7') dédq , (2.16)

where 7 represents the delay of the wave propagation from (§~ ,7) to (u,v). Con-
tinuing with the polychromatic analysis, we rewrite the intensity from Equation 2.15
as

+oo +oo ~
Li(u,0) = / / A€, diiy / / désdiia h (u — &1, v — i)
h* (U—€~27’U—77]2) Jg (Ehﬁl;é?,fh) ) (2'17)

where h* is the conjugate of h, J, is known as the mutual intensity which describes
the spatial coherence of U, at two points and writes

Jg (£17ﬁ1;£27ﬁ2) = <Ug (ghﬁlat) U; (527ﬁ27t)> . (2'18)

We can distinguish two types of illuminations, coherent and incoherent. Coherent
illumination refers to waves where their phases vary in a perfectly correlated way.
This illumination is approximately the case of a laser. In incoherent illumination,
the wave’s phases vary in an uncorrelated fashion. Most natural light sources can be
considered incoherent sources. The mutual intensity is useful to represent both types
of illumination. In the case of coherent light, we obtain,

I (&1, 7115 2, 712) = Uy (&1,71) Uy (&2,72) (2.19)

where Uy, (§~1, ﬁl) and U, (52, ﬁg) are time-independent phasor amplitudes relative
to their time-varying counterpart. As both time-varying phasors are synchronized,
we have taken a reference phasor and normalized them against their amplitude with
respect to a reference point that can be the origin (0,0). For example,

U, (0,0;1)

U, (51,771;15) =U, (51,771) 1 (2.20)
(U, (0,0:))
Substituting Equation 2.19 into Equation 2.17 we obtain
+o0 B N 5 2
o) = 0ol = | [[ - go-n), Enaga . @
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Figure 2.1-6 — Illustration of the Wavefront Errors (WFE) in a one-dimensional setting
where the optical system is represented as a single lens.

where we observe the coherent illumination gives a system that is linear in the
complex amplitude of the field U,.
If we now consider incoherent illumination, the mutual intensity writes

T (&, 7580, 72) = K1y (E1,7) 6 (& — o, — 7l2) (2.22)

where & is a real constant, J is Dirac delta distribution, and I, is the intensity of
the U, field. Replacing Equation 2.22 in Equation 2.17 the output (image) intensity
writes

. . +OO ~ ~ ~
1%, 0) = | U (u,0)[* = n//_ Ih(u—&v—i)* 1, (E.7)dédi,  (2.23)

where |h\2 is the intensity impulse response, also known as the Point Spread
Function (PSF). In this case, an optical system illuminated with incoherent light is
linear in intensity. Equation 2.23 shows a commonly used fact, the output intensity is
the convolution of the intensity PSEF with ideal image intensity 1.

Introducing optical aberrations

We considered in the previous development an ideal optical system without any
aberrations. Geometrical optics and posterior diffraction effects well describe the
system. These latter effects consider that a perfectly spherical wavefront goes through
the exit lens and studies its propagation until the image plane. This type of system
is known to be diffraction-limited. We are now interested in studying a system with
aberrations where the consequence is that the output waves are not perfectly spherical.

To study this type of optical system, we start the previous diffraction-limited
system and add an ideal phase-shifting plate representing the system’s aberrations.
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Figure 2.1-7 — Example of Euclid’s pupil function in the (z,y) plane for a given position
in the (&, 7).

The plate is located in the aperture just after the exit pupil, and it deforms the phase
of the output wave. To characterise the aberrations we will use the generalised pupil
function that generalises the pupil function P from Equation 2.14 and writes

Pla,y) = P(z,y)el TWe@w) | (2.24)

where A is the central wavelength of the incident wave, P is the previous pupil
function, a binary mask, and W represents the Optical Path Differences (OPD)
between a perfect spherical wavefront and the real aberrated wavefront. We will also
refer to the OPD as Wavefront Errors (WFE). Figure 2.1-6 illustrates the concept of
WEFE. It is common to represent the WFE using a Zernike polynomial decomposition
[Nol76] as they are orthogonal in the unit disk. A more rigorous definition of the
Zernike polynomial will be introduced in section 5.4.2.

Final remarks

The aberrations represented by W, as well as the pupil function P, depend on the
object’s position in the FOV even though we have not introduced the dependence
in the formulations. To illustrate this fact, we can consider the obscurations in the
aperture as seen in Figure 2.1-7. One can notice a circular aperture with several
obscurations in it, a small circular mirror and three spider arms supporting the mirror.
The projection of these obscurations into the (z,y) plane depends on the object’s
position in the FOV making the pupil function P change with the (£,7) coordinates.

We have considered aberrations that only depend on the object’s position in
the FOV. However, depending on the optical system under study, there might be
wavelength-dependent aberrations. For example, some components, such as dichroic
filters®, can introduce spurious wavelength dependences to the optical system’s response.
If this is the case, we can add a wavelength dependence to the WFE function W to
account for these effects.

There are some assumptions that we will use throughout this thesis, and it is worth
stating them as follows:

e The calculations we will do are done for the system following the narrowband
assumption over specific central wavelengths. We assume we can work with each
wavelength independently in polychromatic problems with a wide passband.

2 A dichroic filter is a filter used to pass light from specific wavelengths and reflect other wavelengths
selectively. The Fuclid optical system includes a dichroic filter.
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e The wave is assumed to be scalar, and we do not consider the polarisation of
the field.

e We assume that the incoming light from natural sources is ideally incoherent, so
the system is linear in intensity, as we have seen in Equation 2.23.

e The impulse response is considered to be spatially invariant in its isoplanatic
region. In other words, we assume that the PSF is the same for a small patch of
the sky.

To conclude, the usual formulation of the PSF, i.e. the intensity of the impulse
response, convolving an image seen in many articles comes from the previous assump-
tions using the results from Equation 2.23, Equation 2.14 and Equation 2.24. We
rewrite this formula as follows:

IZ‘(U,U) = (H*Ig) (u,v) ’ (2'25)
where we remind that the (u,v) is the image plane, we have dropped the k term

from Equation 2.23, and H is the PSF that writes

2

A2 +ee j2r —7 = (ux4v
Huv) =352 // Pla,y)ed W eI qpqy) - (2.26)

where we are studying the PSF for a specific wavelength and FOV position.

2.2 General observational forward model

Let us focus on the main topic of this thesis, the PSF. We consider the PSF as the
intensity impulse response of the imaging system under study to a point source. The
concept of PSF is used throughout many imaging applications, including astronomical
imaging [Lia+22; Sch1g], medical imaging [DKo1; JBL18], or 3D microscopy [Sou+12].
The central idea behind a PSF is that it represents transformations done to the imaged
object by the imaging system. The PSF is, in a certain way, a characterisation of
the imaging system. Focusing on astronomical imaging, the definition of the imaging
system can vary between the different use cases and telescopes. For example, in a
ground-based telescope, we will consider that the atmosphere belongs to the imaging
system we are modelling. However, and naturally, in a space-based telescope, the
atmosphere will not be considered. In this thesis, our focus will be on optical systems.
These imaging systems work with electromagnetic radiation with a wavelength close
to the visible spectrum. For example, the VIS instrument’s theoretical wavelength
range is from 550nm to 900nm.

The PSF describes the effects of the imaging system in the imaging process of the
object of interest. As we have seen in subsection 2.1.4, the effect of the PSF to an
image is a convolution, and, by definition, the PSF is the kernel of the convolution.
However, this convolutional kernel varies spatially, spectrally, and temporally. We give
a non-exhaustive list that motivates each of these variations:

o Spatial variations: The optical system presents a certain optical axis, which is
an imaginary line where the system has some degree of rotational symmetry. In
simpler words, it can be considered as the direction of the light ray that produces
a PSF in the centre of the focal plane for an unaberrated optical system. The
angle of incidence is defined as the angle between an incoming light ray and
the optical axis. The main objective of the optical systems we study is to make
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the incoming light rays converge in the focal plane, where there will be some
measurement instrument as a camera, for example. Depending on the angle
of incidence, the image will form in different positions in the focal plane. The
path of the incoming light will be different for each angle of incidence, and
therefore the response of the system will be different too. In other words, the
PSF will change depending on the angle of incidence or spatial position in the
focal plane where the image is forming. Optical systems with very wide focal
planes, generally associated with very wide FOV, present more important PSF
spatial variations.

e Spectral variations: Principally due to the diffraction phenomena and its well-
known wavelength dependence covered in section 2.1. Refractive3 components
of the optical system under study can add more sources of spectral variations.

o Temporal variations: The state of the telescope changes with respect to time;
therefore, the imaged object’s transformation also changes. In space-based tele-
scopes, high-temperature gradients cause mechanical dilations and contractions
that affect the optical system. In ground-based telescopes, the atmosphere
composition changes with time. Consequently, it temporally affects the response
of the optical system, or the PSF.

The PSF changes with space, time and wavelength. Let us refer to the PSF field,
H(x,y; A;t), as all the PSF that represent an optical system. We can define the PSF
field as a varying convolutional kernel H : R? x R, x R, — K, going to some function
space (for instance K = L1 (R?)). This would be an accurate description of how the
PSF affects the images considering the assumptions from section 2.1 are valid. It is,
however, cumbersome to work with a convolutional kernel that varies at each point
in space. We will adopt throughout this thesis an approximation that considers the
PSF locally invariant in its isoplanatic region (see Figure 2.1-5 for an illustration).
This approximation means that in a vicinity of an observed object, we will consider
that the PSF only varies with time and wavelength, thus facilitating the computation
of the convolution. In practice, the close vicinity, or the isoplanatic region, will be
defined as the postage stamp used to image the object of interest. The typical galaxies
observed for weak lensing have a comparable size with respect to the PSF size (e.g.
see [Man+18, Figure 7] for a distribution of relative galaxy to PSF size in the HSC
survey). Consequently, the approximation error is kept low as it is only done for small
patches of the focal plane.

Let us define our object of interest, Zgr(z,y; A), that is the I, object from sec-
tion 2.1, as a continuous light distribution Zgt : R? x Ry — K. In this thesis, we
are not considering transient objects, i.e. the time dependence scale of the object is
comparable with the exposure time used to image it. Therefore, we can ignore the
temporal dependency of the Ground Truth (GT) object, Zgr(x,y; ) # f(t). Let us
write our general observational forward model that relates our GT object of interest,
our PSF and our observed image as follows

—+oo

ngm,yi;t)fp{ T\ <IGT*H><x,y;A;t>dA}oN(x,y;w, (2.27)

0

where F, is a degradation operator going from X to RP*? which includes the image
sampling in the instrument. Then, Iimg(z;, y;;t) € RP*P are the instrument’s pixel

3Refraction refers to the change of direction in the propagation of a wave passing from one
medium to another. Most of the wave energy is transmitted to the new medium. Reflection refers to
the abrupt change of direction of the wave propagation due to a boundary between mediums. In this
last case, most of the oncoming wave energy remains in the same medium.
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measurements of the observed image. The variables (z;,y;) correspond to the centre
location of the target object i and should not be mistaken with the discrete pixel
coordinates of Iime. The instrument’s transmission is represented by 7 : Ry — R4, a
function with finite support, and N (z,y;t) € RP*P corresponds to the noise affecting
our observation and possibly a modelling error, where o is some composition operator.

Although Equation 2.27 provides a general observational forward model, it can be
unpractical. The continuous functions H, 7, and Zgr are practically inaccessible. We
make several assumptions to simplify the problem:

(a) The continuous functions H and Zgr are well approximated by piece-wise
constant functions over a regular grid in R2. We assume H ~ H and Zgr ~ Iar,
where H, Igr € RPXP with P > p. The resolution of these two variables has to
be greater or equal to the observation resolution,

(b) The noise is additive, i.e. o = +,

(c) The degradation operator is approximated by its discrete counterpart, F, ~ Fj,
where F), : RP*P — RPXP We assume that the degradation operator is linear,
and that includes downsampling, intra-pixel shifts and linear detector effects,

(d) We keep the approximation that the PSF is locally constant within the postage
stamp of P x P values of the target image,

(e) The integral can be well approximated by a discretised version using n, bins.

Taking into account the aforementioned assumptions, we can define our practical
observational forward model as follows

UDN

Timg (i, yi5t) = F) {ZT()\k) (Lot * H)(2i, yis Ak t) A)\k} + N(z,y;t),  (2.28)
k=1

where T is a discretized version of T, and b* = [bf, b¥] is the k-th wavelength bin
centred in A, with a width of A\, = b¥ — bf.

Particular case: a star observation

The case of star observations is of particular interest. Stars can be approximated as a
spatial impulse, Zgar (2,95 A) = 6(2,¥; A) = f(z,y)(A), and provide us with degraded
observations of the PSF field. These observations will be crucial to constrain the PSF
models. Unluckily, we do not have access to the star’s spectral variation, f(z.,)(}).
However, we dispose of complementary photometric observations that can be useful
to characterise the spectral variations. These observations provide us with the star’s
Spectral Energy Distribution (SED) that can be defined as follows:

‘astronomers use the term “spectral-energy distribution” to mean the spectro-
photometrically calibrated flux density from a source as a function of wavelength or
frequency, usually at low spectral resolution. [Hog22, p. 7]

These photometric observations are done in several spectral bands. Figure 2.2-8
shows the bands from the MegaCam instrument at CFHT. The filter curves can
be downloaded from the Spanish Virtual Observatory (SVO) webpage*. For more
information about SEDs and stellar photometry we refer the reader to the pedagogical
document of Hogg [Hog22]. In practice, we can consider the SED as a normalised

4http://svoz2.cab.inta-csic.es/svo/theory/fps/index.php
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Figure 2.2-8 — The 3rd generation set of filters of the MegaCam instrument at Canada-
France-Hawaii Telescope (CFHT) currently being used for CFIS. The transmission
filter response includes the full telescope and 1.25 airmasses of atmospheric attenuation.
The full telescope includes the mirrors, the optics, and the CCDs.

low-resolution sampling of the star’s spectral variations. We can write the SED
definition we will use as

SEDye (\i) =

bt
/ Fomy (V) dA, (2.29)

Zny(b) Jok
where we continued to use the b* bin definition from Equation 2.28, and L (b)
is a constant used to so that the SED is normalised to unity. We have that
w21 SEDyr(A;) = 1. We continue by considering that the GT image in Equa-
tion 2.28 is a star, and we use the spectral bins from the SED definition to discretize
the spectral integration. Finally, we write the practical star observation model as

DN

Istar (4,913 t) = Fy {ZT(Ak)SEDbk (k) H(wi, 95 ki 1) A/\k} + N(z,y;t) , (2-30)
k=1

where we consider the star observation Igq. (24, yi;t) € RP*P as a degraded version
of the PSF field H(x;,y;;t) € RP*P,

2.3 PSF field contributors and related degradations

So far, we have described how the PSF interacts with the images we observe and how
we can model an observation. However, we did not give much information about the
different contributors to the PSF field, and about the different degradations represented
by F}, in Equation 2.28 that can occur when modelling observations. We provide a
non-exhaustive list of contributors to the PSF field, sources of known degradations,
and the atmosphere’s effect in our PSF modelling problem.
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2.3.1  Optic-level contributors

These contributors affect the PSF by alterating the wave propagation in the optical
system. In other words, they generally affect the wavefront’s amplitude and phase.

Diffraction phenomena and the aperture size: As we have seen in section 2.1, the
diffraction phenomena happening in the optical system plays an essential role
in the formation of the PSF. The size of the optical system aperture and the
wavelength of the light being studied are of particular interest. Equation 2.26
shows us that under some approximations the PSF is the FT of the aperture.
Therefore, the size of the aperture and the PSF are closely related. For example,
if we consider an ideal circular aperture, the diffraction pattern associated with
it is the well-known Airy disk. The relation between the width of the PSF and
the diameter of the aperture is given by

GFWHM = 1.025% 5 (2.31)
where Opwunm is the FWHM expressed in radians, A is the wavelength of the
light being studied, and d is the diameter of the aperture. The width of the PSF
is a fundamental property of an optical system as it defines the resolution of
the system. In other words, the PSF size defines the optical system’s ability to
distinguish small details in the image.

Optical aberrations: These aberrations are due to imperfections in the optics, for
example, a not ideally spherical mirror or a not perfectly aligning of the optical
components. The optical aberrations play a significant role in the morphology
of the PSF and can be modelled using the WFE introduced in the generalized
pupil function from Equation 2.24. Some aberrations have a distinctive name,
for example, coma, astigmatism, and defocus.

Surface errors or polishing effects: One would ideally like perfectly smooth
surfaces in mirrors and lenses. However, small imperfections are arising in the
optical surfaces due to the imperfect polishing of the surfaces. Figure 2.3-9
shows the measurement of Surface Errors (SFE) in the HST. We will present
FEuclid simulations with and without SFE in chapter 6 and show their effect.
Gross et al. [Gro+06, Section 35.2] gives a more in-depth analysis of surface
errors focusing on the tolerancing of SFE.

Obscurations: Complex optical systems have telescope designs where some
elements can obscure some part of the pupil. This is the case for Fuclid as it
can be seen in Figure 2.1-7. It is also possible to notice the obscurations in the
HST in Figure 2.3-9.

Scattered light: Optical elements, detectors, and instruments give rise to scattered
light that reach the CCDs. Krist [Krigs] studied the problem for the HST. Storkey
et al. [Sto+04] developed methods to clean observations with scattered light
from the SuperCOSMOS Sky Survey (SSS). Sandin, Christer [Sani4] studied
the effect of scattered light on the outer parts of the PSF.

Ice contamination: Some water particles may get into the optical system during
the manufacturing process. In space, this water turns into ice and produces
contaminations that are very hard to model and affect the telescope’s PSE.
The ice contamination produces a time-variable transmission degradation that
also varies with wavelength and FOV position. A notable example is the ESA
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Gaia mission that suffered from ice contamination (see Gaia Collaboration et al.
[Gai+16, Section 4.2.1]) and required several decontamination procedures to
remove the ice from the optical system slowly. Although difficult to predict, the
ice contamination could also be an issue for Fuclid.

Chromatic optical components: These components have a particular wavelength
dependence, excluding the natural chromaticity due to diffraction. A particular
example is a dichroic filter which ideally serves as a mirror for some wavelength
and is transparent to other wavelengths. The Fuclid optical system includes
a dichroic filter which allows using both instruments, VIS and Euclid’s Near
Infrared Spectrometer and Photometer instrument (NISP), simultaneously as
their passbands are disjoint. These chromatic optical components do not have
an ideal bandpass transmission curve, and therefore they introduce spurious
wavelength dependences to the PSF. There is an ongoing effort in the Fuclid
Consortium (EC) to characterise the chromatic variations introduced by Euclid’s
dichroic filter. See Baron et al. [Bar+22] for recent results on Fuclid’s dichroic.

Light polarisation: In the diffraction theory analysis carried out in section 2.1
we have neglected the light polarisation, and considered the EM fields as scalar
fields. There are some regions where the incoming light has been polarised by
Galactic foreground dust. In addition, complex chromatic optical components
can introduce light polarisation. There is an ongoing effort within the EC to study
the impact of light polarisation in the PSF and the biases it introduces in weak
lensing analysis. Lin et al. [Lin+20] studied the impact of light polarisation on
weak lensing systematics for Nancy Grace Roman Space Telescope (Roman) and
found out that the systematics introduced by light polarisation are comparable
to Roman’s requirements.

Thermal variations: The thermal variations in a telescope introduce mechanical
variations in its structure that affect the performance of the optical system.
The origin of the thermal variations is strong temperature gradients due to the
sun’s illumination. It is sometimes referred to as the telescope’s breathing for
its repetitive pattern due to the orbits. For example, thermal variations can
introduce a small defocusing of the system that will change the PSF morphology.
Nino et al. [Nin+o7] performed a study of the thermal variations in the HST. For
FEuclid, a Structural-Thermal-Optical Performance (STOP) analysis was carried
out to predict the impact of the thermal variations on the optical system. This
effect is naturally more significant in space-based telescopes as the temperature
gradients in space are considerably more prominent than the ones found on the
ground.

2.3.2 Detector-level degradations

These degradations are related to the detectors being used and, therefore, to the
intensity of the PSF. They affect the observed images through the degradation operator
F, from Equation 2.28, and as we will use star images to constrain PSF models, it is
necessary to consider their effects. Some of these degradations are non-convolutional
and will therefore not be well modelled by a convolutional kernel. Nevertheless, we
expect the VIS images’ preprocessing to correct these effects. However, the correction
will not be perfect, and some modelling errors can propagate to the observations.
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Figure 2.3-9 — Surface errors measured for the HST which are in the range of +30nm.

Credit: Figure from Krist et al. [KKHS11].
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Figure 2.3-10 — Example of two different pixellations on the same high-resolution
image representing an Airy PSF. The difference between the two pixellations is an
intra-pixel shift of (Axz, Ay) = (0.35,0.15) between them.
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Undersampling and pizellation: The EM wave that arrives at the detectors is a
continuous function. The discrete pixels in the detectors integrate the functions
and measure the intensity of the wave in their respective area. We name this
process pizellation, although it is also known as sampling. High et al. [Hig+07]
performed an early study on the effects of pixellation in WL and on the choice
of pixel scale for a WL space-based mission. Krist et al. [KHS11, Section 3]
gives some insight on pixellation effects for the HST. There are two aspects of
pixellation that play a crucial role in PSF modelling. First, the sampling is done
with the same grid, but it is important to consider that the continuous function
is not necessarily centred on the grid. This difference means that there can
and will exist intra-pixel shifts between the different pixellations. Figure 2.3-10
shows how two pixel representations of the same light profile change due to
two different pixellations. When optimising a PSF model to reproduce some
observed stars, the centroids of both images must be the same. Suppose the
image centroids are the same, and the underlying model is a good representation
of the observation. In that case, the residual image between the two pixellated
images will be close to zero. If the centroids are not the same, the residual
can be far from zero even though the model is a good representation of the
observation, as illustrated in the residual image in Figure 2.3-10. The second
aspect is related to the Nyquist-Shannon sampling theorem. The theorem states
the required number of samples that we need to use to determine a signal of
a given bandwidth perfectly. In the telescopes we will study, the bandwidth
and number of samples are related to the diameter of the aperture and the
pixel size. Depending on the telescope’s design, the sampling may not verify the
Nyquist-Shannon theorem. If the images are undersampled, meaning that the
theorem is not verified, a super-resolution step is required in the PSF modelling,
which, as we will later see, is the case of Fuclid.

Optical throughput and CCD Quantum Efficiency: The optical throughput of
the system is the combined effect of the different elements composing the optical
system, such as mirrors and optical elements like coatings [Ven+16]. The filter
being used in the telescope forms part of the optical throughput, as it can be
seen in Figure 2.2-8 for the MegaCam set of filters. Figure 2.2-8 also includes
the CCD Quantum Efficiency (QE) which describes the sensibility of the CCD to
detect photos of different wavelengths. Commonly, CCDs do not have a uniform
response to the different wavelengths. Therefore, we need to multiply the CCD
QE with the telescope’s optical throughput to compute the total transmission.
For example, figure 7 from the MegaCam page® gives more detailed information
for the CFHT. Figure 2.3-11 shows the CCD QE for Fuclid’s VIS instrument.

CCD misalignments: Ideally, we expect that all the CCDs in the detector lie in
a single plane that happens to be the focal plane of the optical system. However,
it is not the case in practice, as there might be small misalignments between the
CCDs introducing small defocuses that change from CCD to CCD. See Jee et al.
[JT11, Figure 8] for a study of this effect for the Vera C. Rubin Observatory
(Vera C. Rubin Observatory).

Guiding errors: Even if space telescopes are expected to be very stable when
doing observations thanks to the Attitude and Orbit Control System (AOCS),
there will exist a small residual motion that is called pointing jitter. The effect
on the observation is introducing a small blur that can be modelled by a specific

Shttps://www.cfht.hawaii.edu/Instruments/Imaging /Megacam /specsinformation.html
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convolutional kernel that depends on the pointing time series. Fenech Conti
[Feni7, Section 4.8.3] proposes to model the effect for Euclid with a Gaussian
kernel.

o Charge Transfer Inefficiency: CCD detectors are in charge of converting incoming
photons to electrons and collecting them in a potential well in the pixel during
an exposure. When the exposure finishes, the charge on each pixel is read.
The collected electrons are transferred through a chain of pixels to the edge
of the CCD where they are amplified and then read. High energy radiation
above the Earth’s atmosphere gradually damages CCD detectors. The silicon
damage in the detectors creates traps for the electrons that are delayed during
the reading procedure. This effect is known as CTI and produces trailing of
bright objects and blurring of the image. Given the harsh space environment,
this effect is noticeably important for space telescopes. CT1I effects are expected
to be corrected in the VIS image preprocessing. Rhodes et al. [Rho+10] carried
out a study on the impact of CTI for WL studies. Massey et al. [Mas+09)]
developed a model to correct for CTI for the HST and later improved it in
Massey et al. [Mas+14].

e Brighter-fatter Effect: The assumption that each pixel photon count is inde-
pendent of its neighbours does not hold in practice. There is a photoelectron
redistribution in the pixels as a function of the number of photoelectrons in each
pixel. The BFE is due to the accumulation of charge in the pixels’ potential
wells and the build-up of a transverse electric field. The effect is stronger for
bright sources. Antilogus et al. [Ant+14] studied the effect and observed that the
images from the CCDs do not scale linearly with flux, so bright star sizes appear
larger than fainter stars. Guyonnet et al. [Guy+15] and Coulton et al. [Cou+18]
proposed methods to model and correct this effect. The preprocessing of VIS
images is supposed to correct for the BFE, but there might be some residuals.

o Wavelength Dependent Sub-Pizel response: There exist a charge diffusion between
neighbouring pixels in the CCD. Niemi et al. [Nie415] carried out a study of
this effect for an Fuclid’s VIS CCD and modelled the response of the CCD.
Niemi et al. [Nie+15] proposed to model the effect as a Gaussian convolutional
kernel where the standard deviations of the 2D kernel are wavelength dependent,
o5(A) and o,(A), and where measured with a reference VIS CCD. Krist [Kriog]
studied the charge diffusion in HST and proposed spatially varying blur kernels
to model the effect.

e Noise: There are several sources of noise in the measurements. Thermal noise
[Nyq28] refers to the signal measured in the detector due to the random thermal
motion of electrons which is usually modelled as Gaussian. Readout noise
[BTMoy4] refers to the uncertainty in the photoelectron count due to imperfect
electronics in the CCD. Dark-current shot noise [Baco6)] refers to the random gen-
eration of electrons in the CCD, and even though it is related to the temperature,
it is not Gaussian.

e Tree rings and edge distortions: There exist electric fields in the detector that
are transverse to the surface of the CCD. The origin of these fields includes
doping gradients or physical stresses on the silicon lattice. This electric field
displaces charge, modifying the effective pixel area. Consequently, it changes
the expected astrometric and photometric measurements. This electric field also
generates concentric rings, tree rings, and bright stripes near the boundaries
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Figure 2.3-11 — Fuclid’s requirements on the CCD QE for the VIS instrument from
the Fuclid’s Mission Database (MDB).

of the CCD, edge distortions. Given the close relationship between this effect
and the detector, its importance depends strongly on the instrument being used.
This effect was not noticed in the MegaCam used in CFIS. However, it was a
major concern in the Dark Energy Camera (DECam) used in the DES. Plazas
et al. [PBS14] studied and measured the effect for the DECam. Jarvis et al.
[Jar+20, Figure 9] illustrates the consequence of tree rings in the PSF modelling.

e Other effects: These effects include Colour-dependent Photo Response Non-
Uniformity (PRNU) and Detector Analog-to-Digital non-linearity, which are both
expected to be corrected in the preprocessing of VIS images.

2.3.3 The atmosphere

The atmosphere is central in ground-based telescopes’ PSFs. The way the atmosphere
affects our images will strongly depend on the exposure time used to image an object.
The PSF induced by the atmosphere for a very short exposure will look like a speckle,
while a long exposure will produce a PSF that resembles a 2D Gaussian, or more
precisely, a Moffat profile [Mof69]. As a first approximation for long exposures, we can
consider that the effect of the atmosphere on the PSF is that of a spatially varying
low-pass filter. Therefore, broadening the PSF and limiting the telescope’s resolution.
Astronomers usually use the term seeing to refer to the atmospheric conditions of the
telescope, and it is measured as the FWHM of the PSF. The loss of resolution due
to the atmosphere is one of the main motivations for building space-telescopes like
FEuclid, where the PSF is close to the diffraction limit and very stable.

The atmosphere is a heterogeneous medium whose composition changes with the
three spatial dimensions and with time. The inhomogeneity of the atmosphere affects
the propagation of light waves that arrive at the telescope. Instead of supposing that
the light waves arriving at the telescope are plane waves, as emitted by the far away
source under study, these incoming waves already have some phase lags or leads with
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Figure 2.3-12 — Illustration of six von Karman phase screen layers at different altitudes
simulated for LSST. Credit: Figure from Jee et al. [JT11].

respect to an ideal plane wave. We can say that the atmosphere introduces WFE
in the optical system. These effects can be resumed as an effective phase-shifting
plate, ®og(x,y,t). However, the calculation of this effective plate is cumbersome as
it involves having a model of the atmosphere and integrating the altitude, (z), so
that we have the spatial distribution, (z,y), of the effective WFEs. The model of the
atmosphere is represented by the refractive-index structure constant C2 which gives
the vertical profile of the atmosphere. However, the C2 is difficult to measure, and
even if it is available, it is computationally expensive to exploit.

To simulate the effect of the atmosphere, we can discretise the integral over the
altitude into M phase screens at different altitudes. Each phase screen will have specific
properties and will be characterised by its power spectrum that can be modelled by a
von Karman model of turbulence [Kér3o] that writes

1\ 16
U(v) =0.023 7‘0_5/3 (1/2 + LQ) , (2.32)
0

where v is the two-dimensional frequency, g is the Fried parameter, and L is
the outer scale. Both parameters, g and Lg, are generally expressed in meters. The
Fried parameter relates to the turbulence amplitude, and the outer scale relates to the
correlation length. See Figure 2.3-12 for an example of atmospherical phase screens.
For lengths longer than Lg, the power of the turbulence asymptotically flattens. If we
take the limit of Ly to infinite, we converge to the Kolmogorov model of turbulence
[Kolg1].

Once the phase screens, @,,(z,y), have been simulated following Equation 2.32,
the temporal variation of the screen has to be taken into account. This temporal
variation is usually modelled with the wind’s properties at the phase screen’s reference
altitude. We describe the wind with two components, v, and v,, where we have
assumed that v, = 0. We then obtain the effective phase screen by a weighted average
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Figure 2.3-13 — Example of atmospheric PSFs with different exposure times. The
simulation was done using the atmospherical parameters from Jee et al. [JT11] for an
LSST-like scenario.

of the phase screens at the different altitudes as

M
Cet(2,y,t) = > Cm®Prm(,,1) , (2.33)

m=1

where {c,,} are some weights. The difficulty of modelling the atmosphere is that
the time scales are comparable with the exposure time. Therefore, the PSF we might
estimate for a given time snapshot will change with respect to another PSF at another
snapshot within the same camera exposure. This change means that to model the
PSF physically, we need to integrate the instantaneous PSF over time which writes

totTexp
Iimg(xhyi) = / Iimg(wivyivt) dt ) (234)
t

o

where Iimg (i, vs,t) is the instantaneous image of the object affected by the PSF
H(...;t), to is a random initial time and Teyp, is the exposure time.

Finally, we need to choose the time step size to discretise the integral from
Equation 2.34. Each instantaneous PSF will look like a speckle. Once we add them up
in the integral, the PSF starts becoming rounder and smoother. Figure 2.3-13 shows
examples of atmospheric PSFs using different exposure times that were simulated
using 6 phase screens using the parameters from Jee et al. [JT11] that correspond to a
LSST-like scenario. It is interesting to see how the short-exposure PSF looks like a
speckle, and then the profile becomes more and more smooth as the exposure time
increases. As a reference, the exposure time used for the r-band observations in CFIS
is 200s [col16]. Vries et al. [Vri4-07] studied the change in the ellipticity of the PSF
due to atmospheric turbulence as a function of the exposure time. Vries et al. observed
that the ellipticity of the PSF decreases its amplitude as the exposure time increases.

Another effect that should be taken into account is the atmospheric differential
chromatic refraction. This effect represents the refraction due to the change of medium
from vacuum to the Earth’s atmosphere, which changes as a function of zenith angle
and wavelength. Meyers et al. [MB15] performed a study on the impact of the
atmospheric chromatic effect on weak lensing for surveys like LSST and DES.
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Heymans et al. [Hey-+12a] performed a study on the impact of atmospheric dis-
tortions on weak-lensing measurement with real data from CFHT. Heymans et al.
characterised the ellipticity contribution of the atmosphere to the PSF for different
exposure times. To achieve this, she computed the two-point correlation function of the
residual PSF ellipticity between the observations and a PSF Extractor (PSFEx)-like
PSF model (described in detail in section 2.4). [Sal+o09] studied the image quality
and the observing environment at CFHT. Jee et al. [JT11] carried out a simulation
study to evaluate the impact of atmospheric turbulence on weak-lensing measurement
in LSST. Jee et al. [JT11] used the atmospherical parameters from [Ello2] that were
measured in the LSST site in Cerro Pachoén, Chile.

Another interesting way to simulate the atmosphere and the PSF is to use a
photon Monte Carlo approach, known as photon shooting. This line of work was
carried out in Peterson et al. [Pet-+15; Pet+19; Pet+20] with a simulator available
coined PhoSim® that aims to model LSST. The method consists of sampling photons
from astronomical sources and simulating their interactions with their models of the
atmosphere, the optics and the detectors. Although PhoSim seems to be an interesting
tool for simulations, it is not straightforward how it could be used in a computationally
tractable way to model the PSF from observations.

To conclude, we have seen that it is possible to develop a physical model of the
atmosphere based on the optical understanding we have from section 2.1 and the studies
of atmospheric turbulence of Karman and Kolmogorov. However, this approach has two
inconveniences. First, the approach requires physical measurements of the atmosphere
at the telescope’s site, which is not always available. Second, it is computationally
costly as there is an integration on the altitude, as the atmospherical properties change,
and a temporal integration to reach the exposure time used. An alternative would
be to use complementary observations from a wavefront sensor to better estimate
the effective phase screen, ®.¢. A wavefront sensor provides wavefront information
about the incoming light wave. These sensors are usually used in adaptive-optics
settings in the real-time control loop of the mirror deformations, which aim to provide
a deformation that would counteract the effect of the atmosphere on the incoming
wavefront. However, not all telescopes have a wavefront sensor to be exploited.

In practice, it is required to use long exposure times to obtain deeper observations,
meaning observing fainter objects that are important for weak-lensing studies. This
fact, simplifies the PSF modelling task as the long temporal integration smooths the
PSF profile as well as the PSF spatial variations over the FOV. Therefore, a completely
data-driven approach for modelling the PSF can offer a feasible and effective solution
in this scenario.

2.4 Current PSF models

Let us now discuss some of the most known PSF models. There are two main
approaches, or families of methods, for PSF modelling, parametric and non-parametric,
also known as data-driven, PSF models.

2.4.1 Parametric PSF models

This approach consists of building a physical model of the optical system that aims to
be as close as possible to the actual telescope. Then, a few model parameters are fit
to the star observations. This family of methods is capable of handling the chromatic

Shttps://bitbucket.org/phosim/phosim__release/wiki/Home
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variations of the PSF as well as complex detector effects. These models have only
been developed for space missions. The difficulty of building a physical model for
the atmosphere, already discussed in subsection 2.3.3, makes them unpractical for
ground-based telescopes. We mention two models for two space telescopes, HST and
Euclid respectively.

Tiny-Tim

The parametric model developed for the HST is Tiny-Tim [Krig3; KBgg5; KHS11]. It
has been used to model the PSF of the Advanced Camera for Surveys (ACS) Wide Field
Camera in the HST for the COSMOS. The COSMOS survey is a 2 deg? field was used
to create the only space-based weak-lensing catalogue. The first WL catalogue used the
Tiny-Tim model [Lea+07]. Rhodes et al. [Rho+07] studied the stability of HST’s PSF
noticing a temporal change of focus in the images. Following WL catalogues [Sch-+10)]
used a data-driven PSF model based on Principal Component Analysis (PCA). It
was later shown that a simple data-driven model [HA17] outperformed Tiny-Tim,
exposing limitations of parametric modelling. Some events, such as launch vibrations
and ice contaminations, introduce significant variations into the model. These reasons
prevent a complete ground characterization from being successful.

VIS physical model

This model constitutes one of the current approaches for PSF modelling for Euclid.
Professor Lance Miller at the University of Oxford is currently the leader in the
development of this PSF model. The model has not yet been published, but there are
internal FEuclid technical documents describing the method. This approach builds a
VIS simulator, which includes many physical effects and a module for fitting parameters
from star observations. The PSF model has as input different measurements from the
VIS instrument as well as from Fuclid’s optical system. The optimization of the model is
a degenerate problem. The model is built in the wavefront space with a few parameters
and should be constrained from intensity observations which fall into the phase retrieval
category of inverse problems [She-+15]. There is an ongoing effort to design a campaign
of phase diversity observations that will allow breaking some degeneracies in the fitting
of the model. The current plan is to perform computationally-intensive calibrations,
with phase diversity observations, in some specific stellar calibration fields once per
month. These calibrations are expected to provide better estimates for most of the
model’s parameters. Then, using the available stars, the PSF model will also fit some
parameters on each camera exposure. Fenech Conti [Fen17] provides the only published
description of the VIS physical model, although it is an early stage of the PSF model.
Even though the phase diversity observations are important for the calibration of the
model, they are expensive in terms of observational time, which is a scarce resource
in a space mission. These observations are, to some extent, dangerous in terms of
focusing and defocusing the spacecraft in space.

2.4.2 Non-parametric (or data-driven) PSF models

The non-parametric PSF models, also known as data-driven, only rely on the observed
stars to build the model in pixel space. It is blind to most of the physics of the inverse
problem. The models assume regularity in the spatial variation of the PSF field across
the FOV. These methods usually differ in the way they exploit this regularity. Data-
driven methods can easily adapt to the current state of the optical system. However,
they have difficulties modelling complex PSF shapes occurring in diffraction-limited
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settings. A limitation shared by all the data-driven methods is their sensitivity to
the available number of stars to constrain the model. When the number of stars falls
below some threshold, the model built is usually considered unusable for WL purposes.
This family of methods has been widely used for modelling ground-based telescope
PSFs. Nevertheless, they are not yet capable of successfully modelling the chromatic
variations in addition to the spatial variations and the super-resolution.

We proceed by describing several PSF models in chronological order. The first
methods, described in more detail, were used to process real data from different
surveys, except for Resolved Component Analysis (RCA). The latter methods are
worth mentioning but have not been used to produce a WL catalogue with all the
validation and testing it implies.

Shape interpolation

The first approaches for PSF modelling consisted in estimating some parameters of
the PSF at the positions of interest. It was done for early studies in WL and is closely
related to the widely-employed galaxy shape measurement method KSB [KSBggs].
This precursor method only required the PSF’s ellipticity and size at the positions
of the galaxies. Therefore, a full pixel image of the PSF was unnecessary. Then, the
KSB method can correct the galaxy shape measurement for the effects of the PSF.
The method used to interpolate the shape parameters to other positions is usually a
polynomial interpolation. For example, this was the case for the early WL study of
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) [Fu +08]. Gentile et al.
[GCMz13] reviewed the different interpolation methods and studied their performance
for WL studies. Viola et al. [VMB11] performed a study showcasing different biases
present in the KSB [KSBgg] method that are consequence of problematic assumptions.
Recent WL studies no longer use this approach. The WL studies have evolved to more
sophisticated galaxy shape measurement techniques that require a full pixel image of
the PSF at the position of galaxies.

Principal Component Analysis (PCA)

Principal Component Analysis is a widely-known method for multivariate data analysis
and dimensionality reduction. Let us start with a set of star observations in RP” that
we concatenate in a matrix I = [I1, ..., I,]. We have flattened the 2D images into an
array to simplify expressions. One would like to represent the observations with r
components {X;}7_; in R”2, where r > n, assuming that p? > n. The PCA method
gives r orthonormal components in RP” which define directions in the RP® space where
the variance of the dataset I is maximized.

If n components are used to represent the observations, then the learned components
in the PCA procedure represent a basis of the subspace spanned by the observations,
or the columns of I. The method can be interpreted as a linear transformation to a
new representation with orthogonal components. As it is usual to observe regularity
in the spatial variations of the PSF, most of the dataset variability can be described
with a few components. Then, one can only use the first r principal components and
achieve a dimensionality reduction of the observations. The dimensionality reduction
technique allows to denoise the model as the observational noise is not able to be
represented with r components and only the PSF trends are well described. It is
possible to observe similarities in doing a Singular Value Decomposition (SVD) of the
observations and only to retain the components with the r highest singular values.

The PCA method was used to model the PSF for the SDSS [Lup+o1], although it
was referenced as the Karhunen-Loéve transform. Jarvis et al. [JJo4] then proposed its
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use in a WL context. Jee et al. [Jee+07] used PCA to model the spatial and temporal
variations of the HST PSF. Jee et al. [JT11] also used PCA to model the PSF in LSST
simulation. HST’s COSMOS catalogue [Sch+10] used PCA to model the PSF. The
use of PCA showcased the utility and robustness of data-driven methods and the
importance of using a pixel representation of the PSF.

PSFEx

PSFEx7 [Ber11] has been widely used in astronomy for weak-lensing surveys, for
example DES year 1 [Zun+18], HSC [Man-+17], and the first WL shape catalogue
of CFIS [Gui+22]. It was designed to work together with the Source Extractor
(SExtractor) [BAg6] software which builds catalogues from astronomical images and
measures several properties of the observed stars. PSFEx models the variability of
the PSF in the FOV as a function of these measured properties. It builds independent
models for each CCD in the focal plane and works with polychromatic observations. It
cannot model the chromatic variations of the PSF field. The model is based on a matrix
factorisation scheme, where one matrix represents PSF features and the other matrix
the feature weights. Each observed PSF is represented as a linear combination of PSF
features. The feature weights are defined as a polynomial law of the selected measured
properties. This choice allows having an easy interpolation framework for target
positions. In practice, the properties that are generally used are both components of
the PSF’s FOV position. The PSF features are shared by all the observed PSFs and
are learned in an optimisation problem. The PSF reconstruction at a FOV position
(z4,y;) can be written as

—fi:rFEx(xuyz) = FPSFEx § xf yf Spg + S0 ¢ (2-35)
p,q2>0
p+q<d

HPSFEX($i7yi)
where I5SFEX(2, 4;) € RPXP is the PSFEx reconstruction of the observed star
I(xi,y), Sp.q € RPXP represents the learned PSF features or eigenPSFs, Sy € RP*P
represents a first guess of the PSF, the polynomial law is defined to be of degree d, and
FPSFEX represents the degradations required to match the model with the observations.
The model’s PSF reconstruction is represented by HVSFEX The first guess can be
computed as a function of the median of all the observations. The dimensions p and
P will be the same if no downsampling operation is included in FFSFEx,

The PSF features are learned in an optimisation problem that aims to minimise
the reconstruction error between the PSFEx model and the observations, which reads

2

Tobs || T TPSFEx
Iz v — I .
glin Z (e 1) Asgar Sk + E: HTp,qSP,q‘iﬂ , (2.36)
. 0
Vp,g>0, p+g<d | =1 ¢ F Ifﬂ%od

where 62 represent the estimated per-pixel variances, I represents the noisy obser-
vations, and || - || p the Frobenius norm of a matrix. The second term in Equation 2.36
corresponds to a Tikhonov regularization, where Tj, , represents some regularization
weights to favour smoother PSF models. The PSF recovery at target positions is

7github.com/astromatic/psfex
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straightforward, one just needs to introduce new positions in the Equation 2.35 after
having learned the PSF features S, 4. The recovery at a new FOV position (z;,y;)
simply writes

HYS X (5y) = Y 2Pyl S, + So, (2.37)

p,q20
p+q<d

where HPSFEX is the model’s PSF reconstruction, and Sy and Sp,q were learned
during the training procedure.

lensfit

lensfit [Mil+o7; Kit+08] makes reference to a Bayesian galaxy shape measurement
method for WL surveys. It also includes a data-driven PSF model that will also be
referenced as lensfit and is sparsely described throughout the different publications
involving the shape measurement lensfit [Mil+13; Kui+15; Gib+21]. This method
has been used with real data to produce the WL shape catalogues of the CFHTLenS
[Kui+15] and the KiDS-1000 [Gib+21]. The code is not publicly available.

The PSF model is different from the previous ones. PSFEx and RCA learn some
features or eigenPSF's that are shared by all the PSFs. The lensfit model is fitted
pixel-by-pixel. Each pixel is represented as a polynomial model of degree d of the FOV
positions. The lensfit model can use all the observations in one exposure, meaning
that it uses several CCDs at once. The model uses the low order polynomials, up to
degree n. < d, to be fitted independently for each CCD and the rest of the monomials
are fitted using the observations from all the CCDs. This multi-CCD modelling is a
significant change with respect to previous methods that built independent models for
each CCD. The total number of coefficients per pizel is

Neoet = 5 ((d+1)(d +2) + (Neep — 1)(ne + 1) (ne +2)) (2:38)

(NN

where Ncep is the total number of CCDs in the camera, d represents the degree of
the polynomial varying in the full FOV, and n, the polynomial that is CCD-dependent.
We can write the description of the pixel [I,m] of the PSF model for a FOV position
(xj,y;) in CCD k as follows

H S @ yp)lml = Y ahylal, g pm + D 7Y g im - (2:39)
p,q=0 pHg>nc
PFHq<nc p+q<d

where a’fp O.fm) 18 the coefficient specific of CCD £k, pixel [I,m], and polynomial

(p, q) to be fitted to the observations. The coefficient b
CCDs.

One thing to notice in this approach is that as the modelling of the PSF is done
pixel-by-pixel, then every observation should share the same pixel grid of the PSF.
There is no guarantee that an observation will have its centroid aligned with the chosen
pixel grid. Therefore, the PSF model has to be aligned with the observations. Other
methods, like PSFEx and RCA, interpolate the model to the observation’s centroids.
However, lensfit interpolates all the observations to the model’s pixel grid with a sinc
function interpolation which implies interpolating noisy images. The procedure is
described in Kuijken et al. [Kui+15].

For KiDS-1000 Kuijken et al. [Kui+15], the hyperparameters used by lensfit are
n. =1, d = 3, and Neep = 32 (from CFHT’s OmegaCAM instrument), where the

p.q),[l,m] 18 shared by all the
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images used belong to a 32 x 32 pixel grid. When fitting the model’s parameters, each
star is given a weight that is a function of its SNR with the following empirical formula
5

w; = 215020 (2.40)

where s; is the measured SNR of the star i.

Resolved Component Analysis (RCA)

RCA® [Ngo+16] is a state-of-the-art data-driven method designed for the Fuclid space
mission (Euclid) mission [Sch+20]. The model builds an independent model for each
CCD, and, like PSFEXx, is based on a matrix factorisation scheme. However, there are
two fundamental changes with respect to PSFEx. The first difference is that, in RCA,
the feature weights are defined as a further matrix factorisation. The feature weights
are also learned from the data and are constrained to be part of a dictionary built with
different spatial variations based on the harmonics of a fully connected graph. The
graph is built using the star positions as the nodes and a function of the inverse distance
between the stars to define the edge weights. The second difference corresponds to
the regularisations used in the loss function, and the optimisation algorithms [BTog);
Con13]. RCA uses a positivity constraint, a denoising strategy based on a sparsity
constraint in the starlet [SMF15] domain, which is a wavelet representation basis, and
a constraint to learn the useful spatial variations from the graph-harmonics-based
dictionary. A more detailed description can be found in section 3.3.

PSFs In the Full Field-of-View (PIFF)

PSFs In the Full Field-of-View (PIFF) [Jar+20] is a recently developed PSF model
that was used for the DES year 3 [Gat+21] replacing PSFEx that was used for the
DES year 1 release. The model is led by Dr Mike Jarvis, open source? and still being
developed. It is intended for the LSST survey. Some improvements of PIFF with
respect to PSFEx are the ability to use the full focal plane to build the model, a
modular and user-friendly design that will enable further improvements, and modelling
the PSF in sky coordinates rather than pixel coordinates. This last element was
motivated by the strong tree ring detector effect observed in DES instrument, DECam,
that introduces astrometric distortions that are easier to correct in sky coordinates.
Pixel coordinates refer to the coordinates defined on the pixel grid of the instrument.
Sky coordinates refer to the angles in the celestial sphere, which are known as Right
Ascension (RA) and Declination (DEC). The geometric transformations that allow
going back and forth between the pixel and sky coordinates are known as WCS.
Being a modular PSF model, PIFF allows choosing between different options for
the PSF model and the interpolation method. For example, the model can be an
analytical profile like a Gaussian, a Moffat or a Kolmogorov profile, or a more general
non-parametric profile called PixelGrid. The interpolation method can be a simple
polynomial interpolation, K-nearest neighbours method, a Gaussian process (also
known as Kriging), or a Basis-function polynomial interpolation. Let us clarify the
difference between the first and last mentioned interpolations. The simple polynomial
interpolation first fits the PSF model’s parameters p for each observed star. Then,
it fits the coefficients of a polynomial of the 2D star positions that will later be
used to interpolate. In the Basis-function polynomial interpolation, the interpolation

8github.com/CosmoStat/rca
9github.com/rmjarvis/Piff
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coefficients of the position polynomial are fitted at the same time that the model’s
parameters using all the available stars (from a single CCD or the entire exposure). If
this last option is used with the PixelGrid model, it comes closer to the approaches
of PSFEx and RCA without the specific characteristics of each model. We have only
mentioned position polynomials, but, as in PSFEx, the interpolation polynomial can
be built on any parameter of the PSF, as, for example, a colour parameter.

The PIFF PSF model includes an outlier check after the algorithm has converged.
The outlier check is based on the chi-squared, x2, pixel error of the model and the
observation. The model implements an iterative refining approach which means that
after the model has converged, one (or more) outlier star(s) is(are) removed from the
observations. A new iteration then starts with the model being recomputed. Although
this approach effectively removes outlier stars not representative of the PSF (because
they are binary stars or have some contamination), it can be very computationally
demanding. The computing time is increasing linearly with the number of iterations
used, which might be problematic depending on the total area to analyse or the
available computing resources. We refer the reader to Jarvis et al. [Jar+20] for more
details.

The DES year 3 shape catalogue [Gat+21] used the PIFF model. The model was a
PixelGrid with Basis-function polynomial interpolation using a 3rd order polynomial.
Although PIFF has the potential to build a model across several CCDs chips, in
practice each model was built independently for each CCD.

Other PSF models

o Shapelets: Refregier [Refo3] proposed a framework to analyse images based on a
series of localised basis functions of different shapes named shapelets. Images
can then be decomposed using these basis functions. Refregier et al. [RBo3]
continued the work proposing the shapelet framework to be used for building
shear estimates as well as modelling the PSF. The PSF modelling consists
of decomposing the star images in the shapelet basis and then performing an
interpolation of the coefficients to positions of interest. Essentially, it is an
extension of the approach seen in shape interpolation. Expressing the image
in shapelet coefficients allows denoising the star images and provides an easier
framework for the galaxy-PSF deconvolution. However, capturing all the PSF
structure in a finite expansion over analytical functions is not always possible,
leading to information being lost. Massey et al. [MRo5] extended the framework
from Cartesian to polar shapelets.

o Moffatlets and Gaussianlets: Li et al. [Li+16] proposed two other series of basis
functions to decompose the PSF named Moffatlets and Gaussianlets. Li et al.
compared the PSF reconstruction using the aforementioned basis with a PCA-
based method on LSST images. Using analytical basis functions leads to more
denoised models, as expected. Nie et al. [Nie421] continued the approach and
forced the principal components being learned in the PCA-like algorithm to be
built using the Moffatlets basis. This choice avoids the principal components of
learning noise as the Moffatlets basis avoids it. A comparison with a reference PSF
model like PSFEx to have a reference performance is missing in both analyses.
In addition, the performance comparison is made at the same position as the
observed stars, so the model’s generalisation to other positions, a fundamental
task of the PSF model, is not studied.

o Fourier-based methods: Zhang [Zhao7] proposed a Fourier-based method for
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directly measuring the cosmic shear taking into account the PSE which was
further developed in several publications [Zhai1; ZLF15; Lu+17; Zha+19]. The
method is based on the quadrupole moments of the galaxy images (described
in detail in subsection 2.6.2) but is measured in Fourier space. The handling
of the PSF is also done in Fourier space. Lu et al. [Lu+17] explores different
interpolation approaches for the PSF in the aforementioned Fourier framework.
The 2D power spectrum of the observed PSFs are interpolated to target positions.
The interpolation is done pixel-by-pixel, and the best-performing method is
a well-parametrised polynomial interpolation. An advantage of the Fourier
interpolation is that the 2D power spectrum is automatically centred in Fourier
space, simplifying the handling of images with intra-pixel shifts or, what is the
same, different centroids. Another Fourier-based shear measurement method is
Bayesian Fourier Domain (BFD) [BA14; Ber+16] which is build on the Bayesian
formalism. However, it does not include a specific PSF model.

Optimal Transport (OT)-based methods: There exist two approaches involving
Optimal Transport (OT) [PC19] to tackle the PSF modelling problem. Ngole
et al. [NS17] proposes to use Wasserstein barycenters as a non-linear geometric-
aware interpolation procedure of a low-dimensional embedding representation of
the PSFs. Although elegant, the performance of the approach does not seem
to justify its computational burden. In the comparison method, a Radial Basis
Function (RBF) interpolation of the principal components obtained through
PCA achieves a similar performance. The performance of the PCA method is
better in terms of ellipticity but slightly worse in terms of the pixel error and
PSF FWHM. Schmitz [Sch19] worked on a data-driven PSF model based on RCA
that would be able to model the chromatic variations of the PSF through the
use of Wasserstein barycenters that were previously developed in Schmitz et al.
[Sch-+18]. The OT-based PSF model coined ARCA was compared to RCA. The
comparison showed a lower pixel and size error for ARCA | although the ellipticity
error was similar or better for RCA. This method for capturing the chromatic
dependence of the PSF assumes that the chromatic variation of the PSF is
smooth over all the passband. This assumption can be somehow considered
as if the only chromatic effect of the PSF is due to the diffraction phenomena,
which exhibits a smooth variation with the 1/A dependence in the WFE that
was already presented in Equation 2.26. However, if this is not the case and
another type of non-smooth chromatic variation is present, currently occurring
in Fuclid [Ven+16], there is no straightforward way to adapt the ARCA model
to account for it.

Wavefront approaches: Davis et al. [DRR16] proposed a wavefront-based PSF
model for the DECam instrument. The model is based on Zernike polynomials
[Nol76] that are fitted to out-of-focus images that have considerably more
wavefront information than in-focus stars. Then, for each exposure, a new
fit is done based on the measured quadrupole moments of the in-focus star
images. It is not easy to understand at which point the quadrupole moments
are constraining the proposed PSF model and at which point it is the base
physical wavefront measured from the out-of-focus images that are the only part
driving the performance of the model. However, the model requires out-of-focus
observations that are not always available. Soulez et al. [SCU16] proposed to
model the propagation of light through the mirrors of the optical system. The
PSF modelling problem is recast into a phase retrieval problem. The article is a
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proof-of-concept as there are only qualitative results, and many PSF-modelling
difficulties remain unaddressed.

Deep learning approaches: A model coined PSF-NET was proposed by Jia et al.
[Jia4-20c], and is based on two Convolutional Neural Networks (CNNs) trained
jointly. One network has to transform high-resolution images into low-resolution
images, while the other has to do the opposite. The CNNs are trained in a
supervised way expecting that the first network will learn a PSF manifold.
However, it is not clear how the approach handles the spatial variation of the
PSF, and it has not been tested for a WL purpose. Jia et al. [Jia+20a] proposed
another approach for PSF modelling based on Denoising Auto-Encoders (DAEs),
but the spatial variation of the PSF remains untackled. Another approach is
followed by Herbel et al. [Her+18], where the PSF profile is modelled by a
parametric function consisting of a base profile of two Moffat profiles and several
parametrised distortions to be more expressive. A CNN is trained in a supervised
manner to predict the parameters of the parametric profile from a noisy star
observation. The neural network provides a good estimation of the parameters,
but the spatial variation of the PSF is, again, not addressed. Having a PSF
model that can model the observations is important. However, in PSF modelling
for WL analysis, a crucial part is to capture the spatial variations of the PSF
and that the model outputs the PSF at different positions in the FOV. In WL
studies, the objects of interest are at positions where we do not have observations
of the PSF.

General comments on PSF modelling

2.5.1 Desirable properties of PSF models

In the previous section, we reviewed the most relevant PSF models developed so far
up to our knowledge. After studying many models, we can conclude on desirable
properties they should aim for. The PSF model should:

(a)

Have an accurate modelling of the PSF light profile. The smoothness, or structure,
in the PSF profile is coming because the PSF comes from the F'T of a particular
finite-length aperture that limits the frequency content of the PSF. This frequency
limitation avoids having a Dirac distribution as a PSF, as it would require an
infinite frequency content to build the Dirac. The ideal PSF that would give us
a perfect resolution would be the identity element of the convolution, therefore
the Dirac distribution. In ground-based telescopes, the effect of the atmosphere
can be seen, as we already studied and considering a long exposure time, as a
low-pass filter for the PSF, smoothing the PSF light profile. We can exploit the
smoothness of the PSF profile to build the PSF model.

Not produce noisy estimations of the PSF. The presence of noise in the PSF
estimations is an issue for the purely data-driven models. PSF models based
on fixed basis functions like Shapelets or Moffatlets will always output denoised
PSFs as the noise cannot be represented by their basis functions. However, these
models are not flexible enough to model the complexity of the PSF light profile
from real images and generate a modelling bias. As a consequence, recent WL
surveys, like HSC or DES, are relying on data-driven model like PSFEx or PIFF.

Have a good generalisation power. The PSF model needs to capture most of the
relevant information from the observations, including the spatial variation of the
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PSF field and the PSF light profile. Then, to be able to exploit the information
and predict the PSF at positions where there is no direct information of the
PSF. WL analysis rely on accurate galaxy shape measurements, and in those
positions, there are no observations of the PSF. The WL analysis relies on the
generalisation power of the PSF model.

Be able to exploit the structure of the PSF field variations. This desired property
is related to the previous point (¢). An exciting approach to obtaining a good
generalisation power is to learn the structure of the PSF fields variations. This
structure is a consequence of the physical properties of the telescope’s optical
system. The subsection below provides a physical understanding of the PSF
field structure which imposes a certain smoothness to the variations. The spatial
variations are also structured due to the atmosphere if we study the PSF field
of a ground-based telescope. The existing structure of the PSF field should be
exploited more concisely, which would reduce the high dimensionality of the
PSF modelling problem. A data-driven PSF model should aim to use a low
complexity representation of the PSF field, which would be able to learn its
structure and spatial variations.

Handle the CCD discontinuities of the PSF' field. The CCDs misalignments
are the source of the discontinuities in the spatial variations of the PSF. Never-
theless, the PSF field is piece-wise continuous, and the borders delimiting the
discontinuity are well known as the geometry of the focal plane is known with
precision. A straightforward way to handle the discontinuities is to independently
model the PSF for each CCD. Although this is simple to implement, it limits the
number of stars available to constrain the PSF model. Another more difficult but
potentially more powerful approach is to build a PSF model for the entire focal
plane, taking into account the focal plane discontinuities. The last approach
has only been successfully implemented in lensfit with a simple pixel-by-pixel
modelling approach.

Be unbiased. We want that the residuals between the PSF model estimations
and the PSF field to be uncorrelated. Avoid biases propagating from the PSF
model into the shape measurement. The WL analysis relies on the study of
the correlation between the galaxy shapes. Suppose a PSF modelling error
introduces a systematic error, or bias, into the shape measurement. In that case,
the shear estimation will be biased and propagate into the cosmological analysis.

Be robust to variations and contaminations of the star sample. Contamination
can come from the star purity, the fact that the objects classified as stars are
good representations of the PSF and are not small galaxies or binary stars
[KC17]. Contamination can also come from an imperfect image preprocessing
where detector effects residuals, like CTI, have remained. The model should be
robust to the different spatial distributions of the observed stars, to different
SNRs, and the different number of observed stars.

Work smoothly with the shape measurement algorithm. The PSF model is tightly
related to the galaxy shape measurement algorithm used and should be developed
with that in mind. At first, the algorithms relied on some summary statistic of
the PSF, like the image moments that we will define in section 2.6, to correct
the galaxy images for the effects of the PSF. However, the way the PSF affects
the images is not straightforward in general. The summary statistics analysis of
the PSF and its effects are precise for specific cases, for example, if the PSF and
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Figure 2.5-14 — Illustration of Fuclid’s optical system. Credit: Image from Racca et al.
[Rac+16].

the galaxy have Gaussian profiles. Shape measurement algorithms that require
a full pixel description of the PSF are now dominating WL analyses, and it will
continue to be the case for the Fuclid mission and LSST.

We continue by giving insights on the nature of the PSF field spatial variations
from an optical perspective.

2.5.2 On the structure of the PSF field spatial variations

To have a better understanding of the spatial variations of the PSF, we have to pay
more attention to the telescope’s optical system. We will take as example the Fuclid’s
optical system, which is presented in Figure 2.5-14. In this case, we only consider the
variations due to the telescope’s optics, which is the predominant source of spatial
variation in a space mission. The optical system is composed of big mirrors like M1,
which have sizes closer to the aperture of the entrance pupil, and smaller mirrors like
FOMz2. The input wavefront acquires WFEs as it propagates through the different
mirrors of the optical system. In other words, each mirror introduces specific Optical
Path Differences, or WFESs, to the incoming wavefront.

Let us define a mirror’s footprint as the projection of an incoming wavefront from a
specific point in the FOV into the optical surface. The footprint of the different mirrors
changes as the position in the FOV changes. Figure 2.5-15 shows the variations of the
different Fuclid’s optical elements’ footprints. The footprints of mirrors located close to
the entrance or exit pupil, like M1, do not change much from the positions in the FOV.
Thus, the WFEs acquired from these mirrors have a high spatial correlation (with
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respect to variations in the FOV position), or, in other words, the spatial variation
of the PSF field due to these fields is low. The projection of the wavefront footprint
in the smaller mirrors like FOM2 spans a region that represents a small fraction of
the total FOM2 mirror surface. As a consequence, the projections of distant FOV
positions in the FOM2 mirror are not correlated, meaning that the WFEs introduced
by this mirror strongly depends on the FOV position. Therefore, the PSF field spatial
(with the FOV) variations are high.

It is also important to consider the frequency composition of the WFE introduced
by the mirrors. The size of the mirror relative to the exit pupil impacts the Zernike
composition of the WFE added by that mirror to the total WFE introduced by the
system. A mirror with a large relative size will have a WFE with a higher frequency
component, which also means that we would require a higher number of Zernike orders
to describe the WFE contribution appropriately. This higher frequency component is
due to the input rays’ compression from a large surface into the exit pupil, a smaller
surface. On the contrary, if the mirror has a small relative size, the rays reflected
on it will finally expand to cover the entire exit pupil. As a consequence, the WFE
contribution from the mirror will have a lower frequency component as the high
frequencies are expanded into lower frequencies.

To summarize, we have distinguished two properties of the mirrors that affect the
total WFE. The first is the frequency component of the WFE. The second is the
spatial variation of the WFE introduced with respect to the FOV positions. While
bigger mirrors introduce a WFE with a higher frequency component, they are usually
placed close to the entrance or exit pupil and have a lower spatial variation. The
opposite is true for smaller mirrors, where the WFE they introduce has a lower
frequency component. However, as the smaller mirrors are usually located away from
the aforementioned pupils, they have a higher spatial variation.

The dichroic deserves special attention as the EC has discovered it adds spurious
spectral dependencies to the wavefront. Figure 2.5-16 shows the beam’s angle of
incidence with respect to each optical element’s normal. We can observe that the
angle of incidence in the dichroic changes as a function of the FOV position. The
spectral contribution of the dichroic depends on the incoming rays’ angle of incidence.
Consequently, we have a complex spectral contribution of the dichroic that also changes
with respect to the FOV position and the wavelength. The nature of the dichroic
and the change of angle of incidence makes the spectral contribution a non-separable
function of position and wavelength. At the time of writing, modelling the dichroic is
the subject of study within the EC.

Once the PSF model has been developed with all the aforementioned properties in
mind, it is essential to validate the model’s performance. The validation should help
to ensure that the expected performance of the model is achieved or identify sources of
problems and drive directions for the improvement of the model. In the next section,
we give an overview of PSF model validations.

2.6 Validation of PSF models

The validation of PSF models is not trivial. In order to derive a validation method,
it would be necessary to quantify the impact of PSF modelling errors on the final
objective of our analysis. Strictly speaking, for our WIl.-based cosmological analysis,
the objective would be to derive constraints on the parameter of the cosmological
model under analysis. This exercise is hard given the analysis’s complexity and the
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data volume. Nevertheless, and using some assumptions, it was done to set the PSF
modelling requirements for the Euclid mission as will be shown in subsection 2.6.3.
However, some assumptions used do not always hold for the high complexity of the
PSF in a space-based mission like Fuclid. Even though it is important to derive
requirements for the PSF model, these do not give much information on the nature
of the errors and possible problems the PSF model has. Therefore, it is necessary to
derive different diagnosis or null tests. Jarvis et al. [Jar+16] proposes a set of null
tests for the science verification of the DES WL shear catalogues that includes the
validation of the PSF model. Next, we will describe the most used PSF diagnosis that
will help us to validate the performance of the PSF models.

2.6.1 Pixel-based metrics

The most straightforward diagnosis we can think of is to compute the pixel residual
of our PSF model. We would separate the observed stars into two distinct sets, the
first one will be used to constrain or train the PSF model, and the second one to
validate the model. Once the PSF model has been trained, we use it to predict the
PSF in the positions of the stars in the testing set. We can then compute the Root
Mean Squared Error (RMSE) of the pixel reconstruction residuals. Ideally, the PSF
model should be able to predict the observed star perfectly, and the reconstruction
residual would only contain the observational noise. If we work with simulations, we
can produce noiseless stars for our testing set, and the RMSE will directly indicate
the pixel reconstruction error. When working with real data, we need to consider the
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different noise levels in the data. We propose pixel-based reconstruction metrics for
real data in subsection 3.6.3.

2.6.2 Moment-based metrics

WL analysis are interested in measuring the shape of galaxies as the measured ellipticity
is an estimator of the shear. Cosmologists have developed formulations to relate the
PSF errors, expressed in terms of shape and size metrics [Mas+12], to the errors of
the cosmological parameters of interest [Cro+13]. Therefore, it seems natural to have
diagnosis metrics based on the ellipticity and size of the PSF. Both of these metrics
are determined using the moments of the polychromatic observation I [u, v]. Following
Hirata et al. [HS03], we redefine the image moments that we will use in practice,
including a weight function as follows

f,uif[u, v] wlu, v] dudv

fﬁI[u,v] wlu,v] dudv ’

M, = J I[u,v] (/{_ i) (v —v) wlu,v] dudv
J Iu, v]wlu, v] dudv

f= (2.41)

) (2'42)

where p, v € {u,v} and wlu, v] is a weight window that is used to avoid the divergence
of the integrals due to noise. The weight function is also useful to compute the
moments from PSFs that are diffraction-limited (i.g. an Airy profile), as they prevent
the integral from diverging due to the wings of the PSF. Equation 2.41 defines the
first-order moments, while Equation 2.42 defines the second-order moments. The
ellipticities, or shape metrics, are defined as

(Muu - Mvv) + 12Muv
Muu + Mvv ’

e=e; +iey = (2.43)

and the size metric is defined as
R?> =T = My, + M,, . (2.44)

The method used to estimate these metrics is the widely-used adaptive moment al-
gorithm from Galsim’s Hirata-Seljak-Mandelbaum (HSM) module'® [HSo3; Man+o05].
The adaptive moment algorithm measurement provides ¢ as size which relates to
the above-defined size metric as R?> = 202. The measurements are carried out on
well-resolved polychromatic images. If the observations are undersampled, as is the
case for Fuclid, a super-resolution step is required for the model.

The measurements of the shape parameters based on the image moments are very
sensitive to the image noise. If we are working with real data, we do not have access to
the ground truth images and are obliged to work with noisy observations. Therefore,
we need to average over many objects in order to be able to conclude from the different
diagnostics. We continue by presenting different moment-based metrics.

Shape RMSE

We start with a set of test stars and their corresponding PSF estimations. Then, the
most direct moment-based metric is to compute the RMSE of the ellipticities and size
residuals between the observations and the model prediction.

10github.com/GalSim-developers/GalSim
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Meanshapes

A good diagnostic is to compute the spatial distribution of the ellipticities and size
residuals, which we call meanshapes. This diagnostic allows us to inspect if there are
spatial correlations in the shape and size residuals, which would indicate that the
PSF model is not capturing certain spatial variations from the PSF field. In order to
have a finely sampled distribution, we need to average over many exposures, as the
available stars from a single exposure are not enough to observe patterns. The shape
measurements are also noisy, and therefore averaging over many exposures allows
to smooth out the residuals to observe systematic errors. In practice, we divide the
focal plane into several spatial bins, consider several exposures, and then the value
of each bin is built by averaging the residuals of all the stars that are located within
that bin. A ground-based survey allows us to average the ellipticity contribution of
the atmosphere [Hey-+12al, as it can be considered a random field with zero mean.
Then, the observed ellipticity distribution over the focal plane is due to the telescope’s
optical system that is consistent in every exposure. It is also possible to plot the same
spatial distribution but observe the positions of the stars. Such a plot will help to
observe if there are regions of stellar under density that could eventually affect the
PSF model.

p-statistics

Rowe [Row10] proposed to compute the auto- and cross-correlations of the ellipticities
and their residuals as a diagnostic. The diagnostic was then expanded by Jarvis et al.
[Jar+16] to a combination of ellipticities, sizes, and residuals. Following Jarvis et al.
[Jar+16], we define the p-statistics as follows

( ) <5€psp(9') depsr (0’ +0)) (2.45)
<€ ) 561351:(9 + 0)> s (2.46)
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where * denotes complex conjugation, 6 and 8’ denote sky positions, and 6 denotes
the scalar distance of 8. If we assume that the ellipticities are random fields that
are isotropic and statistically homogenous, we can compute the correlation p(8,6")
as p(|0 — 0']) = p(#), using a the scalar distance . This choice means we are
assuming translational and rotational symmetry, which is what the Cosmological
Principle states. We will define several € bins in a logarithmic scale, corresponding to
Inf —Aln6/2 < 6;; <Inb+ Alnb/2, where 6;; = |0; — 0;] is the distance between
two objects at 8; and ;. Then, the correlation function at 6 can be computed using
the following unbiased estimator of p that is

R > wiwje; el
po) = #7 (2.50)
1,7 J

where we are computing, as an example, the correlation of two ellipticities e® and
eB, and the weights depend on the SNR. of the ellipticity measurements. We carry out
the weighted sum over the pairs of objects within each bin.
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The former statistics are interesting as they can be propagated to the shear 2PCF
from Equation 1.38. Following Jarvis et al. [Jar+20], we include the PSF errors into
the shear 2PCF and make appear the p-statistics. We can then express the systematic
error in the shear 2PCF as

2 2 2 2 2
5. (6) =2 <}f§3F fgf > £.(0)+ <1}2’5F > p1(6) - a <If§2“ > pal0)
F

gal gal gal

2 2
Risp Rpsp Rpsp
+ ps(0) + pa(f) — ps5(0) ,
< Réal Réal Rgal

where « is the PSF leakeage from Equation 1.49. Equation 2.51 provides a way to
propagate requirements from the shear 2PCF to the PSF by means of the p-statistics.

(2.51)

Scale-dependent PSF leakage

The PSF leakage allows us to quantify how the PSF is affecting the shear estimation
through the shape measurement. This diagnostic depends on the shape measurement
method used and how this method handles the PSF. The leakage appears in our linear
modelling of the shear bias from Equation 1.49, where we have decomposed the total
additive bias into PSF-dependent (leakage) and PSF-independent terms. Following
Jarvis et al. [Jar+16], we can define the scale-dependent PSF leakage estimation as

&(0) — (egal)” (epsr)
alf) = + g
) PP (0) — |(epsp)

where ega1 and epgr are the measured galaxy and PSE ellipticity, fip is the cross-
correlation between the galaxy ellipticity and the PSF ellipticity, and §EP is the
autocorrelation of the PSF ellipticity. Even if the result is scale-dependent due to
the correlation functions, in Equation 1.49, we can see that the PSF leakage is not a
scale-dependent quantity. Therefore, the leakage is expected to be consistent at all
scales.

: (2:52)

2.6.3 PSF error propagation and PSF requirements

The pioneer in the PSF error propagation was Paulin-Henriksson et al. [Pau+08]
which was then extended by Massey et al. [Mas+12]. The proposed framework is
based on the second-order moments of the images, i.e. complex ellipticity e and size
R2. Tt expresses how the PSF, or some other effect, affects the observed ellipticity
and size. For example, only considering the effect of PSF on the unweighted moments
from subsection 1.2.3, we obtain

2
RPSF

Rigp + B2,

€obs = €gal t (epsF — €ga1) and R = Réal + Risr » (2.53)

where the subscript ops refers to the quantity measured to the observed galaxy, the
subscript a1 refers to the intrinsic quantity of the galaxy, and pgp refers to the quantity
measured to the PSF. There is an intrinsic assumption in the previous equation that is
the observational model, Iobs = Iga1 * Hpsr, and that all the moments are well defined.
Then, Equation 2.53 can be rewritten to express the quantity of interest, the intrinsic
galaxy ellipticity, as follows

2 2
€obs Robs — EPSF RPSF

€oal =
ga 2 2
Robs - RPSF

(2.54)
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The error propagation consists of expanding the previous equation in a first-order
Taylor series with respect to the quantities that we are interested in propagating. In
this case, it will be the shape and size of the PSF, and the propagation writes

O€ga
7o 0 (RI%SF) + %&WSF , (2.55)

€gal X €gal +

where § refers to errors in the model with respect to the ground truth. It is

straightforward to compute the partial derivatives in Equation 2.55 from the expression
in Equation 2.54. We then obtain the following expression

_ § (R3gp) Ry § (R3sp)
€oal ~ €oal | 1+ — depsF + ——=5——¢€psF | , (2.56)
ga ga. ( Réal Rgal Rgal

The previous ellipticity estimator expression can be used in the assumption of
Equation 1.32 to obtain a shear estimator. The obtained estimator can then be used in
the shear bias parametrization from Equation 1.49. At this point, we can express the
additive and multiplicative biases as a function of the elements from Equation 2.56.
This analysis shows us that the multiplicative bias is related to the size of the PSF
with its estimation error and the size of the galaxy. The result was expected if we
paid attention to the first term of Equation 2.56.

This framework allows us to consider different types of errors. Massey et al.
[Mas+12] uses it to include errors due to non-convolutional detector effects, due to
imperfect shape measurement, and the fact that the shape measurement method
used weighted moments, i.e. Equation 2.42, instead of the unweighted counterpart
considered in the analysis. The procedure consists in adding the desired effect to the
galaxy ellipticity expression, e.g. Equation 2.54, and then adding their corresponding
partial derivatives to the Taylor expansion seen in Equation 2.55. Cropper et al.
[Cro+13] uses this formalism to derive requirements for a WL mission in space.

The aforementioned framework was used to derive the current PSF model require-
ments for Fuclid, which are:

o the requirement on the ellipticity error of the PSF model™ is o (eres) < 2 x 1074,

o the requirement on the size error for the PSF model** is o(R2,)/(R?) < 1073,

2

res

where o(-) is the root means square value, and, e,0s and RZ, refer to the residual

ellipticity and size of the PSF model, respectively.

The previous framework has a fundamental limitation, noted by Schmitz et al.
[Sch+20], which is that the propagation is based on second-order moments of the
images. A perfect second-order moment estimation of the PSF would have a zero shear
bias contribution in the formalism described. However, the PSF’s Higher Moments
Errors (HME) of the PSF will impact the shear biases and are not considered in the
framework proposed by Paulin-Henriksson et al. [Pau+08]. The higher the contribution
of higher moments on the PSF the more significant the deviations will be. A space
mission like Fuclid will have a PSF close to the diffraction limit, meaning that its shape
will be complex and not well described by a Gaussian (or by its second-order moments).
The important higher moment contributions are why the previous requirements, based
on the second order moments, should be used with caution. The LSST collaboration,

1 Buclid requirement ID: R-WL.2.1-8.
12 Fuclid requirement ID: R-WL.2.1-g.
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concerned with the previous issue, studied the contribution to systematic biases of
the HME of the PSF model on the shear measurement [ZMC21; Zha+22]. Zhang
et al. [ZMC21] showed that the HME of the PSF model may be a significant source
systematics in upcoming WL analyses. Zhang et al. [Zha+22] studied the impact of
moments from the 3™ to 6'" order to the cosmological parameter inference concluding
that the HME of PSF models like PSFEx and PIFF should be reduced for the future
surveys like LSST if the WL analysis is to remain unchanged.
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M., Gwyn, S. D. J., ‘Multi-CCD modelling of the point spread function’. In: A&A
646 (2021), A27

HIS chapter presents a new PSF model for ground-based telescopes coined Multi-

CCD (MCCD), that was previously published in Liaudat et al. [Lia+21a]. This
new PSF model allows building a single model for the entire focal plane that spans
several CCDs in a particular geometry. The model is first described and then tested
with simulated data. We end the chapter by showing that the proposed model is robust
enough to handle real data from the CFIS survey and has better performance than
a state-of-the-art PSF model. The proposed Multi-CCD (MCCD) model is publicly
available on GitHub' with its documentation page.

3.1 Introduction

The good quality of the incoming observations of CFIS allow us to carry out a WL
analysis and provide a unique opportunity to develop and test new PSF models. We
provide more information about the CFIS survey in section 4.1. In the previous
chapter, we have seen the difficulty of building a physically motivated PSF model
for a ground-based survey. The temporal integration seen in subsection 2.3.3 due
to a fast-changing atmosphere and a long exposure time, makes it computationally
intractable for the moment. Consequently, a pure-data driven approach seems the
most appropriate for a ground-based survey. The narrow r-band filter used in CFIS
that can be seen in Figure 2.2-8, allow us to neglect chromatic variations of the PSF
without making much error.

We have seen in the previous chapter that most of the data-driven PSF models
are build independently in a single CCD chip. This choice, simplifies the building of
the PSF model but greatly limits the amount of stars that can be used to constrain
the model. The first WL analysis of the CFIS data in Guinot et al. [Gui+22] used
the PSFEx model. With more data being observed, a natural improvement to the
upcoming version of the catalogue would be to use a better PSF model. This motivated
us to tackle one of the principal limitations of the current ground-based PSF models,
the number of stars. We propose to increase the number of stars to have more
constraining power, which will allow us to use more complex PSF models and thus
capture more complex PSFs shapes and PSF spatial variations. A straightforward way
to accomplish this goal is to drop the independent modelling of each CCD chip and
develop a single model for the entire focal plane. As the MegaCam instrument used in
CFIS has 40 CCDs, this new choice will increase by a factor of ~ 40 the number of
available stars in average.

The lensfit model [Mil+13] is currently working in a multi-CCD approach, but the
model is built in a pixel-by-pixel basis, neglecting the correlations between pixels in
the same image. The recently proposed PIFF model [Jar+20] intends to build a PSF
model for the entire focal plane. However, it is not mature to work with real data,
and the recent DES WL shape catalogue [Gat+21] used the CCD-independent mode
for the PIFF model.

In this chapter, we present a new PSF model built on the entire focal plane coined
MCCD. The new method is based on RCA and can capture large patterns spreading
across several or all CCDs. We compare the results with both RCA and PSFEx based

*github.com/CosmoStat/mccd
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Variable Description
Observational model
H PSF field
F degradation operator
uk 2D position of star ¢ in CCD &
nk.. number of observed stars in CCD k
N number of observed stars in all the CCDs
Nk i noise realisation of star ¢ in CCD k
Yk,i square star observation stamp ¢ on CCD k
Ny number of pixels on one dimension of yy ;
D downsampling factor
Vk.i 1-dimensional (1D) column representation of yy ;
Y. matrix stacking all the star observations yy ;
PSF model
H; PSF model estimation of the observed stars Y}
Ty TE local and global number of eigenPSFs
Sk, S local and global eigenPSF matrices
A, Ay local and global weight matrices
ag, & local and global spatial constraint weights
VkT, 11, local and global spatial constraint dictionaries
KLee KGlob  Jocal and global denoising parameters
(ek.iy ki) RCA graph constraint parameters
Wiy Wi local and global weight vectors for
the sparsity inducing term
P sparsity inducing transform
PSF recovery
) Radial Basis Function (RBF) kernel
Ngrpr number of elements used to estimate the

RBF interpolant
(Ai)Nrpr RBF interpolation weights
Ap(Nrpr)  weight matrix composed by the Nrpp closest
stars of a given target position
Ag i, flk,u local and global interpolated weight columns
for a target position u
H(u) recovered PSE at position u

Table 31 — Summary of important variables used in this chapter.

on simulations and real data from CFIS. section 3.3 reviews the RCA method, while
the proposed MCCD methods are described in section 3.4. Experiments on simulated
images are shown in section 3.5 and tests on real data are presented in section 3.6.
We give our conclusions in section 3.7. In addition, Table 31 provides a glossary of
variables used throughout this chapter.

3.2 The observation model

Let us define H(u) as the PSF field involved in our problem. It is a continuous
function of a two-dimensional position, u = (x,y), which, in principle, could be image
coordinates based on the camera’s CCD pixels or could also be celestial coordinates
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such as right ascension and declination. Throughout this chapter, we assume that
the PSF field accounts for the contribution of all effects from optical aberrations,
diffraction, and atmospheric distortions.

Our observation model is a simplified version of the general observational model
presented in section 2.2.The current model consists of images, I, the pixels in one
CCD chip, k, which contains n% noisy stars at positions, u¥. We define a ‘stamp’ as
a square small image cutout centred on a single star. Each star observation stamp, 1,

on the CCD’s k can be written as:
ki = F (H(w))) + n.i, (31)

where n; ;, accounts for a noise image that we will consider to be white and Gaussian,
and F is the degradation operator. Three main effects are taken into account in this
operator: i) the discrete sampling into a finite number of pixels, namely an image
stamp of n, x n, pixels; i) a sub-pixel shift that depends on where the centroid of the
image is placed with respect to the pixel grid; and i) a downsampling that affects
the pixels in the stamp by a factor of D leaving a Dn, x D n, stamp. For example,
to handle the Fuclid mission sampling rate [Cro+13], a factor D = 1/3 is required to
achieve a Nyquist sampling rate on all of Fuclid’s VIS passband. In this chapter we
will focus on the CFIS survey that is Nyquist sampled, so we will use a unitary value
for D.

We write each of these stamps into a one-dimensional column vector and, therefore,
Yi = [yr1-- 'yk’ni‘;ar] is the matrix containing all the observed stamps in CCD’s k.

It contains nk,,. columns and Dn, x Dn, rows. Finally, we concatenate all CCD

matrices and obtain Y = ( Y. -+ Yg )

3.3 Resolved component analysis (RCA)

The RCA method is based on a matrix factorisation scheme. It was first presented
in Ngole et al. [Ngo+16] and later evaluated on Euclid image simulations in Schmitz
et al. [Sch+20]. As with PSFEx, described in detail in section 2.4, this method also
builds independent models for each CCD within an exposure and is able to handle
under-sampled images. Any observed star ¢ from CCD k is modelled as a linear
combination of PSF features, called eigenPSFs in the following, as

flkR,?A = Skak,i, (32)
where S}, is the matrix composed of the eigenPSFs, aj, ; a vector containing the set of
linear weights, and ﬁ,ﬁ?A is the reconstructed PSF.

The modelling is recast into an optimisation problem where the S and Ay matrices
are estimated simultaneously. The problem is ill-posed due to the undersampling and
the noise, meaning that many PSF fields can reproduce the observed stars. In order
to break this degeneracy, the RCA uses a series of regularisers during the optimisation
procedure to enforce certain mild assumptions on the PSF field: (7) the low-rankness of
the solution, enforced by setting the number of eigenPSFs learned, N, to be small; (i)
the positivity of the reconstructed PSFs; (i) the sparsity of the PSF representation
on an appropriate basis; and (%) the spatial constraints that account for imposing a
certain structure within the Ay matrix. This last constraint is imposed by a further
factorisation of A into akaT. The computation of the VkT matrix is addressed in
subsection 3.4.4. Finally, the PSF model reads:

HEY = Span V! (3-3)
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and the optimisation problem that the RCA method solves is:

N
1
min {2 HYk - F (SkakaT)Hj,-i-Z ||’lUk:,i®<I)Sk,i1+L+(Sk0¢ka—r)+LQ(ak)}u (3-4)

Sk,ak pa

where wy, ; are weights, ® represents a transformation allowing the eigenPSFs to have
a sparse representation, ® denotes the Hadamard product, ¢4 is the indicator function
of the positive orthant, and vq; is the indicator function over a set €. This last set is
defined as a set of sparse vectors and is used to enforce the spatial constraints.

The PSF recovery at a position u; is carried out by a Radial Basis Function (RBF)
interpolation of the learned columns of the Ay matrix, issuing a vector, 4, ;. In this
way, the spatial constraints encoded in the A matrix are preserved when estimating
the PSF at galaxy positions. Finally, the reconstructed PSF is:

hf94 = Spay,;. (3-5)

3.4 A new family of MCCD methods

The MCCD methods we propose in this study are aimed at exploiting all the information
available in a single exposure, which requires the handling of all CCDs simultaneously.
The main advantage of this approach is that we can build a more complex model
since the number of stars available for training is considerably larger than the ones
available in a model based on individual CCDs. We aim to construct a model that is
capable of capturing PSF features following a global behaviour, in spite of the fact
that the PSF field is discontinuous at CCD boundaries. The main reason behind
this discontinuity effect is in the misalignment between various CCDs. Methods such
as PSFEx or RCA, which process each CCD independently, avoid the discontinuity
problem through construction, but have difficulties capturing global patterns of PSF
variability that occur on scales larger than a single CCD. The main idea behind our
MCCD approach is to include both a global model that provides a baseline estimation
of the PSF and a local model that provides CCD-specific corrections.

3.4.1 The MCCD data model

In a typical wide-field setting, the PSF field, H, exhibits a certain regularity that
we translate into spatial correlations of the PSFs. The model we build for a specific
CCD k is the matrix Hy, € anxnfwr, which is composed by the concatenation of
the estimations of the different stars encountered in that CCD. Each postage stamp
column of length, ni, corresponds to the model for a specific flattened star from the
k. stars present in CCD k.

The PSF field at star positions is reconstructed as a linear combination of PSF
features, called eigenPSFs, which are learned from the observations. As previously
stated, we want to have both a global and a local component for the model, so we
need different eigenPSFs for each component. Hence, the model is based on a matrix
factorisation scheme as follows

n

Hy= Sy Ay +  SA4, (3.6)
—— N——
Local: HE°¢  Global: HEloP

where Sy, € R™ X" contains i local eigenPSFs and S e R™ %" contains 7 global
eigenPSFs. The matrices, Ay € R7*X"ar and Ay e R”"ftw, correspond to the local
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and global weights of the linear combinations, respectively. We can see that for a
given CCD k, the final model, Hy, is made up of the sum of the contributions of the
local, ﬁ{;oc, and global, H'El"b7 models.

Now, let us build a single model for all the K CCDs in the focal plane. We start
by building a single matrix containing all the PSF models by concatenating the model
Hj, for each CCD as follows

A

H:(Eﬁ FIK), (3.7)
where H € R">*N and N = ZkK:O nk,,, is the total number of stars in one camera
exposure. Then we can concatenate the different eigenPSF matrices, k, into a single
matrix

S=(S - Sk S), (3-8)

where S € R™*" and we concatenated the global eigenPSF matrix, S, at the end.
This leaves a total of r = Z]kvzl Ty + 7 columns for the S matrix. We can follow a
similar procedure to define A as a block matrix

A0 - 0
0 Ay -~ 0
A= : e ; (3-9)
0 0 o Ay
A Ay oo Ag

where A € R™*Y and 0 is used for matrices made up of zeros. The last row of the
A block matrix is composed by the global model weights Aj. Having already defined
the Multi-CCD matrices, H, S and A, we can write the final model as

H = SA, (3.10)

where we include all the CCDs . Expanding it leads to a formula, as shown in
Equation 3.6, for each CCD.

3.4.2 Inverse problem and regularisation

The estimation of our model, summarised in the matrices S and A of Equation 3.10,
is posed as an inverse problem. Given the observation and MCCD data models
presented above, this problem amounts to the minimisation of ||Y — F(SA)||5, where
|-l denotes the Frobenius matrix norm. This problem is ill-posed due to the noise in
the observations and to the degradation operator, F, meaning that there are many
PSF models that would match the star observations. In order to break this degeneracy,
we enforce several constraints, based on basic knowledge of the PSF field, which we
use to regularise our inverse problem. Similarly to the ones exploited in the RCA
method [Sch+20], we use the following constraints:

1. Low rank: PSF variations can be explained by a small number of eigenPSFs.
This constraint can be enforced by the proper choice of two parameters, the
number of local, r;, and global, 7, eigenPSFs. These parameters are directly
linked with the complexity of the model we are addressing for each given case and
its selection naturally depends on the PSF field we will be facing. It is important
to allow the model a certain complexity so that it can correctly capture the PSF
field’s variations, but it should not be much more complex as the model will
tend to overfit the noisy observations and, therefore, lose its generalising power
for estimating the PSF in galaxy positions.
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2. Positivity: the reconstructed PSFs H should only contain non-negative pixel
values.

3. Sparsity: the observed PSFs are structured images; a way to promote our model
to follow this structured behaviour is to enforce the sparsity of the eigenPSFs in
an appropriate basis.

4. Spatial constraints: the regularity of the PSF field H means that the smaller the
distance between two PSFs positions u;, u; the smaller the difference between
their representations should be H(u;), H(u;). This regularity can be achieved
by enforcing constraint in the coefficient matrices Ay, Ay; for example, the line [
of Ay, corresponds to the contribution of eigenPSF [ to the nk,, . stars in CCD k

star

k
located in positions (ui)?:l‘”. The closer the positions, the closer the coefficient
values should be.

These constraints are used by both parts of our model, namely, the global and the
local components. As mentioned above, the spatial constraint is enforced by further
factorisation of the coefficient matrices, A. However, since we want to enforce different
properties for the global and the local contributions, the factorisation used differs for
each case.

3.4.3 Global model

We want the global component to provide a baseline estimation of the PSF and for
that we propose that the coefficients follow a polynomial variation of the position.
The global coefficient matrix, Ay, is factorised into Ay = allj, where & € R™*7 is
a weight matrix and Il € R7™*"iar contains each considered monomials evaluated
at global star positions. The dimension, 7, is determined by the maximum allowed
degree in the polynomials: for all monomials of degree less than a given d, we have

7= (df) = w. For example, for d = 2 (i.e. ¥ =6), we have

1 . 1
x DEEEY x
k,1 k’n;‘,ar
Yk,1 T Yk,nk
I, = 5 5 tstar 11
22, 2 : (3.11)
Tk1Yk1 o xk,nftm,yk,nftm,
2
Y1 T Y mk

star

where (xk,i»yk,i)lgign’?t are the global pixel coordinates of the observed stars

distributed in the k*" CCD. The global component of the model for a specific CCD k
are as follows

AP = S a1l . (3.12)

It is important to mention that despite our choice, throughout this chapter, of
using position polynomials for building the global space constraint, the model is not
necessarily restricted to that choice. The II; matrix could be constructed using other
parameters of the observations in order to facilitate the capture of other dependencies
and could also follow other types of functions.
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3.4.4 Local model

It is possible to define different types of local models. In this paper, we discuss three
options that depend on how we enforce the local spatial constraint. More specifically,
they depend on how we factorise the local Ay matrix in the relation:

¢ = 8, Ay (313)

Nevertheless, the MCCD framework does not restrict us to these three options and
it is possible to define other local models. It is worth remarking that all the framework
and optimisation procedures are maintained throughout the different flavours of the
MCCD algorithms. The main difference is the way the spatial constraints are enforced
in the local and global models.

MCCD-RCA

One motivation for the local model is to provide CCD-specific corrections and to do
so, our first choice is RCA’s spatial constraint strategy which leads to the MCCD-
RCA algorithm. The motivation for this choice is the capability of the RCA spatial
constraint to handle different types of PSF variations. On the one hand, it can capture
smooth variations over the CCD and on the other hand, it can account for localised
changes that affect a reduced number of PSFs. If the PSFs were sampled on a regular
grid, this would mean capturing variations occurring at different spatial frequencies.
Unfortunately, the PSF locations do not coincide with a regular grid but on what
could be seen as a fully connected undirected weighted graph where the weights can
be defined as a function of the distance between the different nodes (PSF locations)?.
However, the RCA spatial constraint exploits the graph harmonics in order to capture
the different PSF variations. These harmonics are represented by the eigenvectors of
the graph’s Laplacian matrix [Chug7], which depend on how we define the graph’s
weights. A parametric function of the PSF distances serves as the graph’s weights,
as in Schmitz et al. [Sch+20], and the selection of the function’s parameters can be
done following Ngolé et al. [Ngo+16]. For each local model, i.e. each CCD in the
mosaic, we define r; graphs, each corresponding to one of the r; local parameters of
the parametrized distance function of the grpah’s weights. For each graph, we can
extract the my most useful eigenvectors of its Laplacian matrix, which correspond to
the eigenvectors of the lowest eigenvalues. We then present all of them as the columns
of the matrix V;ROA € R™arX+ms In this way, we can write

Al]}CA _ OékRCAVkT RCA , (314)

where aECA € R™=*"e™Mk ig a weight matrix that is used to enforce the spatial

constraints. In other words, the sparsity of AEOA’S rows in the dictionary Vk—r RCA
Full details are available in Ngole et al. [Ngo+16] and Schmitz et al. [Sch+20].

MCCD-POL

The second local model, referred to as MCCD-POL, follows a polynomial spatial
constraint. Similar to PSFEx, we factorise the the local weights into two matrices as

follows
POL _ _ POLyTPOL
A = I (3-15)
2A graph G can be defined as a pair (V, E), where V is the set of vertices and F the set of edges
that connects the different vertices. In our case, each star position constitutes a vertex and there is
one edge for each pair of vertices. The edges have no preferred direction and its value depends on the
distance between the two vertices it connects.
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where H}:OL has the same form as the matrix in Equation 3.11, with the difference
that in this case, the positions are represented in local coordinates of its corresponding
CCD k. As with d in the global model, a parameter is chosen to define the maximum
order of the polynomial used.

MCCD-HYB

The third option consists of using the two local models we presented above, namely,
the RCA and polynomial, to work together in an hybrid algorithm we will refer to
as MCCD-HYB. The idea behind it is that the addition of the polynomial space
constraint could help the original graph constraint to capture the different features
found. In this case, we factorise the local weights with block matrices as

HYB HYBy,T HYB aRCA 0 V'
Ay, = "V, = 0 QEOL HEOL ) (3.16)

where aEOL and HEOL are the matrices defined in the polynomial version and
oszCA and V,: are the matrices defined in the original MCCD-RCA algorithm.

Finally, generically including the spatial constraints in Equation 3.6, we get the
following description of our model for a specific CCD

I:Ik = SkakaT + gde, (317)

which we can also write in a global form, H=S aV' T, where H and S have already
been defined in Equation 3.7 and Equation 3.8, and where o and V' ! are the following
matrices

T
a0 0 |4 0 0
0 0 v
o= . , V= . 0 (3.18)
L o0
o, I, --- Ty

3.4.5 Optimisation problem

Combining the regularisations enumerated in Section 3.4.2 and the data model de-
scribed in Section 3.4.1, we can construct the optimisation problem in an elegant way
by reformulating Equation (3.4). However, we can split the optimisation problem into
a more convenient form

N
) 1 5
min > | SV = Fa(SearVy” + SaTly)|5+
Sty08NsS | D 2

Q1. N,

Tk
Z Wk, @ Psg4ll1 + L+(SkakaT + Sallg) + a, (ak)>
i=1

+ ) Wi © 344 +L(z(@)}~ (3-19)

i=1

In the previous equation, the columns of Y3, € R” *niXniar are the stars distributed
in the k™ CCD sensor, Fj, is the degradation operator, wy, ; and W; are weight vectors,
® is a transform that allows a sparse representation of our eigenPSFs, and €2 and
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are sets to enforce sparsity and normalisation of the rows of aj and &, respectively.
The indicator function of a set C is written as ¢¢(-), that is equal to o if the argument
belongs to C and +o0o otherwise. For example, ¢, is the indicator function over the
positive orthant. More explicitly, the sets €, and Q are defined the following way

Q= {on | Vi€ {1, m} (@il < i Al (@ Vi ill2 = 13, (3-20)
Q={a|vie{l,....7H@"illo <7 A (G )il2 = 1}, (3.21)

where (15, )1<i<r, and (7;)1<i<7 are appropriately chosen integers, and ||-||o is the
pseudo-norm £y that returns the number of non-zero elements of a vector. So we are
enforcing, in the global case, the row i € {1,...,7} of & to have at most 7j; non-zero

elements. An interpretation could be that we are forcing each eigenPSF to follow a
small number of positional polynomials as A’s rows will be sparsely represented over
the II; matrices.

The @ transform used throughout this chapter is the starlet transform [SMB11].
We enforce the sparsity on the different decomposition levels excluding the coarse
scale. The ¢; term promotes the sparsity of the eigenPSFs with respect to ® while the
weights wy, ; and W; regulate the sparsity penalisation against the other constraints
and should be adapted throughout the optimisation algorithm depending on the noise
level.

The second term in each of the 2 sets (e.g. [[(axV,')ill2 = 1) was not mentioned in
the regularisation Section 3.4.2, but they are needed to avoid a degenerated solution,
for example ||Sk||F — oo and ||Ag||r — 0, due to the usual scale indeterminacy when
doing a matrix factorisation. To avoid this, we normalise the A and A columns. This
translates to forcing the normalisation of the eigenPSF weights contributing to model
each observed star. This does not mean that the eigenPSF weights will be the same
for each star, but that the norms of the weight vectors are equal.

3.4.6 Algorithm

The optimisation in Equation 3.19 is non-convex as we are facing a matrix factorisation
problem. To overcome this situation we use an alternating minimisation scheme where
we optimise one variable at a time, iterating over the variables as studied in Xu et al.
[XY13] and Bolte et al. [BST14]. In consequence, we can at most expect them to
converge towards a local minima. The main iteration is performed over the different
variables occurring in Equation 3.19, first over the global S, & and then over the local
517041, ey SK,aK.

The method is shown in Algorithm 1, which contains the four main optimisation
problems derived from the alternating scheme. There exists a wide literature on
minimisation schemes involving non-smooth terms, specifically proximal methods
[PB14], which we can exploit in order to handle the four cases. Notably, we use the
algorithm proposed by Condat [Con13] for problems (II), (III), and (IV). For problem
(I), we use the method proposed by Liang et al. [LLS18] which is an extension of the
well-known FISTA algorithm [BTog]. Even though the ¢y pseudo-norm is non-convex
and, therefore, not adapted to the general scenario of the aforementioned algorithms,
we can alleviate this issue by combining the application of its proximal operator and a
given heuristic.

With regard to the Algorithm 1’s initialisation, we start by a preprocessing where
we reject stars that are strong outliers in terms of shape or size. We run the shape
measurement algorithm mentioned in subsection 3.5.4 on the training stars and
discard those that are several sigmas away from nearby stars. At this moment, we
can assign a specific weight for each training star. There are three available options:
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(i) to use a unitary weight for each training star; (ii) to use a weight provided by
the user; (%) to compute a weight w; as a function of the star’s SNR based on
w; < SNR;/(SNR,; + median(SNR)) and bound to a specific interval to avoid bright
stars from dominating the optimisation.

Next, we continue with all the local eigenPSFs set to zero, as seen in line 4 of
Algorithm 1; and the & matrix set to the identity, favouring the specialisation of each
global eigenPSF to one specific monomial. By following this procedure, we are training
a global polynomial model that fits the stars as best as it can. Later on, the local
models work with the residuals between the observed stars and the global model,
trying to capture variations missed in the previous step.

There are four iteration loops in algorithm 1. In line 8, this is the main iteration,
and in line 15, the iteration over the CCDs for the training of the local model. The
other two iterations on lines 9 and 14 correspond to a refinement of the estimation.
Our objective is to correctly estimate the global and the local contributions for the
model and to do this, we alternate the minimisation between the global and the local
contributions, which we call outer minimisation. On top of that, each of these two
contributions include an inner alternating minimisation scheme as we are performing
a matrix factorisation for the local and for the global models. For example, we are
simultaneously minimising over Sy, o, for the local model and over S, & for the global
model. We want to refine this inner minimisation, meaning that the optimisation
of the two variables separately approaches the joint optimisation of both variables.
To accomplish this, we need to go through a small number of iterations, which are
described by the n superscript variables, before continuing the iteration of the next
alternating scheme. The optimisation strategy can be seen as a compound alternating
minimisation scheme considering the outer and the inner alternations.

More details about the optimisation strategy, and how we solve each of the
optimization problems appearing in algorithm 1, can be found in section A.

3.4.7 PSF recovery

Once the training of the model on the observed stars is complete, we can continue with
the problem of estimating the PSF field at galaxy positions. We call this problem PSF
recovery. Gentile et al. [GCM13] conducted a study on PSF interpolation techniques
and Ngolé et al. [NS17] proposed a sophisticated approach based on optimal transport
theory [PC19]. We will follow a Radial Basis Function (RBF) interpolation scheme
with a thin plate kernel3, as in Schmitz et al. [Sch+20], due to its simplicity and
good performance. This choice comes with the assumption that the influence of each
observation does not depend on the direction but only on the distance to the target
which is well described by the RBF kernel.

The RBF interpolation of a function f on a position v works by building a weighted
linear combination of RBF kernels (¢(-)) centred in each of the available training star
positions u;. The interpolation function reads

NrBr

Flu)y =" Xo (lu—wl), (3-22)

=1

where (Al)fszlBF are the linear weights that need to be learnt and Nrpp is the
number of elements used to estimate the interpolant. In order to learn the weights,
we force the exact reconstruction of the interpolant on the known positions, that is

N

fu;) = f(u;) Vi € {1,..., Nrpr}. By fixing the aforementioned constraint we have

3Where the kernel is defined as ¢(r) = r2 In(r).
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Algorithm 1 Multi-CCD Resolved Components Analysis
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Figure 3.4-1 — Example of the interpolation procedure involved in the PSF recovery.

a system of Nrpr equations with Nggr unknown that are the A\; weights. Once the
system is solved, it is just a matter of evaluating the interpolant on the desired position
u following Equation 3.22.

At this point, we need to choose the function f over which we go on to interpolate.
A straightforward choice would be to use the reconstructed PSFs at the training
positions as the f(u;). Nevertheless, this would not take into account the specificities
and structure of our model. Following the discussion in Schmitz et al. [Sch+420, §4.2],
we use the learnt Ay, and Aj matrices. These matrices encompass all the spatial
distribution properties of the learned features, that is, our eigenPSFs; thus it is natural
for our framework to use these values as the function to interpolate.

We continue with a brief explanation of the interpolation procedure. For one
given target position u in CCD k, we consider the Nrpr closest observed stars to
that position that also belong to the CCD k. We call Ax(Ngrpr) to the Ay matrix
composed only with the columns of the aforementioned Nrpr stars. We want to
estimate the interpolated column vector Ay ,. For this, we use a RBF interpolation
scheme for each row of the Ax(Ngrpr) matrix. The elements of the row ¢ represent

the (£ (u;))Y2P" evaluations and the element A ,, tepresents the interpolated value

F®(u). The same procedure is repeated for each row of the Ag(Nrpr) matrix so as
to obtain the column vector Ay ,. This is illustrated in Figure 3.4-1. We repeat the
procedure with the global component matrix, Ay, in order to obtain Ak u, another
column vector with the interpolated values. At this point, we note that we handle
the global and the local contributions independently. Once we have calculated the
two interpolated vectors, the reconstructed PSF is obtained following the MCCD data
model as can be seen in the next equation

H(u) = SAgu + SkAku . (3-23)

We found that restricting the Ngpr neighbours to a single CCD for the global
components gives better results. This might be due to the fact that the global
components are able to capture some of the discontinuities from one CCD to another
and, therefore, the interpolation is degraded when using stars from different CCDs
. The number of neighbours Nggr should be chosen as a function of the available
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10 arcmin

Figure 3.5-2 — Star positions in CFHT’s MegaCam used for the simulated dataset.
The positions were taken from a real CFIS exposure.

number of stars per CCD in the training set and as the RBF kernel chosen. Henceforth,
and given the training set we handle in this study, Ngpr is set to 20.

3.5 Numerical experiments with simulated data

3.5.1 Data

The simulated data set we create to evaluate MCCD set is based on a Canada-
France Imaging Survey (CFIS)* MegaCam® exposure from the Canada-France-Hawaii
Telescope (CFHT). It contains 2401 stars distributed along 40 CCDs over a field of
view of ~ 1 deg? as shown in Figure 3.5-2. Each CCD consists of a matrix of 2048
by 4612 pixels with some given gaps between the different CCDs. The horizontal gap
length consist of ~ 70 pixels while vertical gaps contain ~ 425 pixels.

3.5.2 Training set

Our simulation pipeline considers a Moffat PSF profile with normalised flux drawn
using the Galsim software® [Row-+15] for each position in the exposure. To simulate
the PSF shape variation, we used two radial analytic functions which define our ground
truth shape ellipticities distortions. Shearing stars leads naturally to a size variation.
Figure 3.5-3 shows the resulting e;, es and size maps. Our pipeline performs the
following steps:

1. Simulate Moffat stars with a size fixed to the mean size measured in the real
exposure.

2. Shear the simulated stars as a function of their position using the two analytical
functions.

3. Apply a random sub-pixel shift following a uniform distribution centred on zero.

4www.ctht.hawaii.edu/Science/CFIS/
5www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/
6github.com/GalSim-developers/GalSim
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4. Apply a binning to get a 51 x 51 pixel image, with a pixel size equivalent to
CFIS MegaCam’s maps, that is, 0.187 arcsec.

5. Add a constant white Gaussian noise to the images, with standard deviation o,
derived from the desired SNR level

o — 1913 (324)
- 0_2p2) 3 4

where y is the image postage stamp consisting of p? pixels. Each experience will
consist of a constant SNR value, as we later see, which is drawn from the set
{10, 30, 50, 70}.

Since PSFEx was designed as a companion software to SExtractor, we need to
follow a different procedure to generate the simulated data. We first need to process
our simulations with SExtractor, so that the catalogue produced can be used as inputs
for PSFEx. To accomplish this, we mimic a complete CCD so that SExtractor is able
to process it. We create star images as we already described for the MCCD method
but without noise as it will be added later. Then we distribute them on a mock image
of 2048 x 4612 pixels. The corresponding positions will be the pixel coordinates that
are presented in Figure 3.5-2. Once the mock image is created, we add the noise value
according to the desired SNR to the whole image. When the mock image is created,
we run SExtractor in order to have a star catalogue that PSFEx can use as input.

3.5.3 Testing data set

For the testing, we want to observe how well the different models capture the ellipticity
maps when trained on real star positions. Therefore, the positions in each CCD are
taken from a regular grid of 20 x 40 and considering that the total amount of CCDs
is 40, we finally obtain a total of 32000 stars with which to test our model. These
stars are simulated following the same ellipticity maps (see Figure 3.5-3), without
any sub-pixel shift and without any noise. The goal is now to use the training data
(i.e. simulated observed stars) to learn the model, and then to predict the PSFs at
positions of test stars. As we have the ground truth at these positions, without noise
and sub-pixel shift, it is easy to get a robust evaluation of model predictions.

3.5.4 Quality criteria

In order to correctly assess the performance of our PSF modelling algorithm, we
consider several criteria

o Pixel Root Mean Squared Error (RMSE) : calculated between the pixel images
of the recovered PSFs and the noiseless test stars. The expression of the pixel
RMSE is the following

| XL '
%IzZMS =\ ((Y*=Y)?) = NnZ ZZ(YM - Yi,j)Q ) (3-25)
Y i=1j=1

where Y; ; is the pixel j of test star ¢ that has a total of ni pixels, N is the total

number of test stars, }A/” is the estimation of the test star’s pixel and (-) denotes
the mean over all the elements in the array.
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Figure 3.5-3 — Shape measurement results of the simulated test star catalogue following
the analytical ellipticities.

« Shape (ellipticity) error: We estimate the ellipticities of reconstructed stars using
the adaptive moments’ ellipticity estimator from Galsim’s HSM module [HSo03;
Man+o05]. The shape and size definitions can be found in subsection 2.6.2. For
each of the ellipticity components, the RMSE is calculated as

1

N 3

1

M = (e = 6?) = (Tv > ei- én?) : (3-26)

i=1

e Size error: We use the measurements from HSM and the definition in subsec-
tion 2.6.2 to compute the following RMSE

N 3
RERMS _\ [(R2x — R2)2) = <% Z(R? - R?)2> : (3-27)

i=1

¢ Moment residual maps: To visualise the shape and size errors, we plot these
quantities as a function of their position on the focal plane.

When comparing two methods, we define the relative gain with regard to the
metric, m, of method 1 with respect to the method 2 as

Gy ja(m) = 22— 5 100%. (3.28)

mo
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3.5.5 Model parameters

Based on experiments with simulated and real data, we have chosen the following
parameters

e« PSFEx: we use the following configuration:

PSF_SAMPLING 1.0

PSF_SIZE 51,51

PSFVAR_KEYS XWIN_IMAGE,YWIN_IMAGE
PSFVAR_GROUPS 1,1

PSFVAR_DEGREES 2

XWIN_IMAGE and YWIN_IMAGE refer to the windowed centroid positions
in pixel coordinates, and PSFVAR_DEGREES to the maximum polynomial
degree. The PSFEx software” does not include publicly an interpolation method,
so we use an available PSFEx interpolation module®.

o RCA: we set r equal to eight local components, the denoising parameters K fCA

to 1, and the other parameters to their default value from its official repository®.

e MCCD: we use the same parameters as RCA for the local component and a
maximum polynomial degree of eight for the global components. The denoising
parameters K¢ and K& are set to 1 for the local and the global contributions.

The MCCD parameters that most affect its behaviour are mentioned above. Their
choice greatly relies on the training data set used. Depending on the number of stars
available and the complexity of the instrument’s PSF, it may be preferable to adopt
a more complex model by augmenting the number of local components, r, and the
maximum polynomial degree. However, if the stars are not enough to constrain the
model, we may end with a model that overfits the training stars. A proper selection
of the denoising parameters can control the bias-variance trade-off in the estimation.
A high value of the denoising parameter, namely, 3, leads to an extremely denoised
model. It will contain a high estimation bias that can be related with a model that
cannot capture some spatial variations and fine details of the PSF. On the contrary, if
the denoising parameter is close to zero, the only denoising performed by the MCCD
is due to the low-rank constraint and therefore the estimations can be rather noisy.

3.5.6 Results
Comparison between PSFEx, RCA and MCCD-RCA

The first results can be seen in Figure 3.5-4 and Figure 3.5-5, where we compare
the PSFEx, RCA, and MCCD-RCA algorithms. We observe that MCCD-RCA
outperforms the other methods, with an average pixel RMS improvement over PSFEx
of 51% and ellipticity RMS improvement ranging from 15% for stars with an SNR 10
to 36% for a SNR of 70. The RCA is almost as good as MCCD-RCA for the pixel
error, but does not provide good results for the other metrics. This behaviour can
be explained by the fact that the model strongly deteriorates for some CCDs, giving
extreme ellipticities and sizes values. These deteriorations of the model are not strong

7www.astromatic.net /software/psfex
8github.com/esheldon/psfex
9github.com/CosmoStat/rca
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Figure 3.5-4 — RMSE on pixels, shape, and size metrics as a function of stars SNR for
the three main methods. The RMSE are plotted with solid lines and the gain of the
methods with respect to PSFEx are plotted with dashed lines.

enough to produce a large pixel error but causes much more significant errors on
the moments. We include in Figure 3.5-6 RCA’s R? residual map that shows the
catastrophic failure in the modelling of some CCDs.

We can see on the right column of the residual maps in Figure 3.5-5 that PSFEx’s
ellipticity residuals follow the global pattern from the dataset. This means that the
ellipticity is not captured in the model, showing some difficulties found when modelling
a global ellipticity pattern using independent models for each CCD. The MCCD-RCA
algorithm, which builds up a model for the whole focal plane, does a better job in
capturing the global ellipticity pattern. The MCCD-RCA’s residuals are smaller and
less correlated with the pattern of the dataset. With regard to the third row of
Figure 3.5-5, where the size of the simulated PSFs is practically constant, we observe
that the MCCD-RCA has slightly larger errors when the training star density is low,
as in the bottom-right corner (see Figure 3.5-2).

Comparison between MCCD-POL, MCCD-RCA, and MCCD-HYB

The comparison between the MCCD-POL, MCCD-RCA, and MCCD-HYB methods is
shown in Figure 3.5-7. First, we notice that MCCD-POL presents poor performance
in most of the metrics. This indicates that the local polynomial model is not able to
capture the PSF variations that are left over from the difference of the global model
and the observed stars. Hence, even if MCCD-POL has a lower pixel error than PSFEx
(see Figure 3.5-4), it has greater ellipticity errors. Capturing these PSF variations
properly is essential for obtaining good ellipticity performances. The MCCD-RCA
and MCCD-HYB have similar behaviours, but MCCD-HYB uses a mixed approach
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Figure 3.5-5 — Moment residual maps comparing the MCCD-RCA algorithm on the
left and the PSFEx algorithm on the right. They are obtained by subtracting the
model’s and the test star’s measured shape and size metrics and plotting them on
their corresponding position over the focal plane. The SNR value of the star dataset
is 50.
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Figure 3.5-6 — Residual ARy/Rs map of the RCA algorithm of stars with an SNR
of 50. The CCDs where the RCA model is having degeneracies that can be clearly
spotted on the map.

of a polynomial and graph-based local model outperforms the original MCCD-RCA
method in terms of ellipticity components. The average gain in both components of
MCCD-HYB with respect to MCCD-RCA is around 18%, proving the utility of using
the hybrid approach. This suggests that there are some features related to the PSF
shape that can be captured by a simple polynomial model and not by the graph-based
model alone. Examples of global and local eigenPSF from the MCCD-HYB model
can be seen in Figure 3.5-8.

3.5.7 Comparison of computing resources

The MCCD methods take ~ 2.9x more CPU-time than PSFEx when compared on
the same machine. We evaluate it on the fitting and validation procedures, that is,
the estimation of the PSF model and the recovery of PSFE at test positions. A relevant
detail is that the PSFEx package is coded in the C programming language, while the
MCCD methods are completely coded in Python.

3.6 Numerical experiments with UNIONS/CFIS data

In this section, we compare the MCCD-HYB method with PSFEx using real data
from the Ultra-violet Near-Infrared Optical Northern Sky (UNIONS) survey, which is
a collaboration between the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS) and CFIS. We use the r-band data from the latter.

3.6.1 Dataset

We analysed a subset of around 50 deg?® from the whole CFIS survey area that, in total,
will eventually span 5000 degg. It corresponds to the subset named W§g described in
Erben et al. [Erb+13], and includes 217 exposures. Each CCD from each exposure
has been processed independently with SExtractor. The stars were selected in a
size-magnitude diagram, in the magnitude range between 18 and 22, and a Full Width
Half Maximum (FWHM) range between 0.3 and 1.5 arcsec. In order to validate the
PSF models, we randomly split the stars into a testing and a training dataset, trying



3.6. NUMERICAL EXPERIMENTS WITH UNIONS/CFIS DATA 99

L a1t Pixel RMSE R’ RMSE
2x10
* I —+— MCCD-POL A o
6x107% MCCD-RCA
L1x1074 Y S 1CCD-R ’\
—— MCCD-HYB )
o= — 50 551072
107 - ! -
e 10
b 5x107%
g 5| o I S
)% 10 —4#— MCCD-POL 4 d
g . ot g H —20 &
B MCCD-RCA & S i1 g
8x107 == MCCD-HYB = g

1x10-%
7x107

R 3.5%107%
6x107

3% 102

5x107°

10 20 30 10 50 G0 70 10 20 30 10 50 60 70

Star SNR Star SNR
¢; RMSE ¢ RMSE
L6x107% i i I b .
B eommmmTATomTmmmmmm e o . [0 2%10~2 [ —— 10
- —
1.4x107% PO
2 1.8x10°2
20
1.2x10°2 0 1.6x107>
.\ S 0 £
MCCD-POL 20 4 #— MCCD-POL P
] 2 . -0 g 2 14x1072 d
W MCCD-RCA g Z. MCCD-RCA g
N —— MCCD-HYB = —— MCCD-HYB [—20.£
—40 =5 1.2x1072 &
3 2 3
8x107*
60 102 —40
6x107> Y
80 8x107 \_\ 60
X108 ‘\’§‘\’ ~100 6x10
= = - - — 80
10 20 30 0 50 60 70 10 20 30 0 0 60 70
Star SNR Star SNR

Figure 3.5-7 — Comparison of the performance of MCCD-POL, MCCD-RCA, and
MCCD-HYB methods in terms of the RMSE on the pixels, the shape and the size
metric of the star’s SNR. The RMSE are plotted on a solid line and the gain of the
method with respect to PSFEx is plotted on dashed lines.

to estimate the first set of stars while constructing our model only with the second.
The training dataset is composed of 80% of the detected stars and the test dataset of
the remaining 20%. We consider a fixed threshold on the number of training stars per
CCD, meaning that if the number of training stars in a given CCD is less than 30, we
discard the CCD. The star density of the training dataset is presented in Figure 3.6-9.
The ellipticity and the size of the training stars can be seen in Figure 3.6-10. Each
bin represents the mean shape measurement over all the stars with a centroid located
within the bin.

3.6.2 Model parameters

The setup of PSFEx for this experiment is similar to the one used for the simulated
images, which can be found in Section 3.5.5. The MCCD-HYB method uses a
maximum global polynomial degree of 3, with 16 local components and the denoising
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